Chapter 2

Probability

"Chance, too, which seems to rush along with slack reins, is bridled and governed by law" (Boethius, 480-524).

Blaise Pascal (1623-1662)

Pierre de Fermat (1601-1665)

Abraham de Moivre (1667-1754)

2.1 Sample space and events*

Experiment: any action or process whose outcome is uncertain.

Example 2.1 Roll a die.

Outcome: A particular realization of a random experiment. It is usually denoted by $\omega_{1}, \omega_{2}, \cdots$. In the example the outcome could be landing with $1,2,3,4,5$, or 6 on the top, e.g. $\omega_{2}=2$, Sample space: The set (collection) of all possible outcomes, denoted by Ω. For intance $\Omega=$ $\{1,2,3,4,5,6\}$.

Event: A set (collection) of outcomes or equivalently, a subset of the sample space. Usually denoted by A, B, C, \cdots. E.g. $A=\{2,5\}, B=\{6\}, C=\emptyset$.

Question: What is the sample space of rolling two dice:

Event (Set) Basic operations:
© Union $A \bigcup B=A$ or B - either A or B occurs (or both)
© Intersection $A \bigcap B=A$ and B - both A and B occur.
© Complement $A^{c}=\Omega-A —$ event A does not occur (\bar{A})

Figure 2.1: The Venn diagram shows the relationship between two sets
e.g. $A=\{1,2\}, \quad B=\{2,5\}$, then $A \bigcup B=\{1,2,5\}, A \bigcap B=\{2\}, A^{c}=\{3,4,5,6\}$.

Mutually exclusive: A and B have no outcomes in common, written as $A \cap B=\emptyset$, or more generally A_{1}, \cdots, A_{n} share no common outcomes.

Notation:

$$
\begin{gathered}
A_{1} \cup A_{2} \cup \cdots \cup A_{n}=\bigcup_{i=1}^{n} A_{i} \\
A \cap B=A B \\
A_{1} \cap A_{2} \cap \cdots \cap A_{n}=A_{1} A_{2} \cdots A_{n}=\bigcap_{i=1}^{n} A_{i}
\end{gathered}
$$

de Morgan rule:

$$
\left(\bigcup_{i=1}^{n} A_{i}\right)^{c}=\bigcap_{i=1}^{n} A_{i}^{c} \text { and }\left(\bigcap_{i=1}^{n} A_{i}\right)^{c}=\bigcup_{i=1}^{n} A_{i}^{c} .
$$

Example 4. Let Ω be the salaries earned by the graduates from a UK Business School in the past 5 years (surveyed in 2010). We may choose $\Omega=[0, \infty)$. Based on the dataset "Jobs.txt", we extract some interesting events/subsets. Recall the information of the dataset:

C1: ID number
C2: Job type, 1 - accounting, 2 - finance, 3 - management, 4 - marketing and sales, 5 -others
C3: Sex, 1 - male, 2 - female
C4: Job satisfaction, 1 - very satisfied, 2 - satisfied, 3 - not satisfied
C5: Salary (in thousand pounds)
C6: No. of jobs after graduation

IDNo.	JobType	Sex	Satisfaction	Salary	Search
1	1	1	3	51	1
2	4	1	3	38	2
3	5	1	3	51	4
4	1	2	2	52	5

Male and female salaries can be extracted as follows:

```
> jobs <- read.table("Jobs.txt", skip=10, header=T, row.names=1)
```

> mSalary <- jobs[,4][jobs[,2]==1] \#male salary
> fSalary <- jobs[jobs[,2]==2,4] \#female salary

We may extract the salaries from finance sector or accounting:
> finSalary <- jobs[,4][jobs[,1]==2]; summary(finSalary)
Min. 1st Qu. Median Mean 3rd Qu. Max.
$37.00 \quad 46.00 \quad 53.00 \quad 52.08 \quad 58.00 \quad 65.00$
> accSalary <- jobs[,4][jobs[,1]==1]; summary(accSalary)
Min. 1st Qu. Median Mean 3rd Qu. Max.
$\begin{array}{llllll}40.00 & 47.00 & 51.00 & 50.45 & 54.00 & 62.00\end{array}$
According to this dataset, finance pays slightly higher than accounting. We may also extract the salaries for males (females) in accounting:

```
> maccSalary <- jobs[,4][(jobs[,1]==1) & (jobs[,2]==1)]
    # '&' stands for logic operation 'and'
> summary(mfinSalary)
\begin{tabular}{rrrrrr} 
Min. 1st Qu. & Median & Mean & 3rd Qu. & Max. \\
44.00 & 48.00 & 51.00 & 51.31 & 55.00 & 62.00
\end{tabular}
```

