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Generalized likelihood ratio statistics have been proposed in Fan, Zhang
and Zhang [Ann. Statist. 29 (2001) 153–193] as a generally applicable
method for testing nonparametric hypotheses about nonparametric functions.
The likelihood ratio statistics are constructed based on the assumption that
the distributions of stochastic errors are in a certain parametric family. We
extend their work to the case where the error distribution is completely
unspecified via newly proposed sieve empirical likelihood ratio (SELR) tests.
The approach is also applied to test conditional estimating equations on
the distributions of stochastic errors. It is shown that the proposed SELR
statistics follow asymptotically rescaledχ2-distributions, with the scale
constants and the degrees of freedom being independent of the nuisance
parameters. This demonstrates that the Wilks phenomenon observed in Fan,
Zhang and Zhang [Ann. Statist. 29 (2001) 153–193] continues to hold
under more relaxed models and a larger class of techniques. The asymptotic
power of the proposed test is also derived, which achieves the optimal
rate for nonparametric hypothesis testing. The proposed approach has two
advantages over the generalized likelihood ratio method: it requires one
only to specify some conditional estimating equations rather than the entire
distribution of the stochastic error, and the procedure adapts automatically
to the unknown error distribution including heteroscedasticity. A simulation
study is conducted to evaluate our proposed procedure empirically.

1. Introduction. Over the last two decades, many computationally intensive
nonparametric techniques and theories have been boldly developed to exploit
possible hidden structures and to reduce modeling biases of traditional parametric
methods. Methods such as local polynomial fitting, spline approximations and
orthogonal series expansions as well as dimensionality reduction techniques have
been studied in great depth in various statistical contexts. Yet there are no generally
applicable methods available for the inferences in nonparametric models. Various
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efforts have been made in the literature on nonparametric hypothesis testing.
See, for example, Bickel and Ritov (1992), Eubank and Hart (1992), Härdle and
Mammen (1993), Azzalini and Bowman (1993), Fan (1996), Fan and Li (1996),
Spokoiny (1996), Inglot and Ledwina (1996), Kallenberg and Ledwina (1997) and
Horowitz and Spokoiny (2001, 2002), among others. For an overview, see the
recent book by Hart (1997). Adaptive minimax rate results are obtained by various
authors, including Fan (1996), Spokoiny (1996), Horowitz and Spokoiny (2001),
Fan and Huang (2001) and Fan, Zhang and Zhang (2001). However, most of
the studies focus only on the one-dimensional nonparametric regression problem.
They are difficult to extend to multivariate semiparametric and nonparametric
models.

In an effort to derive a generally applicable testing procedure for multivariate
semiparametric and nonparametric models, Fan, Zhang and Zhang (2001) pro-
posed generalized likelihood ratio tests. The work is motivated by the fact that
the nonparametric maximum likelihood ratio test may not exist in many nonpara-
metric problems. Further, even if it exists, it is not optimal even in the simplest
nonparametric regression setting. Generalized likelihood ratio statistics, obtained
by replacing unknown functions by reasonable nonparametric estimators, rather
than the MLE as in the parametric setting, have several nice properties. In the
varying coefficient model

Y = a1(U)X1 + · · · + ap(U)Xp + ε,(1.1)

where(U,X1, . . . ,Xp) are independent variables andY is the response variable,
Fan, Zhang and Zhang (2001) unveil the following Wilks phenomenon: The
asymptotic null distributions are independent of nuisance functions and follow a
χ2-distribution (in a generalized sense) for testing the homogeneity

H0 :a1(·) = θ1, . . . , ap(·) = θp(1.2)

and for testing the significance of variables, such as

H0 :a1(·) = a2(·) = 0.(1.3)

In other words, the generalized likelihood ratio statisticλn follows asymptotically

a rescaledχ2-distribution in the sense that(2bn)
−1/2(rKλn − bn)

L→ N(0,1) for
a sequencebn → ∞ and a constantrK . We will use the notationrKλn

a∼ χ2
bn

to
denote the result. The significance of the result is that the scale constantrK and the
degrees of freedombn are independent of nuisance parameters, such as the joint
density of(U,X1, . . . ,Xp) and the parametersθ1, . . . , θp in (1.2) and the functions
a3(·), . . . , ap(·) in (1.3). This Wilks phenomenon is the key to the success of the
classical maximum likelihood ratio tests for parametric problems. With the above
newly discovered Wilks phenomenon in nonparametric models, theP -values can
easily be computed by using either the asymptotic distributions or simulations via
fixing nuisance parameters or functions under the null hypothesis at certain values
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of interest. Furthermore, Fan, Zhang and Zhang (2001) showed that the resulting
tests are asymptotically optimal in the sense of Ingster (1993).

The idea of the above generalized likelihood method is widely applicable in
semiparametric and nonparametric models. It is easy to use because of the Wilks
phenomenon and is powerful as it achieves the optimal rate of convergence. Yet,
one needs to specify the parametric form of the error distribution such asε

in (1.1) in order to construct the generalized likelihood ratio statistic. While the
procedure based on the normal likelihood may be still applicable to the case
where the distribution ofε is homoscedastic, it may not be efficient. When the
error distribution is heteroscedastic with the variance var(ε|U) = σ 2(U), the
construction of the generalized likelihood ratio test statistic needs the knowledge
of the variance functionσ 2(·). This motivates us to propose the sieve empirical
likelihood ratio (SELR) test statistic for handling the case where the exact form of
the error distribution is unknown, but some qualitative traits of the distribution are
known. A popular model is to assume

E[G(ε)|U ] = 0(1.4)

whereG = (G1, . . . ,Gk0)
τ is ak0-dimensional function [see Owen (1990), Newey

(1993) and Zhang and Gijbels (2003)]. This is a much less restrictive assumption
than a parametric form on the distribution ofε. In particular, when the conditional
distribution ofε givenU is symmetric about 0, we may choose a sequence ofk0
grid points, say, 0= s0 < s1 < · · · < sk0 and take

Gk(ε) = I (ε ∈ [sk−1, sk]) − I (−ε ∈ [sk−1, sk]), 1 ≤ k ≤ k0,(1.5)

or a smoother version of the functionGk , whereI (·) is the indicator function. Note
that as max1≤k≤k0(sk − sk−1) → 0, k0 → ∞, these restrictions are essentially the
same as the symmetric assumption on the distribution ofε.

A few questions related to the SELR test arise naturally. First of all, it is not clear
how to construct an empirical likelihood in the nonparametric setting. Second,
it is not obvious whether a particular construction of the empirical likelihood
ratio statistic will follow the Wilks type of result. Third, it is not granted that
the resulting test statistic is asymptotically optimal in the sense of Ingster (1993).
Finally, it remains unknown whether the empirical likelihood ratio statistics will
adapt to the unknown distribution ofε including heteroscedasticity. These issues
are poorly understood and need to be studied.

The technical derivations for SELR tests are very involved. To ease some
of the technical burden, we choose the varying coefficient model (1.1) for our
investigation. The model arises from various contexts and has been widely used.
For example, in many biomedical studies one frequently encounters the issue of the
extent to which the effect of exposure variables on the response variable changes
with the level of a confounding covariate (e.g., age). See, for example, Cleveland,
Grosse and Shyu (1991), Hastie and Tibshirani (1993) and Carroll, Ruppert
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and Welsh (1998). The model can also be used for predicting group behavior
in economics where different groups are allowed to have different coefficients.
In longitudinal studies, investigators often want to examine how the effects of
covariates on response variables change over time [Brumback and Rice (1998)
and Wu, Chiang and Hoover (1998)]. In nonlinear time series, the model allows
different autoregressive models for different regimes of state variables [Chen and
Tsay (1993) and Cai, Fan and Yao (2000)]. It includes the threshold autoregressive
model [Tong (1990)] as a specific example. The model has successfully been
applied by Hong and Lee (2003) to the inference and forecast of exchange rates.
Thus, our study in model (1.1) has direct implications for the above problems.

For the varying coefficient model (1.1), whether the coefficient functions are
really varying or whether certain covariates are statistically significant frequently
arises. This leads to the problem of testing for homogeneity (1.2) or the problem
of testing for significance such as the problem (1.3). As will be explained at the
end of Section 2, these problems can be reduced to that of testing against a specific
null hypothesis:

H0 :a1(·) = a10(·), . . . , ap(·) = ap0(·),
for some given functionsa10, . . . , ap0. Our approach is to first construct the local
linear estimator of the coefficient functionsa1, . . . , ap via a local version of
the empirical likelihood, and to then substitute the estimate into a special sieve
empirical likelihood [see Zhang and Gijbels (2003) and Zhang and Liu (2003)].
This allows us to form the empirical likelihood ratio statistics. We will show that
the proposed SELR procedures follow the Wilks type of results under more relaxed
assumptions on the error distribution ofε. This provides a useful extension of
the results given by Fan, Zhang and Zhang (2001). Note that our procedure is
very different from that of Kitamura (1997), who considered testing problems
for finite-dimensional parameters in weakly dependent processes. He first used
the local (blocking) approximation to construct a global estimating equation, then
applied Owen’s procedure directly. For the full nonparametric regression model,
Chen, Härdle and Li (2003) developed a very different version of the empirical
likelihood ratio test, using a kernel-smoothed parametric estimator under the
null hypothesis as ancillary information. The idea has nicely been extended to
simultaneously testing the parametric forms of the mean and variance functions
by Chen, Gao and Li (2003). Horowitz and Spokoiny (2002) developed a different
test for one special case of the model (1.4). The test shares most of nice features
listed for the SELR test and includes an automatic selection of the smoothing
parameter. It is not clear whether the Horowitz–Spokoiny test is adaptive to the
error distribution under the alternative hypothesis, as is the SELR. Furthermore,
because of the saturated alternative, the curse-of-dimensionality problem arises in
implementation and power.

Our empirical likelihood ratio method applies also to the nonparametric tests on
density functions. As an illustration without introducing new statistical setting, we
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regard the constraints (1.4) as a null hypothesis. We will demonstrate that the Wilks
type of phenomenon continues to hold for this nonparametric testing problem.

Our studies have implications for other nonparametric models. Whenp = 1 and
X ≡ 1, the model is the nonparametric regression model studied by many authors.
Our results can be directly applied to the problems of testing parametric models
against the nonparametric alternative. Further, our theoretical results shed some
lights on the validity of the Wilks phenomenon in other models such as additive
models and models under certain mixing conditions.

When p = 1 and X ≡ 1 and the coefficient functiona1(·) ≡ θ , under the
constraints (1.4) and (1.5), the model becomes a one-sample symmetric location
model, which was well studied, for instance, by Hettmansperger (1984) and Bickel,
Klaassen, Ritov and Wellner (1993). In Section 2, we find that for this special case,
the first step in our procedure essentially makes the information on the stochastic
error to be efficiently used [Owen (1988) and Zhang and Liu (2003)]. Moreover,
the second step makes the likelihood ratio statistic adaptive to heteroscedasticity.
As a result, our procedure has two advantages over the parametric assumptions on
the error distribution. First, it requires only some conditional estimating equations
such as (1.4) rather than the whole distribution of the stochastic error. Second, the
asymptotic null distribution of the SELR statistic asymptotically follows a rescaled
χ2-distribution. The scaling constant and the degrees of freedom are independent
of the conditional distribution ofε even if the stochastic error is heteroscedastic
in U . The procedure and results can be easily generalized to a more general
constrained regression model in Zhang and Gijbels (2003).

The paper is organized as follows. In Section 2 the sieve empirical likelihood
ratio statistics are introduced for testing the goodness-of-fit of the estimating
equations and for testing some simple and composite null hypotheses. In Section 3
the asymptotic null and nonnull distributions of these statistics are derived. In
Section 4 a simulation study is conducted to evaluate the performance of the
proposed procedure empirically. The technical conditions and the proofs are
relegated to Section 5. The technical lemmas are given in the Appendix.

2. Sieve empirical likelihood. It is more convenient to work with the matrix
notation for model (1.1),

Y = Aτ(U)X + ε,(2.1)

where Y is the response,U ∈ � ⊂ R1 (with � bounded) andX ∈ Rp are
covariates,ε is the stochastic error andA(U) = (a1(u), . . . , ap(u)) is the vector
of varying coefficients. Let{(Yi,Xi,Ui)}ni=1 be an i.i.d. random sample from the
model (2.1) with the restriction (1.4). According to Owen (1990), to construct
an empirical likelihood which can identify an infinite-dimensional parameter
such asA(u) in (2.1), we need to establish an infinite number of unconditional
estimating equations. Such a likelihood is often theoretically intractable. To
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overcome this difficulty, Zhang and Gijbels (2003) proposed a general procedure
to build a sieve empirical likelihood via local approximation. For the model (2.1)
the procedure consists of two steps: First, for eachUj constructn local empirical
likelihoods which can locally identifyA(u),u ≈ Uj . These local empirical
likelihoodslead to a weighted approximation of the logarithm of the conditional
probability massdP(Y,X)|U=Uj

(Yj ,Xj ). Then a log-likelihood is obtained simply
by summing up all of these approximated logarithms. In the first step, we will use
the local linear approximation of the nonparametric coefficient functionsA(·) [see
Fan (1992), Fan and Zhang (1999) and Cai, Fan and Li (2000)]. In other words, in
a neighborhood around a given pointu0, approximateA(·) by

A(u) ≈ A(u0) + A′(u0)(u − u0) for u ≈ u0.

