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In this paper, we introduce nonlinear regularized wavelet estimators for estimating nonparametric regression functions when sampling
points are not uniformly spaced. The approach can apply readily to many other statistical contexts. Various new penalty functions are
proposed. The hard-thresholding and soft-thresholding estimators of Donoho and Johnstone are speci� c members of nonlinear regularized
wavelet estimators. They correspond to the lower and upper envelopes of a class of the penalized least squares estimators. Necessary
conditions for penalty functions are given for regularized estimators to possess thresholding properties. Oracle inequalities and universal
thresholding parameters are obtained for a large class of penalty functions. The sampling properties of nonlinear regularized wavelet
estimators are established and are shown to be adaptively minimax. To ef� ciently solve penalized least squares problems, nonlinear
regularized Sobolev interpolators (NRSI) are proposed as initial estimators, which are shown to have good sampling properties. The
NRS I is further ameliorated by regularized one-step estimators, which are the one-step estimators of the penalized least squares problems
using the NRSI as initial estimators. The graduated nonconvexit y algorithm is also introduced to handle penalized least squares problems.
The newly introduced approaches are illustrated by a few numerical examples.
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1. INTRODUCTION

Wavelets are a family of orthogonal bases that can effec-
tively compress signals with possible irregularities. They
are good bases for modeling statistical functions. Various
applications of wavelets in statistics have been made in the
literature. See, for example, Donoho and Johnstone (1994),
Antoniadis, Grégoire, and McKeague (1994), Hall and Patil
(1995), Neumann and Spokoiny (1995), Antoniadis (1996),
and Wang (1996). Further references can be found in the
survey papers by Donoho et al. (1995), Antoniadis (1997),
and Abramovich, Bailey, and Sapatinas (2000) and books by
Ogden (1997) and Vidakovic (1999). Yet, wavelet applications
to statistics are hampered by the requirements that the designs
are equispaced and the sample size be a power of 2. Various
attempts have been made to relax these requirements. See, for
example, the interpolation method of Hall and Turlach (1997),
the binning method of Antoniadis, Grégoire, and Vial (1997),
the transformation method of Cai and Brown (1997), the iso-
metric method of Sardy et al. (1999), and the interpolation
method to a � ne regular grid of Kovac and Silverman (2000).
However, it poses some challenges to extend these methods to
other statistical contexts, such as generalized additive models
and generalized analysis of variance models.

In an attempt to make genuine wavelet applications to statis-
tics, we approach the denoising problem from a statistical
modeling point of view. The idea can be extended to other sta-
tistical contexts. Suppose that we have noisy data at irregular
design points 8t11 : : : 1 tn9:

Yi D f 4ti5 C ˜i1 ˜i

iid
N 401‘ 251
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where f is an unknown regression to be estimated from the
noisy sample. Without loss of generality, assume that the
function f is de� ned on 601 17. Assume further that ti D ni=2J

for some ni and some � ne resolution J that is determined
by users. Usually, 2J ¶ n so that the approximation errors by
moving nondyadic points to dyadic points are negligible. Let
f be the underlying regression function collected at all dyadic
points 8i=2J 1 i D 01 : : : 1 2J ƒ 19. Let W be a given wavelet
transform and ˆ D Wf be the wavelet transform of f . Because
W is an orthogonal matrix, f D WT ˆ.

From a statistical modeling point of view, the unknown sig-
nals are modeled by N D 2J parameters. This is an overpa-
rameterized linear model, which aims at reducing modeling
biases. One can not � nd a reasonable estimate of ˆ by using
the ordinary least squares method. Because wavelets are used
to transform the regression function f , its representation in
wavelet domain is sparse; namely, many components of ˆ are
small, for the function f in a Besov space. This prior knowl-
edge enables us to reduce effective dimensionality and to � nd
reasonable estimates of ˆ.

To � nd a good estimator of ˆ, we apply a penalized least
squares method. Denote the sampled data vector by Yn. Let
A be n � N matrix whose ith row corresponds to the row of
the matrix WT for which signal f 4ti5 is sampled with noise.
Then, the observed data can be expressed as a linear model

Yn D Aˆ C …1 … N 401‘ 2In5 (1.1)

where … is the noise vector. The penalized least squares prob-
lem is to � nd ˆ to minimize

2ƒ1˜Yn ƒ Aˆ˜2 C ‹
NX

iD1

p4—ˆi—5 (1.2)

for a given penalty function p and regularization parameter
‹ > 0. The penalty function p is usually nonconvex on 601ˆ5
and irregular at point zero to produce sparse solutions. See
Theorem 1 for necessary conditions. It poses some challenges
to optimize such a high-dimensional nonconvex function.
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Our overparameterization approach is complementary to the
overcomplete wavelet library methods of Chen, Donoho, and
Sanders (1998) and Donoho et al. (1998). Indeed, even when
the sampling points are equispaced, one can still choose a
large N (N D O4n logn5, say), to have better ability to approx-
imate unknown functions. Our penalized method in this case
can be viewed as a subbasis selection from an overcomplete
family of nonorthogona l bases, consisting of N columns of
the matrix A.

