Chapter 2

Methods of Estimation

2.1 The plug-in principles

Framework: $\mathbf{X} \sim P \in \mathcal{P}$, usually $\mathcal{P}=\left\{\mathbf{P}_{\theta}: \theta \in \Theta\right\}$ for parametric models.
More specifically, if $X_{1}, \cdots, X_{n} \sim i . i . d . P_{\theta}$, then $\mathbf{P}_{\theta}=P_{\theta} \times \cdots \times P_{\theta}$.
Unknown parameters: A certain aspects of population. $\nu(P)$ or $q(\theta)=\nu\left(P_{\theta}\right)$.
Empirical Dist.: $\widehat{P}[X \in A]=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i} \in A\right)$ or $\widehat{F}(x)=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i} \leqslant x\right)$
Substitution principle: Estimate $\nu(P)$ by $\nu(\widehat{P})$.
Note: As to be seen later, most methods of estimation can be regarded as using

Figure 2.1: Empirical distribution of observed data
"substitution principle", since the functional form ν is not unique.
Example 1. Suppose that $X_{1}, \cdots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$. Then

$$
\mu=E X=\int x d F(x)=\mu(F) \quad \text { and } \quad \sigma^{2}=\int x^{2} d F(x)-\mu^{2}
$$

Hence,

$$
\widehat{\mu}=\mu(\widehat{F})=\int x d \widehat{F}(x)=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

and

$$
\widehat{\sigma}^{2}=\int x^{2} d \widehat{F}(x)-\widehat{\mu}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

This is also a non-parametric estimator, as the normality assumption has not been explicitly used.

Example 2. Let X_{1}, \cdots, X_{n} be a random sample from the following box:

Figure 2.2: Illustration of multinomial distribution
Interested in parameters: p_{1}, \cdots, p_{k} and $q\left(p_{1}, \cdots, p_{k}\right)$.
e.g. dividing the job in the population by 5 categories, interested in p_{5} and $\left(p_{4}+p_{5}-p_{1}-p_{2}\right)$.

The empirical distribution:

$$
p_{j}=P(X=j)=F(j)-F(j-) \equiv P_{j}(F)
$$

Hence,

$$
\widehat{p}_{j}=P_{j}(\widehat{F})=\widehat{F}(j)-\widehat{F}(j-)=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}=j\right),
$$

namely, the empirical frequency of getting j. Hence,

$$
q\left(p_{1}, \cdots, p_{k}\right)=q\left(P_{1}(F), \cdots, P_{k}(F)\right)
$$

is estimated as

$$
\widehat{q}=q\left(\widehat{p}_{1}, \cdots, \widehat{p}_{k}\right) — \text { frequency substitution. }
$$

Example 3. In population genetics, sampling from a equilibrium population with respective to a gene with two alleles

$$
\left\{\begin{array}{ll}
A & \text { with prob. } \theta \\
a & \text { with prob. } 1-\theta
\end{array},\right.
$$

three genotypes can be observed with proportions (Hardy-Weinberg formula).

AA	Aa	aa
$p_{1}=\theta^{2}$	$p_{2}=2 \theta(1-\theta)$	$p_{3}=(1-\theta)^{2}$

Figure 2.3: Illustration of Hardy-Weinberg formula.
One can estimate θ by $\sqrt{\widehat{p}_{1}}$ or $1-\sqrt{\widehat{p}_{3}}$, etc.
Thus, the representation

$$
q(\theta)=h\left(p_{1}(\theta), \cdots, p_{k}(\theta)\right)
$$

is not necessarily unique, resulting in many different procedures.
Method of Moments: Let

$$
m_{j}(\theta)=E_{\theta} X^{j}-\text { theoretical moment }
$$

and

$$
\widehat{m}_{j}=\int x^{j} d \widehat{F}(x)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{j}-\text { emprirical moment }
$$

By the law of average, the empirical moments are close to theoretical ones. The method of moments is to solve the following estimating equations:

$$
m_{j}(\theta)=\widehat{m}_{j}, j=1, \cdots, r
$$

- smallest r to make enough equations. Why smallest?

$$
\left\{\begin{array}{l}
\text { inaccurate estimate of high order moment } \\
\text { inaccuracy of modeling of high order moment }
\end{array}\right.
$$

Consequently, the method of moment estimator for

$$
q(\theta)=g\left(m_{1}(\theta), \cdots, m_{r}(\theta)\right)
$$

is $\widehat{q}(\mathbf{x})=g\left(\widehat{m}_{1}, \cdots, \widehat{m}_{r}\right)$.
Exampel 4. Let $X_{1}, \cdots, X_{n} \sim i . i . d . N\left(\mu, \sigma^{2}\right)$. Then

$$
E X=\mu \quad \text { and } \quad E X^{2}=\mu^{2}+\sigma^{2}
$$

Thus,

$$
\begin{aligned}
& \widehat{\mu}=\bar{X}=\widehat{m}_{1} \\
& \widehat{\mu}^{2}+\widehat{\sigma}^{2}=\widehat{m}_{2} \\
\Longrightarrow & \widehat{\sigma}^{2}=\widehat{m}_{2}-\widehat{\mu}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
\end{aligned}
$$

