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Several new tests are proposed for examining the adequacy of a family of parametric models against large nonparametric alternatives.
These tests formally check if the bias vector of residuals from parametric � ts is negligible by using the adaptive Neyman test and
other methods. The testing procedures formalize the traditional model diagnostic tools based on residual plots. We examine the rates
of contiguous alternatives that can be detected consistently by the adaptive Neyman test. Applications of the procedures to the partially
linear models are thoroughly discussed. Our simulation studies show that the new testing procedures are indeed powerful and omnibus.
The power of the proposed tests is comparable to the F -test statistic even in the situations where the F test is known to be suitable and
can be far more powerful than the F -test statistic in other situations. An application to testing linear models versus additive models is
also discussed.
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1. INTRODUCTION

Parametric linear models are frequently used to describe
the association between a response variable and its predic-
tors. The adequacy of such parametric � ts often arises. Con-
ventional methods rely on residual plots against � tted values
or a covariate variable to detect if there are any system-
atic departures from zero in the residuals. One drawback of
the conventional methods is that a systematic departure that
is smaller than the noise level cannot be observed easily.
Recently many articles have presented investigations of the use
of nonparametric techniques for model diagnostics. Most of
them focused on one-dimensional problems, including Dette
(1999), Dette and Munk (1998), and Kim (2000). The book
by Hart (1997) gave an extensive overview and useful refer-
ences. Chapter 5 of Bowman and Azzalini (1997) outlined the
work by Azzalini, Bowman, and Härdle (1989) and Azzalini
and Bowman (1993). Although a lot of work has focused on
the univariate case, there is relatively little work on the multi-
ple regression setting. Hart (1997, section 9.3), considered two
approaches: one is to regress residuals on a scalar function of
the covariates and then apply one-dimensional goodness-of-� t
tests; the second approach is to explicitly take into account the
multivariate nature. The test by Härdle and Mammen (1993)
was based on the L2 error criterion in d-dimensions, Stute,
González Mantoiga, and Presedo Quindimil (1998) investi-
gated a marked empirical process based on the residuals and
Aerts, Claeskens, and Hart (1999) constructed tests based
on orthogonal series that involved choosing a nested model
sequence in the bivariate regression.

In this article, a completely different approach is proposed
and studied. The basic idea is that if a parametric family of
models � ts data adequately, then the residuals should have
nearly zero bias. More formally, let 4x11 Y151 : : : 1 4xn1 Yn5 be
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independent observations from a population,

Y D m4x5 C ˜1 ˜ N 401‘ 251 (1.1)

where x is a p-dimensional vector and m4¢5 is a smooth regres-
sion surface. Let f 4¢1 ˆ5 be a given parametric family. The
null hypothesis is

H0 2 m4¢5 D f 4¢1 ˆ5 for some ˆ0 (1.2)

Examples of f 4¢1 ˆ5 include the widely used linear model
f 4x1 ˆ5 D xT ˆ and a logistic model f 4x1ˆ5 D ˆ0=41 C
ˆ1 exp4ˆT

2 x55.
The alternative hypothesis is often vague. Depending on the

situations of applications, one possible choice is the saturated
nonparametric alternative

H1 2 m4¢5 6D f4¢1 ˆ5 for all ˆ1 (1.3)

and another possible choice is the partially linear models (see
Green and Silverman 1994 and the references therein)

H1 2 m4x5 D f 4x15 C x2
T ‚21 with f 4¢5 nonlinear1 (1.4)

where x1 and x2 are the covariates. Traditional model diagnos-
tic techniques involve plotting residuals against each covari-
ate to examine if there is any systematic departure, against
the index sequence to check if there is any serial correlation,
and against � tted values to detect possible heteroscedasticity,
among others. This amounts to informally checking if biases
are negligible in the presence of large stochastic noises. These
techniques can be formalized as follows. Let Ô be an esti-
mate under the null hypothesis and let Õ D 4 Õ11 : : : 1 Õn5T

be the resulting residuals with Õi D Yi ƒ f4xi1 Ô5. Usually, Ô
converges to some vector ˆ0. Then under model (1.1), con-
ditioned on 8xi9

n
iD1, Õ is nearly independently and normally

distributed with mean vector ‡ D 4‡11 : : : 1 ‡n5T , where ‡i D
m4xi5ƒf 4xi1 ˆ05. Namely, any � nite-dimensional components
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of Õ are asymptotically independent and normally distributed
with mean being a subvector of ‡. Thus, the problem becomes

H0 2 ‡ D 0 versus H1 2 ‡ 6D 01 (1.5)

based on the observations Õ. Note that Õi will not be inde-
pendent in general after estimating ˆ, but the dependence is
practically negligible, as will be demonstrated. Thus, the tech-
niques for independent samples such as the adaptive Neyman
test in Fan (1996) continue to apply. Plotting a covariate Xj

against the residual Õ aims at testing if the biases in Õ along
the direction Xj are negligible, namely whether the scatter plot
84Xj1‡j59 is negligible in the presence of the noise.

In testing the signi� cance of the high-dimensional prob-
lem (1.5), the conventional likelihood ratio statistic is not pow-
erful due to noise accumulation in the n-dimensional space,
as demonstrated in Fan (1996). An innovative idea proposed
by Neyman (1937) is to test only the � rst m-dimensional sub-
problem if there is prior that most of nonzero elements lie
on the � rst m dimension. To obtain such a qualitative prior,
a Fourier transform is applied to the residuals in an attempt
to compress nonzero signals into lower frequencies. In test-
ing goodness of � t for a distribution function, Fan (1996)
proposed a simple data-driven approach to choose m based
on power considerations. This results in an adaptive Neyman
test. See Rayner and Best (1989) for more discussions on
the Neyman test. Some other recent work motivated by the
Neyman test includes Eubank and Hart (1992), Eubank and
LaRiccia (1992), Kim (2000), Inglot, Kallenberg, and Ledwina
(1994), Ledwina (1994), Kuchibhatla and Hart (1996), and
Lee and Hart (1998), among others. Also see Bickel and
Ritov (1992) and Inglot and Ledwina (1996) for illuminating
insights into nonparametric tests. In this article, we adopt the
adaptive Neyman test proposed by Fan (1996) to the testing
problem (1.5). It is worth noting that the test statistic stud-
ied by Kuchibhatla and Hart (1996) looks similar to that of
Fan (1996), but they are decidedly different. See the second
paragraph of Section 3 for further discussions. The adaptive
Neyman test of Kuchibhatla and Hart (1996) also will be
implemented to demonstrate the versatility of our proposed
idea. We would note that the adaptive Neyman tests in Fan
(1996) and Kuchibhatla and Hart (1996) were proposed for
independent samples. Herein, the adaptive Neyman test of Fan
(1996) will be justi� ed to remain applicable for weakly depen-
dent Õ in the current regression setting; see Theorem 1.

