
Chapter 2

Methods of Estimation

2.1 The plug-in principles

Framework: X ∼ P ∈ P , usually P = {Pθ : θ ∈ Θ} for parametric models.

More specifically, if X1, · · · , Xn ∼ i.i.d.Pθ, then Pθ = Pθ × · · · × Pθ.

Unknown parameters: A certain aspects of population. ν(P ) or q(θ) = ν(Pθ).

Empirical Dist.: P̂ [X ∈ A] = 1
n

∑n
i=1 I(Xi ∈ A) or F̂ (x) = 1

n

∑n
i=1 I(Xi 6 x)

Substitution principle: Estimate ν(P ) by ν(P̂ ).

Note: As to be seen later, most methods of estimation can be regarded as using
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Figure 2.1: Empirical distribution of observed data

“substitution principle”, since the functional form ν is not unique.

Example 1. Suppose that X1, · · · , Xn ∼ N(µ, σ2). Then

µ = EX =

∫
x dF (x) = µ(F ) and σ2 =

∫
x2 dF (x)− µ2.

Hence,

µ̂ = µ(F̂ ) =

∫
x dF̂ (x) =

1

n

n∑
i=1

Xi
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and

σ̂2 =

∫
x2 dF̂ (x)− µ̂2 =

1

n

n∑
i=1

(Xi − X̄)2.

This is also a non-parametric estimator, as the normality assumption has not been

explicitly used.

Example 2. Let X1, · · · , Xn be a random sample from the following box:

Figure 2.2: Illustration of multinomial distribution

Interested in parameters: p1, · · · , pk and q(p1, · · · , pk).

e.g. dividing the job in the population by 5 categories, interested in p5 and

(p4 + p5 − p1 − p2).

The empirical distribution:

pj = P (X = j) = F (j)− F (j−) ≡ Pj(F )
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Hence,

p̂j = Pj(F̂ ) = F̂ (j)− F̂ (j−) =
1

n

n∑
i=1

I(Xi = j),

namely, the empirical frequency of getting j. Hence,

q(p1, · · · , pk) = q(P1(F ), · · · , Pk(F ))

is estimated as

q̂ = q(p̂1, · · · , p̂k) — frequency substitution.

Example 3. In population genetics, sampling from a equilibrium population with

respective to a gene with two alleles A with prob. θ

a with prob. 1− θ
,

three genotypes can be observed with proportions (Hardy-Weinberg formula).

AA Aa aa

p1 = θ2 p2 = 2θ(1− θ) p3 = (1− θ)2
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Figure 2.3: Illustration of Hardy-Weinberg formula.

One can estimate θ by
√
p̂1 or 1−

√
p̂3 , etc.

Thus, the representation

q(θ) = h(p1(θ), · · · , pk(θ))

is not necessarily unique, resulting in many different procedures.

Method of Moments: Let

mj(θ) = EθX
j — theoretical moment
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and

m̂j =

∫
xj dF̂ (x) =

1

n

n∑
i=1

Xj
i — emprirical moment

By the law of average, the empirical moments are close to theoretical ones. The

method of moments is to solve the following estimating equations:

mj(θ) = m̂j, j = 1, · · · , r,

— smallest r to make enough equations. Why smallest? inaccurate estimate of high order moment

inaccuracy of modeling of high order moment

Consequently, the method of moment estimator for

q(θ) = g(m1(θ), · · · ,mr(θ))

is q̂(x) = g(m̂1, · · · , m̂r).

Exampel 4. Let X1, · · · , Xn ∼ i.i.d.N(µ, σ2). Then

EX = µ and EX2 = µ2 + σ2.
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Thus,

µ̂ = X̄ = m̂1

µ̂2 + σ̂2 = m̂2

=⇒ σ̂2 = m̂2 − µ̂2 =
1

n

n∑
i=1

(Xi − X̄)2.

Example 5. Let X1, · · · , Xn ∼ i.i.d. Poisson(λ). Then,

EX = λ and V ar(X) = λ.

So

λ = m1 = m2 −m2
1.

Thus,

λ̂1 = X̄ and λ̂2 = m̂2 − m̂2
1 = sample variance.

The method of moments is not necessarily unique

usually crude, serving a preluminary estimator
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Generalized method of moment (GMM):

Let g1(X), · · · , gr(X) be given functions. Write

µj(θ) = Eθ{gj(X)},

which are generalized moments. The GMM solves the equations

µ̂j = n−1
n∑
i=1

gj(Xi) = µj(θ), j = 1, · · · , r.

