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Summary. Varying-coefficient linear models arise from multivariate nonparametric regression,
non-linear time series modelling and forecasting, functional data analysis, longitudinal data
analysis and others. It has been a common practice to assume that the varying coefficients are
functions of a given variable, which is often called an index. To enlarge the modelling capacity
substantially, this paper explores a class of varying-coefficient linear models in which the index
is unknown and is estimated as a linear combination of regressors and/or other variables. We
search for the index such that the derived varying-coefficient model provides the least squares
approximation to the underlying unknown multidimensional regression function. The search is
implemented through a newly proposed hybrid backfitting algorithm.The core of the algorithm is
the alternating iteration between estimating the index through a one-step scheme and estimat-
ing coefficient functions through one-dimensional local linear smoothing. The locally significant
variables are selected in terms of a combined use of the t -statistic and the Akaike informa-
tion criterion. We further extend the algorithm for models with two indices. Simulation shows
that the methodology proposed has appreciable flexibility to model complex multivariate non-
linear structure and is practically feasible with average modern computers. The methods are
further illustrated through the Canadian mink–muskrat data in 1925–1994 and the pound–dollar
exchange rates in 1974–1983.

Keywords: Akaike information criterion; Backfitting algorithm; Generalized cross-validation;
Local linear regression; Local significant variable selection; One-step estimation; Smoothing
index

1. Introduction

Suppose that we are interested in estimating the multivariate regression function G.x/≡
E.Y |X = x/, where Y is a random variable and X is a d × 1 random vector. In this paper,
we propose to approximate the regression function G.x/ by a varying-coefficient model

g.x/ =
d∑
j=0

gj.β
Tx/xj; .1:1/

where β ∈ �d is an unknown direction, x = .x1; : : :; xd/
T, x0 = 1 and coefficients g0.·/; : : :; gd.·/
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are unknown functions. We choose the direction β and coefficient functions gj.·/ such that
E{G.X/ − g.X/}2 is minimized. The appeal of this model is that, once β has been given, we
can directly estimate gj.·/ by the standard one-dimensional kernel regression localized around
βTx. Furthermore, the coefficient functions gj.·/ can be easily displayed graphically, which may
be particularly helpful to visualize how the surface g.·/ changes. Model (1.1) appears linear in
each co-ordinate of x when the index βTx is fixed. It may include quadratic and cross-product
terms of xj (or more generally any given functions of xj) as ‘new’ components of x. Hence it
has considerable flexibility to cater for complex multivariate non-linear structure.

We develop an efficient backfitting algorithm to estimate g.·/. The virtue of the algorithm
is the alternating iteration between estimating β through a one-step estimation scheme (Bic-
kel, 1975) and estimating functions gj.·/ through one-dimensional local linear smoothing.
Since we apply smoothing on a scalar βTX only, the method suffers little from the so-called
‘curse of dimensionality’ which is the innate difficulty associated with multivariate nonparamet-
ric fitting. The generalized cross-validation (GCV) method for bandwidth selection is incorpo-
rated in the algorithm in an efficient manner. To avoid overfitting, we delete local insignificant
variables in terms of a combined use of the t-statistic and the Akaike information criterion
(AIC), which is adopted for its computational efficiency. The deletion of insignificant variables
is particularly important when we include, for example, quadratic functions of xj as new com-
ponents in the model, which could lead to overparameterization. The method proposed has
been further extended to estimate varying-coefficient models with two indices, one of which is
known.

Varying-coefficient models arise from various statistical contexts in slightly different forms.
The vast amount of literature includes, among others, Cleveland et al. (1992), Hastie and Tib-
shirani (1993), Carroll et al. (1998), Kauermann and Tutz (1999), Xia and Li (1999a), Zhang
and Lee (1999, 2000) and Fan and W. Zhang (1999, 2000) on local multidimensional regression,
Ramsay and Silverman (1997) on functional data analysis, Hoover et al. (1998), Wu et al. (1998)
and Fan and J. Zhang (2000) on longitudinal data analysis, Nicholls and Quinn (1982), Chen
and Tsay (1993) and Cai, Fan and Yao (2000) on non-linear time series and Cai, Fan and Li
(2000) on generalized linear models with varying coefficients. The form of model (1.1) is not
new. It was proposed in Ichimura (1993). Recently, Xia and Li (1999b) extended the idea and
the results of Härdle et al. (1993) from the single-index model to the adaptive varying-coefficient
model (1.1). They proposed to estimate the coefficient functions with a given bandwidth and
a direction β, and then to choose the bandwidth and the direction by cross-validation. Some
theoretical results were derived under the assumption that the bandwidth was of the order
O.n−1=5/ and the direction β was within an Op.n−1=2/ consistent neighbourhood of the true
value. However, the approach suffers from heavy computational expense. This to some extent
explains why most previous work assumed a known direction β. The new approach in this paper
differs from those in three key aspects:

(a) only a one-dimensional smoother is used in estimation,
(b) the index coefficient β is estimated by data and
(c) within a local region around βTx we select significant variables x′js to avoid overfitting.

Aspect (b) is different from Härdle et al. (1993) and Xia and Li (1999b) since we estimate the
coefficient functions and the direction simultaneously; no cross-validation is needed. This idea
is similar in spirit to that of Carroll et al. (1997) who showed that a semiparametric efficient
estimator of the direction β can be obtained. Further we provide a theorem (i.e. theorem 1,
part (b), in Section 2) on the model identification problem of the form (1.1) which has not been
addressed before.
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The rest of the paper is organized as follows. Section 2 deals with the adaptive varying-
coefficient model (1.1). The extension to the case with two indices is outlined in Section 3. The
numerical results of two simulated examples are reported in Section 4.1, which demonstrate that
the methodology proposed can capture complex non-linear structure with moderate sample siz-
es, and further the required computation typically takes less than a minute on a Pentium II
350 MHz personal computer. The methodology is further illustrated in Section 4.2 through the
Canadian mink–muskrat data in 1925–1944 and the pound–dollar exchange rates in 1974–1983.
The technical proofs are relegated to Appendix A.

2. Adaptive varying-coefficient linear models

2.1. Approximation and identifiability
Since G.x/ = E.Y |X = x/ is a conditional expectation, it holds that

E{Y − g.X/}2 = E{Y −G.X/}2 + E{G.X/− g.X/}2

for any g.·/. Therefore, the search for the least squares approximation g.·/ ofG.·/, as defined in
model (1.1), is equivalent to the search for such a g.·/ that E{Y − g.X/}2 obtains the minimum.
Theorem 1, part (a), below indicates that there is always such a g.·/ under mild conditions.
Obviously, ifG.x/ is in the form of the right-hand side of model (1.1), g.x/ ≡ G.x/. The second
part of the theorem points out that the coefficient vector β is unique up to a constant unless g.·/
is in a class of special quadratic functions (see equation (2.2) below). In fact, model (1.1) is an
overparameterized form in the sense that one of the functions gj.·/ can be represented in terms
of the others. Theorem 1, part (b), confirms that, once the direction β has been specified, the
function g.·/ has a representation with at most d (instead of d + 1) gj.·/. Furthermore, those
gj.·/ functions are identifiable.