The power of the adaptive Neyman test depends on the
smoothness of 8‡i9

n
iD1 as a function of i. Let us call this

function ‡4¢5, namely ‡4i=n5 D ‡i . The smoother the func-
tion ‡4¢5, the more signi� cant are the Fourier coef� cients
on the low frequencies and hence the more powerful the
test will be; see Theorems 2 and 3. When m4¢5 is com-
pletely unknown such as in (1.3), there is no information
on how to make the function ‡4¢5 smoother by ordering the
residuals. Intuitively, the closer the two consecutive covari-
ate vectors xi and xiC1, the smaller the difference between
m4xi5 ƒ f 4xi1 ˆ05 and m4xiC15 ƒ f4xiC11 ˆ05, and hence the
smoother the sequence 8m4xi5ƒf4xi1 ˆ059 indexed by i. Thus,
a good proxy is to order the residuals 8˜i9

n
iD1 in a way that the

corresponding xi’s are close as a sequence. Note that when

there is only one predictor variable (i.e., p D 1), such ordering
is straightforward. However, it is quite challenging to order a
multivariate vector. A method based on the principal compo-
nent analysis is described in Section 2.2.

When there is some information about the alternative
hypothesis such as the partially linear model in (1.4), it is
sensible to order the residuals according to the covariate x1.
Indeed, our simulation studies show that it improves a great
deal the power of the generic ordering procedure outlined in
the last paragraph improved a great deal. The parameters ‚2

in model (1.4) can be estimated easily at the nƒ1=2 rate via
a difference based estimator, for example, that of Yatchew
(1997). Then the problem is, heuristically, reduced to the one-
dimensional nonparametric setting; see Section 2.4 for details.

Wavelet transform is another popular family of orthogo-
nal transforms. It can be applied to the testing problem (1.5).
For comparison purposes, wavelet thresholding tests are also
included in our simulation studies. See Fan (1996) and
Spokoiny (1996) for various discussions on the properties of
the wavelet thresholding tests.

This article is organized as follows. In Section 2, we pro-
pose a few new tests for the testing problems (1.2) ver-
sus (1.3) and (1.2) versus (1.4). These tests include the
adaptive Neyman test and the wavelet thresholding tests in
Sections 2.1 and 2.3, respectively. Ordering of multivari-
ate vectors is discussed in Section 2.2. Applications of the
test statistics in the partially linear models are discussed in
Section 2.4 and their extension to additive models is outlined
brie� y in Section 2.5. Section 2.6 outlines simple methods for
estimating the residual variance ‘ 2 in the high-dimensional
setting. In Section 3, we carry out a number of numerical stud-
ies to illustrate the power of our testing procedures. Technical
proofs are relegated to the Appendix.

2. METHODS AND RESULTS

As mentioned in the Introduction, the hypothesis testing
problem (1.2) can be reduced to the high-dimensional prob-
lem (1.5) based on the weakly dependent Gaussian random
vector Õ. The adaptive Neyman test and the wavelet thresh-
olding test proposed in Fan (1996) are adapted for the cur-
rent regression setting. The case of a multiple linear model,
f 4x1 ˆ5 D xT ˆ, is addressed here and its extension to a general
parametric model can be treated similarly.

2.1 The Adaptive Neyman Test

Assume a parametric linear model under the null hypothe-
sis,

Y D xT ˆ C ˜1 ˜ N 401‘ 251

and assume Õ is the resulting residual vector from a least-
squares � t. Let Õ ü D 4 Õ ü

11 : : : 1 Õ ü
n5T be the discrete Fourier

transform of the residual vector Õ. More precisely, we de� ne

Õ ü
2jƒ1 D 42=n51=2

nX

iD1

cos42� ij=n5 Õi1

Õ ü
2j D 42=n51=2

nX
iD1

sin42� ij=n5 Õi1 j D 11 : : : 1 6n=270
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When n is odd, an additional term Õ ü
n D 41=

p
n=25

Pn
iD1 Õi is

needed. Note that for linear regression with an intercept, this
term is simply zero and hence can be ignored. As mentioned
in the Introduction, the purpose of the Fourier transform is
to compress useful signals into low frequencies so that the
power of the adaptive Neyman test can be enhanced. Let O‘ 1

be a nƒ1=2 consistent estimate of ‘ under both the null and
the alternative hypotheses. Methods for constructing such an
estimate are outlined in Section 2.6. The adaptive Neyman test
statistic is de� ned as

T ü
AN1 1 D max

1µmµn

1p
2m O‘ 4

1

mX

iD1

Õ ü 2
i ƒ O‘ 2

1 1 (2.1)

and the null hypothesis is rejected when T ü
AN1 1 is large. See

Fan (1996) for motivations and some optimal properties of the
test statistic. Note that the factor 2‘ 4 in (2.1) is the variance
of ˜2 with ˜ N 401‘ 25. Thus, the null distribution of the
testing procedure depends on the normality assumption. For
nonnormal noises, a reasonable method is to replace the factor
2 O‘ 4