Thus, around the pointu0, the model (2.1) and the restriction (1.4) can be written,
respectively, as

Y ≈ βA(u0)
T Z

(
X,

U − u0

h

)
+ ε for U ≈ u0,

E

[
G
(
Y − βA(u0)

)τ
Z

(
X,

U − u0

h

)∣∣∣U = u

]
≈ 0 for u ≈ u0,

(2.2)

whereβA(u0) = (Aτ (u0), hA
′τ (u0))

τ andZ(X, t) = (Xτ , tXτ )τ . This is indeed
a local linear model [Fan (1992)]. To incorporate the local linear model, leth

represent the size of the local neighborhood where the approximation is valid
andK be a weight function, which is a symmetric probability density function.
Let pi, i = 1, . . . , n, be the conditional empirical probability mass of(X,Y ) given
U = u0, putting on theith data point(Xi, Yi), i = 1, . . . , n. Suppose that givenU,

ε andX are independent. Then the conditional constraints (2.2) can be translated
into the following unconditional estimating equation:

n∑
i=1

piGih

(
u0, βA(u0)

)= 0,

where

Gih = Gih(u0, β) = G

(
Yi − βτZ

(
Xi,

Ui − u0

h

))
⊗ Z

(
Xi,

Ui − u0

h

)

with ⊗ being the Kronecker product,β = (Aτ ,hBτ )τ , A = (a1, . . . , ap)τ and
B = (b1, . . . , bp)τ . To see why we need an extra factorZ(Xi, (Ui − u0)/h) in the
unconditional estimating functionGih, we letG(ε) = ε temporarily. It is a well-
known fact that in the linear model the product of the residual and the covariates
is a good estimating equation for the parameterβA. This leads to the estimating
equation:

n∑
i=1

pi

(
Yi − βτZ

(
Xi,

Ui − u0

h

))
Z

(
Xi,

Ui − u0

h

)
= 0.
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In light of this fact, for a generalG we should build the estimating equation by
multiplying each component ofG by the covariate vectorZ(Xi, (Ui − u0)/h),
which admits the formGih.

Thus, following Owen (1988, 1990), the local empirical log-likelihood function
of β is defined by

l(β,u0) = sup

{
n∑

i=1

wh(Ui, u0) logpi :pi ≥ 0,1≤ i ≤ n,

n∑
i=1

pi = 1,

n∑
i=1

piGih(u0, β) = 0

}
,

(2.3)

wherewh(Ui, u0) = Kh(Ui − u0)/
∑n

m=1 Kh(Um − u0) with Kh(·) = K(·/h)/h.
If we setpi = wh(Ui, u0)qi , then (2.3) becomes

l(β,u0) = sup

{
n∑

i=1

wh(Ui, u0) log{wh(Ui, u0)qi} :qi ≥ 0,1≤ i ≤ n,

n∑
i=1

wh(Ui, u0)qi = 1,

n∑
i=1

wh(Ui, u0)qiGih(u0, β) = 0

}
.

Analogously to Owen (1990) and Qin and Lawless (1994), if 0 is contained in
the convex hull of the points in{Gih(u0, β) :wh(Ui, u0) > 0,1 ≤ i ≤ n}, then an
explicit expression can be derived by the Lagrange multiplier method as follows:

l(β,u0) =
n∑

i=1

wh(Ui, u0) logwh(Ui, u0)

−
n∑

i=1

wh(Ui, u0) log
(
1+ ατ

n(u0, β)Gih(u0, β)
)
,

whereαn(u0, β) satisfies

n∑
i=1

wh(Ui, u0)
Gih(u0, β)

1+ ατ
n(u0, β)Gih(u0, β)

= 0.(2.4)

Define the estimate ofβ by

β̂(u0) = argmax
β

l(β,u0).(2.5)

The first p components, denoted bŷA(u0), give an estimate ofA(u0), and
the remaining components estimatehA′(u0). Similarly to LeBlanc and Crowley
(1995), an approximate empirical likelihood, called the sieve empirical likelihood
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for the nonparametric functionA can be introduced by adding the logarithm of the
conditional likelihood at each data point:

l(A|G) =
n∑

j=1

l(βA,Uj).

The name “sieve” originates from the following two facts:{E[G(ε)|U =
Uj ]}1≤j≤n is a sieve approximation to the constraints (1.4) andl(βA,Uj )

is a weighted approximation of the logarithm of the conditional probability
massdP(Y,X)|U=Uj

(Yj ,Xj ). See Zhang and Gijbels (2003) for a more detailed
explanation. Motivated by Fan, Zhang and Zhang (2001), we define the logarithm
of the sieve empirical likelihood under the nonparametric model (2.1) with
constraints (1.4) by substitutingβ = β̂ into l(A|G), leading to

l(
|G) =
n∑

j=1

l{β̂(Uj ),Uj }

with 
 denoting the space ofA.

We now consider the nonparametric test concerning the density function ofε.
As a specific application of the sieve empirical likelihood, we consider testing

H0G :E[G(ε)|U ] = 0,(2.6)

where G is given in (1.4). Without the constraint (1.4), following the above
derivations, the corresponding logarithm of the sieve empirical likelihood is

l(
|N) =
n∑

j=1

n∑
i=1

wh(Ui,Uj ) logwh(Ui,Uj ).

Thus, we can construct a goodness-of-fit test of hypothesis (2.6) based on the
following logarithm of the SELR:

l(G) = −l(
|G) + l(
|N),

=
n∑

j=1

n∑
i=1

wh(Ui,Uj ) log
(
1+ α̂(Uj )

τ Gih(Uj , β̂)
)(2.7)

whereα̂(u) = αn(u, β̂).

Next, we consider the sieve likelihood ratio test for the nonparametric
coefficient functionA(·) under the restriction (1.4). In the varying coefficient
model (2.1), we ask naturally whether the coefficient is really varying or whether
certain covariates are statistically significant. This leads to the parametric null
hypothesis:

H0p :A(·) = θ.
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More generally, we wish to test the composite null hypothesis, which involves
nuisance functionsA2(·):

H0u :A1 = A10 ⇐⇒ H1u :A1 �= A10(2.8)

with A2(·) completely unknown. This problem includes the test of signifi-
cance (1.3) under model (1.1) as a specific example. Here we write

A0(u0) =
(

A10(u0)

A20(u0)

)
and A(u0) =

(
A1(u0)

A2(u0)

)
,

with A10(u) andA1(u) beingp1 (< p)-dimensional. To construct the likelihood
ratio statistic forH0u, we introduce the following notation:

β2A(u0) = (
Aτ

2(u0), hA′τ
2 (u0)

)
, β2 = (Aτ

2, hBτ
2)τ ,

β∗ = (
Aτ

10(u0),A
τ
2, hA′τ

10(u0), hBτ
2
)τ

.

Let

β̂2(u0) = (Âτ
2, hB̂τ

2 )τ = arg max
β2

l(β∗, u0),

β̂∗(u0) = (
Aτ

10(u0), Â
τ
2, hA′τ

10(u0), hB̂τ
2
)τ

and the correspondinĝα∗(u0) be implicitly defined by

0= 1

n

n∑
i=1

wh(Ui, u0)
Gih(u0, β̂

∗(u0))

1+ α̂∗τ (u0)Gih(u0, β̂∗(u0))
.

Then the SELR statistic forH0u can be written as

l(H0u|G) = −l(
02|G) + l(
|G),(2.9)

where
02 denotes the space ofA2 and

l(
02|G) =
n∑

j=1

l
(
β̂∗(Uj ),Uj

)
.

The SELR test for the semiparametric model thatA(·) has a certain parametric
form such as the linear model can be constructed analogously. As in Fan, Zhang
and Zhang (2001), the asymptotic null distributions of the SELR statistics for
composite null hypotheses can be derived from those for simple hypotheses (see
the next paragraph). This motivates us to consider

H0s :A = A0 ⇐⇒ H1s :A �= A0(2.10)

for a given A0. Analogously to l(H0u|G), we can construct the following
likelihood ratio statistic:

l(H0s |G) = −l(A0|G) + l(
|G)

=
n∑

j=1

n∑
i=1

wh(Ui,Uj ) log
(
1+ αn(Uj ,β0)

τ Gih(Uj ,β0)
)− l(G)

(2.11)
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whereβ0 denotesβA0. Note that whenA0 in H0s is known, we can assume,
without loss of generality, thatA0 ≡ 0. This can be accomplished through a simple
transformationA∗ = A − A0. With this transformation, (2.10) is equivalent to

H ′
0s :A∗ ≡ 0 ⇐⇒ H ′

1s :A∗ �≡ 0.(2.12)

This specific problem has an advantage: the local linear estimator under the null
hypothesis is unbiased and hence the null distribution can be more accurately
approximated.

We opt for generalA0, since the results have implications for the composite
null hypotheses. To appreciate this, consider the composite null hypothesis testing
problem:

H0 :A ∈ A0 ⇐⇒ A /∈ A0,(2.13)

whereA0 is a set of functions. Letl(A0|G) be the sieve empirical likelihood under
the hypothesisH0 in (2.13). Then, the SELR statistic is simply

λn = −l(A0|G) + l(
|G).

Let A′
0 denote the true value of the parameter functionA. Consider the fabricated

testing problems with the simple null hypotheses:

H ′
0 :A = A′

0 ⇐⇒ H1 :A �= A′
0(2.14)

and

H ′
0 :A = A′

0 ⇐⇒ H ′
1 :A ∈ A0.(2.15)

Let l(A′
0|G) be the sieve empirical likelihood underH ′

0. Then the SELR statistic
for (2.13) can be written as

λn = λ(A′
0|G) − λ∗(A′

0|G),

whereλ(A′
0|G) = −l(A′

0|G)+ l(
|G) is the SELR statistic for the problem (2.14)
andλ∗(A′

0|G) = −l(A′
0|G) + l(A0|G) is the SELR test for the problem (2.15).

Thus, the asymptotic representation ofλn follows directly from those ofλ(A′
0)

andλ∗(A′
0), which admits the form given by (2.11).
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3. Asymptotic theory.

3.1. Asymptotic expansions. In order to obtain the properties of the SELR
statistics in (2.7) and (2.11), we first develop some uniform asymptotic repre-
sentations for the local sieve empirical likelihood estimatorβ̂ and the Lagrange
multiplier α̂ in (2.4) and (2.5). These results are the generalizations of Zhang and
Liu (2003). They also indicate the performance of the sieve empirical likelihood
estimator. Using these results we will establish the asymptotic representations for
l(G) andl(H0s |G) in (2.7) and (2.11). For simplicity of presentation, we assume
G is differentiable. Letf (u0) be the density ofU at the pointu0. Set

D(u0) = −E

[
∂G(ε)

∂ε

∣∣∣U = u0

]
,

V (u0) = E[G(ε)Gτ(ε)|U = u0],
�(u0) = E[XXτ |U = u0]f (u0),

S =
(

1 0
0 µ2

)
, µ2 =

∫
t2K(t) dt,

ηi(u0) = −{D(u0)
τV (u0)

−1D(u0)}−1Dτ(u0)V
−1(u0)G(εi),

C(u0) = V −1(u0) − V −1(u0)
(
Dτ(u0)V

−1(u0)D(u0)
)−1

D(u0)D
τ (u0)V

−1(u0),

εi = Yi − Aτ(Ui)Xi.

THEOREM 1. Suppose that conditions (K0), (U0), (A1)–(A10) and
(B1)–(B5) in Section 5.1 hold and that the underlying A(u) have twice contin-
uous derivatives and satisfy condition (B6). If there exist some positive constants
b0, b1 and η < 1/2 such that b0 ≤ hnη ≤ b1, then uniformly for u0 ∈ �,

β̂(u0) = β(u0) + 1

n

n∑
i=1

Kh(Ui − u0)

(
�−1(u0)Xi

µ−1
2 �−1(u0)Xi(Ui − u0)/h

)

× ηi(u0)
(
1+ op(h1/2)

)+ Op(h2),

α̂(u0) = 1

n

n∑
i=1

Kh(Ui − u0){C(u0)G(εi)}

⊗
(

�−1(u0)Xi

µ−1
2 �−1(u0)Xi(Ui − u0)/h

) (
1+ op(h1/2)

)+ Op(h2).

As a consequence of Theorem 1, we have the following asymptotic uniform
expansion:

Â(u0) − A(u0) = 1

n

n∑
i=1

Kh(Ui − u0)�
−1(u0)Xiηi(u0)

(
1+ op(h1/2)

)+ Op(h2).
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The asymptotic normality of the local sieve empirical likelihood estimator follows
easily from the above asymptotic expansion.