Example 5. Let $X_{1}, \cdots, X_{n} \sim$ i.i.d. Poisson(λ). Then,

$$
E X=\lambda \quad \text { and } \quad \operatorname{Var}(X)=\lambda .
$$

So

$$
\lambda=m_{1}=m_{2}-m_{1}^{2} .
$$

Thus,

$$
\widehat{\lambda}_{1}=\bar{X} \text { and } \widehat{\lambda}_{2}=\widehat{m}_{2}-\widehat{m}_{1}^{2}=\text { sample variance } .
$$

The method of moments is
$\left\{\begin{array}{l}\text { not necessarily unique } \\ \text { usually crude, serving a preluminary estimator }\end{array}\right.$

Generalized method of moment (GMM):

Let $g_{1}(X), \cdots, g_{r}(X)$ be given functions. Write

$$
\mu_{j}(\theta)=E_{\theta}\left\{g_{j}(X)\right\}
$$

which are generalized moments. The GMM solves the equations

$$
\widehat{\mu}_{j}=n^{-1} \sum_{i=1}^{n} g_{j}\left(X_{i}\right)=\mu_{j}(\theta), j=1, \cdots, r
$$

If $\mathrm{r}>$ the number of parameters, find θ to minimize

$$
\sum_{j=1}^{r}\left(\widehat{\mu}_{j}-\mu_{j}(\theta)\right)^{2}
$$

(this has a scale problem) or more generally

$$
(\widehat{\mu}-\mu(\theta))^{T} \Sigma^{-1}(\widehat{\mu}-\mu(\theta)) .
$$

Σ can be found to optimize the performance of the estimator (EMM).
Example 6. For any random sample $\left\{\left(\mathbf{X}_{i}, Y_{i}\right), i=1, \cdots, n\right\}$, define the coeffi-
cient of the best linear prediction under the loss function $d(\cdot)$ by

$$
\beta(P)=\arg \min _{\beta} E_{P} d\left(\left|Y-\beta^{T} \mathbf{X}\right|\right)
$$

Figure 2.4: Illustration of best linear and nonlinear fittings.

Thus, its substitution estimator is

$$
\beta(\widehat{P})=\arg \min _{\beta} \frac{1}{n} \sum_{i=1}^{n} d\left(\left|Y_{i}-\beta^{T} \mathbf{X}_{i}\right|\right)
$$

Thus, $\beta(\widehat{P})$ is always a consistent estimator of $\beta(P)$, whether the linear $Y=$ $\beta^{T} \mathbf{X}+\varepsilon$ holds or not. In this view, the least-squares estimator is a substitution estimator.

2.2 Minimum Contrast Estimator and Estimating Equations

Let $\rho(X, \theta)$ be a contrast (discrepancy) function. Define

$$
D\left(\theta_{0}, \theta\right)=E_{\theta_{0}} \rho(X, \theta), \text { where } \theta_{0} \text { is the ture parameter. }
$$

Suppose that $D\left(\theta_{0}, \theta\right)$ has a unique mimimum θ_{0}. Then, the minimum contrast estimator for a random sample is defined as the minimizer of

$$
\widehat{D}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \rho\left(X_{i}, \theta\right)
$$

Under some regularity conditions, the estimator satisfies the estimating equations

$$
\widehat{D}^{\prime}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \rho^{\prime}\left(X_{i}, \theta\right)=0
$$

Minimum contrast estimator. In general, the method applies to general situation:

$$
\widehat{\theta}=\arg \min _{\theta} \rho(\mathbf{X}, \theta)
$$

as long as θ_{0} minimizes

$$
D\left(\theta, \theta_{0}\right)=E_{\theta_{0}} \rho(\mathbf{X}, \theta)
$$

Usually, $\rho(\mathbf{X}, \theta)=\frac{1}{n} \sum_{i=1}^{n} \rho\left(X_{i}, \theta\right) \longrightarrow D\left(\theta, \theta_{0}\right)($ as $n \longrightarrow \infty)$.