1 by a consistent estimate O‘ 2
2 of Var4˜2

i 5. This leads to the
test statistic

T ü
AN12 D max

1µmµn

1
p

m O‘ 2
2

mX
iD1

Õ ü 2
i ƒ O‘ 2

1 0 (2.2)

The null distribution of T ü
AN1 2 is expected to be more robust

against the normality assumption. Following Fan (1996), we
normalize the test statistics as

TAN1 j D
p

2 log log nT ü
AN1 j

ƒ 82 log logn C 005 log log logn

ƒ 005 log44� 59 for j D 1120 (2.3)

Under the null hypothesis (1.5) and the independent normal
model with a known variance, it can be shown that

P4TAN1 j < x5 ! exp4ƒexp4ƒx55 as n ! ˆ0 (2.4)

See Darling and Erdos (1956) and Fan (1996). However, the
approximation (2.4) is not so good. Let us call the exact null
distribution of TAN1 1 under the independent normal model with
a known variance as Jn. Based on a million simulations, the
distribution of Jn was tabulated in Fan and Lin (1998). We
have excerpted some of their results and they are presented in
Table 1.

We now show that the approximation (2.4) holds for test-
ing linear models where 8 Õi9 are weakly dependent. For
convenience of technical proofs, we modify the range of max-
imization over m as 611 n=4log log n547. This hardly affects our
theoretical understanding of the test statistics and has little
impact on practical implementations of the test statistics.

Theorem 1. Suppose that Conditions A1–A3 in the
Appendix hold. Then, under the null hypothesis of (1.2) with
f 4x1 ˆ5 D xT ˆ, we have

P4TAN1j <x5!exp4ƒexp4ƒx55 as n!ˆ1 for j D1120

The proof is given in the Appendix. As a consequence of
Theorem 1, the critical region

TAN1 j > ƒ log8ƒ log41 ƒ �59 4j D 1125 (2.5)

has an asymptotic signi� cance level � .
Assume that Ô converges to ˆ0 as n ! ˆ. Then, f4¢1 ˆ05

is generally the best parametric approximation to the under-
lying regression function m4¢5 among the candidate models
8f4¢1 ˆ59. Let ‡i D m4xi5 ƒf 4xi1 ˆ05 and let ‡ ü be the Fourier
transform of the vector ‡ D 4‡11 : : : 1 ‡n5T . Then we have the
following power result.

Theorem 2. Under the assumptions in Theorem 1 and
Condition A4 in the Appendix, if

4log logn5ƒ1=2 max
1µmµn

mƒ1=2
mX

iD1

‡ ü 2
i ! ˆ1 (2.6)

then the critical regions (2.5) have an asymptotic power 1.

We now give an implication of condition (2.6). Note that
by Parseval’s identity,

mƒ1=2
mX

iD1

‡ ü 2
i D mƒ1=2

nX

iD1

‡2
i ƒ

nX

iDmC1

‡ ü 2
i 0 (2.7)

Suppose that the sequence 8‡i9 is smooth so that

nƒ1
nX

iDmC1

‡ ü 2
i D O4mƒ2s5 (2.8)

for some s > 0. Then the maximum value of (2.7) over m is
of order

nƒ1
nX

iD1

‡2
i

4sC1 1=44s5

0

For random designs with a density h,

nX
iD1

‡2
i D

nX
iD1

8m4xi5 ƒ f 4xi1 ˆ059
2

n
Z

8m4x5 ƒ f 4x1 ˆ059
2h4x5dx0

By Theorem 2, we have the following result.

Theorem 3. Under the conditions of Theorem 2, if the
smoothness condition (2.8) holds, then the adaptive Neyman
test has an asymptotic power 1 for the contiguous alternative
with
Z

8m4x5ƒf 4x1ˆ059
2h4x5 dxDnƒ4s=44sC154loglogn52s=44sC15cn

for some sequence with liminfcn Dˆ.

The signi� cance of the preceding theoretical result is its adap-
tivity. The adaptive Neyman test does not depend at all on the
smoothness assumption (2.8). Nevertheless, it can adaptively
detect alternatives with rates O4nƒ2s=44sC154log logn5s=44sC155,
which is the optimal rate of adaptive testing (see Spokoiny
1996). In this sense, the adaptive Neyman test is truly adap-
tive and is adaptively optimal.
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Table 1. � Upper Quantile of the Distribution Jn

�nn 10 20 30 40 60 80 100 120 140 160 180 200

0.01 5078 6007 6018 6022 6032 6037 6041 6041 6042 6042 6047 6043
0.025 4057 4075 4082 4087 4091 4093 4095 4095 4095 4095 4095 4095
0.05 3067 3077 3083 3085 3088 3089 3090 3090 3090 3091 3090 3089
0.10 2074 2078 2081 2082 2085 2085 2086 2087 2086 2087 2087 2086

2.2 Ordering Multivariate Vector

The adaptive Neyman test statistics depend on the order of
the residuals. Thus, we need to order the residuals � rst before
using the adaptive Neyman test. By Theorem 2, the power of
the adaptive Neyman tests depends on the smoothness of the
sequence 8m4xi5 ƒ f 4xi1 ˆ059 indexed by i. A good ordering
should make the sequence 8m4xi5 ƒ f 4xi1 ˆ059

n
iD1 as smooth

as possible for the given function m so that its large Fourier
coef� cients are concentrated on low frequencies.

When the alternative is the partial linear model (1.4), we
can order residuals according to the covariate X1 so that the
sequence 8m4xi5 ƒ f 4xi1 ˆ059

n
iD1 is smooth for given m. For

saturated nonparametric alternative (1.3), there is little useful
information on how to order the sequence. As discussed in
the Introduction, a good strategy is to order the covariates
8xi9

n
iD1 so that they are close to each other consecutively. This

problem easily can be done for the univariate case (p D 1).
However, for the case p > 1, there are limited discussions on
ordering multivariate observations. Barnett (1976) gave many
useful ideas and suggestions. One possible approach is to � rst
assign a score si to the ith observation and then order the
observations according to the rank of si . Barnett (1976) called
this “reduced ordering.”