In Theorem 1, the requirement thatG is differentiable can be relaxed by
imposing some entropy conditions onG and by assumingE[G(ε − t)|U = u0]
is twice continuously differentiable int . In this caseD(u0) should be replaced
by −{∂E[G(ε − t)|U = u0]/∂t}|t=0. Similarly to Zhang and Liu (2003), we can
show that the asymptotic efficiency of̂A(u0) is increasing inD(u0)

τV (u0)
−1 ×

D(u0). In particular, in the setting of the symmetric location model mentioned
in Section 1, we can find a sequence ofG functions, say{G(k)}, such that
the correspondinĝA(u0) is asymptotically adaptive to the unknown conditional
density ofε givenU = u0. In practice, to save computational effort, we prefer to
choose aG with a smallk0 and a relatively largeD(u0)V (u0)

−1D(u0).
It should be noted that under the conditions of Theorem 1, forβ near its true

value, α(u0, β) is uniquely determined by the estimating equations. Thus, the
number of unknown parameters is 2p for eachu0. It is well known that to make
the local linear model regular, the interval[u0 − h,u0 + h] should include at least
2p + 1 data points ofU. This condition asymptotically holds under the condition
of Theorem 1 because asn → ∞,

P

{
n∑

i=1

I (u0 − h ≤ Ui ≤ u0 + h) ≥ 2p + 1

}

= P

{∣∣∣∣∣
n∑

i=1

[I (u0 − h ≤ Ui ≤ u0 + h)

− EI (u0 − h ≤ U ≤ u0 + h)]

+ nEI (u0 − h ≤ U ≤ u0 + h)

∣∣∣∣∣≥ 2p + 1

}

≥ P {nEI (u0 − h ≤ U ≤ u0 + h) ≥ 2p + 1+ δ}
− nE

(
I (u0 − h ≤ U ≤ u0 + h) − EI (u0 − h ≤ U ≤ u0 + h)

)2
/δ2

→ 1

where δ = n(1+2η)/2h and I (·) is the indicator function. We can further show
that this condition actually holds uniformly inu0 by an approach using empirical
processes.

We now give the asymptotic representations for the SELR statisticsl(G) and
l(H0s |G). The results indicate that they admit a generalized quadratic form. To
facilitate the expressions, the following notation is introduced. Let

φikh(U) = Kh(Ui − U)Kh(Uk − U)C(U)

× (
1+ (Ui − U)(Uk − U)µ−1

2 h−2)Xτ
i �−1(U)Xkf

−1(U),



1870 J. FAN AND J. ZHANG

K∗(s) =
∫

K(t)K(s + t)
(
1+ t (s + t)µ−1

2

)
dt,(3.1)

�ikh = E[φikh(U)|(Ui,Uk,Xi,Xk)]
= K∗

h(Uk − Ui)C(Ui)X
τ
i �−1(Ui)Xk

(
1+ Op(h)

)
,(3.2)

Tn = 1

n(n − 1)

∑
i �=k

Gτ (εi)�ikhG(εk).

Similarly, we define

qikh(U) = Kh(Ui − U)Kh(Uk − U)V −1(U)Xτ
i �−1(U)

× Xk{1+ (Ui − U)(Uk − U)µ−1
2 h−2}f −1(U),

Qikh = E[qikh(U)|(Ui,Uk,Xi,Xk)],
T ∗

n = 1

n(n − 1)

∑
i �=k

Gτ (εi)(Qikh − �ikh)G(εk).

Then we have the following result.

THEOREM 2. Suppose the conditions of Theorem 1 hold. Then under H0G,

2l(G) = (k0 − 1)p|�|
h

∫
K2(t)(1+ t2µ−1

2 ) dt

+ (1+ op(h1/2)
)
nTn + op(h−1/2);

(3.3)

and under H0s, if A0 is linear or nh9/2 → 0, then

2l(H0s|G) = p|�|
h

∫
K2(t)(1+ t2µ−1

2 ) dt

+ (1+ op(h1/2)
)
nT ∗

n + op(h−1/2),

(3.4)

where |�| is the length of the support � of the density f .

Note that if there are no components inA, then underH0G the factork0 − 1
in (3.3) should bek0, since it costsp degrees of freedom to estimate them when
there arep components inA.

3.2. Asymptotic null distribution. With the asymptotic representations, we
are now ready to derive the asymptotic distributions of the test statisticslG and
l(H0s |G). As in the parametric case for the stochastic errorε [see Fan, Zhang
and Zhang (2001)], under the null hypotheses the SELR statistics in (2.7), (2.9)
and (2.11) are asymptoticallyχ2-distributed and their degrees of freedom are
independent of the nuisance parameters such asA, G and the distribution ofε.
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THEOREM 3. Under H0G and the conditions of Theorem 1, for k0 > 1, we
have rKlG

a∼ χ2
bn

with

rK = 2K∗(0)∫
K∗(s)2 ds

, bn = (k0 − 1)p|�|cK

h
,

where K∗(s) is defined in (3.1),cK = K∗(0)2/
∫

K∗(s)2 ds. For k0 = 1, we have
rKlG = op(1).

REMARK 1. If K(t) has support[−1,1], and ifK(t) and|t|K(t) are concave
on t ∈ [−1,1], then by the same argument used in the Sherman inequality [see
Farrell (1985), page 343], we have

|K∗(s)| ≤
∫

K(t)K(s + t) dt + µ−1
2

∫
|t|K(t)|s + t|K(s + t) dt

≤ K∗(0).

Thus whenK∗(s) ≥ 0, s ∈ [−1,1], rK ≥ 2. In particular, whenK is the uniform
kernel function,rK = 2.8176 andcK = 1.0566; when K is the Epanechnikov
kernel function,rK = 2.5154 andcK = 1.2936.

The next theorem presents the asymptotic null distribution ofl(H0s |G).

THEOREM4. Suppose that the conditions of Theorem 1 hold. Then under H0s,

rKl(H0s |G)
a∼ χ2

b∗
n

if A0 is linear or nh9/2 → 0; and under H0u, if nh9/2 → 0, then

rKl(H0u|G)
a∼ χ2

b∗
n2

where b∗
n = p|�|cK/h and b∗

n2 = p1|�|cK/h with cK and rK

defined in Theorem 3 and p1 being the dimensionality of A10 in (2.8).

Whennh9/2 = O(1), it is easily proved as in Fan, Zhang and Zhang (2001)
that underH0u the Wilks phenomenon continues to hold in the generalized sense
that the mean and variance of the SELR statistic are independent of the nuisance
parameters to the first order. As pointed out in Section 2, whenA0 in H0s is known
(or more generally in a parametric form), we can make a simple transformation (or
use some bias reduction technique) to kill the bias. Theorems 3 and 4 indicate
that the SELR statistics continue to apply to the case where the distribution
of the stochastic errorε is completely unknown and, furthermore, there are
many nuisance parameters in null hypotheses (see Section 3.4). In particular, the
stochastic errors are allowed to be heteroscedastic and unknown. This is a useful
generalization of the results in Fan, Zhang and Zhang (2001) where the distribution
of ε is essentially known. In particular, if the variance is heteroscedastic with
var(ε|U) = σ 2(U), they have to rely on the knowledge ofσ 2(·) to construct the
likelihood ratio statistics. This drawback is repaired by the empirical likelihood
ratio method, while their Wilks phenomenon is inherited.

3.3. Asymptotic power. To demonstrate the effectiveness of the sieve empiri-
cal likelihood method, we consider, for simplicity, the test statistic for the prob-
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lem (2.12) under the contiguous alternativeAn(·) → 0, with A′′
n(·) being bounded;

that is, we allow the coefficient functions to be close to the null hypothesis, but
still in the class of functions with bounded and continuous second derivatives.
This is a much weaker restriction than the contiguous alternatives of the form
An(u) = anB0(u) for a sequencean → 0 and a givenB0, considered by many
authors [e.g., Eubank and Hart (1992), Eubank and LaRiccia (1992), Hart (1997)
and Inglot and Ledwina (1996)]. The latter implicitly assumes thatA′

n(u) → 0 and
A′′

n(u) → 0, which are too restrictive for nonparametric applications.
We begin with the following notation. Let

W ∗
1n = 1

n

n∑
i �=k

K∗
h(Ui − Uk)G(εi)V

−1(Uk)

(3.5)
× Xτ

i �−1(Uk)XkA(Uk)
τXk

∂G(εk)

∂ε
,

�i = ∂G(εi)

∂ε
− E

[
∂G(εi)

∂ε

∣∣∣Ui

]
,(3.6)

W ∗
2n = 1

n

n∑
i �=k

K∗
h(Ui − Uk)�

τ
i V

−1(Ui)�kA(Ui)
τ

(3.7)
× XiX

τ
i �−1(Uk)XkX

τ
k A(Uk),

W ∗
3n = 1

n

n∑
i �=k

K∗
h(Ui − Uk)�

τ
i V

−1(Uk)E

[
∂G(εk)

∂ε

∣∣∣Uk

]
(3.8)

× A(Ui)XiX
τ
i �−1(Uk)XkX

τ
kA(Uk).

Then, following the same arguments used in Fan, Zhang and Zhang (2001), we
can derive the asymptotic powerl(H0s |G) via the next theorem.

THEOREM 5. Assume that A0 ≡ 0 and that the underlying coefficient A = An

has twice continuous derivatives and satisfies nhEA(U)τXXτA(U) = O(1),

maxu ‖A(u)‖ → 0 and maxu ‖A′′(u)‖ = O(1) as n → ∞. Assume that G is twice
continuously differentiable. Then under the conditions of Theorem 1,

2l(H0s |G)

= p|�|
h

K∗(0) + nE{D(U)τV −1(U)D(U)A(U)τXXτA(U)}(1+ o(1)
)

− nh4

4
E{D(U)τC(U)D(U)A′′(U)τXXτA′′(U)}

×
∫ ∫

t2(s + t)2K(t)K(s + t)
(
1+ µ−1

2 t (s + t)
)
dt ds

(
1+ o(1)

)
+ (1+ op(h1/2)

){T ∗
n + 2W ∗

1n + W ∗
2n + 2W ∗

3n} + op(h−1/2),
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where D, V, C and K∗ are defined in Section 3.1.

Using the above result, similar to that in Fan, Zhang and Zhang (2001), it can
easily be shown that underH0s the SELR can detect the alternative with rate
n−4/9 whenh = c∗n−2/9 for some constantc∗. This rate is optimal in the ordinary
nonparametric regression setting. Note that the above result continues to hold for
the composite null hypothesis testing problem (2.13) whenA0 is a set of linear
functions.

3.4. Remarks on practical implementations. There are a couple of issues
arising from practical implementations of the procedure, including computing
P -values, choice of bandwidths, choice of the support ofU and bias reduction.
We now briefly discuss them.

P -values depend on the null distributions of test statistics. The convergence
of the null distributions of the SELR statistics is expected to be slow. Thus, we
do not suggest using the asymptotic null distributions. Instead, we use simulation
methods (a form of bootstrap). Thanks to Theorems 3 and 4, we can simulate
the null distributions by fixing nuisance parameters or functions under the null
hypothesis at certain values of interest. This will give better approximations to the
null distributions. We have conducted an intensive simulation study in Section 4.
The results show that for a sample size of 200 or more, the approach gives very
reasonable approximations of the null distribution.

The SELR test depends on the choice of bandwidthh. It can be regarded as a
family of test statistics indexed by the bandwidthh. A thorough discussion of this
subject is beyond the scope of this study. Inspired by the adaptive Neyman test
in Fan (1996), which has been demonstrated to be adaptive minimax by Fan and
Huang (2001), one can possibly use the following criterion to choose a bandwidth:
For some constantsa, b > 0, a bandwidthĥ ∈ [n−a, n−b] is selected to give a
maximum value of

r0l(H0s |G) − dn(h)√
2dn(h)

,

wherer0 is the normalizing constant anddn(h) is the degrees of freedom (see
Theorem 4). This results in a multi-scale test:

r0l(H0s |G) − dn(ĥ)√
2dn(ĥ)

= max
h∈[n−a,n−b]

r0l(H0s |G) − dn(h)√
2dn(h)

.

Such an idea was proposed in Fan, Zhang and Zhang [(2001), page 175] and in
Horowitz and Spokoiny (2002) for the median regression problem and was shown
to possess the adaptive optimal rate of convergence [Horowitz and Spokoiny
(2002)]. It has also been studied and implemented by Zhang (2003). In many
empirical applications, the bandwidths used for nonparametric function estimation
have also been frequently employed for nonparametric hypothesis testing. The
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difference between the optimal bandwidthO(n−1/5) for function estimation and
O(n−2/9) for hypothesis testing is hardly noticeable for practical sample sizes.

When U has an unbounded support, we can not estimate the coefficient
functionsA(·) at the tails with reasonably good accuracy. In other words, we do
not have enough data to test on the form of the coefficient functions at the tails.
Due to this limitation, a reduced problem needs to be considered: test on the form
of the coefficient functionsA(·) on a given interval. Our procedures continue to
apply and|�| becomes the length of the given interval.