Similarly, estimating equation method solves the equations

$$
\psi_{j}(\mathbf{X}, \theta)=0, j=1, \cdots, r
$$

as long as

$$
E_{\theta_{0}} \psi_{j}\left(X, \theta_{0}\right)=0, j=1, \cdots, r
$$

Figure 2.5: Minimum contrast estimator
Apparently, these two approaches are closely related.
$\underline{\text { Example } 7}$ (Least-squares). Let $\left(\mathbf{X}_{i}, Y_{i}\right)$ be i.i.d. from

$$
\begin{aligned}
Y_{i} & =g\left(\mathbf{X}_{i}, \beta\right)+\varepsilon_{i} \\
& =\mathbf{X}_{i}^{T} \beta+\varepsilon_{i}, \quad \text { if linear model }
\end{aligned}
$$

Then, by letting

$$
\rho(\mathbf{X}, \beta)=\sum_{i=1}^{n}\left[Y_{i}-g\left(\mathbf{X}_{i}, \beta\right)\right]^{2}
$$

be a contract function, we have

$$
\begin{aligned}
D\left(\beta_{0}, \beta\right) & =E_{\beta_{0}} \rho(\mathbf{X}, \beta) \\
& =n E_{\beta_{0}}[Y-g(\mathbf{X}, \beta)]^{2} \\
& =n E\left\{g\left(\mathbf{X}, \beta_{0}\right)-g(\mathbf{X}, \beta)\right\}^{2}+n \sigma^{2}
\end{aligned}
$$

which is indeed minimized at $\beta=\beta_{0}$. Hence, the minimum contrast estimator is

$$
\widehat{\beta}=\arg \min _{\beta} \sum_{i=1}^{n}\left[Y_{i}-g\left(\mathbf{X}_{i}, \beta\right)\right]^{2}-\text { least-squares. }
$$

It satisfies the system of equations

$$
\sum_{i=1}^{n}\left(Y_{i}-g\left(\mathbf{X}_{i}, \widehat{\beta}\right)\right) \frac{\partial g\left(\mathbf{X}_{i}, \beta\right)}{\partial \beta_{j}}=0, j=1, \cdots, d
$$

under some mild regularity conditions. One can easily check that $\psi_{j}(\beta)=\left(Y_{i}-\right.$
$\left.g\left(\mathbf{X}_{i}, \beta\right)\right) \frac{\partial g\left(\mathbf{X}_{i}, \beta\right)}{\partial \beta_{j}}$ satisfies

$$
\left.E_{\beta_{0}} \psi_{j}(\beta)\right|_{\beta=\beta_{0}}=E\left\{g\left(\mathbf{X}_{i}, \beta_{0}\right)-g\left(\mathbf{X}_{i}, \beta_{0}\right)\right\} \frac{\partial g\left(\mathbf{X}_{i}, \beta_{0}\right)}{\partial \beta_{j}}=0
$$

Thus, it is also an estimator based on the estimating equations.
Weighted least-squares: Suppose that $\operatorname{var}\left(\varepsilon_{i}\right)=\omega_{i} \sigma^{2}$. The OLS continues to apply. However, it is not efficient. Through the transform

$$
\frac{Y_{i}}{\sqrt{\omega_{i}}}=\frac{g\left(X_{i}, \beta\right)}{\sqrt{\omega_{i}}}+\frac{\varepsilon_{i}}{\sqrt{\omega_{i}}}
$$

or

$$
\tilde{Y}_{i}=\tilde{g}\left(X_{i}, \beta\right)+\tilde{\varepsilon}_{i}, \quad \tilde{\varepsilon}_{i} \sim N\left(0, \sigma^{2}\right)
$$

we apply the OLS

$$
\sum_{i=1}^{n}\left(\tilde{Y}_{i}-\tilde{g}\left(X_{i}, \beta\right)\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-g\left(\mathbf{X}_{i}, \beta\right)\right)^{2} / \omega_{i}=\rho(\mathbf{X}, \beta)
$$

Obviously,

$$
E_{\beta_{0}} \rho(\mathbf{X}, \beta)=\sum_{i=1}^{n} \omega_{i} \sigma^{2} / \omega_{i}+\sum_{i=1}^{n} \omega_{i}^{-1} E\left(g(\mathbf{X}, \beta)-g\left(\mathbf{X}, \beta_{0}\right)\right)^{2}
$$

is minimized at $\beta=\beta_{0}$. Thus,WLS is a minimum contrast estimator.
$\underline{\text { Example } 8}\left(L_{1}\right.$-regression) Let $Y=\mathbf{X}^{T} \beta_{0}+\varepsilon, X$ and ε. Consider

$$
\rho(\mathbf{X}, Y, \beta)=\left|Y-\mathbf{X}^{T} \beta\right| .
$$

Then,

$$
D\left(\beta_{0}, \beta\right)=E_{\beta_{0}}\left|Y-\mathbf{X}^{T} \beta\right|=E\left|\mathbf{X}^{T}\left(\beta-\beta_{0}\right)+\varepsilon\right|
$$

For any a, define

$$
f(a)=E|\varepsilon+a|
$$

Then,

$$
\begin{aligned}
f^{\prime}(a) & =E \operatorname{sgn}(\varepsilon+a) \\
& =P(\varepsilon+a>0)-P(\varepsilon+a<0) \\
& =2 P(\varepsilon+a>0)-1
\end{aligned}
$$

If $\operatorname{med}(\varepsilon)=0$, then $f^{\prime}(0)=0$. In other words, $f(a)$ is minimized at $a=0$, or $D\left(\beta_{0}, \beta\right)$ is minimized at $\beta=\beta_{0}$! Thus, if $\operatorname{med}(\varepsilon)=0$, then

$$
\frac{1}{n} \sum_{i=1}^{n}\left|Y_{i}-\mathbf{X}_{i}^{T} \beta\right|
$$

is a minimum contrast estimator.