Theorem 1.

(a) Assume that the distribution function of .X; Y / is continuous, and E{Y2 + ||X||2} <∞.
Then, there is a g.·/ defined by model (1.1) for which

E{Y − g.X/}2 = inf
α

inf
f0; : : :; fd

[
E

{
Y −

d∑
j=0
fj.α

TX/Xj

}2]
; .2:1/

where the first infimum is taken over all unit vectors in �d and the second over all
measurable functions f0.·/; : : :; fd.·/.

(b) For any given twice-differentiable g.·/ of the form (1.1), if we choose ||β|| = 1, and the
first non-zero component of β positive, such a β is unique unless g.·/ is of the form

g.x/ = αTxβTx + γTx + c; .2:2/

where α;γ ∈ �d , c ∈ � are constants and α and β are not parallel to each other.
Furthermore, once β = .β1; : : :;βd/

T has been given and βd �= 0, we may let gd.·/ ≡ 0.
Consequently, all the other gj.·/ are uniquely determined.

Remark 1. If the conditional expectation G.x/ = E.Y |X = x/ cannot be expressed in the
form of the right-hand side of model (1.1), there may be more than one g.x/ of the form (1.1), for
which equation (2.1) holds. For example, letY = X2

1+X2
2, where bothX1 andX2 are independent

random variables uniformly distributed on [0;1]. ThenG.x1; x2/ = x2
1 + x2

2, which is not in the
form (1.1). However, equation (2.1) holds for both g.x1; x2/ = 1:25x2

1 and g.x1; x2/ = 1:25x2
2.
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Without loss of generality, we always assume from now on that, in model (1.1), ||β|| = 1 and
the first non-zero component of β is positive. To avoid the complication caused by the lack of
uniqueness of the index direction β, we always assume that G.·/ admits a unique least squares
approximation of g.·/ which cannot be expressed in the form (2.2).

2.2. Estimation
Let {.Xt ; Yt/; 1 � t � n} be observations from a strictly stationary process with the same mar-
ginal distribution as .X; Y /. To estimate the surface g.·/ defined by equations (1.1) and (2.1), we
need to search for the minimizers of {fj.·/} for any given direction α and then to find the
direction at which the mean-squared error is minimized. An exhaustive search is intractable. We
develop a backfitting algorithm for this optimization problem.

Let βd �= 0. It follows from theorem 1, part (b), that we only search for an approximation in
the form

g.x/ =
d−1∑
j=0

gj.β
Tx/xj: .2:3/

Our task can be formally split into two parts—estimation of functions gj.·/ with a given β
and estimation of the index coefficient β with given gj.·/. We also discuss how to choose the
smoothing parameter h in terms of GCV (Wahba, 1977), and how to apply backward deletion
to choose locally significant variables in terms of a combined use of the t-statistic and AIC. The
algorithm for practical implementation will be summarized at the end of this section.

The computer-intensive nature of the problem prevents us from exploring more sophisticated
methods which may lead to an improvement in performance at the cost of computing time. For
example, various plug-in methods (chapter 4 of Fan and Gijbels (1996)), thorough GCV (see
step 3 in Section 2.3 below) or the corrected AIC (Hurvich et al., 1998; Simonoff and Tsai, 1999)
would lead to better bandwidth selectors. The local variable selection could also be based solely
on the AIC or the corrected AIC.

2.2.1. Local linear estimators for the gj(:) with given β
For given β with βd �= 0, we need to estimate

g.X/ = arg min
f∈F.β/

.E[{Y − f.X/}2 | βTX]/; .2:4/

where

F.β/ =
{
f.x/ =

d−1∑
j=0
fj.β

Tx/xj

∣∣∣∣f0.·/; : : :; fd−1.·/ measurable, and E{f.X/}2<∞
}
:

The least squares property of equation (2.4) leads to the estimators ĝj.z/ = b̂j, j = 0; : : :;
d − 1, where .b̂0; : : :; b̂d−1/ is the minimizer of the sum of weighted squares

n∑
t=1

(
Yt −

d−1∑
j=0
bjXtj

)2

Kh.β
TXt − z/w.βTXt/;

where w.·/ is a bounded weight function with a bounded support, which is introduced to control
the boundary effect. Note that only one-dimensional kernel smoothing is used here.

The above estimation procedure is based on the local constant approximation gj.y/ ≈ gj.z/
for y in a neighbourhood of z. Since local constant regression has several drawbacks compared
with local linear regression (Fan and Gijbels, 1996), we consider the local linear estimators for
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the functions g0.·/; : : :; gd−1.·/. This leads to minimizing the sum

n∑
t=1

[
Yt −

d−1∑
j=0

{bj + cj.βTXt − z/}Xtj
]2

Kh.β
TXt − z/w.βTXt/ .2:5/

with respect to {bj} and {cj}. Define ĝj.z/ = b̂j and ˆ̇gj.z/ = ĉj for j = 0; : : :; d − 1 and set

θ̂ ≡ .b̂0; : : :; b̂d−1; ĉ0; : : :; ĉd−1/
T:

It follows from least squares theory that

θ̂ = Σ.z/X T.z/W.z/Y;
Σ.z/ = {X T.z/W.z/X .z/}−1;

.2:6/

where Y = .Y1; : : :; Yn/
T, W.z/ is an n× n diagonal matrix with Kh.βTXi − z/w.βTXi/ as its

ith diagonal element, X .z/ is an n× 2d matrix with .UT
i ; .β

TXi − z/UT
i / as its ith row and

Ut = .1;Xt1; : : :;Xt; d−1/
T.

2.2.2. Search for β-direction with the gj(:) fixed
The minimization property of equation (2.1) suggests that we should search for β to minimize

R.β/ = 1
n

n∑
t=1

{
Yt −

d−1∑
j=0

gj.β
TXt/Xtj

}2

w.βTXt/: .2:7/

We employ a one-step estimation scheme (see, for example, Bickel (1975)) to estimate β, which
is in the spirit of one-step Newton–Raphson estimation. We expect that the estimator derived
will be good if the initial value is reasonably good (see Fan and Chen (1999)).