When A0 in (2.10) is of parametric formA(·, θ) and is nonlinear, the local
linear estimate will be biased even under the null hypothesis. The bias is killed
by requiringnh9/2 → 0 in the second part of Theorem 4. This is an unrealistic
assumption, as pointed out by a referee. However, as discussed in Section 2, we
should employ a bias reduction technique before applying the SELR test. Letθ̂ be
a root-n consistent estimator under the parametric model. The error of parametric
fit is usually negligible in nonparametric applications. By regardingA(·, θ̂ ) asA0
in (2.10), we can deduce the problem to (2.12). For problem (2.12), the local
linear fit does not have any bias under thenull hypothesis. Hence, the condition
nh−9/2 → 0 is not required to kill bias. The bias reduction is also helpful in
reducing approximation errors of the null distribution.

In summary, for practical implementations, the following steps are recom-
mended:

1. Apply the bias correction method as in the last paragraph.
2. Choose an interval where functions are to be tested. This is the set�.
3. Choose an appropriate bandwidth, using the methods suggested above to

construct a SELR.
4. Apply the bootstrap method above to obtain a null distribution of the test

statistic.

4. Simulation. In this section the performance of the SELR test is evaluated
for a simplified conditional regression model by simulation. In this study, several
bandwidths (i.e.,h = c0n

−2/9, with c0 = 1 and 1.5 for the sample sizen = 100;
with c0 = 0.5,1,1.5 and 2 forn = 200 and 400; withc0 = 0.55,1,1.5 and 2 for
n = 800; and withc0 = 0.2,0.35,0.55 and 2 forn = 1600) are used to represent
widely varying degrees of smoothness. Due to space limitation, only part of the
results is presented. The triweight function(1 − t2)3+ is selected as the kernel
function in the proposed test.

For simplicity of exposition and computation, we take the simple model,

Y = a1(U) + ε,

whereE[ε|U ] = 0 [i.e.,G = ε in (1.4)] andU is uniformly distributed over[0,1],
though the results hold for more general varying-coefficient models. Consider the
problem of nonparametric testing of significance:

H0 :a1(·) ≡ 0.
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The SELR test ofH0 can be expressed as

l(
0s |G) =
n∑

i=1

n∑
j=1

wh(Ui,Uj ) log
(
1+ α(Uj ,0)τ Gih(Uj ,0)

)
,

whereα(Uj ,0) satisfies

n∑
i=1

wh(Ui,Uj )
Gih(Uj ,0)

1+ ατ
n(Uj ,0)Gih(Uj ,0)

= 0

with

Gih(Uj ,0) = Yj ×
(

1,
Ui − Uj

h

)τ

.

Note that Theorems 3 and 4 imply that the null distribution ofl(
0s |G) is
asymptotically independent of the underlying distribution ofε. So without loss
of generality, we assume that givenU the stochastic error follows a normal
distribution.

To examine the effect of the possible heteroscedasticity ofε on the above null
distributions, the conditional variance ofε is taken to have the form(1 + c1U

2),

where the constantc1 represents the noise level. By generating 100 independent
samples of(Y,U) with sample sizen, we calculate the null distributions for
several quite different values ofc1, which represent widely varying degrees of
heteroscedasticity ofε. This results in 100 i.i.d. simulated values ofl(
0s |G) for
each combination ofn andc1. The corresponding sample means and variances of
l(
0s |G) summarize the distributions of the test statistics under the null hypothesis
and are reported in Table 1. They do not strongly depend on the choice of the
constantc1. As an illustration, the resulting 24 empirical distributions from the
casesn = 400 andn = 800 are depicted in Figure 1. Clearly they are very close
whenc1 is varying from 0 to 105 for each case of(n,h). As expected, they should
depend on the bandwidthh. This suggests that the asymptotic null distribution
of l(
0s |G) is not very sensitive to the heteroscedasticity of the stochastic
error. To check whether the scaled SELR statistics follow asymptotically the
χ2-distribution, we equate the mean and variance of the scaled SELR,r0l(
0s |G),

to the corresponding mean and variance of a chi-squared random variable, sayχ2
d0

,

with degrees of freedomd0. This results inr0 = 2µ/σ 2 andd0 = 2µ2/σ 2 with µ

andσ 2 the simulated mean and variance ofl(
0s |G). We calculated further the
empirical distribution of the scaled SELR and compared it with theχ2

d0
-distribution

for each combination of(n,h). Since the empirical distributions do not depend
sensitively on the conditional variance function, only one of them was used for
comparison. As an example, Figure 2 depicts the two distributions for the case that

(n,h) = (800,1.5× 800−2/9) and c1 = 1.
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TABLE 1
Summary of simulation results. µ and σ are the simulated mean and

standard deviation of the SELR statistic based on 100repetitions.
n is the sample size and h is the bandwidth

n h µ σ µ σ µ σ

Conditional variances

1 1+ 4u2 1+ 10u2

100 0.35938 1.868 1.221 2.161 1.788 1.954 1.252
100 0.53907 1.754 1.480 1.767 1.642 1.646 1.219

Conditional variances

1 1+ 10u2 1+ 100u2

200 0.15404 4.371 2.495 4.393 2.468 3.973 2.334
200 0.30808 2.463 1.527 2.263 1.421 2.215 1.413
200 0.46212 1.655 1.124 1.698 1.130 1.329 0.840
200 0.61616 1.376 1.081 1.519 1.242 1.395 0.976
400 0.13205 5.019 2.019 4.487 1.977 4.459 1.968
400 0.26410 3.081 1.720 2.681 1.361 2.965 1.433
400 0.39615 2.007 1.271 1.961 1.246 2.192 1.307
400 0.52820 1.867 1.492 1.622 1.126 1.743 1.501

Conditional variances

1 1+ u2 1+ 105u2

800 0.12452 5.080 1.774 4.950 1.611 4.807 1.557
800 0.22640 3.092 1.354 3.191 1.457 3.093 1.455
800 0.33959 2.220 1.171 2.103 1.165 2.038 1.080
800 0.45279 1.785 1.078 1.627 1.069 1.699 1.069

They are indeed very close. This demonstrates empirically the accuracy of the
approximation of the null distribution of the proposed SELR statistic by using
the χ2-distribution. We also conducted a similar simulation study for testing
homogeneity:

H0p :a1(·) = θ.

It again shows that the Wilks phenomenon continues to hold for some composite
null hypothesis testing problem. The details are not reported here.

To conclude this section, the power functions of the proposed test ofH0 are
estimated and compared to the commonly usedF -type test statistic,

F0s = (RSS0− RSS1)/RSS1

[see, e.g., Fan, Zhang and Zhang (2001), page 155 for the definition], based on 100
simulations for the sample sizesn = 200,800 under two sequences of alternatives
indexed byr . One is

H1 :a1(u) = r(u − 0.5), r = 0.1,0.2, . . . ,(4.1)
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FIG. 1. Comparisons of the empirical null distributions of the SELR statistics based on 100
simulations for different conditional variance functions. The solid curve, dotted curve, and dashed
curve correspond to the conditional variances: 1, 1 + 10u2 and 1 + 102u2, respectively, when
n = 400;and to the conditional variances: 1, 1+ u2 and 1+ 105u2, respectively, when n = 800.

and the other is

H1 :a1(u) = r
(
2 sin2(2πu) − 1

)
, r = 0.1,0.2, . . . .(4.2)

Here we take 1+ c1u
2 as the conditional variance of the stochastic error given

U = u with c1 = 0,1,10,102. Note that the powers of the SELR andF -type
test statistics have the same optimal raten−2/9. Thus, in this study for simplicity
we select the bandwidth by comparing several empirically specified bandwidths.
We find that the combinations ofh = n−2/9 andn = 200 andh = 1.5 × n−2/9

and n = 800 give relatively reasonable power functions for the two alternative
sequences (4.1) and (4.2). For critical values given in Table 2, the sizes of the SELR
andF -test are reported. It is evident that the sizes of the SELR test are adaptive
automatically to the conditional variance function, while those of theF -type of test
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FIG. 2. The solid stairstep curve is the empirical null distribution of the scaled sieve empirical
likelihood ratio statistic for n = 800,h = 1.5 × 800−2/9, c1 = 1 based on 100 repetitions, and the
dashed curve is the chi-squared distribution with 6.51 degrees of freedom.

are not. This is consistent with our theoretical results and reflects one advantage of
the SELR test.

TABLE 2
Empirical sizes of SELR and F -type tests. The probabilities are computed based on 100

simulations; h = n−2/9 for n = 200and h = 1.5n−2/9 for n = 800

Conditional variances Conditional variances

1 1 + u2 1 + 10u2 1 + 100u2 1 1 + u2 1 + 10u2 1 + 100u2

n cr Sizes of SELR test cr Sizes of F -type test

200 5.20 0.05 0.05 0.07 0.07 0.0705 0.05 0.05 0.09 0.09
200 4.47 0.08 0.09 0.09 0.09 0.0579 0.09 0.11 0.13 0.15
200 3.16 0.22 0.25 0.25 0.24 0.0375 0.25 0.28 0.34 0.35
800 5.11 0.02 0.02 0.02 0.01 0.0134 0.02 0.05 0.09 0.09
800 4.59 0.04 0.03 0.03 0.02 0.0132 0.03 0.05 0.09 0.09
800 3.65 0.09 0.09 0.09 0.08 0.0109 0.09 0.10 0.12 0.17
800 2.81 0.20 0.21 0.21 0.19 0.00776 0.20 0.22 0.27 0.29
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FIG. 3. Comparisons of the power functions of the SELR (solid curves) and F -type tests
(dashed curves) of H0 :a1(u) = 0 for n = 200 and the bandwidth h = 200−2/9, evaluated at the
alternatives (4.1) for different conditional variance functions.

Figures 3–5 present power functions at the significance levels shown in Table 2.
We have conducted simulations on much more different settings and these are not
reported to save space. As expected, the power deteriorates as the level of noisec1

increases for both the SELR andF -type tests. Figures 3 and 5 indicate that the
SELR test may significantly out-perform theF -type test in terms of power under
the alternative

H1 :a1(u) = r(u − 0.5)

when there is heteroscedasticity. Similarly, Figure 4 implies that when the level
of heteroscedasticity is low, theF -type test can have better power than the
SELR test, and can perform much worse than the SELR test when the level of
noise (heteroscedasticity) is high. This phenomenon can be explained by using
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FIG. 4. Comparisons of the power functions of the SELR (solid curves) and F -type tests
(dashed curves) of H0 :a1(u) = 0 for n = 200 and the bandwidth h = 200−2/9, evaluated at the
alternatives (4.2) for different conditional variance functions.

Theorem 5. For the simple modelY = a1(U) + ε, Theorem 5 gives

2l(H0s |G) = p

h
K∗(0) + nE{a1(U)σ−2(U)}

+ o(1) + (1+ op(h1/2)
){T ∗

n + 2W ∗
1n}.

(4.3)

Note that if the functionσ(U) is known, we can make the transformation

Y ′ = Y/σ(U) + ε/σ (U)

and obtain the same asymptotic expansion as in (4.3) for the SELR based on the
above transformed model. This means that (4.3) is adaptive toσ−2(U) in the sense
that we can testH0s :a1(·) = 0 asymptotically equally well whether or not we
know the conditional variance ofε. In contrast, theF -type test does not have this
property.
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FIG. 5. Comparisons of the power functions of the SELR (solid curves) and F -type tests (dashed
curves) of H0 :a1(u) = 0 for n = 800 and the bandwidth h = 1.5 × 800−2/9, evaluated at the
alternatives (4.1) for different conditional variance functions.

5. Technical conditions and proofs.

5.1. Technical conditions. Define

An(u0, β) = 1

n

n∑
i=1

Kh(Ui − u0)Gih(u0, β),

Zn(u0, β) = max
1≤j≤n

‖Gjh(u0, β)‖,

Vn(u0, β) = 1

n

n∑
i=1

Kh(Ui − u0)Gih(u0, β)Gτ
ih(u0, β),

Vn(u0, α,β) = 1

n

n∑
i=1

Kh(Ui − u0)
Gih(u0, β)Gτ

ih(u0, β)

1+ ατ Gih(u0, β)
,
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Bn(u0, α,β) = 1

n

n∑
i=1

Kh(Ui − u0)

1+ ατ Gih(u0, β)

∂Gih(u0, β)

∂βτ
,

Cn(u0, α,β) = 1

n

n∑
i=1

Kh(Ui − u0)

(1+ ατ Gih(u0, β))2

∂Gih(u0, β)

∂βτ
αGτ

ih(u0, β),

Dn(u0, α,β) = 1

n

n∑
i=1

Kh(Ui − u0)

1+ ατ Gih(u0, β)

∂2Gih(u0, β)

∂β ∂βτ
,

En(u0, α,β) = 1

n

n∑
i=1

Kh(Ui − u0)

(1+ ατ Gih(u0, β))2

∂Gih(u0, β)

∂βτ
αβτ ∂Gih(u0, β)τ

∂β
.