> faccSalary<- jobs[,4][(jobs[,1]==1) \& (jobs[,2]==2)]
> summary (ffinSalary)
Min. 1st Qu. Median Mean 3rd Qu. Max.
$\begin{array}{llllll}40.00 & 45.25 & 49.50 & 49.66 & 53.00 & 61.00\end{array}$
To extract the salaries for males in both finance and accounting:
> mfinaccSalary <- jobs[,4][(jobs[,2]==1) \& ((jobs[,1]==1) | (jobs[,1]==2)) \# '|' stands for logic operation 'or'
To remove (unwanted) objects:
> rm(mSalary, fSalary, accSalary, finSalary, maccSalary, faccSalary, mfinaccSalary)
2.2 Probability

Probability shows the likelihood that an event can occur.

Two viewpoints of probability:

\& Frequentist: prob = long-run relative freq (appealing for repeatable experiments).
\& Bayesian: probability $=$ measure of prior belief (appealing for non-repeatable experiments).

For example, when rolling a die, if $A=\{1,2\}$, then $P(A)=2 / 6=$ $1 / 3$. If $B=\{2,5\}$, then $P(A \cup B)=3 / 6$ and $P(A B)=1 / 6$.

Axioms of Probability (Komolgorov):

1. $P(A) \geq 0$.
2. $P(\Omega)=1$.
3. Additivity: If A_{1}, A_{2}, \cdots are mutually exclusive, then

$$
P\left(A_{1} \cup A_{2} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots
$$

All the other probability properties that you might know are derived from those 3 simple axioms.

Properties of Probability:

- (Complement) $P\left(A^{c}\right)=1-P(A)$.

- (Monotonicity) if $A \subseteq B$ then $P(A) \leq P(B)$.
- If A and B are mutually exclusive, then $P(A \cap B)=0$.

- (Inclusion-exclusion) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
- (Union Bound) $P(A \cup B) \leq P(A)+P(B)$.
$\underline{\text { Equally Likely Outcomes: }} P(A)=\frac{\# \text { elementary outcomes in } A}{\# \text { elementary outcomes in } \Omega}$.
Example 2.2 A machine tosses 5 coins at random. What is the probability of at least 4 heads?

Possible outcomes $=\{H H H H H, T H H H H, H T H H H, H H T H H$, HHHTH, HHHHT, HHHTT, $\cdots\}, 2^{5}=32$ possible outcomes.

$$
\begin{aligned}
P(\text { at least } 4 \text { heads }) & =P(\text { exactly } 4 \text { heads })+P(\text { exactly } 5 \text { heads }) \\
& =\frac{5}{32}+\frac{1}{32}=\frac{3}{16}
\end{aligned}
$$

2.3 Counting techniques*

$\underline{\text { Rule of product: When an experiment consists of two parts, the first part of } m \text { distinct outcomes }}$ and the second part of n results, then we have total $m \times n$ outcomes. This generalizes to k-tuples.

Example 2.3 Two dice are rolled.

A How many possible results?
A What is the chance that the sum of two dice is more than 7 ? Answer: $\frac{0+1+2+3+4+5}{36}=\frac{5}{12}$.

Example 2.4 Rule of Permutations

A class consists of 110 students. In how may ways can the first, second and third prize be awarded to the students?

In this case, the ordering is important. For example, Jane, Richard and Caroline are different from Richard, Caroline and Jane for the first, second and third prize.

Rule of Permutations: Any ordered sequence of k objects taken from a set of n distinct objects is called a permutation (or an arrangement). The total number of permutations is

$$
P_{k, n}=n(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!}
$$

where $m!=m(m-1) \cdots 1$ is the ' m factorial'.

Example (continued) In how many ways can three students be selected to form a committee? In this case, the ordering does not matter, namely, Jane, Richard and Caroline is the same committee as Richard, Caroline and Jane. There are 3! arrangements that correspond to the same committee. Hence, the total number is

$$
\frac{110 \times 109 \times 108}{3 \times 2 \times 1}=\frac{110!}{3!\times 107!}=215,820
$$

Rule of Combinations: The number of combinations obtained when selecting k objects from n distinct objects to form a group is given by $\binom{n}{k}=\frac{n!}{k!(n-k)!}$. Note that the ordering is irrelevant in
this case.

Example 2.5 Computing probability

Thirteen cards are selected at random from a 52 -card deck.