What could be a reasonable score 8si9? We may consider
this problem from the viewpoint of principal component (PC)
analysis (see, e.g., Jolliffe 1986). Let S be the sample covari-
ance matrix of the covariate vectors 8xi1 i D 11 : : : 1 n9. Denote
by ‹11 : : : 1 ‹p the ordered eigenvalues of S with correspond-
ing eigenvectors �11 : : : 1 �p . Then zi1 k D �T

k xi is the score for
the ith observation on the kth sample PC, and ‹k can be inter-
preted as the sample variance of 8z11 k1 : : : 1 zn1 k9. Note that
xi ƒ Nx D zi1 1�1 C ¢ ¢ ¢ C zi1 p�p , where Nx is the sample average.
Thus a measure of variation of xi may be formed by taking

si D
1

n ƒ 1

pX
kD1

‹kz2
i1 k0

We call si the sample score of variation. Also see
Gnanadesikan and Kettenring (1972) for an interpretation of si

as a measure of the degree of in� uence for the ith observation
on the orientation and scale of the PCs. A different ordering
scheme was given in Fan (1997).

Ordering according to a certain covariate is another sim-
ple and viable method. It focuses particularly on testing if
the departure from linearity in a particular covariate can be
explained by chance. It formalizes the traditional scatterplot
techniques for model diagnostics. The approach can be pow-
erful when the alternative is the additive models or partially
linear models. See Section 2.5 for further discussions.

In the case of two covariates, Aerts et al. (1999) constructed
a score test statistic, and the power of which depends also on
the ordering of a sequence of models. It seems that ordering
is needed in the multiple regression setting, whether choosing
an ordering of residuals or a model sequence.

2.3 Hard-Thresholding Test

The Fourier transform is used in the adaptive Neyman
test. We may naturally ask how other families of orthogo-
nal transforms behave. For comparison purposes, we apply
the wavelet hard-thresholding test of Fan (1996) that is based
on the “extremal phase” family of wavelets. See Daubechies
(1992) for details on construction of the discrete wavelet trans-
form with various wavelets. The Splus WaveThresh package
includes many useful routines for wavelets.

Assume that the residuals are ordered. We � rst standardize
the residuals as ÕS1 i D Õi= O‘ 3, where O‘3 is some estimate of ‘ .
Let 8 ÕW 1 i9 be the empirical wavelet transform of the standard-
ized residuals, arranged in such a way that the coef� cients at
low resolution levels correspond to small indexes. The thresh-
olding test statistic [equation (17) in Fan 1996] is de� ned as

TH D
J0X

iD1

Õ2
W 1 i C

nX

iDJ0C1

Õ2
W 1 iI 4— ÕW 1 i— > „5

for some given J0 and „ D
p

2 log4nan5 with an D logƒ24n ƒ
J05. As in Fan (1996), J0 D 3 is used, which keeps the wavelet
coef� cients in the � rst two resolution levels intact. Then it
can be shown analogously that TH has an asymptotic normal
distribution under the null hypothesis in Theorem 1, and the
41 ƒ �5 critical region is given by

‘ ƒ1
H 4TH ƒ ŒH 5 > êƒ141 ƒ �51

where ŒH D J0 C
p

2=� aƒ1
n „41 C „ƒ25 and ‘ 2

H D 2J0 Cp
2=� aƒ1

n „341 C 3„ƒ25. The power of the wavelet threshold-
ing test can be improved further by using the following tech-
niques owing to Fan (1996). Under the null hypothesis (1.5),
the maximum of n independent Gaussian noises is on the order
of

p
2 logn. Thus, replacing an in the thresholding param-

eter „ by min444maxi ÕW 1 i5
ƒ41 logƒ24n ƒ J055 does not alter

the asymptotic null distribution. Then, under the alternative
hypothesis, the latter is smaller than an and hence the pro-
cedure uses a smaller thresholding parameter automatically,
leading to better power of the wavelet thresholding test.

2.4 Linear Versus Partially Linear Models

Suppose that we are interested in testing the linear model
against the partial linear model (1.4). The generic methods
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outlined in Sections 2.1–2.3 continue to be applicable. In this
setting, a more sensible ordering scheme is to use the order of
X1 instead of the score si given in Section 2.2. Our simulation
studies show that this improves a great deal on the power of
the generic methods. Nevertheless, the power can further be
improved when the partially linear model structure is fully
exploited.

The basic idea is to estimate the coef� cient vector ‚2 � rst
and then to compute the partial residuals zi D Yi ƒ xT

i1 2
O‚2.

Based on the synthetic data 84xi11 zi59, the problem reduces
to testing the one-dimensional linear model, but with slightly
dependent data. Theoretically, this dependence structure is
asymptotically negligible, following the same proof as that of
Theorem 1, as long as O‚2 is estimated at the root-n rate. We
can therefore apply the adaptive Neyman and other tests to the
data 84xi11 zi59.

There is a large literature on ef� cient estimation of coef� -
cients ‚2. See, for example, Wahba (1984), Speckman (1988),
Cuzick (1992), and Green and Silverman (1994). Most of the
methods proposed in the literature involve choices of smooth-
ing parameters. For our purpose, a root-n consistent estima-
tor of ‚2 suf� ces. This can be much more easily constructed
than the semiparametric ef� cient estimator. The basic idea is
as follows.