Suppose that β̂ is the minimizer of equation (2.7). Then Ṙ.β̂/ = 0, where Ṙ.·/ denotes the
derivative of R.·/. For any β.0/ close to β̂, we have the approximation

0 = Ṙ.β̂/ ≈ Ṙ.β.0//+ R̈.β.0//.β̂ − β.0//;

where R̈.·/ is the Hessian matrix of R.·/. This leads to the one-step iterative estimator

β.1/ = β.0/ − R̈.β.0//−1 Ṙ.β.0//; .2:8/

where β.0/ is the initial value. We rescale β.1/ such that it has unit norm with first non-vanishing
element positive. It is easy to see from equation (2.7) that

Ṙ.β/ = −2
n

n∑
t=1

{
Yt −

d−1∑
j=0

gj.β
TXt/Xtj

}{
d−1∑
j=0

ġj.β
TXt/Xtj

}
Xt w.βTXt/;

R̈.β/ = 2
n

n∑
t=1

{
d−1∑
j=0

ġj.β
TXt/Xtj

}2

XtXT
t w.βTXt/

− 2
n

n∑
t=1

{
Yt −

d−1∑
j=0

gj.β
TXt/Xtj

}{
d−1∑
j=0

g̈j.β
TXt/Xtj

}
XtXT

t w.βTXt/: .2:9/

In this derivation, the derivative of the weight function w.·/ is assumed to be 0 for simplicity. In
practice, we usually let w.·/ be an indicator function.

In case the matrixR̈.·/ is singular or nearly so, we adopt a ridge regression (Seifert and Gasser,
1996) approach as follows: use estimator (2.8) with R̈ replaced by R̈r which is defined by the
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right-hand side of equation (2.9) with XtXT
t replaced by XtXT

t + qnld for some positive ridge
parameter qn.

Now we briefly state two alternative methods for estimating β, although they may not be as
efficient as the above method. The first is based on a random search method, which is more
direct and tractable when d is small. The basic idea is to keep drawing β randomly from the
d-dimensional unit sphere and then to computeR.β/. Stop the algorithm if the minimum fails to
decrease significantly in, say, every 100 new draws. The second approach is to adapt the average
derivative method of Newey and Stoker (1993) and Samarov (1993). Under model (1.1), the
direction β is parallel to the expected difference between the gradient vector of the regression
surface and .g1.β

Tx/; : : :; gd−1.β
Tx/;0/T and hence can be estimated by the average derivative

method via iteration.

2.2.3. Bandwidth selection
We apply the GCV method, proposed by Wahba (1977) and Craven and Wahba (1979), to
choose the bandwidth h in the estimation of {gj.·/}. The criterion can be described as follows.
For given β, let

Ŷt =
d−1∑
j=0

ĝj.β
TXt/Xtj:

It is easy to see that all those predicted values are linear combinations of Y = .Y1; : : :; Yn/
T with

coefficients depending on {Xt} only. Namely, we may write

.Ŷ1; : : :; Ŷn/
T = H.h/Y;

where H.h/ is the n× n hat matrix, independent of Y . The GCV method selects h minimizing

GCV.h/ ≡ 1
n[1 − n−1 tr{H.h/}]2

n∑
t=1
.Yt − Ŷt/2 w.βTXt/;

which in fact is an estimate of the weighted mean integrated square errors. Under some regularity
conditions, it holds that

GCV.h/ = a0 + a1h
4 + a2

nh
+ op.h4 + n−1h−1/:

Thus, up to first-order asymptotics, the optimal bandwidth is hopt = .a2=4na1/
1=5. The coeffi-

cients a0, a1 and a2 will be estimated from GCV.hk/ via least squares regression. This bandwidth
selection rule, inspired by the empirical bias method of Ruppert (1997), will be applied outside
the loops between estimating β and {gj.·/}. See Section 2.2.5.

To calculate tr{H.h/}, we note that, for 1 � i � n,

Ŷi = 1
n

n∑
t=1
YtKh.β

TXt − βTXi/w.βTXt/.UT
t ; 0

T/Σ.βTXi/
(

Ut
UtβT.Xt − Xi/=h

)
;

where 0 denotes the d×1 vector with all components 0 and Σ.·/ is defined as in expression (2.6).
The coefficient of Yi on the right-hand side of the above expression is

γi ≡ 1
n
Kh.0/w.βTXi/.UT

i ; 0
T/Σ.βTXi/

(
Ui
0

)
:

Now, we have that tr{H.h/} = Σni=1γi.
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2.2.4. Choosing locally significant variables
As we discussed before, model (2.3) can be overparameterized. Thus, it is necessary to select
significant variables for each given z after an initial fitting. In our implementation, we use a
backward stepwise deletion technique which relies on a modified AIC and t-statistics. More
precisely, we delete the least significant variable in a given model according to t-values, which
yields a new and reduced model. We select the best model according to the AIC.

We start with the full model

g.x/ =
d−1∑
j=0

gj.β
Tx/xj: .2:10/

For fixed βTX = z, model (2.10) could be viewed as a (local) linear regression model. The least
squares estimator θ̂ ≡ θ̂.z/ given in expression (2.6) entails

RSSd.z/ =
n∑
t=1

[
Yt −

d−1∑
j=0

{ĝj.z/+ ˆ̇gj.z/.β
TXt − z/}Xtj

]2

Kh.β
TXt − z/w.βTXt/:

The ‘degrees of freedom’ of RSSd.z/ are m.d; z/ = nz − p.d; z/ where nz = tr{W.z/} may be
viewed as the number of observations used in the local estimation and

p.d; z/ = tr{Σ.z/X T.z/W2.z/X .z/}
as the number of local parameters. Now we define the AIC for this model as

AICd.z/ = log{RSSd.z/=m.d; z/} + 2 p.d; z/=nz:

To delete the least significant variable among x0; x1; : : :; xd−1, we search for xk such that
both gk.z/ and ġk.z/ are close to 0. The t-statistics for those two variables in the (local) linear
regression are

tk.z/ = ĝk.z/√{ck.z/RSS.z/=m.d; z/} ;

td+k =
ˆ̇gk.z/√{cd+k.z/RSS.z/=m.d; z/}

respectively, where ck.z/ is the .k+ 1; k+ 1/th element of matrix Σ.z/X T.z/W2.z/X .z/Σ.z/.
Discarding a common factor, we define

T 2
k .z/ = ĝk.z/

2=ck.z/+ ˆ̇gk.z/
2=cd+k.z/:

Letting j be the minimizer of T 2
k .z/ over 0 � k < d, we delete xj from the full model (2.10). This

leads to a model with d− 1 ‘linear terms’. Repeating the above process, we may define AICl.z/
for all 1 � l � d. If

AICk.z/ = min
1�l�d

{AICl.z/};

the model selected should have k − 1 linear terms xj.

2.3. Implementation
We now outline the algorithm.

Step 1: standardize the data {Xt} such that they have sample mean 0 and sample covariance
matrix Id . Specify an initial value of β.
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Step 2: for each prescribed bandwidth value hk, k = 1; : : :; q, repeat (a) and (b) below until
two successive values of R.β/ defined in equation (2.7) differ insignificantly.

(a) For a given β, estimate gj.·/ by expression (2.6).
(b) For given gj.·/, search β using the algorithm described in Section 2.2.2.