2.3 The maximum likelihood estimator

Suppose that \mathbf{X} has joint density $p(\mathbf{x}, \theta)$. This shows the "probability" of observing " $\mathbf{X}=\mathbf{x}$ " under the parameter θ. Given $\mathbf{X}=\mathbf{x}$, there are many $\theta^{\prime} s$ that can have
observed value $\mathbf{X}=\mathbf{x}$. We pick the one that is most probable to produce the observed \mathbf{x} :

$$
\widehat{\theta}=\max _{\theta} L(\theta)
$$

where $L(\theta)=p(\mathbf{x}, \theta)=$ "likelihood of observing \mathbf{x} under θ ". This corresponds to the minimum contrast estimator with

$$
\rho(\mathbf{x}, \theta)=-\log p(\mathbf{x}, \theta)
$$

In particular, if $X_{1}, \cdots, X_{n} \sim$ i.i.d. $f(\cdot, \theta)$, then

$$
\rho(\mathbf{X}, \theta)=-\sum_{i=1}^{n} \log f\left(X_{i}, \theta\right)
$$

To justify this, observe that

$$
\begin{aligned}
D\left(\theta_{0}, \theta\right) & =-E_{\theta_{0}} \log f(X, \theta) \\
& =D\left(\theta_{0}, \theta_{0}\right)-E_{\theta_{0}} \log \frac{f(X, \theta)}{f\left(X, \theta_{0}\right)} \\
& \geqslant D\left(\theta_{0}, \theta_{0}\right)-\log E_{\theta_{0}} \frac{f(X, \theta)}{f\left(X, \theta_{0}\right)} \\
& =D\left(\theta_{0}, \theta_{0}\right)
\end{aligned}
$$

Thus, θ_{0} minimizes $D\left(\theta_{0}, \theta\right)$ or equivalently

$$
D\left(\theta_{0}, \theta\right)-D\left(\theta_{0}, \theta_{0}\right)=-E_{\theta_{0}} \log \frac{f(X, \theta)}{f\left(X, \theta_{0}\right)}
$$

- Kullback-Leibler information divergence. Thus, the MLE is a minimum contrast estimator.

The MLE is usually found by solving the likelihood equations:

$$
\frac{\partial \log L(\theta)}{\partial \theta_{j}}=0, j=1, \cdots, d
$$

or

$$
\ell^{\prime}(\theta)=0, \quad \ell(\theta)=\log L(\theta)
$$

For a given θ_{0} that is close to $\widehat{\theta}$, then

$$
0=\ell^{\prime}(\widehat{\theta}) \approx \ell^{\prime}\left(\theta_{0}\right)+\ell^{\prime \prime}\left(\theta_{0}\right)\left(\widehat{\theta}-\theta_{0}\right)
$$

or

$$
\widehat{\theta}=\theta_{0}-\ell^{\prime \prime}\left(\theta_{0}\right)^{-1} \ell^{\prime}\left(\theta_{0}\right)
$$

Newton-Raphson algorithm:

$$
\widehat{\theta}_{\text {new }}=\widehat{\theta}_{\text {old }}-\ell^{\prime \prime}\left(\widehat{\theta}_{\text {old }}\right)^{-1} \ell^{\prime}\left(\widehat{\theta}_{\text {old }}\right)
$$

One-step estimator: With a good initial estimator $\widehat{\theta}_{0}$,

$$
\widehat{\theta}_{o s}=\widehat{\theta}_{0}-\ell^{\prime \prime}\left(\widehat{\theta}_{0}\right)^{-1} \ell^{\prime}\left(\widehat{\theta}_{0}\right)
$$

Example 9. (Hardy-Weinberg formula)

$$
\left.\left.\begin{array}{c|c|c}
\mathrm{AA} & \mathrm{Aa} & \text { aa } \\
\hline 1 & 2 & 3 \\
\hline p_{1}=\theta^{2} & p_{2}=2 \theta(1-\theta) & p_{3}=(1-\theta)^{2}
\end{array}\right\} \begin{array}{ll}
\theta^{2}, & j=1 \\
2 \theta(1-\theta), & j=2 \\
(1-\theta)^{2}, & j=3
\end{array}\right\} \begin{gathered}
P_{\theta}\left(X_{i}=j\right)= \begin{cases} \\
L(\theta)=\prod_{i=1}^{n} P_{\theta}\left\{X_{i}=x_{i}\right\}=\left[\theta^{2}\right]^{n_{1}}[2 \theta(1-\theta)]^{n_{2}}\left[(1-\theta)^{2}\right]^{n_{3}}\end{cases}
\end{gathered}
$$

