
Discussion of the paper “Inference for Semiparametric

Models: Some Questions and an Answer” by Bickel

and Kwon ∗

Jianqing Fan

Department of Statistics

Chinese University of Hong Kong

AND Department of Statistics

University of North Carolina

Chapel Hill, NC 27599-3260

June 19, 2001

Bickel and Kwon are to be congratulated for this neat, insightful and stimulating paper on
the general theory of semiparametric efficiency and for their successfully posing several important
and challenge questions on semiparametric inferences. Semiparametric parametric models arise
frequently in many applications. The interest in estimating certain principal parameters while
imposing few assumptions on nuisance parameters gives rise to semiparametric models. The pa-
rameters of interest usually admit the similar interpretations to those in parametric models. Most
of work focuses on efficient inferences on parameters of interest when semiparametric models are
correctly specified. The question arises naturally how to validate whether a semiparametric model
fits a given set of data, as asked by Bickel and Kwon. I welcome the opportunity to make a few
comments and to provide additional insights.

1 Generalized likelihood ratio test

One of the most celebrated methods in parametric inferences is the maximum likelihood ratio test.
It is intuitive and easily applicable due to the Wilks type of results. An effort of extending the
scope of the likelihood ratio tests is the empirical likelihood (Owen 1988) and its various extensions.
Yet, they can not be directly applied to hypothesis testing problems in multivariate semiparametric
and nonparametric models.

In an effort to derive a generally applicable testing procedure for multivariate nonparametric
models, Fan etal. (2001) proposed a generalized likelihood ratio test. The work is motivated by
the fact that the nonparametric maximum likelihood ratio test may not exist. Further, even
if it exists, it is not optimal even in the simplest nonparametric regression setting (see Fan etal.
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2001). Generalized likelihood ratio statistics, obtained by replacing unknown functions by reasonable
nonparametric estimators rather than MLE as in parametric models, enjoy several nice properties
to be outlined below.

As an illustration, consider the varying-coefficient model

Y = a1(U)X1 + · · ·+ ap(U)Xp + ε, (1)

where Y is the response variable, (U,X1, · · · , Xp) is the covariate vector independent of the random
noise ε. Consider the problem of testing homogeneity

H0 : a1(·) = θ1, · · · , ap(·) = θp. (2)

For simplicity, assume further ε ∼ N(0, σ2) [As demonstrated in Fan etal. (2001), the normality
assumption is only used to motivate the procedure]. Given a random sample of size n, the likelihood
under the null hypothesis can easily be obtained with parameters {θj} replaced by their MLE. Let
`n(H0) denote the log-likelihood under the null model. Under the more general model (1), the
coefficient functions a1(·), · · · , ap(·) can easily be estimated by using, for example, a kernel method
or local linear regression (Carroll etal. , 1998, Hoover etal. , 1998, Fan and Zhang, 1999). Using
these estimated functions, one can easily form the likelihood under the general model (1), though
it does not maximize the nonparametric likelihood. Let `n(H1, h) denote the log-likelihood, where
h is the bandwidth used in the local linear regression estimate of functions a1(·), · · · , ap(·). Then,
the generalized likelihood ratio statistic is simply

Tn(h) = `(H1, h)− `(H0). (3)

This generalized likelihood ratio test admits the same intuitive interpretation as the classical like-
lihood ratio test.

Fan etal.(2001) unveil the following Wilks phenomenon: The asymptotic null distribution of
Tn(h) is independent of nuisance parameters in the model under the null hypothesis and follows a
χ2-distribution (in a generalized sense) for testing homogeneity (2) versus (1). Thus, the P-values
can easily be computed by either using the asymptotic distribution or simulations with parameter
values taken to be the MLE under the null hypothesis. Further, they show that the resulting tests
are asymptotically optimal in the sense of Ingster (1993).

The above Wilks phenomenon holds not only for testing parametric versus nonparametric hy-
potheses, but also for testing a nonparametric null hypothesis versus a nonparametric alternative
hypothesis. As an example, Fan etal.(2001) consider the problem of testing significance of variables

H0 : a1(·) = a2(·) = · · · = am(·) = 0(m ≤ p).

The null hypothesis is still nonparametric because it involves nuisance functions am+1(·), · · · , ap(·).
Nevertheless, they show that the Wilks type of result continues to hold: the asymptotic null
distribution is independent of these nuisance functions. Thus, the P-values can easily be computed
by either using the asymptotic distributions or using simulations via fixing nuisance functions under
the null hypothesis at their estimated values. These results were also extended to various other
models.
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The idea of the above generalized likelihood ratio method is widely applicable. It is easy to use
because of the Wilks phenomenon and is powerful as it achieves the optimal rates for hypothesis
testing. This encourages me to propose the generalized likelihood ratio test as a possible tool to
the open question (D) posed by Bickel and Kwon.