Step 3: for k = 1; : : :; q, calculate GCV.hk/with β equal to its estimated value, where GCV(·)
is defined in Section 2.2.3. Let â1 and â2 be the minimizer of Σqk=1{GCV.hk/− a0 − a1h

4
k −

a2=nhk}2. Define ĥ = .â2=4nâ1/
1=5 if â1 and â2 are positive, and ĥ = arg minhk{GCV.hk/}

otherwise.
Step 4: for h = ĥ selected in step 3, repeat (a) and (b) in step 2 until two successive values of
R.β/ differ insignificantly.
Step 5: for β = β̂ selected in step 4, apply the stepwise deletion of Section 2.2.4 to select
significant variables X′

tjs for each fixed z.

Some additional remarks are now in order.

Remark 2.

(a) The standardization in step 1 also ensures that the sample mean of {βTXt} is 0 and the
sample variance is 1 for any unit vector β. This effectively rewrites model (2.3) as

d∑
j=0

gj {βTΣ̂−1=2.x − µ̂/}xj;

where µ̂ and Σ̂ are the sample mean and sample variance respectively. In the numerical
examples in Section 4, we report Σ̂−1=2β̂=||Σ̂−1=2β̂|| as the estimated value of β defined
in model (2.3).

(b) We may let w.z/ = I.|z| � 2 + δ/ for some small δ � 0. To speed up the computation
further, we estimate the functions gj.·/ in step 3 on 101 regular grids in the interval
[−1:5;1:5] first, and then estimate the values of the functions on this interval by linear
interpolation. Finally, in step 4, we estimate the gj.·/ on the interval [−2; 2].

(c) With the Epanechnikov kernel, we let q = 15 and hk = 0:2×1:2k−1 in step 3. The specified
values for h practically cover the range of 0.2–2.57 times the standard deviation of the
data. If we use the Gaussian kernel, we may select the range of the bandwidth between
0.1 and 1.5 times the standard deviation.

(d) To stabilize the search for β further in step 2(b), we replace an estimate of gj.·/ on a grid
point by a weighted average on its five nearest neighbours with weights {1=2; 1=6; 1=6;
1=12;1=12}. The edge points are adjusted accordingly.

(e) In searching for β in terms of the one-step iterative algorithm, we estimate the derivatives
of gj.·/ based on their adjusted estimates on the grid points as follows:

ˆ̇gj.z/ = {ĝj.z1/− ĝj.z2/}=.z1 − z2/; j = 0; : : :; d;

ˆ̈gj.z/ = {ĝj.z1/− 2 ĝj.z2/+ ĝj.z3/}=.z1 − z2/2; j = 0; : : :; d;

where z1 > z2 > z3 are three nearest neighbours of z among the 101 regular grid points
(see (b) above). Equation (2.8) should be iterated a few times instead of just once.

(f) Although the algorithm proposed works well with the examples reported in Section 4, its
convergence requires further research. In practice, we may detect whether an estimated
β is likely to be the global minimum by using multiple initial values.
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3. Varying-coefficient linear models with two indices

In this section, we consider varying-coefficient models with two indices but one of them known.
We assume knowledge of one index to keep computations practically feasible.

Let Y and V be two random variables and X be a d×1 random vector. We use V to denote the
known index, which could be a (known) linear combination of X. The goal is to approximate the
conditional expectation G.x; v/ = E.Y |X = x; V = v/, in the mean-square sense (see equation
(2.1)), by a function of the form

g.x; v/ =
d−1∑
j=0

gj.β
Tx; v/xj; .3:1/

where β = .β1; : : :;βd/
T is a d × 1 unknown unit vector. Similar to theorem 1, part (b), it may

be proved that, under some mild conditions on g.x; v/, the expression on the right-hand side of
equation (3.1) is unique if the first non-zero βk is positive and βd �= 0. Let {.Xt ; Vt; Yt/; 1 � t �
n} be observations from a strictly stationary process; .Xt ; Vt; Yt/ has the same distribution as
.X; V ; Y/.

The estimation for g.x; v/ can be carried out in a similar manner to that for the one-index
case (see Section 2.3). We outline the algorithm below briefly.

Step 1: standardize the data {Xt} such that it has sample mean 0 and sample covariance
matrix Id . Standardize the data {Vt} such that Vt has sample mean 0 and sample variance 1.
Specify an initial value of β.
Step 2: for each prescribed bandwidth value hk, k = 1; : : :; q, repeat (a) and (b) below until
two successive values of R.β/ defined in equation (3.2) differ insignificantly.

(a) For a given β, estimate gj.·; ·/ in terms of local linear regression.
(b) For given gj.·; ·/, search for β by using a one-step iteration algorithm.

Step 3: for k = 1; : : :; q, calculate GCV.hk/with β equal to its estimated value, where GCV(·)
is defined as in Section 2.2.3. Let â1 and â2 be the minimizer of Σqk=1{GCV.hk/−a0 −a1h

4
k−

a2=nh
2
k}2: Define ĥ ≡ .â2=2nâ1/

1=6.
Step 4: for h = ĥ selected in step 3, repeat (a) and (b) in step 2 until two successive values of
R.β/ differ insignificantly.
Step 5: for β = β̂ from step 4, select local significant variables for each fixed .z; v/.

Remark 3.

(a) In step 2(a) above, local linear regression estimation leads to the problem of minimizing
the sum

n∑
t=1

[
Yt −

d−1∑
j=0

{aj + bj.βTXt − z/+ cj.Vt − v/}Xtj
]2

Kh.β
TXt − z;Vt − v/w.βTXt ; Vt/;

whereKh.z; v/ = h−2 K.z=h; v=h/,K.·; ·/ is a kernel function on �2 andw.·; ·/ is a bound-
ed weight function with a bounded support in �2. We use a common bandwidth h for
simplicity. The estimators derived are ĝj.z; v/ = âj, ˆ̇gj;z.z; v/ = b̂j and ˆ̇gj;v.z; v/ = ĉj for
j = 0; : : :; d − 1, where ġj;z.z; v/ = @gj.z; v/=@z and ġj;v.z; v/ = @gj.z; v/=@v.

(b) In step 2(b), we search for β which minimizes the function

R.β/ = 1
n

n∑
t=1

{
Yt −

d−1∑
j=0

gj.β
TXt ; Vt/Xtj

}2

w.βTXt ; Vt/: .3:2/
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A one-step iterative algorithm may be constructed for this purpose in a manner similar
to that in Section 2.2.2. The required estimates for the second derivatives of gj.z; v/may
be obtained via a partially local quadratic regression.

(c) In step 3, the estimated g.x; v/ is linear in {Yt} (for a given β). Thus, the GCV method
outlined in Section 2.2.3 is still applicable.

(d) Locally around given indices βTx and v, equation (3.1) is approximately a linear model.
Thus, the local variable selection technique outlined in Section 2.2.4 is still applicable in
step 5.