First the data are arranged according to the correspond-
ing order of 8X19, yielding the sorted data 84x4i51 Y4i551 i D
11 : : : 1 n9. Note that for a random sample, x4iC1511 ƒ x4i511 is
OP41=n5. Thus, for the differentiable function f in (1.4), we
have

Y4iC15 ƒ Y4i5 D 4x4iC1512 ƒ x4i5125
T ‚2 C ei

C OP 4nƒ151 i D 11 : : : 1 nƒ 11 (2.9)

where 8ei9 are correlated stochastic errors with ei D ˜4iC15 ƒ
˜4i5. Thus, ‚2 can be estimated using the ordinary least-squares
estimator from the approximate linear model (2.9). This idea
was proposed by Yatchew (1997) (and was independently pro-
posed by us around the same time with the following improve-
ments). Yatchew (1997) showed that such an estimate ‚2 is
root-n consistent. To correct the bias in the preceding approx-
imation at � nite sample, particularly for those x4i511 at tails
(hence the spacing can be wide), we � t the linear regression
model

Y4iC15 ƒ Y4i5 D 4x4iC151 1 ƒ x4i51 15‚1 C 4x4iC151 2 ƒ x4i5125
T ‚2 C ei

into our implementation by using the ordinary least-squares
method. This improves the performance of the estimator based
on the model (2.9).

2.5 Linear Models Versus Additive Models

As will be demonstrated in Section 3.3, when the data are
properly ordered, the proposed tests are quite powerful. To test
linear versus partially linear models, we show in Section 3.3
that the adaptive Neyman tests based on ordered residuals
according to the variable X1 for model (1.4) are nearly as
powerful as those tests in Section 2.4 when the structure of

the partially linear model is taken into account. This encour-
aged us to extend the idea to testing a linear model against
the additive model

Y D f14X15 C f24X25 C ¢ ¢ ¢C fp4Xp5 C ˜0

Let bTj be the normalized test statistic (2.3) when the residuals
are ordered according to variable Xj . Let bT D max1µjµp

bTj .
Reject the null hypothesis when bT > Jn4�=p5, with Jn4�=p5
the �=p upper quantile of the distribution Jn in Table 1. This
is simply the Bonferroni adjustment applied to the combined
test statistics.

2.6 Estimation of Residual Variance

The implementations of the adaptive Neyman test and other
tests depend on a good estimate of the residual variance ‘ 2.
This estimator should be good under both the null and alter-
native hypotheses, because an overestimate (caused by biases)
of ‘ 2 under the alternative hypothesis will signi� cantly dete-
riorate the power of the tests. A root-n consistent estimator
can be constructed by using the residuals of a nonparametric
kernel regression � t. However, this theoretically satisfactory
method encounters the “curse of dimensionality” in practical
implementations.

In the case of a single predictor (p D 1), there are many
possible estimators for ‘ 2. A simple and useful technique is
given in Hall, Kay, and Titterington (1990). An alternative
estimator can be constructed based on the Fourier transform,
which constitutes raw materials of the adaptive Neyman test.
If the signals 8‡i9 are smooth as a function of i, then the
high frequency components are basically noise even under the
alternative hypothesis, namely, the discrete Fourier transform
Õ ü

j for j large has a mean approximately equal to 0 and vari-
ance ‘ 2. This gives us a simple and effective way to estimate
‘ 2 by using the sample variance of 8 Õ ü

i 1 i D In C 11 : : : 1 n9:

O‘ 2
1 D

1
nƒ In

nX

iDInC1

Õ ü 2
i ƒ

1
n ƒ In

nX

iDInC1

Õ ü
i

2

0 (2.10)

for some given In (D 6n=47, say). Under some mild conditions
on the smoothness of 8‡i9, this estimator can be shown to be
root-n consistent even under the alternative hypothesis. Hart
(1997) suggested taking In D mC1, where m is the number of
Fourier coef� cients chosen based on some data-driven criteria.
Similarly, an estimate O‘ 2

2 for Var4˜25 can be formed by taking
the sample variance of 8 Õ ü 2

i 1 i D n=4 C 11 : : : 1 n9:

O‘ 2
2 D

1

n ƒ In

nX

iDInC1

Õ ü 4
i ƒ

1

nƒ In

nX

iDInC1

Õ ü 2
i

2

0 (2.11)

In the case of multiple regression (p > 1), the foregoing
method is still applicable. However, as indicated in
Section 2.2, it is hard to order residuals in a way that the
resulting residuals 8‡i9 are smooth so that E4 Õ ü

j 5 D 0 for large
j . Thus, the estimator (2.10) can possess substantial bias.
Indeed, it is dif� cult to � nd a practically satisfactory esti-
mate for large p. This problem is beyond the scope of this
article. Here we describe an ad hoc method that is imple-
mented in our simulation studies. For simplicity of descrip-
tion, assume that there are three continuous and one discrete
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covariates, X11 X21 X3, and X4, respectively. An estimate O‘ `

can be obtained by � tting linear splines with four knots and
the interaction terms between continuous predictors,

ˆ0 C
4X

iD1

ˆiXi C
3X

iD1

4X
jD1

ˆi1 j4Xi ƒ ti1 j5C

C ƒ1X1X2 C ƒ2X1X3 C ƒ3X2X31

where ti1 j denotes the 420j5th percentile, j D 1121 314, of the
ith covariate, i D 11 21 3 (continuous covariates only). In this
model, there are 20 parameters and the residual variance is
estimated by

O‘ 2
` D residual sum of squared errors=4nƒ 2050

3. SIMULATIONS

We now study the power of the adaptive Neyman tests
(TAN1 1 and TAN1 2) and the wavelet thresholding test TH via
simulations. The simulated examples consist of testing the
goodness of � t of the linear models in the situations of one
predictor, partially linear models, and multiple regression. The
results are based on 400 simulations and the signi� cance level
is taken to be 5%. Thus, the power under the null hypoth-
esis should be around 5%, with a Monte Carlo error ofp

0005 ü 0095=400 1% or so. For each testing procedure, we
examine how well it performs when the noise levels are esti-
mated and when the noise levels are known. The latter mimics
the situations where the variance can be well estimated with
little bias. An example of this is when repeated measurements
are available at some design points. Another reason for using
the known variance is that we intend to separate the perfor-
mance of the adaptive Neyman test and the performance of
the variance estimation. For the wavelet thresholding test, the
asymptotic critical value 1.645 is used. The simulated criti-
cal values in table 1 of Fan and Lin (1998) are used for the
adaptive Neyman test if ‘ is known; empirical critical values
are taken when ‘1 and/or ‘2 are estimated. For simplicity of
presentation, we report only the results of the wavelet thresh-
olding test when the residual variances are given.