If r > the number of parameters, find θ to minimize
r∑
j=1

(µ̂j − µj(θ))
2

(this has a scale problem) or more generally

(µ̂− µ(θ))TΣ−1(µ̂− µ(θ)).

Σ can be found to optimize the performance of the estimator (EMM).

Example 6. For any random sample {(Xi, Yi), i = 1, · · · , n}, define the coeffi-
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cient of the best linear prediction under the loss function d(·) by

β(P ) = arg min
β
EPd(|Y − βTX|).

Figure 2.4: Illustration of best linear and nonlinear fittings.



ORF 524: Methods of Estimation – J.Fan 52

Thus, its substitution estimator is

β(P̂ ) = arg min
β

1

n

n∑
i=1

d(|Yi − βTXi|).

Thus, β(P̂ ) is always a consistent estimator of β(P ), whether the linear Y =

βTX + ε holds or not. In this view, the least-squares estimator is a substitution

estimator.

2.2 Minimum Contrast Estimator and Estimating Equations

Let ρ(X, θ) be a contrast (discrepancy) function. Define

D(θ0, θ) = Eθ0ρ(X, θ), where θ0 is the ture parameter.

Suppose that D(θ0, θ) has a unique mimimum θ0. Then, the minimum contrast

estimator for a random sample is defined as the minimizer of

D̂(θ) =
1

n

n∑
i=1

ρ(Xi, θ).
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Under some regularity conditions, the estimator satisfies the estimating equations

D̂′(θ) =
1

n

n∑
i=1

ρ′(Xi, θ) = 0.

Minimum contrast estimator. In general, the method applies to general sit-

uation:

θ̂ = arg min
θ
ρ(X, θ).

as long as θ0 minimizes

D(θ, θ0) = Eθ0 ρ(X, θ).

Usually, ρ(X, θ) = 1
n

∑n
i=1 ρ(Xi, θ) −→ D(θ, θ0) ( as n −→∞).

.

Similarly, estimating equation method solves the equations

ψj(X, θ) = 0, j = 1, · · · , r

as long as

Eθ0ψj(X, θ0) = 0, j = 1, · · · , r
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Figure 2.5: Minimum contrast estimator

Apparently, these two approaches are closely related.

Example 7 (Least-squares). Let (Xi, Yi) be i.i.d. from

Yi = g(Xi, β) + εi

= XT
i β + εi, if linear model
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Then, by letting

ρ(X, β) =

n∑
i=1

[Yi − g(Xi, β)]2

be a contract function, we have

D(β0, β) = Eβ0ρ(X, β)

= nEβ0[Y − g(X, β)]2

= nE{g(X, β0)− g(X, β)}2 + nσ2,

which is indeed minimized at β = β0. Hence, the minimum contrast estimator is

β̂ = arg min
β

n∑
i=1

[Yi − g(Xi, β)]2 — least-squares.

It satisfies the system of equations
n∑
i=1

(Yi − g(Xi, β̂))
∂g(Xi, β)

∂βj
= 0, j = 1, · · · , d,

under some mild regularity conditions. One can easily check that ψj(β) = (Yi −
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g(Xi, β))∂g(Xi,β)
∂βj

satisfies

Eβ0ψj(β)|β=β0 = E{g(Xi, β0)− g(Xi, β0)}
∂g(Xi, β0)

∂βj
= 0.

Thus, it is also an estimator based on the estimating equations.

Weighted least-squares: Suppose that var(εi) = ωiσ
2. The OLS continues to

apply. However, it is not efficient. Through the transform

Yi√
ωi

=
g(Xi, β)
√
ωi

+
εi√
ωi

or

Ỹi = g̃(Xi, β) + ε̃i, ε̃i ∼ N(0, σ2),

we apply the OLS
n∑
i=1

(Ỹi − g̃(Xi, β))2 =

n∑
i=1

(Yi − g(Xi, β))2/ωi = ρ(X, β).
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Obviously,

Eβ0ρ(X, β) =

n∑
i=1

ωiσ
2/ωi +

n∑
i=1

ω−1
i E(g(X, β)− g(X, β0))

2

is minimized at β = β0. Thus,WLS is a minimum contrast estimator.

Example 8 (L1-regression) Let Y = XTβ0 + ε, X and ε. Consider

ρ(X, Y, β) = |Y −XTβ|.

Then,

D(β0, β) = Eβ0|Y −XTβ| = E|XT (β − β0) + ε|.

For any a, define

f (a) = E|ε + a|.
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Then,

f ′(a) = Esgn(ε + a)

= P (ε + a > 0)− P (ε + a < 0)

= 2P (ε + a > 0)− 1.