Thus,

$$
\begin{aligned}
& \ell(\theta)=\left(2 n_{1}+n_{2}\right) \log \theta+\left(n_{2}+2 n_{3}\right) \log (1-\theta)+n_{2} \log 2 \\
& \ell^{\prime}(\theta)=\left(2 n_{1}+n_{2}\right) / \theta-\left(n_{2}+2 n_{3}\right) /(1-\theta)=0 \\
& \Longrightarrow \widehat{\theta}=\frac{2 n_{1}+n_{2}}{2\left(n_{1}+n_{2}+n_{3}\right)}=\frac{2 n_{1}+n_{2}}{n}=2 \widehat{p}_{1}+\widehat{p}_{2} .
\end{aligned}
$$

Obviously, $\ell^{\prime \prime}(\theta)<0$. Hence, $\widehat{\theta}$ is the maxima.

Example 10. Estimating Population Size:

$$
L(\theta)=\prod_{i=1}^{n} \frac{1}{\theta} I\left\{X_{i} \leqslant \theta\right\}=\theta^{-n} I\left\{\theta \geqslant \max _{i} X_{i}\right\}
$$

Figure 2.6: Likelihood function

Thus, $\widehat{\theta}=\max _{i} X_{i}=X_{(n)}$ is the MLE.
$\underline{\text { Example 11. Let } Y_{i}=g\left(X_{i}, \beta\right)+\varepsilon_{i}, \quad \varepsilon_{i} \sim N\left(0, \sigma^{2}\right), ~(1)}$
Then,

$$
\ell(\sigma, \beta)=\log \left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left[Y_{i}-g\left(X_{i}, \beta\right)\right]^{2}
$$

Thus, the MLE for β is equivalent to minimize

$$
\sum_{i=1}^{n}\left[Y_{i}-g\left(X_{i}, \beta\right)\right]^{2}-\text { least-squares. }
$$

Let $\widehat{\beta}$ be the minimizer. Define

$$
\mathrm{RSS}=\sum_{i=1}^{n}\left[Y_{i}-g\left(X_{i}, \widehat{\beta}\right)\right]^{2}
$$

Then, after dropping a constant

$$
\ell(\sigma, \widehat{\beta})=-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \mathrm{RSS}
$$

which is maximized at $\widehat{\sigma}^{2}=\frac{\mathrm{RSS}}{n}$. In particular, if $g\left(X_{i}, \beta\right)=\mu$, then $\widehat{\mu}=\bar{Y}$ and

RSS $=\frac{1}{n} \sum_{i=1}^{n}\left[Y_{i}-\bar{Y}\right]^{2}$. Hence, the MLE is

$$
\widehat{\mu}=\bar{Y} \quad \text { and } \quad \widehat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} .
$$

Remark:

MLE — use full likelihood function \Longrightarrow more efficient, less robust.
MM - use the first few moments \Longrightarrow less efficient, more robust.

2.4 The EM algorithm

(Reading assignment - read the whole section 2.4.)
Objective: Used to deal with missing data. [Dempster,Laird and Rubin(1977) and Baum, Petrie, Soules, and Weiss(1970).]

Problem: Suppose that we have a situation in which the full likelihood $\mathbf{X} \sim$ $p(\mathbf{x}, \theta)$ is easy to compute and to maximize. Unfortunately, we only observe the
partial information $S=S(\mathbf{X}) \sim q(s, \theta) . q(s, \theta)$ itself is hard to compute and to maximize. The algorithm is to maximize $q(s, \theta)$.
Example 12 (Lumped Hardy-Weinberg data)
The full information is X_{1}, \cdots, X_{n} with

$$
\log p(\mathbf{x}, \theta)=n_{1} \log \theta^{2}+n_{2} \log 2 \theta(1-\theta)+n_{3} \log (1-\theta)^{2}
$$

Partial information:

$$
\begin{gathered}
\text { complete cases } \quad S_{i}=\left(X_{i 1}, X_{i 2}, X_{i 3}\right), i=1, \cdots, m \\
\text { incomplete cases } S_{i}=\left(X_{i 1}+X_{i 2}, X_{i 3}\right), i=m+1, \cdots, n
\end{gathered}
$$

The likelihood of the available data is

$$
\begin{aligned}
& \log q(s, \theta)=m_{1} \log \theta^{2}+m_{2} \log 2 \theta(1-\theta)+m_{3} \log (1-\theta)^{2} \\
& +n_{12}^{*} \log \left(1-(1-\theta)^{2}\right)+n_{3}^{*} \log (1-\theta)^{2} \\
& n_{12}^{*}=\sum_{i=m+1}^{n}\left(X_{i 1}+X_{i 2}\right), n_{3}^{*}=\sum_{i=m}^{n} X_{i 3} .
\end{aligned}
$$

The maximum likelihood can be found by maximizing the above expression. For many other problems, this log-likelihood can be hard to compute.