Here and hereafter the norm of a matrixW = (wij ) is defined by‖W‖ =√∑n
i,j w2

ij . Let r0 denote an arbitrary positive constant. Let
0 be a compact subset

of R2p such thatβ0 is an inner point of
0. Define

F0 = {
K
(
(· − u0)/h

)
I {Gh(u0, β)τψ > δ} :u0 ∈ �,‖β − β0‖ ≤ r0,

‖ψ‖ = 1,0≤ δ ≤ 1
}
,

whereI {·} is the indicator function,

F1 = {
K
(
(· − u0)/h

)
Gh(u0, β) :u0 ∈ �,‖β − β0‖ ≤ r0

}
,

F2 = {
K
(
(· − u0)/h

)
Gh(u0, β)Gτ

h(u0, β)] :u0 ∈ �,‖β − β0‖ ≤ r0
}
,

F3 =
{
K
(
(· − u0)/h

)∂Gh(u0, β)

∂βτ
:u0 ∈ �,β ∈ 
0

}
.

Let Pn denote the empirical distribution of{(Ui,Xi, Yi)}, andN(δ,L1(Pn),Fj ),

j = 0,1,2,3, the covering numbers [see, e.g., Pollard (1984), page 25 for the
definition]. We impose the following technical conditions:

(K0) K has support[−1,1] and maxt K(t) < ∞.
(U0) The density ofU is Lipschitz continuous and bounded away from zero.
(A1) E[G(ε)|U ] = 0 andε is independent ofX givenU .
(A2) There exist a constantξ ≥ 4 and a functionF(Y,X) satisfying

sup
|t|≤1

‖β−β0‖≤δ0

∥∥G(Y − βτZ(X, t)
)∥∥‖Z(X, t)‖ ≤ F(Y,X),

sup
u

E[F(Y,X)ξ |U = u] < ∞.

(A3) For 1≤ k ≤ k0,

sup
‖β−β0‖≤r0
u0∈�,|t|≤1

E
[
G2

k

(
Y − βτZ(X, t)

)‖Z(X, t)‖2|U = u0 + th
]= O(1).
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(A4) There existc0(Pn) and some positive constantsc0 and w0 such that
Ec0(Pn) → c0 and

N
(
δ,L1(Pn),F0

)≤ c0(Pn)(hδ)−w0.

There existc1(Pn) and some positive constantsc1 and w1 such that
Ec1(Pn) → c1 and

N
(
δ,L1(Pn),F1

)≤ c1(Pn)(hδ)−w1.

(A5) Uniformly for u0 ∈ �, ‖t‖ ≤ 1, ‖β − β0‖ → 0 andh → 0,

E

{
G

(
Y − βτZ

(
X,

U − u0

h

))∣∣∣U = u0 + th

}
= O(h2) + O(‖β − β0‖).

(A6) There existc2(Pn) and a positive constantc2 such thatEc2(Pn) → c2 and

N
(
δ,L1(Pn),F2

)≤ c2(Pn)(hδ)−w2.

(A7) sup‖β−β0‖≤r0,u0∈�,|t|≤1 E[G4
k(Y − βτZ(X, t))‖Z(X, t)‖4|U = u0 + th] =

O(1).

(A8) Uniformly for ‖β − β0‖ → 0 andh → 0,

E

{
G

(
Y − βτZ

(
X,

U − u0

h

))
Gτ

(
Y − βτZ

(
X,

U − u0

h

))∣∣∣U}

= V (u0) + O(h2) + O(‖β − β0‖).
(A9) V (u0) and�(u0) defined in Section 3.1 are Lipschitz continuous inu0 ∈ �.

Their minimum eigenvalues are uniformly positive inu0 ∈ �.

(A10) For anyρ > 0, there exists a constantc(ρ) > 0 such that whenh is small
enough,

inf
β∈
0

‖β−β0‖≥ρ

‖EKh(U − u0)Gh(u0, β)‖ > c(ρ).

For a positive sequenceρn1 → 0 and a small enough constantρ2, as
n → ∞,

inf
ρn1≤‖β−β0‖≤ρ2

‖EKh(U − u0)Gh(u0, β)‖ ≥ ρn1 + O(h2).

(B1) There exist a constantν ≥ 2 and a functionF4(Y,X) such that

sup
u

E[Fν
4 (Y,X)|U = u] < ∞,

sup
u0,β

∥∥∥∥∂Gh(u0, β)

∂βτ

∥∥∥∥I (|U − u0| ≤ h) ≤ F4(Y,X).

(B2) For a constantc,

N
(
δ,L1(Pn),F3

)≤ c(hδ)−w3.
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(B3) Uniformly for u0 ∈ � and‖β − β0‖ ≤ rn = o(h1/2),

E

{
Kh(U − u0)

∂Gh(u0, β)

∂βτ

}
= D(u0) ⊗ (

S ⊗ �(u0)
)+ o(h1/2).

(B4) sup‖β−β0‖≤r0,u0∈�,|t|≤1 E[‖∂Gh(u0, β)/∂βτ‖2|U = u0 + th] < ∞.

(B5) There exists a functionF5(y, x) such that

sup
u

E[F 2
5 (Y,X)|Y = u] < ∞,

sup
u0∈�

‖β−β0‖≤r0

∥∥∥∥∂
2Gh(u0, β)

∂β ∂βτ

∥∥∥∥I (|U − u0| ≤ h) ≤ F5(Y,X).

(B6) There exists a functionF6 such that supu E[F6(ε,X)‖X‖2|U = u] < ∞,
and that for|U − u0| ≤ h and

ε∗ = ε + h2

2
A′′τ (u0 + s(U − u0)

)X(U − u0)
2

h2

+ (β − β0)
τZ

(
X,

U − u0

h

)

we have ∥∥∥∥∂G(ε∗)
∂ε

∥∥∥∥≤ F6(ε,X)

uniformly for |s| ≤ 1, ‖β − β0‖ ≤ r0 andu0 ∈ �.

We would like to make some comments on the conditions above. Suppressing
dependence onX, we denoteZ(t) = Z(X, t). Suppose for somer0 > 0 there exist
integrable functionsFj (Y,X), j = 1,2,3, such that

sup
‖β−β0‖≤r0,t

K ′(t)
∥∥G(Y − βτZ(t)

)∥∥‖Z(t)‖ ≤ F1(Y,X),

sup
‖β−β0‖≤r0,t

K(t)

∥∥∥∥∂G(Y − βτZ(t))

∂ε

∥∥∥∥‖Z(t)‖(‖Z′(t)‖ + ‖Z(t)‖) ≤ F2(Y,X),

sup
‖β−β0‖≤r0,t

K(t)
∥∥G(Y − βτZ(t)

)∥∥‖Z′(t)‖ ≤ F3(Y,X).

Then for some positive constantc,∥∥∥∥K
(

u − u1

h

)
Gh(u1, β1) − K

(
u − u2

h

)
Gh(u2, β2)

∥∥∥∥
≤ c{F1(Y,X) + F2(Y,X) + F3(Y,X)}

{ |u1 − u2|
h

+ ‖β1 − β2‖
}
.

Thus the second part of condition (A4) holds ifEFj(Y,X) < ∞, j = 1,2,3.

Similar remarks can be made about conditions (A6) and (B2).
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As pointed out in Section 2,EKh(U − u0)Gh(u0, βA) = 0, u0 ∈ �, can
be viewed as certain local estimating equations associated with the equations
E[G(Y − A(U)τX)|U = u0] = 0, u0 ∈ �, asA(u) is expanded around eachu0.

In this sense, the first part of (A10) implies that whenβA (coefficients of
the approximation ofA) is away from the true valueβ0 (coefficients of the
approximation ofA0), ‖EKh(U − u0)Gh(u0, β)‖ is away from 0. This is a little
stronger than the requirement thatE[G(Y − Aτ(U)X)|U ] = 0 if and only if A

is equal to the true value. The second part of (A10) is a local condition which
says locally‖EKh(U −u0)Gh(u0, β)‖ is bounded below by the norm of the linear
function ofβ near the true valueβ0. For instance, assume the first component ofG

is Y −Aτ(U)X and assume thatE[XXτ |U = u] is positive definite uniformly inu.

Then we have

‖EKh(U − u0)Gh(u0, βA)‖
≥
∥∥∥∥EKh(U − u0)

[
Y − βτ

AZ

(
X,

U − u0

h

)]
⊗ Z

(
X,

U − u0

h

)∥∥∥∥
= O(h2) + (β0 − βA)τ

×
∫

K(t)E[Z(X, t)Zτ (X, t)|U = u0 + th]f (u0 + th) dt

≥ c‖β0 − βA‖ + O(h2),

providedh is small enough.

5.2. Proofs. Note that Lemmas 1–8 are used in this section and their proofs
can be found in the Appendix.

PROOF OFTHEOREM 1. First of all, using Lemma 3, we obtain

β̂(u0) − β0 = op(h1/2 ∧ n−1/ξ ), α̂(u0) = op(h1/2 ∧ n−1/ξ ).

Furthermore, by the definition of̂α (= α̂(u0)) andβ̂ (= β̂(u0)), we have

0 = 1

n

n∑
i=1

Kh(Ui − u0)
Gih(u0, β̂)

1+ α̂τ Gih(u0, β̂)
,

0 = 1

n

n∑
i=1

Kh(Ui − u0)
α̂τ ∂Gih(u0, β̂)/∂βτ

1+ α̂τ Gih(u0, β̂)
.

Then invoking the Taylor expansion we have

0 = An(u0, β0) − Vn(u0, αn1, βn1)α̂

+ {Bn(u0, αn1, βn1) − Cn(u0, αn1, βn1)}(β̂ − β0),

0 = {Bn(u0, αn2, βn2) − Cn(u0, αn2, βn2)}α̂
+ {Dn(u0, αn2, βn2) − En(u0, αn2, βn2)}(β̂ − β0),
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whereαnj , j = 1,2, are between̂α and 0 andβnj , j = 1,2, are between̂β andβ0.

By using Lemmas 4–8, the above equations become

−An(u0, β0) = −(1+ op(h1/2)
)
V (u0) ⊗ (

S ⊗ �(u0)
)
α̂

+ {op(h1/2) + D(u0) ⊗ (
S ⊗ �(u0)

)}
(β̂ − β0),

0 = {
op(h1/2) + D(u0) ⊗ (

S ⊗ �(u0)
)}

α̂ + op(h1/2)(β̂ − β0).

It follows that

(β̂ − β0) = −[(D(u0)
τV −1(u0)D(u0)

)−1
D(u0)V

−1(u0)

⊗ (
S−1 ⊗ �(u0)

−1)+ op(h1/2)
]
An(u0, β0),

α̂ = [
V −1(u0) − V −1(u0)

(
Dτ(u0)V

−1(u0)D(u0)
)−1

× D(u0)D
τ (u0)V

−1(u0) + op(h1/2)
]
An(u0, β0).