If med(ε) = 0, then f ′(0) = 0. In other words, f (a) is minimized at a = 0, or

D(β0, β) is minimized at β = β0! Thus, if med(ε) = 0, then

1

n

n∑
i=1

|Yi −XT
i β|.

is a minimum contrast estimator.

2.3 The maximum likelihood estimator

Suppose that X has joint density p(x, θ). This shows the “probability” of observing

“X = x” under the parameter θ. Given X = x, there are many θ′s that can have
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observed value X = x. We pick the one that is most probable to produce the

observed x:

θ̂ = max
θ
L(θ),

where L(θ) = p(x, θ)= “likelihood of observing x under θ”. This corresponds to

the minimum contrast estimator with

ρ(x, θ) = − log p(x, θ).

In particular, if X1, · · · , Xn ∼ i.i.d. f (· , θ), then

ρ(X, θ) = −
n∑
i=1

log f (Xi, θ).
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To justify this, observe that

D(θ0, θ) = −Eθ0 log f (X, θ)

= D(θ0, θ0)− Eθ0 log
f (X, θ)

f (X, θ0)

> D(θ0, θ0)− logEθ0

f (X, θ)

f (X, θ0)

= D(θ0, θ0).

Thus, θ0 minimizes D(θ0, θ) or equivalently

D(θ0, θ)−D(θ0, θ0) = −Eθ0 log
f (X, θ)

f (X, θ0)

— Kullback-Leibler information divergence. Thus, the MLE is a minimum contrast

estimator.

The MLE is usually found by solving the likelihood equations:

∂ logL(θ)

∂θj
= 0, j = 1, · · · , d,
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or

`′(θ) = 0, `(θ) = logL(θ).

For a given θ0 that is close to θ̂, then

0 = `′(θ̂) ≈ `′(θ0) + `′′(θ0)(θ̂ − θ0)

or

θ̂ = θ0 − `′′(θ0)
−1`′(θ0).

Newton-Raphson algorithm:

θ̂new = θ̂old − `′′(θ̂old)
−1`′(θ̂old).

One-step estimator: With a good initial estimator θ̂0,

θ̂os = θ̂0 − `′′(θ̂0)
−1`′(θ̂0).

Example 9. (Hardy-Weinberg formula)
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AA Aa aa

1 2 3

p1 = θ2 p2 = 2θ(1− θ) p3 = (1− θ)2

Pθ(Xi = j) =


θ2, j = 1

2θ(1− θ), j = 2

(1− θ)2, j = 3

L(θ) =

n∏
i=1

Pθ{Xi = xi} = [θ2]n1[2θ(1− θ)]n2[(1− θ)2]n3

Thus,

`(θ) = (2n1 + n2) log θ + (n2 + 2n3) log(1− θ) + n2 log 2

`′(θ) = (2n1 + n2)/θ − (n2 + 2n3)/(1− θ) = 0

=⇒ θ̂ =
2n1 + n2

2(n1 + n2 + n3)
=

2n1 + n2

n
= 2p̂1 + p̂2.

Obviously, `′′(θ) < 0. Hence, θ̂ is the maxima.
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Example 10. Estimating Population Size:

L(θ) =

n∏
i=1

1

θ
I{Xi 6 θ} = θ−nI{θ > max

i
Xi}

Figure 2.6: Likelihood function
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Thus, θ̂ = maxiXi = X(n) is the MLE.

Example 11. Let Yi = g(Xi, β) + εi, εi ∼ N(0, σ2)

Then,

`(σ, β) = log(
1√
2πσ

)n − 1

2σ2

n∑
i=1

[Yi − g(Xi, β)]2.

Thus, the MLE for β is equivalent to minimize
n∑
i=1

[Yi − g(Xi, β)]2 — least-squares.

Let β̂ be the minimizer. Define

RSS =

n∑
i=1

[Yi − g(Xi, β̂)]2.

Then, after dropping a constant

`(σ, β̂) = −n
2

log σ2 − 1

2σ2
RSS.

which is maximized at σ̂2 = RSS
n . In particular, if g(Xi, β) = µ, then µ̂ = Ȳ and
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RSS = 1
n

∑n
i=1[Yi − Ȳ ]2. Hence, the MLE is

µ̂ = Ȳ and σ̂2 =
1

n

n∑
i=1

(Yi − Ȳ )2.

Remark:

MLE — use full likelihood function =⇒ more efficient, less robust.

MM — use the first few moments =⇒ less efficient, more robust.

2.4 The EM algorithm

(Reading assignment — read the whole section 2.4.)

Objective: Used to deal with missing data. [Dempster,Laird and Rubin(1977)

and Baum, Petrie, Soules, and Weiss(1970).]