4. Numerical properties

We use the Epanechnikov kernel in our calculation. The one-step iterative algorithm that was
described in Section 2.2.2 is used to estimate the index β, in which we iterate the ridge version
of equation (2.8) 2–4 times. We stop the search in step 2 when either the two successive values
of R.β/ differ by less than 0.001 or the number of replications of (a) and (b) in step 2 exceeds
30. Setting initially the ridge parameter qn = 0:001n−1=2, we keep doubling its value until R̈r.·/
is no longer ill conditioned with respect to the precision of computers.

4.1. Simulation
We demonstrate the finite sample performance of the varying-coefficient model with one index
in example 1, and with two indices in example 2. We use the absolute inner product |βTβ̂| to
measure the goodness of the estimated direction β̂. Their inner product represents the cosine
of the angles between the two directions. For example 1, we evaluate the performance of the
estimator in terms of the mean absolute deviation error

EMAD = 1
101d

d−1∑
j=0

101∑
k=1

|ĝj.zk/− gj.zk/|;

where zk; k = 1; : : :;101, are the regular grid points on [−2; 2] after the standardization. For
example 2, EMAD is calculated on the observed values instead.

4.1.1. Example 1
Consider the regression model

Yt = 3 exp.−Z2
t /+ 0:8ZtXt1 + 1:5 sin.πZt/Xt3 + "t;

with

Zt = 1
3 .Xt1 + 2Xt2 + 2Xt4/;

where Xt ≡ .Xt1; : : :;Xt4/
T, for t � 1, are independent random vectors uniformly distributed

on [−1;1]4, and the "t are independent N.0;1/ random variables. The regression function in
this model is of form (2.3) with d = 4, β = 1

3 .1;2;0; 2/
T and

g0.z/ = 3 exp.−z2/;
g1.z/ = 0:8z;

g2.z/ ≡ 0;

g3.z/ = 1:5 sin.πz/:
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We conducted two simulations with sample size 200 and 400 respectively, each with 200 replica-
tions. The central processor unit time for each replication with sample size 400 is about 18 s on
a Pentium II 350 MHz personal computer (Linux). The results are summarized in Fig. 1. Fig.
1(a) displays box plots of the mean absolute deviation errors. We also plot the errors obtained
by using the true direction β. The deficiency due to unknown β decreases when the sample size
increases. Fig. 1(b) shows that the estimator β̂ derived from the one-step iterative algorithm
is close to the true β with high frequency. The average iteration time in the search for β is
14.43 s for n = 400 and 18.25 s for n = 200. Most outliers in Figs 1(a) and 1(b) correspond to
the cases where the search for β does not converge within 30 iterations. Fig. 1(c) indicates that
the bandwidth selector proposed is stable. We also apply the method in Section 2.2.4 to choose
the local significant variables at the 31 regular grid points in the range from −1:5 to 1.5 times the
standard deviations of βTX. The relative frequencies of deletion are depicted in Fig. 1(d). There
is overwhelming evidence for including the ‘intercept’ g0.z/ = 3 exp.−z2/ in the model for all
the values of z. In contrast, we tend to delete most often the term Xt2 which has ‘coefficient’
g2.z/ ≡ 0. There is strong evidence for keeping the term Xt3 in the model. Note that the term
Xt1 is less significant, as the magnitude of its coefficient g1.z/ = 0:8z is smaller than that of
both g0.z/ and g3.z/.
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Fig. 1. Simulation results for example 1: (a) box plots of EMAD (the two plots on the left are based onβ̂, and
the two plots on the right are based on the true β); (b) box plots of jβTβ̂j; (c) box plots of selected bandwidths;
(d) plots of the relative frequencies for deletion of locally insignificant terms at z against z ( , intercept;
- - - - - - -, Xt1; , Xt2; – – –, Xt3)
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Fig. 2 presents three typical examples of the estimated coefficient functions with the sample
size n = 400. The curves are plotted in the range from −1:5 to 1.5 times the standard deviation
of βTX. The three examples are selected with the corresponding EMAD at the first quartile, the
median and the third quartile among the 200 replications. For the example with EMAD at the me-
dian, we also plot the estimated functions obtained by using the true index β. For that example,
β̂

T
β = 0:946. The deficiency due to unknown β is almost negligible. Note that the biases of

the estimators for the coefficient functions g0.·/; g1.·/ and g2.·/ are large near to boundaries.
We believe that this is due to the collinearity of functions g and small effective local sample
sizes near the tails. Nevertheless, there seems no evidence that the problem has distorted the
estimation for the target function g.x/.

We also repeated the exercise with "t ∼ N.0;σ2/ for different values of σ2. Although the re-
sults have the same pattern as before, estimations for both coefficient functions and the direction
β are more accurate for the models with smaller noise.

4.1.2. Example 2
We consider the regression model

Yt = 3 exp.−Z2
t +Xt1/+ .Zt +X2

t1/Xt1 − log.Z2
t +X2

t1/Xt2 + 1:5 sin.πZt +Xt1/Xt3 + "t;

(b)(a)

(c) (d)
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Fig. 2. Simulation results for example 1 (n D 400)—estimated coefficient functions with EMAD at the first
quartile (– – –), third quartile (— — —) and median ( ) with the true β ( . . . . . . .), together with the true
functions ( ): (a) g0.z/ D 3 exp.�z2/I (b) g1.z/ D 0:8z; (c) g2.z/ D 0; (d) g3.z/ D 1:5 sin.πz/
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with

Zt = 1
2 .Xt1 +Xt2 +Xt3 +Xt4/;

where {Xt1; : : :;Xt4} and {"t} are the same as in example 1. Obviously, the regression function
in this model is of form (3.1) with d = 4, β = 1

2 .1; 1; 1; 1/
T, Vt = Xt1 and

g0.z; v/ = 3 exp.−z2 + v/;
g1.z; v/ = z+ v2;

g2.z; v/ = − log.z2 + v2/;

g3.z; v/ = 1:5 sin.πz+ v/:
We conducted three simulations with sample size 200, 400 and 600 respectively, each with 100
replications. The central processor unit time for each realization, for a Sun Ultra-10 300 MHz
workstation, was about 18 s for n = 200, 80 s for n = 400 and 190 s for n = 600. Fig. 3(a) shows
that the mean absolute deviation error EMAD decreases when n increases. For comparison, we
also present EMAD based on the true β. Fig. 3(b) displays the box plots of the absolute inner
product |βTβ̂|, which indicates that the one-step iteration algorithm works reasonably well. The
box plots of bandwidths selected by the GCV method are depicted in Fig. 3(c).
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Fig. 3. Simulation results for example 2: box plots of (a) EMAD, (b) jβTβ̂j and (c) the bandwidths
selected (the three plots on the left of (a) are based on β̂, and the three on the right are based on the
true β/
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4.2. Real data examples
4.2.1. Example 3
The annual numbers of muskrats and mink caught over 82 trapping regions have been recently
extracted from the records compiled by the Hudson Bay Company on fur sales at auction in
1925–1949. Fig. 4 indicates the 82 posts where furs were collected. Fig. 5 plots the time series
for the mink and the muskrat (on the natural logarithmic scale) from eight randomly selected
posts. There is clear synchrony between the fluctuations of the two species with a delay of 1
or 2 years, indicating the food chain interaction between prey (i.e. muskrat) and predator (i.e.
mink); see Errington (1963). A simple biological model for the food chain interaction proposed
by May (1981) and Stenseth et al. (1997) is of the form