When n D 2J , the matrix A becomes a square orthogonal
matrix WT . This corresponds to the canonical wavelet denois-
ing problems studied in the seminal paper by Donoho and
Johnstone (1994). The penalized least squares estimator (1.2)
can be written as

2ƒ1˜WYn ƒ ˆ˜2 C ‹
NX

iD1

p4—ˆi—50

The minimization of this high-dimensional problem reduces to
componentwise minimization problems, and the solution can
be easily found. Theorem 1 gives necessary conditions for the
solution to be unique and continuous in wavelet coef� cients.
In particular, the soft-thresholding rule and hard-thresholding
rule correspond, respectively, to the penalized least squares
estimators with the L1 penalty and the hard-thresholding
penalty (2.8) discussed in Section 2. These penalty functions
have some unappealing features and can be further amelio-
rated by the smoothly clipped absolute deviation (SCAD)
penalty function and the transformed L1 penalty function. See
Section 2.3 for more discussions.

The hard-thresholding and soft-thresholding estimators play
no monopoly role in choosing an ideal wavelet subbasis to
ef� ciently represent an unknown function. Indeed, for a large
class of penalty functions, we show in Section 3 that the result-
ing penalized least squares estimators perform within a log-
arithmic factor to the oracle estimator in choosing an ideal
wavelet subbasis. The universal thresholding parameters are
also derived. They can easily be translated in terms of regular-
ization parameters ‹ for a given penalty function p. The uni-
versal thresholding parameter given by Donoho and Johnstone
(1994) is usually somewhat too large in practice. We expand
the thresholding parameters up to the second order, allowing
users to choose smaller regularization parameters to reduce
modeling biases. The work on the oracle inequalities and uni-
versal thresholding is a generalization of the pioneering work
of Donoho and Johnstone (1994). It allows statisticians to use
other penalty functions with the same theoretical backup.

The risk of the oracle estimator is relatively easy to com-
pute. Because the penalized least squares estimators perform
comparably with the oracle estimator, following the similar
but easier calculation to that of Donoho et al. (1995), we can
show that the penalized least squares estimators with simple
data-independent (universal) thresholds are adaptively mini-
max for the Besov class of functions, for a large class of
penalty functions.

Finding a meaningful local minima to the general
problem (1.2) is not easy, because it is a high-dimensional
problem with a nonconvex target function. A possible method
is to apply the graduated nonconvexity (GNC) algorithm intro-
duced by Blake and Zisserman (1987) and Blake (1989)

and ameliorated by Nikolova (1999) and Nikolova, Idier,
and Mohammad-Djafari (in press) in the imaging analysis
context. The algorithm contains good ideas on optimizing
high-dimensional nonconvex functions, but its implementation
depends on a several tuning parameters. It is reasonably fast,
but it is not nearly as fast as the canonical wavelet denoising.
See Section 6 for details. To have a fast estimator, we impute
the unobserved data by using regularized Sobolev interpola-
tors. This allows one to apply coef� cientwise thresholding to
obtain an initial estimator. This yields a viable initial estima-
tor, called nonlinear regularized Sobolev interpolators (NRSI).
This estimator is shown to have good sampling properties. By
using this NRSI to create synthetic data and apply the one-step
penalized least squares procedure, we obtain a regularized
one-step estimator (ROSE). See Section 4. Another possi-
ble approach to denoise nonequispaced signals is to design
adaptively nonorthogonal wavelets to avoid overparameteriz-
ing problems. A viable approach is the wavelet networks pro-
posed by Bernard, Mallat, and Slotine (1999).

An advantage of our penalized wavelet approach is that it
can readily be applied to other statistical contexts, such as
likelihood-based models, in a manner similar to smoothing
splines. One can simply replace the normal likelihood in (1.2)
by a new likelihood function. Further, it can be applied to
high-dimensional statistical models such as generalized addi-
tive models. Details of these require a lot of new work and
hence are not discussed here. Penalized likelihood methods
were successfully used by Tibshirani (1995), Barron, Birgé,
and Massart (1999), and Fan and Li (1999) for variable selec-
tions. Thus, they should also be viable for wavelet applica-
tions to other statistical problems. When the sampling points
are equispaced, the use of penalized least squares for reg-
ularizing wavelet regression were proposed by Solo (1998),
McCoy (1999), Moulin and Liu (1999), and Belge, Kilmer,
and Miller (2000). In Solo (1998), the penalized least squares
with an L1 penalty is modi� ed to a weighted least squares
to deal with correlated noise, and an iterative algorithm is
discussed for its solution. The choice of the regularization
parameter is not discussed. By analogy to smoothing splines,
McCoy (1999) used a penalty function that simultaneously
penalizes the residual sum of squares and the second derivative
of the estimator at the design points. For a given regularization
parameter, the solution of the resulting optimization problem
is found by using simulated annealing, but there is no sugges-
tion in her work of a possible method of choosing the smooth-
ing parameter. Moreover, although the proposal is attractive,
the optimization algorithm is computationally demanding. In
Moulin and Liu (1999), the soft- and hard-thresholded esti-
mators appeared as Maximum a Posteriori (MAP) estimators
in the context of Bayesian estimation under zero-one loss,
with generalized Gaussian densities serving as a prior distri-
bution for the wavelet coef� cients. A similar approach was
used by Belge et al. (2000) in the context of wavelet domain
image restoration. The smoothing parameter in Belge et al.
(2000) was selected by the L-curve criterion (Hansen and
O’Leary 1993). It is known, however, (Vogel 1996) that such
a criterion can lead to nonconvergent solutions, especially
when the function to be recovered presents some irregular-
ities. Although there is no conceptual dif� culty in applying
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the penalized wavelet method to other statistical problems,
the dimensionality involved is usually very high. Its fast imple-
mentations require some new ideas, and the GNC algorithm
offers a generic numerical method.