Problem: Suppose that we have a situation in which the full likelihood X ∼

p(x, θ) is easy to compute and to maximize. Unfortunately, we only observe the
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partial information S = S(X) ∼ q(s, θ). q(s, θ) itself is hard to compute and to

maximize. The algorithm is to maximize q(s, θ).

Example 12 (Lumped Hardy-Weinberg data)

The full information is X1, · · · , Xn with

log p(x, θ) = n1 log θ2 + n2 log 2θ(1− θ) + n3 log(1− θ)2

Partial information:

complete cases Si = (Xi1, Xi2, Xi3), i = 1, · · · ,m

incomplete cases Si = (Xi1 +Xi2, Xi3), i = m + 1, · · · , n.

The likelihood of the available data is

log q(s, θ) = m1 log θ2 +m2 log 2θ(1− θ) +m3 log(1− θ)2

+n∗12 log(1− (1− θ)2) + n∗3 log(1− θ)2

n∗12 =

n∑
i=m+1

(Xi1 +Xi2), n
∗
3 =

n∑
i=m

Xi3.
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The maximum likelihood can be found by maximizing the above expression. For

many other problems, this log-likelihood can be hard to compute.

Intuition for E-M algorithm: Guess the full likelihood using the available and

maximum the conjectured likelihood.

E-M algorithm: Given an initial value θ0,

E-step: Compute `(θ, θ0) = Eθ0(`(X, θ)|S(X) = s),

M-step: θ̂ = arg max `(θ, θ0),

and iterate.

Example 2.12. (continued) Full likelihood:

log p(x, θ) = n1 log θ2 + n2 log 2θ(1− θ) + n3 log(1− θ)2
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E-step:

`(θ, θ0) = Eθ0(n1|S) log θ2 + Eθ0(n2|S) log 2θ(1− θ) + n3 log(1− θ)2.

Eθ0(n1|S) = m1 + n∗12

θ2
0

θ2
0 + 2θ0(1− θ0)

and

Eθ0(n2|S) = m2 + n∗12

2θ0(1− θ0)

θ2
0 + 2θ0(1− θ0)

M-step:

θ̂ =
2Eθ0(n1|S) + Eθ0(n2|S)

2(Eθ0(n1|S) + Eθ0(n2|S) + n3)
=
n12 + Eθ0(n1|S)

2n
,

where n12 is the number of data points for genotypes 1 and 2 . When the algorithm

converges, it solves the following equation:

2nθ = n12 +m1 + n∗12θ/(2− θ).

This is indeed the maximum likelihood estimator based on the available (partial)

data, which we now justify.



ORF 524: Methods of Estimation – J.Fan 69

Rationale of the EM algorithm: p(x, θ) = q(s, θ)Pθ(X = x|S = s)I(S(X) =

s).

Let r(x|s, θ) = Pθ(X = x|S = s)I(S(x) = s). Then,

`(θ, θ0) = log q(s, θ) + Eθ0{log r(X|s, θ)|S(X) = s}.

Hence,

0 = `(θ̂, θ0)
′ = (log q(s, θ))′|θ=θ̂ + Eθ0{(log r(X|s, θ))′|θ=θ̂|S = s}.

If the algorithm converges to θ1, then

(log q(s, θ1))
′ + Eθ1{(log r(X|s, θ1))

′|S = s} = 0.

The second term vanishes by noticing that for any regular function f ,

Eθ(log f (X, θ))′ =

∫
f ′(x, θ)

f (x, θ)
f (x, θ)dx = 0.

Hence

{log q(s, θ1)}′ = 0,
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which solves the likelihood equation based on the (partial) data. In other words,

the EM algorithm converges to the true likelihood.

Theorem 1

log q(s, θnew) > log q(s, θold),

namely, each iteration always increases the likelihood.

Proof. Note that

`(θn, θ0) = log q(s, θn) + Eθ0{log r(X|s, θn)|S(X) = s}

> log q(s, θ0) + Eθ0{log r(X|s, θ0)|S(X) = s}

=⇒

log q(s, θn) ≥ log q(s, θ0) + Eθ0{log
r(X|s, θ0)

r(X|s, θn)
|S(X) = s}

> log q(s, θ0).

Example 2.13. Let X1, · · · , Xn+4 be i.i.d. N(µ, 1/2). Suppose that we observe
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S1 = X1, · · · , Sn = Xn, Sn+1 = Xn+1 + 2Xn+2, and Sn+2 = Xn+3 + Xn+4. Use

the EM algorithm to find the maximum likelihood estimator based on the observed

data.