To demonstrate the versatility of our proposed testing
scheme, we also include the test proposed by Kuchibhatla and
Hart (1996) (abbreviated as the KH test),

Sn D max
1µmµnƒp

1
m

mX
jD1

2n Õ ü 2
i

‘ 2
1

where p is the number of parameters � tted in the null model.
Compared to the adaptive Neyman test, this test tends to
select a smaller dimension m, namely the maximization in Sn

is achieved at smaller m than that of the adaptive Neyman
test. Therefore, the KH test will be somewhat more power-
ful than the adaptive Neyman test when the alternative is very
smooth and will be less powerful than the adaptive Neyman
test when the alternative is not as smooth. Again, the results of
Sn are given in cases when variance is known and when vari-
ance is estimated. The same variance estimator as the adaptive
Neyman tests is applied.

3.1 Goodness of Fit for Simple Linear Regression

In this section, we study the power of the adaptive Neyman
test and other tests for univariate regression problems:

H0 2 m4x5 D � C ‚x versus H1 2 m4x5 6D � C ‚x0

The sample size is 64 and the residuals Õi are ordered by
their corresponding covariate. The power of each test is eval-
uated at a sequence of alternatives given in Examples 1–3.
The empirical critical values for TAN1 1 and TAN1 2 are 4.62 and
4.74, respectively, and 3.41 for the KH test when ‘ is esti-
mated. For comparison purposes, we also include the paramet-
ric F test for the linear model against the quadratic regression
‚0 C ‚1x C ‚2x

2.

Example 1. The covariate X1 is sampled from uniform
4ƒ2125, and the response variable is drawn from

Y D 1 C ˆX2
1 C ˜1 ˜ N 401151 (3.1)

for each given value of ˆ. The power function for each test
is evaluated under the alternative model (3.1) with a given
ˆ. This is a quadratic regression model where the F test is
derived. Nevertheless, the adaptive Neyman tests and the KH
test perform close to the F test in this ideal setting, whereas
the wavelet thresholding test falls behind the other three tests;
see Figure 1, (a) and (b). In fact, the wavelet tests are not
speci� cally designated for testing this kind of very smooth
alternatives. This example is also designated to show how
large a price the adaptive Neyman and the KH tests have to
pay to be more omnibus. Surprisingly, Figure 1 demonstrates
that both procedures paid very little price.

Example 2. Let X1 be N 40115 and

Y D 1 C cos4ˆX1� 5 C ˜1 ˜ N 401150 (3.2)

This example examines how powerful each testing procedure
is for detecting alternatives with different frequency compo-
nents. The result is presented in Figure 1, (c) and (d). Clearly,
the adaptive Neyman and KH tests outperform the F test when
‘ is given, and they lose some power when ‘ is estimated.
The loss is due to the excessive biases in the estimation of
‘ when ˆ is large. This problem can be resolved by setting
a larger value of In in the high-frequency cases. The wavelet
thresholding test performs nicely too. As anticipated, the adap-
tive Neyman test is more powerful than the KH test for detect-
ing a high-frequency component.

Example 3. We now evaluate the power of each testing
procedure at a sequence of logistic regression models,

Y D
10

100C ˆ exp4ƒ2X15
C ˜1 ˜ N 401150 (3.3)

where X1 N 40115. Figure 1, (e) and (f), depicts the results.
The adaptive Neyman and KH tests far outperform the F test,
which is clearly not omnibus. The wavelet thresholding test
is also better than the F test, whereas it is dominated by the
adaptive Neyman and KH tests.
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Figure 1. Power of the Adaptive Neyman Tests, the KH Test, the Wavelet Thresholding Test, and the Parametric F Test for Examples 1–3 With
n D 64. Key: A, the adaptive Neyman test with known variance; B, the adaptive Neyman test with estimated variance (2.10); F, the parametric
F-test statistic; H, the wavelet thresholding test with known variance; R, the robust version of the adaptive Neyman test with estimated variance
(2.10) and (2.11); S, the KH test with known variance; T, the KH test with estimated variance (2.10).
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Figure 1. Continued

3.2 Testing Linearity in Partially Linear Models

In this section, we test the linear model versus a partial
linear model

m4X5 D ˆ0 C ˆ1X1 C f 4X25 C ˆ3X3 C ˆ4x41

where X11 : : : 1X4 are covariates. The covariates X1, X2, and
X3 are normally distributed with mean 0 and variance 1. Fur-
thermore, the correlation coef� cients among these three ran-
dom variables are .5. The covariate X4 is binary, independent
of X1, X2, and X3, with

P4X4 D 15 D 04 and P4X4 D 05 D 060

The techniques proposed in Section 2.4 are employed here for
the adaptive Neyman and KH tests, and the same simulated
critical values for n D 64 as in the case of the simple linear
model are used. For comparison, we include the parametric
F test for testing the linear model against the quadratic model

‚0 C
4X

iD1

‚iXi C
X

1µiµjµ3

‚i1jXiXj 0

We evaluate the power of each testing procedure at two par-
ticular partially linear models as follows.

Example 4. The dependent variable is generated from the
quadratic regression model

Y D X1 C ˆX2
2 C 2X4 C ˜1 ˜ N 401151 (3.4)

for each given ˆ. Although the true function involves a
quadratic of X2, the adaptive Neyman and KH tests do slightly
better than the F test, as shown in Figure 2, (a) and (b).

This is due partially to the fact that an overparameterized
full quadratic model is used in the F test. Again, the wavelet
thresholding test does not perform as well for this kind of
smooth alternatives. Note that this model is very similar to
that in Example 1 and the power of the adaptive Neyman and
KH tests behaves analogously to that in Example 1. This ver-
i� es our claim that the parametric components are effectively
estimated by using our new estimator for ‚2 in Section 2.4.