2 Validating semiparametric models

To fix the idea, consider the test against the partially linear model

H0 : Y = g(U) +X1β1 + · · ·+Xpβp + ε. (4)

Again, for simplicity, we assume that ε ∼ N(0, σ2). Let ĝ and β̂1, · · · , β̂p be the estimates based
on a sample of size n, using for example the profile likelihood approach (see e.g. Speckman, 1988,
Severini and Wong, 1992, and Carroll etal. , 1997). The profile likelihood gives semiparametric
efficient estimator for parameters β1, · · · , βp and an optimal estimator for function g. With this,
one can form the log-likelihood function under the null hypothesis, denoted by `n(H0, h), where h
is the bandwidth.

To test whether this model holds for a given data set, we need an alternative. Depending on
the degree of prior belief on the model, one may consider the following possible alternative models:

1. An additive model:

H11 : Y = f0(U) + f1(X1) + · · ·+ fp(Xp) + ε.

2. A varying-coefficient model:

H12 : Y = f0(U) + f1(U)X1 + · · ·+ fp(U)Xp + ε.

3. A full nonparametric model:

H13 : Y = f(U,X1, · · · , Xp) + ε.

The unknown nonparametric functions in the above models can easily be estimated, using for
example kernel and local linear estimators with bandwidth h (for additive model, one can use
the backfitting algorithm as in Hastie and Tibshirani, 1990). Using the estimated nonparametric
functions, one can form the nonparametric log-likelihood `n(H1j , h) (j = 1, 2, 3) as in Section 1 and
the generalized likelihood ratio statistics:

Tn,j(h) = `n(H1,j , h)− `n(H0, h), j = 1, 2, 3.

These form the generalized likelihood ratio test statistics for testing the semiparametric model (4)
against the three nonparametric alternative models.

A few questions arise naturally. First of all, are the asymptotic null distributions for the
test statistics independent of nuisance parameters in the null hypothesis? Secondly, do these test
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statistics achieve the optimal rates for hypothesis testing in the sense of Ingster (1993) and Spokoiny
(1996)? Thirdly, what are the optimal rates for these three different alternatives?

In the additive model, Stone (1986) shows that one can estimate each additive component
as well as the one-dimensional rate. Fan etal.(1998) strengthens the result further that one can
estimate each additive component as well as if other components were known. The question then
arises naturally if these kinds of results hold for hypothesis testing against the semiparametric
model with the additive model as the alternative hypothesis.

3 Tests within semiparametric models

Suppose that we have validated a semiparametric model. Various inference problems arise within
the semiparametric model. For example, under the partially linear model, one may wish to test if
certain variables are statistically significant such as

H0 : β1 = · · · = βm = 0.

More generally, one may consider the linear hypothesis:

H0 : Aβ = 0, (5)

where A is a given matrix and β = (β1, · · · , βp). This is a semiparametric null hypothesis versus
a semiparametric alternative hypothesis. The testing problem is usually handled by using the
Wald-type of statistics,

Wn(h) = β̂
T
AT (AΣ̂hAT )−1Aβ̂,

where Σ̂h is the estimated covariance matrix of β, which involves estimated nonparametric function
ĝ and depends on a certain smoothing parameter h.

Note that under the null hypothesis (5), the problem is still a partially linear model. Hence,
its parameters can be estimated by using the profile likelihood approach the same way as that in
(4). The generalized likelihood ratio statistics can be computed by substituting the semiparametric
estimators under both null and alternative hypotheses into the likelihood function, using the same
bandwidth. Let the resulting estimator be Tn(h). The question then arises if the Wilks type of
result holds. Between the two approaches Wn(h) and Tn(h), it remains to be seen which method
is more powerful and which method gives a better approximation in terms of the size of the test.