Observe that forU∗
i = u0 + s(Ui − u0), 0≤ s ≤ 1, and for

ε∗
i = Yi − Aτ(Ui)Xi + 1

2
A′′(U∗

i )Xi(Ui − u0)
2

+ (β − β0)
τZ

(
Xi,

Ui − u0

h

)

we have

An(u0, β) = 1

n

n∑
i=1

Kh(Ui − u0)G(ε∗
i ) ⊗ Z

(
Xi,

Ui − u0

h

)

= 1

n

n∑
i=1

Kh(Ui − u0)G(εi) ⊗ Z

(
Xi,

Ui − u0

h

)

+ h2

2
Op(1) + Op(‖β − β0‖),

where the last equality follows from the condition (B6) (orA is linear). Now the
proof can be completed by some simple calculations.�

PROOF OF THEOREM 2. Note that under the conditions of Theorem 1 we
haveh → 0 andnh3/2 → ∞. Recall that givenU , ε andX are independent by
condition (A1). By the Taylor expansion and Lemma 4 there are matricesV ∗

n (Uj )

such that asn → ∞, uniformly in Uj ,

V ∗
n (Uj ) = V (Uj ) ⊗ (

S ⊗ �(Uj)
)(

1+ op(h1/2)
)
,

α̂(Uj ) = V ∗
n (Uj )

−1 1

n

n∑
i=1

Kh(Ui − Uj)Gih(Uj , β̂).
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The last two equalities lead to

l(G) =
n∑

j=1

α̂(Uj )
τ

n∑
i=1

Kh(Ui − Uj)∑n
m=1 Kh(Um − Uj)

Gih(Uj , β̂)

− 1

2

n∑
j=1

α̂(Uj )
τVn

(
Uj, s

∗α̂(Uj ), β̂
)
α̂(Uj )

=
n∑

j=1

α̂(Uj )
τ

{
1∑n

m=1 Kh(Um − Uj)
V ∗

n (Uj )(5.1)

− 1

2
Vn

(
Uj , s

∗α̂(Uj , β̂)
)}

α̂(Uj )

= 1

2

(
1+ op(h1/2)

) n∑
j=1

f −1(Uj )α̂(Uj )
τ [V (Uj ) ⊗ (

S ⊗ �(u0)
)]

α̂(Uj ),

where 0≤ s∗ ≤ 1, andVn(u,α,β) is defined in Section 5.1. Note that we draw
out the factor 1+ op(h1/2) from the inside of the summation in (5.1) because
the op(h1/2) is uniform with respect toUj , 1 ≤ j ≤ n, and α̂(Uj )

τ [V (Uj ) ⊗
(S ⊗ �(Uj))]α̂(Uj )/α̂(Uj )

τ α̂(Uj ), 1 ≤ j ≤ n, are bounded away from 0 and∞
[see condition (A9)]. It follows from the definition ofC(u) in Section 3.1 that
C(u)V (u)C(u) = C(u). Thus, combining (5.1) and Theorem 1, we obtain

l(G) =
(

1

2
+ op(h1/2)

) n∑
j=1

1

n

n∑
i=1

Kh(Ui − Uj)
(
C(Uj )G(εi)

)τ

⊗
(

�−1(Uj )Xi

µ−1
2 (Ui − Uj)�

−1(Uj )Xi/h

)τ

× 1

f (Uj )

[
V (Uj ) ⊗ (

S ⊗ �(Uj)
)]

× 1

n

n∑
k=1

Kh(Uk − Uj)
(
C(Uj )G(εk)

)

⊗
(

�−1(Uj )Xk

µ−1
2 (Uk − Uj)�

−1(Uj )Xk/h

)
+ ζn

= (
1+ op(h1/2)

)
× 1

2n2

n∑
i=1

n∑
k=1

n∑
j=1

Kh(Ui − Uj)Kh(Uk − Uj)f
−1(Uj )

× Gτ(εi)C(Uj )G(εk)

×
(

1+ µ−1
2

(Ui − Uj)(Uk − Uj)

h2

)
× Xτ

i �−1(Uj )Xk + ζn,

(5.2)
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where ζn = 0 whenA0 is linear, and otherwiseζn = Op(nh4). The last term
in (5.2) can be decomposed as follows:

(
1+ op(h1/2)

)
L(G) = Tn11 + Tn121+ Tn122+ Tn21 + Tn22 + ζn(5.3)

where

Tn11 = 1

n2

n∑
i=1

n∑
j=1

Kh(Ui − Uj)
2f −1(Uj )

× {Gτ(εi)C(Uj )G(εi) − E[Gτ(εi)C(Uj )G(εi)|(Ui,Uj )]}

×
(

1+ µ−1
2

(Ui − Uj)
2

h2

)
Xτ

i �−1(Uj )Xi,

Tn121 = 1

n2

n∑
i=1

n∑
j=1

Kh(Ui − Uj)
2E[Gτ(εi)C(Uj )G(εi)|(Ui,Uj )]

×
(

1+ µ−1
2

(Ui − Uj)
2

h2

)

× {Xτ
i �−1(Uj )Xi − E[Xτ

i �−1(Uj )Xi |(Ui,Uj )]}f −1(Uj ),

Tn122 = 1

n2

n∑
i=1

n∑
j=1

Kh(Ui − Uj)
2E[Gτ(εi)C(Uj )G(εi)|(Ui,Uj )]

×
(

1+ µ−1
2

(Ui − Uj)
2

h2

)

× E[Xτ
i �−1(Uj )Xi |(Ui,Uj )]f −1(Uj ),

Tn21 = 1

n2

∑
i �=k

∑
j /∈{i,k}

Kh(Ui − Uj)Kh(Uk − Uj)G
τ (εi)C(Uj )G(εk)

×
(

1+ (Ui − Uj)(Uk − Uj)µ
−1
2

h

)
Xτ

i �−1(Uj )Xk,

Tn22 = K(0)

n2h2

n∑
i �=k

{
K

(
Uk − Ui

h

)
Gτ(εi)C(Uj )G(εk)X

τ
i �−1(Ui)Xkf

−1(Ui)

+ K

(
Ui − Uk

h

)
Gτ(εi)C(Uk)G(εk)X

τ
i �−1(Uk)Xkf

−1(Uk)

}
.
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Observe that asnh3/2 → ∞, h → 0,

Tn122= K(0)2

(nh)2

n∑
i=1

tr
(
C(Ui)V (Ui)

)
pf −2(Ui)

+ 1

n2

∑
i �=j

Kh(Ui − Uj)
2 tr
(
C(Uj )V (Ui)

)

×
(

1+ µ−1
2

(Ui − Uj)
2

h2

)
tr
(
�−1(Uj )�(Ui)

)(
f (Ui)f (Uj)

)−1

= K(0)2

nh2

{
E

[
tr(C(U)V (U))

f 2(U)

]
+ Op(n−1/2)

}
+ �n

= op(h−1/2) + �n

(5.4)

where

�n = 1

n2

∑
i �=j

Kh(Ui − Uj) tr
(
C(Uj )V (Ui)

)

×
(

1+ µ−1
2 (Ui − Uj)

2

h2

)
tr
(
�−1(Uj )�(Ui)

)(
f (Ui)f (Uj)

)−1

= (k0 − 1)p|�|
h

∫
K2(t)(1+ µ−1

2 t2) dt + op(h−1/2).

This is because

E�n = (
1+ O(h)

)p
h

∫
K(t)2(1+ µ−1

2 t2) dtE
{
tr
(
C(U)V (U)

)
f −1(U)

}

= p(k0 − 1)

h

(
1+ O(h)

)|�|
∫

K2(t)(1+ µ−1
2 t2) dt,

Var(�n) ≤ O(n−1h−2) = o(h−1).

By a similar argument, we have the following equalities:

Tn121= K(0)2

(nh)2

n∑
i=1

tr
(
C(Ui)V (Ui)

)

× (
Xτ

i �−1(Ui)Xi − E[Xτ
i �−1(Ui)Xi |Ui])f −1(Ui)

+ 1

n2

∑
i �=j

Kh(Ui − Uj)
2 tr
(
C(Uj )V (Uj)

)(
1+ µ−1

2
(Ui − Uj)

2

h2

)

× {Xτ
i �−1(Uj )Xi − E[Xτ

i �−1(Uj )Xi |(Ui,Uj )]}f −1(Uj )

= K(0)2

nh2 Op(n−1/2) + op(h−1/2),

(5.5)



1890 J. FAN AND J. ZHANG

Tn22 = op(h−1/2),(5.6)

Tn21 = op(h−1/2) + n − 2

n2

∑
i �=k

Gτ (εi)�ikhG(εk),(5.7)

where�ikh is defined in (3.2) and the last equality follows from Hoeffding’s
decomposition for the variance ofU -statistics. Now (5.3)–(5.7) imply (3.3).
Equation (3.4) can be proved by a similar argument by showing that

l(A0|G) = (
1+ op(h1/2)

)
× 1

2n2

n∑
j=1

Aτ
n(Uj ,β0)

[
V (Uj ) ⊗ (

S ⊗ �(Uj)
)]−1

An(Uj ,β0).

The proof is complete. �

PROOF OF THEOREM 3. Invoking the asymptotic representations in Theo-
rem 2, we need only to prove the asymptotic normality ofTn. To this end, we first
calculate the variance ofTn,

Var(Tn) = (2+ o(1))

n(n − 1)
E{Gτ(ε1)�12hG(ε2)}2

= (2+ o(1))

n(n − 1)
tr{E[�12hG(ε2)G

τ (ε2)�
τ
123hG(ε1)G

τ (ε1)]}

= 2(1+ O(h))

n(n − 1)
tr{E[K∗

h(U2 − U1)
2C(U1)G(ε2)G

τ (ε2)C(U1)G(ε2)

× G(ε2)
τXτ

1�−1(U1)X2X
τ
2�−1(U1)X1]}

= 2(1+ O(h))

n(n − 1)

p(k0 − 1)

h
|�|

∫
K∗(t)2 dt.

(5.8)

Let Di = (εi,Xi,Ui), 1 ≤ i ≤ n, and �k be the σ -algebra generated by
D1, . . . ,Dk, 1 ≤ k ≤ n. Set�h(Di,Dk) = Gτ(εi)�ikhG(εk), ηn1 = 0 and

ηnk = E[Tn|�k] − E[Tn|�k−1].
Then

ηnk = 2

n(n − 1)

k−1∑
j=1

�h(Dj ,Dk), 2 ≤ k ≤ n,

and{ηnk,�k} is a sequence of martingale differences. By Theorem 4 of Shiryayev
[(1996), page 543], it suffices to show

Var−1(Tn)

n∑
k=2

E[η2
nk|�k−1] → 1 in probability(5.9)
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and

Var−2(Tn)

n∑
k=1

Eη4
nk → 0.(5.10)

In the following,D = (ε,X,U) denotes a general random variable independent of
Di andDk. To prove (5.9) and (5.10), we need the following equalities fori < j :

E[�h(Di,Dj )
2|Di]

= 1

h

∫
K∗(t)2 dtXτ

i �−1(Ui)XiG
τ (εi)C(Ui)G(εi)

(
1+ O(h)

)
,

E[�h(Di,D)�h(Dj ,D)|(Di,Dj )]
= G(εi)

τE
[
Kh(U − Ui)Kh(U − Uk)C(Ui)V (U)C(Uj )

× tr
(
�−1(Uk)XXτ�−1(Uj )XiX

τ
j

)|(Di,Dj)
]
G(εj ),

E�2
h(Di,D)�2

h(Dj ,D)

= 1

h2

(
1+ O(h)

) ∫ ∫
K∗(t)2K∗(s)2 dt ds

× E
[(

Xτ
j �−1(Uj )Xj

)2(
Gτ(εj )C(Uj )G(εj )

)2]
,

E�4
h(Di,Dk)

= O(1)
(
1+ O(h)

) 1

h3

∫
K∗(t)4 dt.

These are obvious by the assumption thatε andX are independent givenU . Now
with the above equalities, we can derive

n∑
k=2

E[η2
nk|�k−1]

=
n∑

k=2

4

n2(n − 1)2

{
k−1∑
j=1

E[�h(Dj ,Dk)
2|Dj ]

+
k−1∑
i �=j

E[�h(Di,Dk)�h(Dj ,Dk)|(Di,Dj )]
}

=
n∑

k=2

4

n2(n − 1)2

k−1∑
i=1

1+ O(h)

h

∫
K∗(t)2 dt

× Xτ
i �−1(Ui)XiG

τ (εi)C(Ui)G(εi)(5.11)



1892 J. FAN AND J. ZHANG

+
n∑

k=2

8

n2(n − 1)2

n−1∑
i<j

(n − j)E[�h(Di,D)�h(Dj ,D)|(Di,Dj )]

= (1+ O(h))4
∫

K∗(t)2 dt

n2(n − 1)2h

×
n−1∑
i=1

(n − i)Xτ
i �−1(Ui)XiG

τ (εi)C(Ui)G(εi) + ϒn

= (
1+ o(1)

)2∫ K∗(t)2 dt

n(n − 1)

× E{E[Xτ
1�−1(Ui)Xi |Ui]E[Gτ(εi)C(Ui)G(εi)|Ui]} + ϒn

= (
1+ o(1)

)
Var(Tn) + ϒn,

where

ϒn = 8

n2(n − 1)2

×
n−1∑
i<j

(n − j)G(εi)
τ

× E
[
K∗

h(U − Ui)K
∗
h(U − Uk)C(Ui)V (U)C(Uk)

× tr
(
�−1(Uk)XXτ�−1(Ui)XiX

τ
k

)|(Ui,Uk,Xi,Xk)
]
G(εk).

Note that

E[ϒn]2 = 64

n4(n − 1)4

×
n−1∑
i<k

(n − k)2

× E
{
G(εi)

τE
[
K∗

h(U − Ui)K
∗
h(U − Uk)C(Ui)V (U)C(Uk)

× tr
(
�−1(Uk)XXτ

× �−1(Ui)XiX
τ
k

)|(Ui,Xi,Uk,Xk)
]
G(εk)

}2
= O

(
(k0 − 1)p

(n − 1)4h

)∫
[K∗(t) ∗ K∗(t)]2 dt

= O

(
1

n2

)
Var(Tn),

which impliesϒn = op(Var(Tn)), and whereK∗(t) ∗ K∗(t) is the convolution
of K∗(t) with itself. Substituting the above equality into (5.11), we get (5.9).
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Analogously, (5.10) follows from the following calculations:

n∑
k=2

Eη4
nk = O(1)

n4(n − 1)4

n∑
k=2

k−1∑
i �=j

{
O

(
1

h2

)
+ O

(
k − 1

h3

)}

= O
(
Var(Tn)

2) 1

(n − 1)2

{
O(n) + O

(
1

h

)}
.