Intuition for E-M algorithm: Guess the full likelihood using the available and maximum the conjectured likelihood.

$$
\begin{aligned}
& \text { E-step: Compute } \ell\left(\theta, \theta_{0}\right)=E_{\theta_{0}}(\ell(\mathbf{X}, \theta) \mid S(\mathbf{X})=s), \\
& \text { M-step: } \widehat{\theta}=\arg \max \ell\left(\theta, \theta_{0}\right),
\end{aligned}
$$

and iterate.
Example 2.12. (continued) Full likelihood:

$$
\log p(\mathbf{x}, \theta)=n_{1} \log \theta^{2}+n_{2} \log 2 \theta(1-\theta)+n_{3} \log (1-\theta)^{2}
$$

E-step:

$$
\begin{gathered}
\ell\left(\theta, \theta_{0}\right)=E_{\theta_{0}}\left(n_{1} \mid S\right) \log \theta^{2}+E_{\theta_{0}}\left(n_{2} \mid S\right) \log 2 \theta(1-\theta)+n_{3} \log (1-\theta)^{2} \\
E_{\theta_{0}}\left(n_{1} \mid S\right)=m_{1}+n_{12}^{*} \frac{\theta_{0}^{2}}{\theta_{0}^{2}+2 \theta_{0}\left(1-\theta_{0}\right)}
\end{gathered}
$$

and

$$
E_{\theta_{0}}\left(n_{2} \mid S\right)=m_{2}+n_{12}^{*} \frac{2 \theta_{0}\left(1-\theta_{0}\right)}{\theta_{0}^{2}+2 \theta_{0}\left(1-\theta_{0}\right)}
$$

M-step:

$$
\widehat{\theta}=\frac{2 E_{\theta_{0}}\left(n_{1} \mid S\right)+E_{\theta_{0}}\left(n_{2} \mid S\right)}{2\left(E_{\theta_{0}}\left(n_{1} \mid S\right)+E_{\theta_{0}}\left(n_{2} \mid S\right)+n_{3}\right)}=\frac{n_{12}+E_{\theta_{0}}\left(n_{1} \mid S\right)}{2 n},
$$

where n_{12} is the number of data points for genotypes 1 and 2 . When the algorithm converges, it solves the following equation:

$$
2 n \theta=n_{12}+m_{1}+n_{12}^{*} \theta /(2-\theta)
$$

This is indeed the maximum likelihood estimator based on the available (partial) data, which we now justify.
$\underline{\text { Rationale of the EM algorithm: } p(\mathbf{x}, \theta)=q(s, \theta) P_{\theta}(\mathbf{X}=\mathbf{x} \mid S=s) I(S(\mathbf{X})=}$ $s)$.

Let $r(x \mid s, \theta)=P_{\theta}(\mathbf{X}=\mathbf{x} \mid S=s) I(S(\mathbf{x})=s)$. Then,

$$
\ell\left(\theta, \theta_{0}\right)=\log q(s, \theta)+E_{\theta_{0}}\{\log r(\mathbf{X} \mid s, \theta) \mid S(\mathbf{X})=s\}
$$

Hence,

$$
0=\ell\left(\widehat{\theta}, \theta_{0}\right)^{\prime}=\left.(\log q(s, \theta))^{\prime}\right|_{\theta=\widehat{\theta}}+E_{\theta_{0}}\left\{\left.(\log r(\mathbf{X} \mid s, \theta))^{\prime}\right|_{\theta=\widehat{\theta}} \mid S=s\right\}
$$

If the algorithm converges to θ_{1}, then

$$
\left(\log q\left(s, \theta_{1}\right)\right)^{\prime}+E_{\theta_{1}}\left\{\left(\log r\left(\mathbf{X} \mid s, \theta_{1}\right)\right)^{\prime} \mid S=s\right\}=0
$$

The second term vanishes by noticing that for any regular function f,

$$
E_{\theta}(\log f(\mathbf{X}, \theta))^{\prime}=\int \frac{f^{\prime}(\mathbf{x}, \theta)}{f(\mathbf{x}, \theta)} f(\mathbf{x}, \theta) d \mathbf{x}=0
$$

Hence

$$
\left\{\log q\left(s, \theta_{1}\right)\right\}^{\prime}=0
$$

which solves the likelihood equation based on the (partial) data. In other words, the EM algorithm converges to the true likelihood.