For the partially linear model (1), one naive and simple approach is to use the partially linear
structure to reduce the testing problem (5) to an approximate linear model. Let (Yi, Ui, Xi1, · · · , Xip)
be the random sample ordered according to the variable U . Then, by model (4),

Y2i+1 − Y2i = g(U2i+1)− g(U2i) + β1(X2i+1,1 −X2i,1) + · · ·
+βp(X2i+1,p −X2i,p) + ε2i+1 − ε2i

≈ θ0 + θ1(U2i+1 − U2i) + β1(X2i+1,1 −X2i,1) + · · ·
+βp(X2i+1,p −X2i,p) + ε2i+1 − ε2i. (6)
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Note that the maximum distance between the spacing U2i+1 and U2i is of order O(n−1 log n), when
the density of U has a bounded support. Thus, the coefficients θ0 and θ1 in model (6) can be taken
to be zero 0. However, we keep these two parameters in the model (6) to make the approximation
more accurate. This kind of ideas appear independently in Yatchew (1997) and Fan and Huang
(2001). By using the approximate linear model (6), the problem (5) becomes a linear hypothesis
under the approximate linear model (6) and the F-test statistics can be employed. One naturally
asks how effective this simple and naive method is, comparing with the above more sophisticated
Wald-test and the generalized likelihood ratio test. Note that we lose the information contained
in the data {Y2i+1 + Y2i}, which itself follows approximately model (4). The data {Y2i+1 + Y2i}
does not contain nearly as much information about β as Y2i+1 − Y2i, since the former involves the
nuisance function g. Thus, the efficiency based on model (6) should, intuitively, be at least 50%.

Note that the above test can be regarded as a generalized likelihood ratio test with a very rough
estimate of g. In fact, for given β, one estimates g by taking the average of two neighboring points:

ĝ(u) = 2−1{Y2i+1 + Y2i − β1(X2i+1,1 +X2i,1) + · · ·
+βp(X2i+1,p +X2i,p)}, for u ∈ (U2i−1+U2i

2 , U2i+1+U2i+2

2 ].

Substituting ĝ into the models on Y2i+1, we obtain

Y2i+1 − Y2i = β1(X2i+1,1 −X2i,1) + · · ·+ βp(X2i+1,p −X2i,p) + 2ε2i+1.

A similar equation is obtained by substituting ĝ into the model on Y2i:

Y2i+1 − Y2i = β1(X2i+1,1 −X2i,1) + · · ·+ βp(X2i+1,p −X2i,p)− 2ε2i.

The above two equations contain basically the same information as the model (6). Note that the
estimator ĝ here is significantly undersmoothed, but nonetheless gives reasonable inferences on the
parametric component. It is consistent with a point hinted in the paper by Bickel and Kwon.

After obtaining nonparametric estimate ĝ, researchers frequently ask if certain parametric model
fits the nonparametric component. Namely, one wishes to test

H0 : g(u) = g(u, θ).

Again, the generalized likelihood statistics can be constructed and its sampling properties need to
be studied.

4 Choice of bandwidth

Bickel and Kwon raised the question how to select bandwidths for semiparametric models. If
the primary interest focuses on parametric components, the selected bandwidth should not create
excessive biases in the estimation of nonparametric components. The reason is that the biases in
the estimation of nonparametric components can not be averaged out in the process of estimating
parametric components, yet the variance in nonparametric estimates can be averaged out. This
is evidenced in the approximate linear model (6), where g is estimated by the average of two
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neighboring points. If one wishes to choose a bandwidth that estimates well both parametric and
nonparametric components simultaneously, a profile likelihood approach is needed, as demonstrated
by Carroll etal.(1997). However, in semiparametric estimation problems such as the partially linear
model (4), one can also employ a two step estimation scheme: choose a small bandwidth that
efficiently estimates the parametric component and then treat the parametric component as if it
were known and apply a nonparametric technique, with an optimally chosen bandwidth, to estimate
the nonparametric component.

The problem of choosing an appropriate smoothing parameter arises also in the hypothesis
testing problem. For each given bandwidth parameter h, one can regard the generalized likelihood
test Tn(h) [see e.g. (3)] as a proper test statistic. The question then becomes how to choose a
good smoothing parameter that maximizes the power. The multi-scale test proposed in Fan (1996)
appears to achieve good asymptotic power, as shown in Fan (1996) and Fan etal.(2001), though his
formulation is in the frequency domain. The idea can simply be translated into the current setting.
We refer to Zhang (2000) for some related work.

I have no intension to advocate using only the generalized likelihood ratio statistics for semipara-
metric and nonparametric inferences. In fact, very few properties are known about the generalized
likelihood ratio statistics. Even worse, the generalized likelihood statistics do not suggest any fixed
procedure for estimating nonparametric components. Much more additional work is needed be-
yond the work by Fan etal.(2001). In light of no generally applicable guideline for nonparametric
and semiparametric testing problems, I outline some ideas, rather than some solutions, here in an
attempt to address the model validation question raised by Bickel and Kwon and to stimulate some
further research in this area.
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