1. How many possible hands are there? Answer: $\binom{52}{13}=635013559600$
2. What is the probability of getting a hand consisting entirely of spades and clubs with at least one card of each suit?

$$
\text { Probability }=\frac{\binom{26}{13}-2}{\binom{52}{13}}=.000016379
$$

3. What is the chance of getting a hand consisting of exactly two suits?

$$
\text { Probability }=\frac{\binom{4}{2}\left[\binom{26}{13}-2\right]}{\binom{52}{13}}=.000098271
$$

4. What is the chance of getting a hand of $4 \boldsymbol{\uparrow}-4 \bigcirc-3 \diamond-2 \boldsymbol{\wp}$?

$$
\text { Probability }=\frac{\binom{13}{4}\binom{13}{4}\binom{13}{3}\binom{13}{2}}{\binom{52}{13}}=0.017959
$$

5. What is the probability of getting a hand with distribution 4-4-3-2? Answer: 0.21551

$$
\text { Probability }=\frac{\binom{13}{4}\binom{13}{4}\binom{13}{3}\binom{13}{2}}{\binom{52}{13}}\binom{4}{2}\binom{2}{1}
$$

6. What is the chance of getting a hand of K-Q-J if 3 cards are picked at random? Answer: $\frac{\binom{4}{1} \times\binom{ 4}{1} \times\binom{ 4}{1}}{\binom{52}{3}}$.
7. Three balls are selected at random without replacement from the jar below. What is the probability that one ball is red and two are black? Answer: $\frac{\binom{2}{1}\binom{3}{2}}{\binom{8}{3}}$.

2.4 Conditional probability

Conditioning is powerful for relating two events and provides a useful tool for computing probability.

Definition: Conditional probability of A given B is defined (provided that $P(B)>0)$ as

$$
P(A \mid B)=\frac{P(A B)}{P(B)}
$$

Example 2.6 Conditional probability.
In a population, 50% of the people are female and 5% of them are female and unemployed. If a randomly chosen person is female, what
is the chance that she is unemployed?

$$
P(U \mid F)=\frac{P(F \cap U)}{P(F)}=\frac{.05}{.50}=10 \% .
$$

What is $P(U)$? 5%

Multiplication rule: $P(A \cap B)=P(B) P(A \mid B)=P(A) P(B \mid A)$.
More generally,
$P\left(A_{1} \cdots A_{k}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} A_{2}\right) \cdots P\left(A_{k} \mid A_{1} \cdots A_{k-1}\right)$.
Example 2.7 A birthday problem
In a class of n students, what is the chance that at least two people
have the same birthday?

$$
\begin{aligned}
p_{n} & \equiv P(\text { at least two having the same birthday }) \\
& =1-P(\text { none of students have the same birthday }) \\
& =1-\frac{365}{365} \times \frac{364}{365} \times \cdots \times \frac{365-n+1}{365}
\end{aligned}
$$

In particular, $p_{23}=0.5073, p_{30}=0.7063, p_{40}=0.8912, p_{50}=0.97$.
Question: What is the probability that at least one of n students
have the same birthday as you?
Let us use simulation to demonstrate the birthday problem:

```
> x = sample(1:365,50,replace=T) #draw 50 birthdays independently.
> x
    [1] 281 353 140 206 232 175 238 206 240 186 229 68 245
[20] 335 192 301 142 164 74 142 1426
[39] 316 268 53 118 230 23 38 150 362 110 210 145
> table(x) #if the same birth days, its length is shorter than that of x.
```

23	26	38	53	68	74	94	95	96	110	118	122	128	140	141	142	145	150	164	175
1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1
177	182	186	190	192	203	206	210	229	230	232	238	240	245	266	267	268	281	301	311
1	1	1	2	1	1	2	1	1	1	1	1	1	1	1	1	1	2	1	1
316	335	353	361	362															
1	1	1	1	1															

We now simulate 10000 times and see what is the relative frequency

```
> result = NULL
> for(i in 1:10000) #10000 simulations
    {x = sample(1:365,50,replace=T) #draw 50 birthdays
        result = c(result, (length(table(x)) < length(x)))
    }
> result[1:10] #result of the first 10 experiments
    [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> mean(result) #Sample proportion with the same birthdays
[1] 0.9717
```

Example 2.8 A box contains 10 tickets. Three of them are winning tickets. Pick three at random without replacement.