Xt+1 −Xt = a0.θt/− a1.θt/Xt − a2.θt/Yt;

Yt+1 − Yt = b0.θt/− b1.θt/Yt + b2.θt/Xt;
.4:1/

where Xt and Yt denote the population abundances, on a natural logarithmic scale, of prey
(muskrat) and predator (mink) respectively at time t, ai.·/ and bi.·/ are non-negative functions
and θt is an indicator representing the regime effect at time t, which is determined by Xt and/or
Yt . The term ‘regime effect’ collectively refers to the non-linear effect due to, among other things,

Fig. 4. Map of the 82 trapping posts for the mink and muskrats in Canada, 1925–1949
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Fig. 5. Time series plots of the mink and muskrat data from eight randomly selected posts ( , mink;
- - - - - - -, muskrat): (a) post 4; (b) post 7; (c) post 20; (d) post 26; (e) post 43; (f) post 62; (g) post 74; (h) post 79

the different hunting or escaping behaviour and reproduction rates of animals at different stages
of population fluctuation (Stenseth et al., 1998). In fact, a1.θt/ and b1.θt/ reflect within-species
regulation whereas a2.θt/ and b2.θt/ reflect the food chain interaction between the two species.

Model (4.1), with added random noise, would be in the form of varying-coefficient linear
models if we let θt be a linear combination Xt and Yt . However, each mink and muskrat time
series has only 25 points, which is too short for fitting such a non-linear model. On the basis of
some statistical tests on the common structure for each pair among those 82 posts, Yao et al.
(2000) suggested a grouping with three clusters: the eastern area consisting of post 10, post 67
and the other six posts on its right in Fig. 4, the western area consisting of the 30 posts on the
left in Fig. 4 (i.e. post 17 and those on its left) and the central area consisting of the remaining 43
posts in the middle. Since some data are missing at post 15, we exclude it from our analysis. The
sample size for the eastern, central and western areas are therefore 207, 989 and 667 respectively.
With the new technique proposed in this paper, we fitted the pooled data for each of the three
areas with the model

Xt+1 = f0.Zt/+ f1.Zt/Yt−1 + f2.Zt/Yt + f3.Zt/Xt−1 + "1;t+1;

Yt+1 = g0.Zt/+ g1.Zt/Yt−1 + g2.Zt/Yt + g3.Zt/Xt−1 + "2;t+1;
.4:2/

where Zt = β1Yt−1 + β2Yt + β3Xt−1 + β4Xt with β ≡ .β1;β2;β3;β4/
T selected by the data.

Comparing with model (4.1), we include further lagged valuesXt−1 and Yt−1 in model (4.2). To
eliminate the effect of different sampling weights in different regions and for different species,
we first standardized mink and muskrat series separately for each post. We apply the local dele-
tion technique presented in Section 2.2.4 to detect local redundant variables at 31 regular grid
points over the range from −1:5 to 1.5 times the standard deviation of Zt . As a first attempt,
we also selected the global model based on the local deletion. A more direct approach would
be, for example, based on the generalized likelihood ratio tests of Fan et al. (2001). We denote
by RMSE the ratio of the MSEs from the fitted model over the sample variance of the variable
to be fitted.

First, we use the second of equations (4.2) to model mink population dynamics in the cen-
tral area. The selected β is .0:424;0:320;0:432;0:733/T, the selected bandwidth is 0.415 and
RMSE = 0:449. The local variable selection indicates that Xt−1 is the least significant overall,
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for it is significant at only seven out of 31 grid points. By leaving it out, we reduce the model to

Yt+1 = g0.Zt/+ gy.Zt/Yt + gx.Zt/Xt + "2;t+1; .4:3/

where Zt = β1Yt + β2Xt + β3Yt−1. Our algorithm selects

Zt = 0:540Yt − 0:634Yt−1 + 0:553Xt; .4:4/

which suggests that the non-linearity is dominated by the growth rate of mink (i.e. Yt−Yt−1) and
the population of muskrat (i.e. Xt) in the previous year. The estimated coefficient functions are
plotted in Fig. 6(a). The coefficient function gx.·/ is positive, which reflects the fact that a large
muskrat population will facilitate the growth of the mink population. The coefficient function
gy.·/ is also positive, which reflects the natural reproduction process of the mink population.
Both gy.·/ and gx.·/ are approximately increasing with respect to the sum of the growth rate
of mink and the population of muskrat; see equation (4.4). All the terms in model (4.3) are
significant in most places; the number of significant grid points for the intercept, Yt and Xt are
21, 31 and 26 (out of 31 in total). The selected bandwidth is 0.597 and RMSE = 0:461.

Starting with the first of equations (4.2), the fitted model for the muskrat dynamics in the
central area is

Xt+1 = f0.Zt/+ fy.Zt/Yt + fx.Zt/Xt + "1;t+1 .4:5/

with Zt = 0:542Yt + 0:720Xt + 0:435Xt−1, ĥ = 0:498 and RMSE = 0:559. The estimated coeffi-
cient functions are plotted in Fig. 6(b). The coefficient function fy.·/ is always negative, which
reflects the fact that mink is the key predator of the muskrat in this core of the boreal forest in
Canada. The coefficient fx.·/ is positive, as expected.

We repeated the exercise for pooled data in the western area, which yielded similar results.
In fact, model (4.3) appears appropriate for mink dynamics with Zt = 0:469Yt + 0:723Xt +
0:507Yt−1,RMSE = 0:446, ĥ = 0:415 and the estimated coefficient functions plotted in Fig. 6(c).
Model (4.5) appears appropriate for muskrat dynamics withZt = 0:419Yt+0:708Xt+0:569Xt−1,
ĥ = 0:415, RMSE = 0:416 and the estimated coefficient functions plotted in Fig. 6(d).

Fitting the data in the eastern area leads to drastically different results from the previous
results. The fitting for the mink dynamics with model (4.3) gives Zt = 0:173Yt − 0:394Xt +
0:901Yt−1, ĥ = 0:597 and RMSE = 0:681. Out of 31 grid points, the intercept, Yt and Xt are
significant at 15, 31 and four points respectively. There is clear autodependence in the mink
series {Yt} whereas the muskrat data {Xt} carry little information about minks. The estimated
coefficients, depicted in Fig. 6(e), reinforce this observation. The fitting of the muskrat dynamics
shows again that there seems little interaction between mink and muskrat in this area. For ex-
ample, the term Yt in model (4.5) is not significant at all 31 grid points. The estimated coefficient
function fy.·/ is plotted as the bold curve in Fig. 6(f), which is always close to 0. We fitted the
data with the further simplified model

Xt+1 = f0.Zt/+ fx.Zt/Xt + "1;t+1;

resulting in Zt = 0:667Xt − 0:745Xt−1, ĥ = 0:498 and RMSE = 0:584. The estimated coefficient
functions are superimposed on Fig. 6(f). Note that the different ranges of z-values are due to
different Zts used in the above model and model (4.5).