Theorem 1

$$
\log q\left(s, \theta_{\text {new }}\right) \geqslant \log q\left(s, \theta_{\text {old }}\right)
$$

namely, each iteration always increases the likelihood.
Proof. Note that

$$
\begin{aligned}
\ell\left(\theta_{n}, \theta_{0}\right) & =\log q\left(s, \theta_{n}\right)+E_{\theta_{0}}\left\{\log r\left(X \mid s, \theta_{n}\right) \mid S(\mathbf{X})=s\right\} \\
& \geqslant \log q\left(s, \theta_{0}\right)+E_{\theta_{0}}\left\{\log r\left(X \mid s, \theta_{0}\right) \mid S(\mathbf{X})=s\right\}
\end{aligned}
$$

$$
\begin{aligned}
\log q\left(s, \theta_{n}\right) & \geq \log q\left(s, \theta_{0}\right)+E_{\theta_{0}}\left\{\left.\log \frac{r\left(X \mid s, \theta_{0}\right)}{r\left(X \mid s, \theta_{n}\right)} \right\rvert\, S(\mathbf{X})=s\right\} \\
& \geq \log q\left(s, \theta_{0}\right)
\end{aligned}
$$

Example 2.13. Let X_{1}, \cdots, X_{n+4} be i.i.d. $N(\mu, 1 / 2)$. Suppose that we observe
$S_{1}=X_{1}, \cdots, S_{n}=X_{n}, S_{n+1}=X_{n+1}+2 X_{n+2}$, and $S_{n+2}=X_{n+3}+X_{n+4}$. Use the EM algorithm to find the maximum likelihood estimator based on the observed data.

Note that the full likelihood is

$$
\begin{aligned}
\log p(\mathbf{X}, \mu) & =-\sum_{i=1}^{n+4}\left(X_{i}-\mu\right)^{2} \\
& =-\sum_{i=1}^{n+4} X_{i}^{2}+2 \mu \sum_{i=1}^{n+4} X_{i}-(n+4) \mu^{2} .
\end{aligned}
$$

At the E-step, we compute

$$
\begin{gathered}
E_{\mu_{0}}\{\log p(\mathbf{X}, \mu) \mid \boldsymbol{S}\}=a\left(\mu_{0}\right)-2 \mu\left\{\sum_{i=1}^{n} X_{i}+E_{\mu_{0}}\left\{X_{n+1}+X_{n+2} \mid S_{n+1}\right\}\right. \\
\left.+S_{n+2}\right\}-(n+4) \mu^{2}
\end{gathered}
$$

where $a\left(\mu_{0}\right)=\left(\mu_{0}^{2}+1 / 2\right)$. To compute $E_{\mu_{0}}\left\{X_{n+1} \mid S_{n+1}\right\}$, we note that $2 X_{n+1}-X_{n+2}$
is uncorrelated with S_{n+1}. Hence, we have

$$
\begin{aligned}
& E_{\mu_{0}}\left\{2 X_{n+1}-X_{n+2} \mid S_{n+1}\right\}=\mu_{0} \\
& E_{\mu_{0}}\left\{X_{n+1}+2 X_{n+2} \mid S_{n+1}\right\}=S_{n+1}
\end{aligned}
$$

Solving the above two equations gives

$$
E_{\mu_{0}}\left(X_{n+1} \mid S_{n+1}\right)=\left(S_{n+1}+2 \mu_{0}\right) / 5, \quad E_{\mu_{0}}\left(X_{n+2} \mid S_{n+1}\right)=\left(2 S_{n+1}-\mu_{0}\right) / 5
$$

and that

$$
E_{\mu_{0}}\left\{X_{n+1}+X_{n+2} \mid S_{n+1}\right\}=\left(3 S_{n+1}+\mu_{0}\right) / 5
$$

Hence, the conditional likelihood is given by

$$
\ell\left(\mu, \mu_{0}\right)=a\left(\mu_{0}\right)-2 \mu\left\{\sum_{i=1}^{n} X_{i}+0.6 S_{n+1}+0.2 \mu_{0}+S_{n+2}\right\}-(n+4) \mu^{2}
$$

At the M-step, we maximize $\ell\left(\mu, \mu_{0}\right)$ with respect to μ, resulting in

$$
\widehat{\mu}=(n+4)^{-1}\left\{\sum_{i=1}^{n} X_{i}+0.6 S_{n+1}+0.2 \mu_{0}+S_{n+2}\right\}
$$