Note that the full likelihood is

log p(X, µ) = −
n+4∑
i=1

(Xi − µ)2

= −
n+4∑
i=1

X2
i + 2µ

n+4∑
i=1

Xi − (n + 4)µ2.

At the E-step, we compute

Eµ0{log p(X, µ)|S} = a(µ0)− 2µ{
n∑
i=1

Xi + Eµ0{Xn+1 +Xn+2|Sn+1}

+Sn+2} − (n + 4)µ2,

where a(µ0) = (µ2
0+1/2). To computeEµ0{Xn+1|Sn+1}, we note that 2Xn+1−Xn+2
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is uncorrelated with Sn+1. Hence, we have

Eµ0{2Xn+1 −Xn+2|Sn+1} = µ0

Eµ0{Xn+1 + 2Xn+2|Sn+1} = Sn+1.

Solving the above two equations gives

Eµ0(Xn+1|Sn+1) = (Sn+1 + 2µ0)/5, Eµ0(Xn+2|Sn+1) = (2Sn+1 − µ0)/5

and that

Eµ0{Xn+1 +Xn+2|Sn+1} = (3Sn+1 + µ0)/5.

Hence, the conditional likelihood is given by

`(µ, µ0) = a(µ0)− 2µ{
n∑
i=1

Xi + 0.6Sn+1 + 0.2µ0 + Sn+2} − (n + 4)µ2.

At the M-step, we maximize `(µ, µ0) with respect to µ, resulting in

µ̂ = (n + 4)−1{
n∑
i=1

Xi + 0.6Sn+1 + 0.2µ0 + Sn+2}.
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The EM algorithm is to iterate the above step. When the algorithm converges, the

estimate solves

µ̂ = (n + 4)−1{
n∑
i=1

Xi + 0.6Sn+1 + 0.2µ̂ + Sn+2}.

or

µ̂ = (n + 3.8)−1{
n∑
i=1

Xi + 0.6Sn+1 + Sn+2}.

This is the maximum likelihood estimator for the “missing” data.

Example 2.14. Mixture normal distribution:

S1, · · · , Sn ∼i.i.d. λN(µ1, σ
2
1) + (1− λ)N(µ2, σ

2
2)

Challenge: The likelihood of S1, · · · , Sn is easy to write down, but hard to com-

pute.

EM Algorithm: Thinking of the full information as Xi = (4i, Si), in which 4i

tells the population under which it is drawn from, but missing.

P (4i = 1) = λ.
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Figure 2.7: Mixture of two normal distributions

P (Si|4i) ∼

 N(µ1, σ
2
1), if 4i = 1

N(µ2, σ
2
2), if 4i = 0
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Then, the full likelihood is

p(x, θ) = λ
∑
4i(1− λ)n−

∑
4iΠ4i=1(

1√
2πσ1

) exp(−(Si − µ1)
2

2σ2
1

)

×Π4i=0(
1√

2πσ2

) exp(−(Si − µ2)
2

2σ2
2

).

It follows that

log p(x, θ) =
∑

4i log λ +
∑

(1−4i) log(1− λ)

+
∑
4i=1

{− log σ1 −
(Si − µ1)

2

2σ2
1

}

+
∑
4i=0

{− log σ2 −
(Si − µ2)

2

2σ2
2

}

To find the E-step, we need to find the conditional distribution of 4i|S.
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Note that

Pθ0{4i = 1|S = s} = P{4i = 1|Si ∈ si ± ε}

=
P{4i = 1, Si ∈ si ± ε}

P (Si ∈ si ± ε)

=
λ0σ

−1
10 φ

(
si−µ10
σ10

)
λ0σ

−1
10 φ

(
si−µ10
σ10

)
+ (1− λ0)σ

−1
20 φ

(
si−µ20
σ20

)
≡ pi

Then,

`(θ, θ0) =

n∑
i=1

pi log λ +

n∑
i=1

(1− pi) log(1− λ)

+

n∑
i=1

pi{− log σ1 −
(si − µ1)

2

2σ2
1

}

+

n∑
i=1

(1− pi){− log σ2 −
(si − µ2)

2

2σ2
2

}.

The M-step is to maximize the above quantity with respective to λ, σ1, µ1, σ2, µ2,
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which can be explicitly found. e.g.∑n
i=1 pi
λ

−
∑n

i=1(1− pi)

1− λ
= 0 ⇒ λ =

∑n
i=1 pi
n

n∑
i=1

pi(si − µ1) = 0 ⇒ µ̂1 =

∑n
i=1 pisi∑n
i=1 pi

,

The EM algorithm is to iterate these two steps.