1. What is the chance that the first three randomly picked tickets are the winning ones?

Let W_{i} be the event that the i th draw is a winning ticket. Then,

$$
\begin{aligned}
P\left(W_{1} W_{2} W_{3}\right) & =P\left(W_{1}\right) P\left(W_{2} \mid W_{1}\right) P\left(W_{3} \mid W_{1} W_{2}\right) \\
& =\frac{3}{10} \times \frac{2}{9} \times \frac{1}{8}=\frac{1}{120}
\end{aligned}
$$

2. What is the chance that the second ticket is a winning one?

$$
\begin{aligned}
P\left(W_{2}\right) & =P\left(W_{1} W_{2}\right)+P\left(W_{1}^{c} W_{2}\right) \\
& =P\left(W_{1}\right) P\left(W_{2} \mid W_{1}\right)+P\left(W_{1}^{c}\right) P\left(W_{2} \mid W_{1}^{c}\right) \\
& =\frac{3}{10} \times \frac{2}{9}+\frac{7}{10} \times \frac{3}{9}=\frac{3}{10}
\end{aligned}
$$

Rule of total probability: If A_{1}, \cdots, A_{k} are
a partition of the sample space, then
$P(B)=P\left(A_{1}\right) P\left(B \mid A_{1}\right)+\cdots+P\left(A_{k}\right) P\left(B \mid A_{k}\right)$.

Example 2.9 Rule of total probability and Bayes rule
Lab tests produce positive and negative results. Assume that a lab test has 95% sensitivity and 98% specificity. Assume that the prevalence probability is 1%.

1. What is the chance that lab test is positive for a random person?

$$
\begin{aligned}
P(+) & =P(D) P(+\mid D)+P\left(D^{c}\right) P\left(+\mid D^{c}\right) \\
& =.01 \times .95+.99 \times .02=2.93 \%
\end{aligned}
$$

2. Pick one person at random and the lab test shows positive result. What is the chance that the person really has the disease?

$$
\begin{aligned}
P(D \mid+) & =\frac{P(D+)}{P(+)}=\frac{P(D) P(+\mid D)}{P(D) P(+\mid D)+P\left(D^{c}\right) P\left(+\mid D^{c}\right)} \\
& =\frac{.95 \times .01}{01 \times .95+.99 \times .02}=32 \%
\end{aligned}
$$

3. What is the probability that, given that the lab test shows a neg-
ative result, the person does not have the disease?

$$
\begin{aligned}
P\left(D^{c} \mid-\right) & =\frac{P\left(D^{c}-\right)}{P(-)}=\frac{P\left(D^{c}\right) P\left(-\mid D^{c}\right)}{P(D) P(-\mid D)+P\left(D^{c}\right) P\left(-\mid D^{c}\right)} \\
& =\frac{99.95 \%}{}=\frac{}{}=9 .
\end{aligned}
$$

4. If a patient comes to see a doctor and the doctor judges that the probability of having the disease is 30%, what is the chance that the person really has the disease given that the lab test is positive? Answer: 95.3\%.

Bayes' Theorem: If A_{1}, \cdots, A_{k} are a partition of the sample space, then

$$
P\left(A_{j} \mid B\right)=\frac{P\left(A_{j} B\right)}{P(B)}=\frac{P\left(A_{j}\right) P\left(B \mid A_{j}\right)}{P\left(A_{1}\right) P\left(B \mid A_{1}\right)+\cdots+P\left(A_{k}\right) P\left(B \mid A_{k}\right)}
$$

Basic notion: Compute $A_{j} \mid B$ using $B \mid A_{j}$, i.e. calculate posterior probability using prior knowledge.
2.5 Independence

Definition: Two events A and B are indep. if $P(A \mid B)=P(A)$.
The definition is equivalent to:
(i) $P(A B)=P(A) P(B)$;
(ii) $P\left(A^{c} B\right)=P\left(A^{c}\right) P(B)$;
(iii) $P\left(A B^{c}\right)=P(A) P\left(B^{c}\right)$
(iv) $P\left(A^{c} B^{c}\right)=P\left(A^{c}\right) P\left(B^{c}\right)$.

Example 2.10 Intuition of independence
A box contains 4 blue tickets and 6 red tickets. Among the blue
tickets, there are two winning ones, and among the red tickets, there are three winning ones.

Upon picking a ticket at random
from the box you see that it is a red one. What is the chance of getting a winning ticket?

Example 2.11 Roll a dice.

Let $A=\{2,4,6\}, B=\{1,2,3\}$ and $C=\{1,2,3,4\}$. We then have

$$
P(A)=0.5, \quad P(A \mid B)=\frac{1}{3}, \quad P(A \mid C)=\frac{1}{2} .
$$

Namely, A and B are dependent, while A and C are independent

Question: A hat contains 3 index cards: one with both sides blue, one with both sides red, and one with one side blue and the other side red. Assume that the cards are well shuffled. Picking one at random, you see that the front side is blue. What is the
 chance that the back side is red? Answer: $1 / 3$.