The proof is complete. �

PROOF OFTHEOREM 4. The first part is similar to the proof of Theorem 3.
The details are omitted. To showthe second part, we recall that�(u0) =
E[XXτ |U = u0]f (u0) and write

Xk =
(

X
(1)
k

X
(2)
k

)
, � =

(
�11 �12
�21 �22

)
and �11,2 = �11 − �12�

−1
22 �21

whereX
(1)
k is p1-dimensional,�11,�12,�21,�22 arep1 × p1, p1 × p2, p2 × p1

andp2 × p2 matrices andp2 = p − p1. Following the same steps in the proof of
Theorem 3, we first extend Theorem 1 as follows:

β̂2(u0) = β2(u0) + 1

n

n∑
i=1

Kh(Ui − u0)

(
�−1

22 (u0)X
(2)
i

µ−1
2 �−1

22 (u0)X
(2)
i (Ui − u0)/h

)

× ηi(u0)
(
1+ op(h1/2)

)+ Op(h2),

α̂∗(u0) = 1

n

n∑
i=1

Kh(Ui − u0)

×



(
V −1(u0)G(εi)

)⊗ (
�−1(u0)Xi

µ−1
2 �−1(u0)Xi(Ui − u0)/h

)

− V −1D(DτV −1D)−1DτV −1G(εi)

⊗




0
�−1

22 (u0)X
(2)
i

0
µ−1

2 �−1
22 (u0)X

(2)
i (Ui − u0)/h






× (
1+ op(h1/2)

)+ Op(h2).

Then by using the decomposition formula in Fan, Zhang and Zhang (2001) we
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have

Xτ
i �(Uk)

−1Xk

= {
X

(1)τ
i − X

(2)τ
i �22(Uk)�21(Uk)

}
�−1

11,2(Uk)
{
X

(1)
k − �12(Uk)�

−1
22 (Uk)X

(2)
k

}
+ X

(2)τ
i �22(Uk)

−1X
(2)
k .

The remaining part is very similar to the proof of Theorem 3. The details are
omitted. �

PROOF OFTHEOREM 5. The argument is similar to that in Fan, Zhang and
Zhang (2001) but more tedious. For simplicity, we derive it heuristically. Write

l(H0s |G) = (
1+ op(h1/2)

)
× 1

2n2

n∑
i=1

n∑
k=1

n∑
j=1

Kh(Ui − Uj)Kh(Uk − Uj)

× 1

f (Uj )
Gτ
(
εi + A(Ui)

τXi

)(
εk + A(Uk)

τXk

)
(5.12)

×
(

1+ µ−1
2

Ui − Uj

h

Uk − Uj

h

)

× Xτ
i �−1(Uj )Xk − lG

= (
1+ op(h1/2)

)
(Wn0 + Wn1 + Wn2 + Wn3) − lG

with

Wn0 = 1

2n2

n∑
i=1

n∑
k=1

n∑
j=1

Kh(Ui − Uj)Kh(Uk − Uj)

×
(

1+ µ−1
2

Ui − Uj

h

Uk − Uj

h

)
1

f (Uj )

× G(εi)
τV −1(Uj )G(εk)X

τ
i �−1(Uj )Xk,

Wn1 = 1

2n2

n∑
i=1

n∑
k=1

n∑
j=1

Kh(Ui − Uj)Kh(Uk − Uj)

×
(

1+ µ−1
2

Ui − Uj

h

Uk − Uj

h

)
1

f (Uj )

× G(εi)
τV −1(Uj )

∂G(ε∗
k )

∂ε
Xτ

i �−1(Uj )XkX
τ
k A(Uk),
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Wn2 = 1

2n2

n∑
i=1

n∑
k=1

n∑
j=1

Kh(Ui − Uj)Kh(Uk − Uj)

×
(

1+ µ−1
2

Ui − Uj

h

Uk − Uj

h

)
1

f (Uj )

× ∂G(ε∗
i )

τ

∂ε
V −1(Uj )G(εk)X

τ
i �−1(Uj )XkX

τ
kA(Uk),

Wn3 = 1

2n2

n∑
i=1

n∑
k=1

n∑
j=1

Kh(Ui − Uj)Kh(Uk − Uj)

×
(

1+ µ−1
2

Ui − Uj

h

Uk − Uj

h

)
1

f (Uj )

× ∂G(ε∗
i )

τ

∂ε
V −1(Uj )

× ∂G(ε∗
k )

∂ε
A(Ui)

τXiX
τ
i �−1(Uj )XkX

τ
k A(Uk),

where ε∗
i is betweenεi and εi + A(Ui)

τXi and ε∗
k is betweenεk and εk +

A(Uk)
τXk. Under some regularity conditions,

Wn1 = 1

2n2

n∑
i=1

n∑
k=1

G(εi)
τ

{
n∑

j=1

Kh(Ui − Uj)Kh(Uk − Uj)

×
(

1+ µ−1
2

Ui − Uj

h

Uk − Uj

h

)

× 1

f (Uj )
V −1(Uj )

× Xτ
i �−1(Uj )XkX

τ
k A(Uk)

}
∂G(ε∗

k )

∂ε

= W ∗
1n

2
+ op(h−1/2),

Wn2 = Wn1,

whereW ∗
1n is defined in (3.5). Similarly, we write

Wn3 = Wn31 + 2Wn32 + Wn33
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where, whenEA(U)τXXτA(U) = O( 1
nh

),

Wn31 = 1

2n2

n∑
i=1

n∑
k=1

�τ
i

n∑
j=1

Kh(Ui − Uj)Kh(Uk − Uj)

×
(

1+ µ−1
2

Ui − Uj

h

Uk − Uj

h

)
1

f (Uj )
V −1(Uj )

× �kA(Ui)
τXiX

τ
i �−1(Uj )XkX

τ
kA(Uk)

= 1

2n

n∑
i=1

n∑
k=1

�τ
i K

∗
h(Ui − Uk)V

−1(Ui)

× �iA(Ui)
τXiX

τ
i �−1(Uj )XkX

τ
k A(Uk) + op(h−1/2)

= O

(
1

nh2

)
+ W ∗

2n

2
+ op(h−1/2),

Wn32 = 1

2n2

n∑
i=1

n∑
k=1

�τ
i

n∑
j=1

Kh(Ui − Uj)Kh(Uk − Uj)

×
(

1+ µ−1
2

Ui − Uj

h

Uk − Uj

h

)
1

f (Uj)
V −1(Uj )

× E

[
∂G(ε∗

k )

∂ε

∣∣∣Uk

]
A(Ui)

τXiX
τ
i �−1(Uj )XkX

τ
k A(Uk)

= W ∗
3n

2
+ op(h−1/2),

Wn33 = 1

2n2

n∑
i=1

n∑
k=1

E

[
∂G(ε∗

i )

∂ε

∣∣∣Ui

] n∑
j=1

Kh(Ui − Uj)Kh(Uk − Uj)

×
(

1+ µ−1
2

Ui − Uj

h

Uk − Uj

h

)

× 1

f (Uj)
V −1(Uj )E

[
∂G(ε∗

k )

∂ε

∣∣∣Uk

]

× A(Ui)
τXiX

τ
i �−1(Uj )XkX

τ
k A(Uk)

= Op

(
1

nh2

)

+ n

2
E

{
E

[
∂G(ε)

∂ε

∣∣∣U]τ V −1(U)E

[
∂G(ε)

∂ε

∣∣∣U]A(U)τXXτA(U)

}

× (1+ o(1)
)
,
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with �i defined in (3.6). Recall thatW ∗
2n and W ∗

3n are in (3.7) and (3.8),

respectively. Observe that asEA(U)τXXτA(U) = O( 1
nh

) we have

Wn31 = 1

2n

n∑
i=1

n∑
k=1

�τ
i K

∗
h(Ui − Uk)V

−1(Ui)

× �iA(Ui)
τXiX

τ
i �−1(Uj )XkX

τ
k A(Uk) + op(h−1/2)

= O

(
1

nh2

)
+ W ∗

2n

2
+ op(h−1/2),

Wn32 = W ∗
3n/2+ op(h−1/2),

Wn33 = Op

(
1

nh2

)

+ n

2
E

{
E

[
∂G(ε)

∂ε

∣∣∣U]τV −1(U)E

[
∂G(ε)

∂ε

∣∣∣U]A(U)τXXτA(U)

}

× (1+ o(1)
)
.

Similarly we have

l(G) = (
1+ op(h−1/2)

)
×
[

1

2n2

n∑
i=1

n∑
k=1

n∑
j=1

Kh(Ui − Uj)Kh(Uk − Uj)

(5.13)
×
(

1+ µ−1
2

Ui − Uj

h

Uk − Uj

h

)

× 1

f (Uj)
Gτ (εi)C(Uj )G(εk) + 2Sn1 + Sn2

]

where

Sn1 = 1

2n2

n∑
i=1

n∑
k=1

n∑
j=1

Kh(Ui − Uj)Kh(Uk − Uj)

×
(

1+ µ−1
2

Ui − Uj

h

Uk − Uj

h

)
1

f (Uj )

× Gτ(εi)C(Uj )
∂G(ε∗

k )

∂ε
A′′(U∗

j )τ (Uk − Uj)
2Xk,

= Op

(
n(nh)−1h2)

= Op(h)



1898 J. FAN AND J. ZHANG

and

Sn2 = 1

2n2

n∑
i=1

n∑
k=1

n∑
j=1

Kh(Ui − Uj)Kh(Uk − Uj)

×
(

1+ µ−1
2

Ui − Uj

h

Uk − Uj

h

)
1

f (Uj)

× ∂G(ε∗
i )

τ

∂ε
C(Uj )

∂G(ε∗
k )

∂ε
A′′(Uj )XiX

τ
i �−1(Uj )

× XkX
τ
k A′′(Uj )(Ui − Uj)

2(Uk − Uj)
2

= nh4

8
E{Dτ(U)C(U)D(U)A′′(U)τXXτA′′(U)}

×
∫ ∫

t2(s + t)2K(t)K(s + t)
(
1+ µ−1

2 t (s + t)
)
dt ds

(
1+ op(1)

)
,

whereU∗
j is betweenUk and Uj . Now the desired result follows from (5.12)

and (5.13). This proves the theorem.�

APPENDIX

LEMMA 1. Under conditions (K0), (U0), (A2)–(A4), if there exist some
positive constants b0, b1 and η < 1/2 such that b0 ≤ hnη ≤ b1, then there exists a
sequence of positive constants dn → 0 such that

An(u0, β) = E

{
Kh(U − u0)G

(
Y − βτZ

(
X,

U − u0

h

))
⊗ Z

(
X,

U − u0

h

)}

+ op(n−1/ξ ∧ h1/2)dn.

Furthermore, if condition (A5) holds and η > 1/(2ξ), then uniformly in
‖β − β0‖ ≤ rn = o(n−1/ξ )dn,

An(u0, β) = op(n−1/ξ )dn.

PROOF. For any positive constantMn, we can write

An(u0, β) = EKh(U − u0)G

(
Y − βτZ

(
X,

U − u0

h

))
⊗ Z

(
X,

U − u0

h

)

+ An1(u0, β) + An2(u0, β),

where

An1(u0, β) = 1

n

n∑
i=1

Kh(Ui − u0)Gih(u0, β)I
(
F(Yi,Xi) ≤ Mn

)

− EKh(U − u0)Gh(u0, β)I
(
F(Y,X) ≤ Mn

)
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and

An2(u0, β) = 1

n

n∑
i=1

Kh(Ui − u0)Gih(u0, β)I
(
F(Yi,Xi) > Mn

)

− EKh(U − u0)Gh(u0, β)I
(
F(Y,X) > Mn

)
.

Note that

E‖An2(u0, β)‖ ≤ 2EKh(U − u0)Gh(u0, β)I
(
F(Y,X) > Mn

)≤ cM1−ξ
n .(A.1)

Consider the following empirical processes:

vn(g) = n−1/2
n∑

i=1

(
g(Yi,Xi, u0, β) − Eg(Y,X,u0, β)

)
,

g ∈ Fn = {M−1
n g :g ∈ F1},

whereF1 is defined as in Section 5.1. It follows directly from assumption (A4)
that

N
(
δ,L1(Pn),Fn

)≤ c1(Pn)(hδMn)
−w1.

Obviously, by condition (A3), forg = K((· − u0)/h)G(u0, β) ∈ Fn,

E‖g(Y,X,u0, β)‖2

≤ chM−2
n sup

u0,t,‖β−β0‖≤r0

EY |U=u0+th

{
G2

k

(
Y − βτZ(X, t)

)‖Z(X, t)‖2}

≤ O(hM−2
n ) = v.

Now letMn = ns0, δn = (h1/2∧n−1/ξ )(logn)−1 andM = δnn
1/2hM0M

−1
n . Using

Lemma 2 in Zhang and Gijbels (2003), we have

P {sup‖An1(u0, β)‖δ−1
n > M0}

= P

{
sup
g∈Fn

‖vn(g)‖ > M

}

≤ c1
(
n1/2(MhMn)

−1)w1 exp{−c3M
2/v} + c2v

−w1 exp(−nv)

= O
(
(h2δn)

−w1
)
exp{−c3δ

2
nnh2M2

0M−2
n /hM−2

n }
+ c2O(hM−2

n )−w1 exp(−c4nhM−2
n ).