The EM algorithm is to iterate the above step. When the algorithm converges, the estimate solves

$$
\widehat{\mu}=(n+4)^{-1}\left\{\sum_{i=1}^{n} X_{i}+0.6 S_{n+1}+0.2 \widehat{\mu}+S_{n+2}\right\}
$$

or

$$
\widehat{\mu}=(n+3.8)^{-1}\left\{\sum_{i=1}^{n} X_{i}+0.6 S_{n+1}+S_{n+2}\right\}
$$

This is the maximum likelihood estimator for the "missing" data.
Example 2.14. Mixture normal distribution:

$$
S_{1}, \cdots, S_{n} \sim_{i . i . d .} \lambda N\left(\mu_{1}, \sigma_{1}^{2}\right)+(1-\lambda) N\left(\mu_{2}, \sigma_{2}^{2}\right)
$$

Challenge: The likelihood of S_{1}, \cdots, S_{n} is easy to write down, but hard to compute.
 tells the population under which it is drawn from, but missing.

$$
P\left(\triangle_{i}=1\right)=\lambda
$$

Figure 2.7: Mixture of two normal distributions

$$
P\left(S_{i} \mid \triangle_{i}\right) \sim \begin{cases}N\left(\mu_{1}, \sigma_{1}^{2}\right), & \text { if } \triangle_{i}=1 \\ N\left(\mu_{2}, \sigma_{2}^{2}\right), & \text { if } \triangle_{i}=0\end{cases}
$$

Then, the full likelihood is

$$
\begin{aligned}
p(\mathbf{x}, \theta)= & \lambda^{\sum \triangle_{i}}(1-\lambda)^{n-\sum \triangle_{i}} \Pi_{\triangle_{i}=1}\left(\frac{1}{\sqrt{2 \pi} \sigma_{1}}\right) \exp \left(-\frac{\left(S_{i}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right) \\
& \times \Pi_{\triangle_{i}=0}\left(\frac{1}{\sqrt{2 \pi} \sigma_{2}}\right) \exp \left(-\frac{\left(S_{i}-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\log p(\mathbf{x}, \theta)= & \sum \triangle_{i} \log \lambda+\sum\left(1-\triangle_{i}\right) \log (1-\lambda) \\
& +\sum_{\triangle_{i}=1}\left\{-\log \sigma_{1}-\frac{\left(S_{i}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right\} \\
& +\sum_{\triangle_{i}=0}\left\{-\log \sigma_{2}-\frac{\left(S_{i}-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}\right\}
\end{aligned}
$$

To find the E-step, we need to find the conditional distribution of $\triangle_{i} \mid \mathbf{S}$.

Note that

$$
\begin{aligned}
P_{\theta_{0}}\left\{\triangle_{i}=1 \mid \mathbf{S}=\mathbf{s}\right\} & =P\left\{\triangle_{i}=1 \mid S_{i} \in s_{i} \pm \varepsilon\right\} \\
& =\frac{P\left\{\triangle_{i}=1, S_{i} \in s_{i} \pm \varepsilon\right\}}{P\left(S_{i} \in s_{i} \pm \varepsilon\right)} \\
& =\frac{\lambda_{0} \sigma_{10}^{-1} \phi\left(\frac{s_{i}-\mu_{10}}{\sigma_{10}}\right)}{\lambda_{0} \sigma_{10}^{-1} \phi\left(\frac{s_{i}-\mu_{10}}{\sigma_{10}}\right)+\left(1-\lambda_{0}\right) \sigma_{20}^{-1} \phi\left(\frac{s_{i}-\mu_{20}}{\sigma_{20}}\right)} \\
& \equiv p_{i}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\ell\left(\theta, \theta_{0}\right)= & \sum_{i=1}^{n} p_{i} \log \lambda+\sum_{i=1}^{n}\left(1-p_{i}\right) \log (1-\lambda) \\
& +\sum_{i=1}^{n} p_{i}\left\{-\log \sigma_{1}-\frac{\left(s_{i}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right\} \\
& +\sum_{i=1}^{n}\left(1-p_{i}\right)\left\{-\log \sigma_{2}-\frac{\left(s_{i}-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}\right\}
\end{aligned}
$$

The M-step is to maximize the above quantity with respective to $\lambda, \sigma_{1}, \mu_{1}, \sigma_{2}, \mu_{2}$,
which can be explicitly found. e.g.

$$
\begin{aligned}
\frac{\sum_{i=1}^{n} p_{i}}{\lambda}-\frac{\sum_{i=1}^{n}\left(1-p_{i}\right)}{1-\lambda} & =0 \Rightarrow \lambda=\frac{\sum_{i=1}^{n} p_{i}}{n} \\
\sum_{i=1}^{n} p_{i}\left(s_{i}-\mu_{1}\right) & =0 \Rightarrow \widehat{\mu}_{1}=\frac{\sum_{i=1}^{n} p_{i} s_{i}}{\sum_{i=1}^{n} p_{i}}
\end{aligned}
$$

The EM algorithm is to iterate these two steps.