Solution: Since the 3 index cards are symmetric in terms of what is "back" and "front", the sample space has in fact 6 outcomes with equal probability $(1 / 6)$

$$
\Omega=\{\text { front-back, front-back, front-back, front-back, front-back, front-back }\}
$$

Then, by definition of the conditional probability, we have:

$$
P(\text { back } \mid \text { front })=\frac{P(\text { front } \cap \text { back })}{P(\text { front })}=\frac{1 / 6}{3 / 6}=\frac{1}{3}
$$

since $P($ front $)=P($ front $\cap($ back \cup back $)=P[($ front \cap back $) \cup($ front \cap back $)]=P($ front \cap back $))+$ $P($ front \cap back $)]=2 / 6+1 / 6=3 / 6$.

Example 2.12 Independence of three events

Suppose that a coin is tossed twice. Let H_{1} and T_{1} be the events that the first toss is head and tail, respectively. Similar notation applies to the second toss. Let $E=H_{1} H_{2} \bigcup T_{1} T_{2}$. Then
© E, H_{1}, H_{2} are pairwise independent. e.g., $P\left(E H_{1}\right)=P\left(H_{1} H_{2}\right)=1 / 4=P(E) P\left(H_{1}\right)$.
A E, H_{1}, H_{2} are not independent, since $P\left(E \mid H_{1} H_{2}\right)=1 \neq P(E)=0.5$
Definition: Events A_{1}, \cdots, A_{n} are mutually independent if for every subset of indices i_{1}, \cdots, i_{k} of $\{1, \cdots, n\}$, we have

$$
P\left(A_{i_{1}} \cdots A_{i_{k}}\right)=P\left(A_{i_{1}}\right) \cdots P\left(A_{i_{k}}\right) .
$$

(total: 2^{n}-equations; more than pairwise independence.) This definition can be shown to be equivalent to the conditions

$$
P\left(B_{1} \cdots B_{n}\right)=P\left(B_{1}\right) \cdots P\left(B_{n}\right), \quad \text { for all } B_{j}=A_{j} \text { or } A_{j}^{c}
$$

(2 2^{n}-equations). Thus, indep is an idealistic assumption in practice.
Example 2.13 Use of independence
Suppose that a system consists of 5 indep components $C_{1}, \cdots C_{5}$ connected as below. If the probability that each component works properly is 90%, what is the chance that the system works properly?
Let D_{1} and D_{2} denote the first and second parallel device. Then,

$$
P\left(D_{1}\right)=P\left(C_{1} \cup C_{2}\right)=1-P\left(C_{1}^{c} C_{2}^{c}\right)=1-0.1 * 0.1=.99
$$

Similarly, $P\left(D_{2}\right)=1-0.1 * 0.1 * 0.1=0.999$.
The probability that the system works properly is

$$
P\left(D_{1} D_{2}\right)=0.99 \times 0.999=.9890
$$

Note: In the last expression we use the fact that D_{1} and D_{2} and independent events. Recall that D_{1} and D_{2} are independent events if and only if D_{1}^{c} and D_{2}^{c} are independent events. We demonstrate below the latter

$$
\begin{aligned}
& P\left(D_{1}^{c} \cap D_{2}^{c}\right)=P\left[\left(C_{1} \cup C_{2}\right)^{c} \cap\left(C_{3} \cup C_{4} \cup C_{5}\right)^{c}\right] \\
& =P\left(C_{1}^{c} \cap C_{2}^{c} \cap C_{3}^{c} \cap C_{4}^{c} \cap C_{5}^{5}\right) \quad \Leftarrow \text { de Morgan's Law } \\
& =P\left(C_{1}^{c} \cap C_{2}^{c}\right) P\left(C_{3}^{c} \cap C_{4}^{c} \cap C_{5}^{5}\right) \quad \Leftarrow C_{1}, \ldots, C_{5} \text { are independent then so are } C_{1}^{c}, \ldots, C_{5}^{c} \\
& =P\left[\left(C_{1} \cup C_{2}\right)^{c}\right] P\left[\left(C_{3} \cup C_{4} \cup C_{5}\right)^{c}\right] \quad \Leftarrow \text { de Morgan's Law } \\
& =P\left(D_{1}^{c}\right) P\left(D_{2}^{c}\right) \text {. }
\end{aligned}
$$