Example 5. We simulate the response variable from

Y D X1 C cos4ˆX2� 5 C 2X4 C ˜1 ˜ N 401‘ 250 (3.5)

The results are depicted in Figure 2, (c) and (d). The adap-
tive Neyman, wavelet thresholding, and KH tests perform well
when ‘ is known. The F test gives low power for ˆ ¶ 105,
which indicates that it is not omnibus. Similar remarks to
those given at the end of Example 4 apply. Note that when
ˆ is large, the residual variance cannot be estimated well by
any saturated nonparametric methods. This is why the power
of each test is reduced so dramatically when ‘ is estimated
by using our nonparametric estimate of ‘ . This also demon-
strates that to have a powerful test, ‘ should be estimated well
under both the null and the alternative hypotheses.

3.3 Testing for a Multiple Linear Model

Two models identical to those in Examples 4 and 5 are
used to investigate the empirical power for testing linearity
when there is no knowledge about the alternative, namely the
alternative hypothesis is given by (1.3). The sample size 128
is used. If we know that the nonlinearity is likely to occur in
the X2 direction, we would order the residuals according to
X2 instead of using the generic method in Section 2.2. Thus,
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Figure 2. Power of the Adaptive Neyman Tests, the KH test, the Wavelet Thresholding Test, and the Parametric F Test for Examples 4 and 5
With Partial Linear Models as Alternative and n D 64. Key: A, the adaptive Neyman test with known variance; B, the adaptive Neyman test with
estimated variance (2.10); F, the parametric F-test statistic; H, the wavelet thresholding test with known variance; R, the robust version of adaptive
Neyman test with estimated variance (2.10) and (2.11); S, the KH test with known variance; T, the KH test with estimated variance (2.10).
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for the adaptive Neyman test, we study the following four
versions, depending on our knowledge of the model:

1. ordering according to X2 and using the known variance
(c� D 3017, where c� is the 5% empirical critical value)

2. ordering by X2 and using O‘ ` (c� D 3061)
3. ordering according to si in Section 2.2 and using the

known variance (c� D 3006)
4. ordering by si and using O‘ ` (c� D 3054)

To demonstrate the versatility of our proposal, we also applied
the KH test in the following ways:

1. ordering according to X2 and using the known variance
(c� D 2033)

2. ordering by X2 and using O‘ ` (c� D 2034)
3. ordering according to the � rst principal component and

using the known variance (c� D 2054)
4. ordering by the � rst principal component and using O‘ `

(c� D 2038)

Hart (1997, section 9.3) proposed performing a one-
dimensional test a couple of times along the � rst couple
of principal components and adjusting the signi� cance level
accordingly. For simplicity, we use only one principal direc-
tion in our implementation [see versions (3) and (4) of the
KH test]. The results of the wavelet thresholding test with the
ideal ordering (by X2) and known variance are reported. The
results of the conventional F test against the quadratic mod-
els are also included. The simulation results are reported in
Figure 3.

First of all, we note that ordering according to X2 is more
powerful than ordering by the generic method or by the � rst
principal direction. When ordering by X2, the nonparametric
procedures with estimated variance perform closely to the cor-
responding procedures with a known variance, except for the
KH test at the alternative models (3.5) with high frequency.
This in turn suggests that our generic variance estimator per-
forms reasonably well. The F test in Example 4 performs
comparably to the adaptive Neyman with ideal ordering,
whereas for Example 5, the F test fails to detect high-
frequency components in the model. The results are encour-
aging. Correctly ordering the covariate can produce a test that
is nearly as powerful as knowing the alternative model.

4. SUMMARY AND CONCLUSION

The adaptive Neyman test is a powerful omnibus test. It is
powerful against a wide class of alternatives. Indeed, as shown
in Theorem 3, the adaptive Neyman test adapts automatically
to a large class of functions with unknown degrees of smooth-
ness. However, its power in the multiple regression setting
depends on how the residuals are ordered. When the residuals
are properly ordered, it can be very powerful as demonstrated
in Section 3.3. This observation can be very useful for testing
the linear model against the additive model. We just need to
order the data according to the most sensible covariate. Esti-
mation of residual variance also plays a critical role for the
adaptive Neyman test. With a proper estimate of the residual
variance, the adaptive Neyman test can be nearly as powerful
as the case where the variance is known.

APPENDIX

In this Appendix, we establish the asymptotic distribution given in
Theorem 1 and the asymptotic power expression given in Theorem 2.
We � rst introduce some necessary notation that is for the linear
model. We use the notation ‚ instead of ˆ to denote the unknown
parameters under the null hypothesis. Under the null hypothesis, we
assume that

Yi D xT
i ‚ C˜1 ˜ N401‘ 251

where ‚ is a p-dimensional unknown vector. Let X D 4xij5 be the
design matrix of the linear model. Let x ü

1 1 : : : 1 x ü
p be, respectively,

the discrete Fourier transforms of the � rst, : : : , the pth column of
the design matrix X. We impose the following technical conditions.

Conditions

A1. There exists a positive de� nite matrix A such that nƒ1xT x
! A.

A2. There exists an integer n0 such that

8n=4log log n549ƒ1
n=4log logn54X

iDn0

x ü 2
ij D O4151 j D 11 : : : 1 p1

where x ü
ij is the j th element of the vector x ü

i .
A3. O‘ 2

1 D‘ 2 COP 4nƒ1=25 and O‘ 2
2 D 2‘ 4 COP 84logn5ƒ19.

A4. 1
n

Pn
iD1 m4xi5xi ! b for some vector b.

Condition A1 is a standard condition for the least-squares estima-
tor O‚ to be root-n consistent. It holds almost surely for the designs
that are generated from a random sample of a population with a � nite
second moment. By Parseval’s identity,

1

n

nX

iD1

x ü 2
ij D

1

n

nX

iD1

x2
ij D O4150

Thus, Condition A2 is a very mild condition. It holds almost surely
for the designs that are generated from a random sample. Condition
A4 implies that under the alternative hypothesis, the least-squares
estimator O‚ converges in mean square error to ‚0 D Aƒ1b.