(A.2)

The last terms in (A.1) and (A.2) areo(δn) ando(1), respectively, if

b0 ≤ hnη ≤ b1, nh2/logn → ∞, n1−2/ξh/logn → ∞,

nhM−2
n /logn → ∞, M−ξ+1

n δ−1
n → 0.
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The above requirements are fulfilled provided that, fors0 > 0,

b0 ≤ hnη ≤ b1, 0 < η < min
{

1

2
,1− 2

ξ

}
,

max
{

η

2(ξ − 1)
,

1

ξ(ξ − 1)

}
< s0 <

1− η

2
.

These conditions are equivalent to

b0 ≤ hnη ≤ b1, 0 < η < min
{

1

2
,1− 2

ξ
,1− 1

ξ
,1− 2

ξ(ξ − 1)

}
= 1

2

sinceξ ≥ 4.

Let dn = (logn)−1 andf be the density ofU. Now we can complete the proof
if we note that for‖β − β0‖ ≤ o(n−1/ξ )dn andη > 1/(2ξ), we have

E

{
Kh(U − u0)EKh(U − u0)G

(
Y − βτZ

(
X,

U − u0

h

))
⊗ Z

(
X,

U − u0

h

)}

=
∫

K(t)

{
E

[
G

(
Y − βτZ

(
X,

U − u0

h

))∣∣∣U = u0 + th

]}

⊗ E[Z(X, t)|U = u0 + th]f (u0 + th) dt

= O(h2) + O(‖β − β0‖)
= O(n−2η) + o(n−1/ξdn)

= o(n−1/ξdn)

by using condition (A5). �

LEMMA 2. Under conditions (K0), (U0), (A2), (A6) and (A7), as n → ∞,

b0 ≤ hnη ≤ b1, 0 < η < 1/2, we have

Vn(u0, β) = EKh(U − u0)Gh(u0, β)Gτ
h(u0, β) + op(h1/2)

= V (u0) ⊗ (
S ⊗ �(u0)

)+ op(h1/2) + O(‖β − β0‖).

PROOF. The proof is similar to that of Lemma 1 and is thus omitted.�

LEMMA 3. Under conditions (K0), (U0), (A1)–(A10)and (B1), if b0 ≤ hnη ≤
b1, 1/(2ξ) < η < 1/2, then there exists a sequence of positive constants dn → 0
such that as n → ∞,

β̂(u0) = β0(u0) + op(n−1/ξ ∧ h1/2)dn,

αn

(
u0, β̂(u0)

)= op(n−1/ξ ∧ h1/2).
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PROOF. First of all, by Lemma 1, there exists a sequence of positive constants
dn → 0 such that

An(u0, β0) = op(n−1/ξ ∧ h1/2)dn.(A.3)

Note that condition (A2) implies

Zn(u0, β) = op(n1/ξ )(A.4)

uniformly in u0 ∈ � and‖β − β0‖ ≤ r0. Set the function

gn(α,β) = 1

n

n∑
i=1

Kh(Ui − u0)
Gih(u0, β)

1+ ατ Gih(u0, β)
.

Then following the argument of Owen (1990) and using conditions (K0), (U0),
(A1), (A4), (A5), (A8), (A9) and (B1), we can show that for largen, αn(u0, β)

exists and satisfies the equation

gn

(
αn(u0, β),β

)= 0(A.5)

when‖β − β0‖ ≤ r0 and r0 is small. To see this, we first note that for constant
δ > 0 small enough, we have

inf‖ψ‖=1
u0∈�

∫
K(t)E

[
I
{
ψτ
(
G(ε) ⊗ Z(X, t)

)
> δ

}|U = u0
]
dt > δ,

which yields

inf‖ψ‖=1
u0∈�

‖β−β0‖≤r0

∫
K(t)E[I {ψτ Gh(u0, β) > δ/2}|U = u0 + th]

× f (u0 + th) dt ≥ δ/2

(A.6)

ash → 0 andr0 is small enough. This is the main consequence of conditions (A1)
and (A9). Define

Hn(β,ψ) = 1

n

n∑
i=1

wh(Ui, u0)I {Gih(u0, β)τψ > δ}.

Then under conditions (A1)–(A4), (A8)–(A10), using (A.6) and the strong
convergence of empirical processes [Pollard (1984) and van der Vaart and Wellner
(1996)], we can show that there existsδ > 0 such that for smallr0 and largen,

inf‖ψ‖=1Hn(β,ψ) > δ almost surely. This shows that 0 is contained in the convex
hull of the points in{Gih(u0, β) :wh(Ui, u0) > 0, 1 ≤ i ≤ n}. Now (A.5) follows
directly from the Lagrange multiplier method as in Owen (1990).
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Let

αn(u0, β0) = ρv with ρ = ‖αn(u0, β0)‖ and‖v‖ = 1.

We have

0 = ∥∥gn

(
αn(u0, β0), β0

)∥∥
= ‖gn(ρv,β0)‖
≥ ‖vτ gn(ρv,β0)‖

= 1

n

∣∣∣∣∣vτ
n∑

i=1

Kh(Ui − u0)

{
Gih(u0, β0) − ρGih(u0, β0)Gih(u0, β0)

τ v

1+ ρv∗τ Gih(u0, β0)

}∣∣∣∣∣
≥ 1

n
ρ

n∑
i=1

Kh(Ui − u0)
vτ Gih(u0, β0)Gih(u0, β0)

τ v

1+ ρv∗τ Gih(u0, β0)
− |vτAn(u0, β0)|

≥ ρ
vτVn(u0, β0)v

1+ ρZn(u0, β0)
− ‖An(u0, β0)‖,

wherev∗ = tv with 0 ≤ t ≤ 1. Thus, combining (A.4) with (A.3), Lemma 2 and
condition (A9), we have

ρ ≤ ‖An(u0, β0)‖
vτVn(u0, β0)v − ‖An(u0, β0)‖Zn(u0, β0)

= Op

(‖An(u0, β0)‖)
= op(n−1/ξ ∧ h1/2)dn,

that is,

αn(u0, β0) = op(n−1/ξ ∧ h1/2)dn.(A.7)

Setφn = (h1/2 ∧ n−1/ξ )dn, and letu(u0, β) satisfy

u(u0, β)‖E{Kh(U − u0)Gh(u0, β)}‖ = E{Kh(U − u0)Gh(u0, β)}.
Define

ln(u0, β) = −1

n

n∑
i=1

Kh(Ui − u0) log
(
1+ αn(u0, β)τ Gih(u0, β)

)
,

Tn(u0, β) = 1

n

n∑
i=1

Kh(Ui − u0) log
(
1+ φnu(u0, β)τ Gih(u0, β)

)
,

Tn1(u0, β) = 1

n

n∑
i=1

Kh(Ui − u0) log
(
1+ φnu(u0, β)τ Gih(u0, β)

)

× I (‖Gih‖ ≤ n1/ξ ).

We have

0 ≥ ln(u0, β0) ≥ −ατ
n(u0, β)An(u0, β) = op(φ2

n),(A.8)
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and uniformly foru0 andβ,

Tn1(u0, β) = φn

1

n

n∑
i=1

Kh(Ui − u0)u(u0, β)τ Gih(u0, β)I (‖Gih‖ ≤ n1/ξ )

− 1

2
φ2

n|O(1)|1
n

n∑
i=1

Kh(Ui − u0)F (Yi,Xi)
2

= φn{u(u0, β)τE[Kh(U − u0)Gh(u0, β)]} + op(φ2
n) + Op(φ2

n).

Note that for fixedu0 and β, the function − 1
n

∑n
i=1 Kh(Ui − u0) log(1 +

ατ Gih(u0, β)) attains the minimum atαn(u0, β). This implies ln(u0, β) ≤
−Tn(u0, β). Consequently, for anyρ > 0, by (A.8) we have

P
(‖β̂(u0) − β0‖ > ρ

)
≤ P

(
sup

‖β−β0‖≥ρ

ln(u0, β) > ln(u0, β0) for someu0

)

≤ P

(
sup

‖β−β0‖≥ρ

ln(u0, β) > −|Op(φ2
n)| for someu0

)

≤ P

(
sup

‖β−β0‖≥ρ

(−Tn(u0, β)
)≥ −|Op(φ2

n)| for someu0

)

≤ P

(
sup

‖β−β0‖≥ρ

(−Tn1(u0, β)
)≥ −|Op(φ2

n)| for someu0

)

+ P

(
sup
u0,β

Zn(u0, β) > n1/ξ

)

≤ P

{
inf‖β−β0‖≥ρ

‖EKh(U − u0)Gh(u0, β)‖ ≤ |Op(φn)| for someu0

}
+ o(1)

→ 0,

where the last limit follows from condition (A10). Therefore using forρn1 → 0
andρ2 in condition (A10), asn → ∞, we have

P
(‖β̂(u0) − β0‖ > ρn1 for someu0

)
= P

(
ρ2 ≥ ‖β̂(u0) − β0‖ > ρn1 for someu0

)+ o(1)

≤ P

(
inf

ρ2≥‖β−β0‖≥ρn1
‖EKh(U − u0)Gh(u0, β)‖ ≤ |Op(φn)| for someu0

)

+ o(1)

≤ P
(
ρn1 + O(h2) ≤ |Op(φn)|)+ o(1),



1904 J. FAN AND J. ZHANG

which leads to

β̂(u0) − β0 = Op(φn) = op(n−1/ξ ∧ h1/2)dn.

Invoking the argument of Owen (1990) and Lemma 1 again, we have

αn

(
u0, β̂(u0)

)= op(n−1/ξ ∧ h1/2)

uniformly in u0. This completes the proof.�

LEMMA 4. Suppose for some positive constants b0 and b1, b0 ≤ hnη ≤ b1,

0 < η < 1/2. Then under conditions (K0), (U0), (A2), (A6), (A7) and (A9), as
n → ∞, we have

Vn(u0, α,β) = V (u0) ⊗ (
S ⊗ �(u0)

)(
1+ op(h1/2)

)
uniformly for u0 ∈ �, ‖α‖ + ‖β − β0‖ ≤ o(n−1/ξ ∧ h1/2).

PROOF. Note that under condition (A2) we have

sup
u0∈�

‖β−β0‖≤r0

Zn(u0, β) = op(n1/ξ ),

which together with Lemma 2 yields

Vn(u0, α,β) = Vn(u0, β) + Op(‖α‖)(2+ op(1))

(1+ op(1))

1

n

n∑
i=1

Kh(Ui − u0)F (Yi,Xi)
3

= Vn(u0,ψ2) + Op(‖α‖)
= V (u0) ⊗ (

S ⊗ �(u0)
)+ op(h1/2) + Op(‖α‖).

The proof is complete. �

LEMMA 5. Suppose there exist positive constants b0, b1 and η such that
b0 ≤ hnη ≤ b1, 0 < η < 1/2. Then under conditions (K0), (U0), (A2), (B1)–(B4),
as n → ∞,

Bn(u0, α,β) = D(u0) ⊗ (
S ⊗ �(u0)

)(
1+ op(h1/2)

)
uniformly for u0 ∈ �, ‖α‖ + ‖β − β0‖ ≤ o(n−1/ξ ∧ h1/2).

The proof is similar to that of Lemma 1 and thus is omitted.

LEMMA 6. Under conditions (K0), (U0), (A2), (B1),as h → 0, nh → ∞,

Cn(u0, α,β) = Op(‖α‖)
uniformly for u0 ∈ �, ‖α‖ + ‖β − β0‖ ≤ o(n−1/ξ ∧ h1/2).
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PROOF. Note that by condition (A2) and‖ψ1‖ ≤ o(n−1/ξ ∧ h1/2), we have

max
i

sup
β,u0

‖ατ Gih(u0, β)‖ = op(1).

Thus

‖Cn(u0, α,β)‖ ≤ Op(‖α‖)1

n

n∑
i=1

Kh(Ui − u0)F4(Yi,Xi)F (Yi,Xi) = Op(‖α‖)

by conditions (A2) and (B1). The proof is complete.�

LEMMA 7. Under conditions (K0), (U0) and (B5), as h → 0 and nh → ∞,

Dn(u0, α,β) = Op(‖α‖)
uniformly for u0 ∈ �, ‖α‖ + ‖β − β0‖ ≤ o(n−1/ξ ∧ h1/2).

LEMMA 8. Under conditions (K0), (U0) and (B5), as h → 0, nh → ∞,

En(u0, α,β) = Op(‖α‖2)

uniformly for u0 ∈ �, ‖α‖ + ‖β − β0‖ ≤ o(n−1/ξ ∧ h1/2).

The proofs of Lemmas 7 and 8 are similar to the proof of Lemma 6 and thus are
omitted.
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