In summary, we have facilitated the data analysis of the biological food chain interaction
model of Stenseth et al. (1997) by portraying the non-linearity through varying-coefficient linear
forms. The selection of the index in our algorithm is equivalent in this context to the selection
of the regime effect indicator, which in itself is of biological interest. The numerical results
indicate that there is strong evidence of predator–prey interactions between the minks and the
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muskrats in the central and western areas. However, no evidence for such an interaction exists
in the eastern area. In the light of what is known about the eastern area, this is not surprising.
There is a larger array of prey species for the mink to feed on, making it less dependent on
muskrat (see Elton (1942)).

4.2.2. Example 4
Example 4 concerns the daily closing bid prices of the pound sterling in terms of the US dollar
from January 2nd, 1974, to December 30th, 1983, which forms a time series of length 2510.
These data are available from ftp://ftp.econ.duke.edu/pub/arg/data. The previ-
ous analysis of this ‘particularly difficult’ data set can be found in Gallant et al. (1991) and
the references therein. Let Xt be the exchange rate on the tth day. We model the return series
Yt = 100 log.Xt=Xt−1/, plotted in Fig. 7(a), by using the techniques developed in this paper.
Typically classical financial theory would treat {Yt} as a martingale difference process. Therefore
Yt would be unpredictable. Fig. 7(b) shows that there is almost no significant autocorrelation
in {Yt}.
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Fig. 7. (a) Pound–dollar exchange rate return series {yt}, (b) autocorrelation function of {yt}, (c) mov-
ing average trading rule Ut D Yt=.Σ9

iD0Yt�i=10/ and (d) estimated coefficient functions of model (4.6) with
Zt D Ut�1 and m D 5 ( , g0.�/; ········, g1.�/; - - - - - - -, g2.�/; , g3.�/; � � � � � � �, g4.�/; - - - - - - -, g5.�//
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First, we approximate the conditional expectation of Yt (given its past) by

g0.Zt/+
m∑
i=1

gj.Zt/Yt−i; .4:6/

where Zt = β1Yt−1 + β2Yt−2 + β3Xt−1 + β4Ut−1, and

Ut−1 = Xt−1

(
L−1

L∑
j=1
Xt−j

)−1

− 1:

The variable Ut−1 defines the moving average trading rule (MATR) in finance, and Ut−1 + 1 is
the ratio of the exchange rate at time t − 1 to the average rate over the past period of length L.
The MATR signals 1 (the position to buy sterling) when Ut−1 > 0 and −1 (the position to sell
sterling) when Ut−1 < 0. For a detailed discussion of the MATR, we refer to LeBaron (1997,
1999) and Hong and Lee (1999). We use the first 2410 sample points for estimation and last 100
points for post-sample forecasting. We evaluate the post-sample forecast by the mean trading
return defined as

MTR = 1
100

100∑
t=1
S2410+t−1Y2410+t ;

where St is a signal function taking values −1, 0 and 1. The mean trading return measures
the real profits in a financial market, ignoring interest differentials and transaction costs (for
simplicity). It is more relevant than the conventional mean-squared predictive errors or average
absolute predictive errors for evaluating the performance of forecasting for market movements;
see Hong and Lee (1999). Under this criterion, we need to predict the direction of market
movement rather than its magnitude. For the MATR, the mean trading return is defined as

MTRMA = 1
100

100∑
t=1

{I.U2410+t−1 > 0/− I.U2410+t−1 < 0/}Y2410+t :

Let Ŷt be defined as the estimated function (4.6). The mean trading return for the forecasting
based on our varying-coefficient modelling is defined as

MTRVC = 1
100

100∑
t=1

{I.Ŷ2410+t > 0/− I.Ŷ2410+t < 0/}Y2410+t :

However, ideally we would buy at time t − 1 when Yt > 0 and sell when Yt < 0. The mean
trading return for this ‘ideal’ strategy is

MTRideal = 1
100

100∑
t=1

|Y2410+t|;

which serves as a bench-mark for assessing forecasting procedures. For example, for this par-
ticular data set, MTRMA=MTRideal = 12:58% if we let L = 10.

Now we are ready to proceed. First, we let m = 5 and L = 10 in expression (4.6), i.e. we use
1-week data in the past as the ‘regressors’ in the model and define the MATR by comparing
with the average rate in the previous 2 weeks. The selected β is .0:0068; 0:0077; 0:0198; 0:9998/T,
which suggests thatUt plays an important role in the underlying non-linear dynamics. The ratio
of the MSE of the fitted model to the sample variance of {Yt} is 93.67%, which reflects the
presence of high level ‘noise’ in the financial data. The bandwidth selected is 0.24. The ratio
MTRVC=MTRideal = 5:53%. The predictability is much lower than that of the MATR. If
we include rates in the previous 2 weeks as regressors in the model (i.e. m = 10 in expression
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(4.6)), the ratio MTRVC=MTRideal increases to 7.26% which is still a considerable distance from
MTRMA=MTRideal, whereas the ratio of the MSE of the fitted model to the sample variance of
{Yt} is 87.96%. The bandwidth selected is still 0.24, and β̂ = .0:0020; 0:0052; 0:0129; 0:9999/T.

These calculations (and also others not reported here) suggest that Ut could be the dominant
component in the index selected. This leads us to use model (4.6) with fixed Zt = Ut−1, which
was the approach adopted by Hong and Lee (1999). For m = 5, the fit to the data used in the
estimation becomes worse; the ratio of the MSE of the fitted model to the sample variance of
{Yt} is 97.39%. But it provides better post-sample forecasting; MTRVC=MTRideal is 23.76%.
The bandwidth selected is 0.24. The plots of estimated coefficient functions indicate possible
undersmoothing. By increasing the bandwidth to 0.40, MTRVC=MTRideal is 31.35%. The es-
timated coefficient functions are plotted in Fig. 7(d). The rate of correct predictions for the
direction of market movement (i.e. the sign of Yt) is 50% for the MATR and 53% and 58% for
the varying-coefficient model with bandwidths 0.24 and 0.40 respectively.