Proof of Theorem 1

Let â be the n � n orthonormal matrix generated by the discrete
Fourier transform. Denote

X ü D âX and Y D 4Y11 : : : 1 Yn5T 0

Under the null hypothesis, our model can be written as

Y D X‚ C˜0 (A.1)

Then the least-squares estimate is given by O‚ D 4XT X5ƒ1XT Y.
Denote z D â˜ and o D X ü 4 O‚ ƒ‚5. Then,

Õ ü D â˜ ƒâX4 O‚ ƒ‚5 D z ƒ o and z N 401‘ 2In50

Let zi and oi be the ith components of the vectors z and o, respec-
tively. Then

mX

iD1

Õ ü 2
i D

mX

iD1

4z2
i ƒ2zioi Co2

i 50 (A.2)

We � rst evaluate the small order term o2
i . By the Cauchy–Schwarz

inequality,

o2
i D

pX

jD1

x ü
ij8

O‚j ƒ‚j9
2

µ ˜ O‚ ƒ‚˜2
pX

jD1

x ü 2
ij 1 (A.3)
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Figure 3. Power of the Adaptive Neyman Tests, the KH Test, the Wavelet Thresholding Test, and the Parametric F Test for Examples 4 and 5:
When the Alternative Is Fully Nonparametric and n D 128. Key: A, the adaptive Neyman test (ANT) ordered according to X2 and using the known
variance; B, the ANT ordered according to si and using the known variance; C, the ANT test ordered by X2 and using O‘ `; D, the ANT test ordered
by s i and using O‘ `; F, the parametric F-test statistic; H, the wavelet thresholding test ordered by X2 and using the known variance; S, the KH test
with known variance and ordered by X2 ; T, the KH test with estimated variance O‘ ` and ordered by X2 ; U, the KH test with known variance and
ordered by ’ rst PC; V, the KH test with estimated variance O‘ ` and ordered by the ’ rst PC.
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where O‚j and ‚j are the jth components of the vectors O‚ and ‚,
respectively. By the linear model (A.1) and Condition A1, we have

E4 O‚ ƒ‚54 O‚ ƒ ‚5T D‘ 24XT X5ƒ1 D nƒ1Aƒ18‘ 2 C o41590

This and Condition A2 together yield

mX

iDn0

o2
i µ ˜ O‚ ƒ ‚˜2

pX

jD1

n=4log log n54X

iDn0

x ü 2
ij D OP 84log log n5ƒ490 (A.4)

We now deal with the second term in (A.2). Observe that

mƒ1
mX

iD1

z2
i µ‘ 2 C max

1µmµn
mƒ1

mX

iD1

4z2
i ƒ‘ 25 D oP 4log log n50 (A.5)

The last equality in (A.5) follows from (A.8). By the Cauchy–
Schwarz inequality, (A.4), and (A.5), we have

mƒ1=2
mX

iDn0

oizi µ
mX

iDn0

o2
i

1=2

mƒ1
mX

iDn0

z2
i

1=2

D oP 84log log n5ƒ3=290

This together with (A.2) and (A.4) entails

mƒ1=2
mX

iDn0

Õ2ü
i D mƒ1=2

mX

iDn0

z2
i CoP 84log log n5ƒ3=290 (A.6)

Let

T ü
n D max

1µmµn
42m‘ 45ƒ1=2

mX

iD1

4z2
i ƒ‘ 250

Then, by theorem 1 of Darling and Erdös (1956), we have

P6
p

2 log log nT ü
n ƒ 82 log logn C 05 log log log n

ƒ 05 log44� 59 µ x7 ! exp4ƒ exp4ƒx55 (A.7)

Hence,

T ü
n D 82 log log n91=281 CoP 4159 (A.8)

and
T ü

log n D 82 log log logn91=281 CoP 41590

This implies that the maximum of T ü
n cannot be achieved at m <

log n. Thus, by (2.1),

T ü
AN1 1 D max

1µmµn=4log log n54

1
p

2m‘ 4

mX

iD1

4 Õ ü 2
i ƒ‘ 25 Cop 4log log n5ƒ3=2 0

Combination of this and (A.6) entails

T ü
AN1 1 D T ü

n COp84log log n5ƒ3=290

The conclusion for TAN1 1 follows from (A.7) and the conclusion for
TAN1 2 follows from the same arguments.

Proof of Theorem 2

Let m ü
0 be the index such that

‡ ü
n D max

1µmµn
42‘ 4m5ƒ1=2

mX

iD1

‡ ü 2
i

is achieved. Denote c� D ƒ log8ƒ log41 ƒ�59.
Using arguments similar to but more tedious than those in the

proof of Theorem 1, we can show that under the alternative hypoth-
esis,

T ü
AN1 j D T ü

AN Cop84log log n5ƒ3=2 C 4log log n5ƒ3=24‡ ü
n51=291

where z in T ü
AN is distributed as N4‡ ü 1‘ 2In5. Therefore, the power

can be expressed as

P8TAN1 j > c�9 D P6T ü
AN > 4log log n51=2

� 81 Co4159Co84‡ü
n51=2970 (A.9)

Then, by (A.9), we have

P8TAN1 j > c�9

¶ P 42m ü
0‘

45ƒ1=2
m ü

0X

iD1

4z2
i ƒ‘ 25 > 24log log n51=2

¶ P 42m ü
0‘

45ƒ1=2
m ü

0X

iD1

4z2
i ƒ ‡ ü 2

i ƒ‘ 25

> 24log log n51=2 ƒ ‡ ü
n 0 (A.10)

The sequence of random variables

2m‘ 4 C4‘ 2
mX

iD1

‡2
i

ƒ1=2 mX

iD1

4z2
i ƒ‡ ü 2

i ƒ‘ 25

is tight, because they have the mean zero and standard deviation 1. It
follows from (A.10) and the assumption (2.8) that the power of the
critical regions in (2.5) tends to 1.

[Received April 1999. Revised June 2000.]
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