A word of caution: we should not take for granted the above improvement in forecasting from
using Ut as the index. Hong and Lee (1999) conducted empirical studies of this approach with
several financial data sets with only partial success. In fact, for this particular data set, model
(4.6) withZt = Ut andm = 10 gives a negative value of MTRVC. Note that the ‘superdominant’
position of Ut in the selected smoothing variable β̂

T
Xt is partially due to the scaling difference

between Ut and .Yt;Xt/; see also Fig. 7(a) and Fig. 7(c). In fact, if we standardize Ut , Yt and
Xt separately beforehand, the resulting β̂ is .0:59;−0:52; 0:07; 0:62/T when m = 5, which is
dominated by Ut−1 and the contrast between Yt−1 and Yt−2. (MTRVC=MTRideal = 1:42%. The
ratio of the MSE of the fitted model to the sample variance of Yt is 96.90%.) By doing this, we
effectively use a different class of models to approximate the unknown conditional expectation
of Yt ; see remark 2, part (a). Finally, we remark that a different modelling approach should
be adopted if our primary target is to maximize the mean trading return, which is obviously
beyond the scope of this paper.
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Appendix A: Proof of theorem 1

We use the same notation as in Section 2.

A.1. Proof of part (a)
It follows from ordinary least squares theory that there is a minimal value of

E[{Y − f.X/}2 | αTX = z]
over the class of functions of the form f.x/ = Σdi=0fi.α

τ x/xi with all fi measurable. Let fÅ0 .z/; : : :; f
Å
d−1.z/
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be the minimizer. Then

{fÅ1 .z/; : : :; fÅd .z/}T = {var.X|αTX = z/}− cov.X; Y |αTX = z/;

fÅ0 .z/ = E.Y |αTX = z/−
d∑
j=1
fÅj .z/ E.Xj|αTX = z/:

In the first expression, A− denotes a generalized inverse matrix of A for which AA−A = A. It follows
immediately from least squares theory that

E

[{
Y − fÅ0 .z/−

d∑
j=1
fÅj .z/Xj

}2∣∣∣∣αTX = z
]

� var.Y |αTX = z/:

Consequently,

R.α/ ≡ E
{
Y − fÅ0 .αTX/−

d∑
j=1
fÅj .α

TX/Xj

}2

is bounded from above by var.Y / and is continuous on the compact set {α ∈ Rd | ||α|| = 1}:Hence, there
is a β in the above set such that R.α/ obtains its minimum at α = β. Therefore, g.·/ fulfilling equation
(2.1) exists.

A.2. Proof of part (b)
Theorem 1, part (b), follows from the following two lemmas immediately.

Lemma 1. Suppose that F.·/ �≡ 0 is a twice-differentiable function defined on Rd , and

F.x/ = g0.β
TX/+

d∑
j=1

gj.β
Tx/xj .A:1/

= f0.α
Tx/+

d∑
j=1
fj.α

Tx/xj; .A:2/

where α and β are non-zero and non-parallel vectors in Rd . Then F.x/ = c1α
TxβTx + γTx + c0, where

γ ∈ Rd and c0; c1 ∈ R are constants.

Proof. Without loss of generality we assume that β = .c; 0; : : :; 0/T. Then, it follows from equation
(A.1) that @2F.x/=@x2

i = 0 for i = 2; : : :; d. Write αTx = z. Choose 2 � i � d fixed for which αi �= 0.
Then, from equation (A.2), we have that

@2F.x/
@x2
i

= α2
i f̈0.z/+ α2

i

d∑
j=1
f̈j.z/xj + 2αi ḟi.z/ = 0;

namely

αi{αi f̈0.z/+ zf̈i.z/+ 2ḟi.z/} + α2
i

∑
j �=i

{
f̈j.z/−

αj

αi
f̈i.z/

}
xj = 0: .A:3/

Letting xj = 0 for j �= i and xi = x=αi in the above equation, we have

αi f̈0.x/+ xf̈i.x/+ 2ḟi.x/ = 0: .A:4/

Hence, equation (A.3) reduces to

∑
j �=i

{
f̈j.z/−

αj

αi
f̈i.z/

}
xj = 0;

which leads to the equalities below if we let xk = x=αk and all other xj = 0 for k �= i and αk �= 0, or xk �= 0,
xi = x=αi and all other xj = 0 for k �= i and αk = 0:
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f̈k.x/ = f̈i.x/
αk

αi
; 1 � k � d:

This implies that fk.z/ = fi.z/αkα
−1
i + akz + bk with ai = bi = 0. Substituting this into equation (A.2),

we have

F.x/ = f0.α
Tx/+ α−1

i fi.α
Tx/αTx + ∑

j �=i
.ajα

Tx + bj/xj

≡ fÅ0 .αTx/+ ∑
j �=i
.ajα

Tx + bj/xj:

Now, an application of argument (A.4) to the last expression above shows that fÅ0 .z/ = a0z+ b0. Thus

F.x/ = a0α
Tx + b0 + ∑

j �=i
.ajα

Tx + bj/xj:

Now, @2F.x/=@xi @xj = ajαi for any j � 2, which should be 0 according to equation (A.1) since β =
.c; 0; : : :; 0/T. Hence, all ajs (j � 2/ in the above expression are 0. This implies that

F.x/ = γTx + b0 + a1x1α
Tx = γTx + b0 + c−1a1β

TxαTx;

where γ = a0α + b, and b = .b1; : : : ; bd/
T.

Lemma 2. For any

F.x/ ≡ F.x1; : : :; xd/ = f0.α
Tx/+

d∑
j=1
fj.α

Tx/xj �≡ 0;

where α = .α1; : : :;αd/
T ∈ Rd and αd �= 0, F.·/ can be expressed as

F.x/ = g0.α
Tx/+

d−1∑
j=1

gj.α
Tx/xj; .A:5/

where g0.·/; : : :; gd−1.·/ are uniquely determined as follows:

g0.z/ = F.0; : : :; 0; z=αd/; .A:6/
gj.z/ = Fj − g0.z/; j = 1; : : :; d − 1; .A:7/

where Fj denotes the value of F at xj = 1, xd = .z− αj/=αd and xk = 0 for all the other ks.

Proof. Note that

xd =
{

αTx −
d−1∑
j=1

αjxj

}/
αd :

Define

g0.z/ = f0.z/+ 1
αd
fd.z/z;

gj.z/ = fj.z/− αj

αd
for j = 1; : : :; d − 1:

It is easy to see that equation (A.5) follows immediately. Letting x1 = : : : = xd−1 = 0 and xd = z=αd in
equation (A.5), we obtain equation (A.6). Letting xj = 1, xd = .z − αj/=αd and xk = 0 for all the other
ks, we obtain equation (A.7). The proof is completed.
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Yao, Q., Tong, H., Finkenstädt, B. and Stenseth, N. C. (2000) Common structure in panels of short time series.

Proc. R. Soc. Lond. B, 267, 2459–2467.
Zhang, W. and Lee, S. Y. (1999) On local polynomial fitting of varying-coefficient models. To be published.
Zhang, W. and Lee, S. Y. (2000) Variable bandwidth selection in varying-coefficient models. J. Multiv. Anal., 74,

116–134.