This article is organized as follows. In Section 2, we intro-
duce Sobolev interpolators and penalized wavelet estimators.
Section 3 studies the properties of penalized wavelet estima-
tors when the data are uniformly sampled. Implementations of
penalized wavelet estimators in general setting are discussed in
Section 4. Section 5 gives numerical results of our newly pro-
posed estimators. Two other possible approaches are discussed
in Section 6. Technical proofs are presented in the Appendix.

2. REGULARIZATION OF WAVELET
APPROXIMATIONS

The problem of signal denoising from nonuniformly sam-
pled data arises in many contexts. The signal recovery problem
is ill posed, and smoothing can be formulated as an optimiza-
tion problem with side constraints to narrow the class of can-
didate solutions.

We � rst brie� y discuss wavelet interpolation by using a reg-
ularized wavelet method. This serves as a crude initial value to
our proposed penalized least squares method. We then discuss
the relation between this and nonlinear wavelet thresholding
estimation when the data are uniformly sampled.

2.1 Regularized Wavelet Interpolations

Assume for the moment that the signals are observed with
no noise, i.e., … D 0 in (1.1). The problem becomes an interpo-
lation problem, using a wavelet transform. Being given signals
only at the nonequispaced points 8ti1 i D 11 : : : 1 n9 necessar-
ily means that we have no information at other dyadic points.
In terms of the wavelet transform, this means that we have no
knowledge about the scaling coef� cients at points other than
ti’s. Let

fn D 4f 4t151 : : : 1 f 4tn55T

be the observed signals. Then, from (1.1) and the assumption
… D 0, we have

fn D Aˆ0 (2.1)

Because this is an underdetermined system of equations, there
exist many different solutions for ˆ that match the given sam-
pled data fn. For the minimum Sobolev solution, we choose
the f that interpolates the data and minimizes the weighted
Sobolev norm of f . This would yield a smooth interpolation
to the data. The Sobolev norms of f can be simply charac-
terized in terms of the wavelet coef� cients ˆ. For this pur-
pose, we use double array sequence ˆj1 k to denote the wavelet
coef� cient at the jth resolution level and kth dyadic loca-
tion 4k D 11 : : : 12jƒ15. A Sobolev norm of f with degree of
smoothness s can be expressed as

˜ˆ˜2
S D

X

j

22sj ˜ˆj 0˜21

where ˆj 0 is the vector of the wavelet coef� cients at the
resolution level j . Thus, we can restate this problem as a
wavelet-domain optimization problem: Minimize ˜ˆ˜2

S subject

to constraint (2.1). The solution (Rao 1973) is what is called
the normalized method of frame whose solution is given by

ˆ D DAT 4ADAT 5ƒ1fn1

where D D Diag42ƒ2sji 5 with ji denoting the resolution level
with which ˆi is associated. An advantage of the method of
frame is that it does not involve the choice of regularization
parameter (unless s is regarded as a smoothing parameter).
When s D 0, ˆ D AT fn by orthogonality. In this case, the inter-
polator is particularly easy to compute.

As an illustration of how the regularized wavelet interpola-
tions work, we took 100 data points (located at the tick marks)
from the function depicted in Figure 1(a). Figure 1, (b)–(d)
show how the method of frame works for different values of s.
As s increases, the interpolated functions become smoother.
In fact, for a large range of values of s, the wavelet interpola-
tions do not create excessive biases.

2.2 Regularized Wavelet Estimators

Assume now that the observed data follow model (1.1). The
traditional regularization problem can be formulated in the
wavelet domain as follows. Find the minimum of

2ƒ1˜Yn ƒ Aˆ˜2 C ‹˜ˆ˜2
S 1 (2.2)

The resulting estimation procedure parallels standard
spline-smoothing techniques. Several variants of such a penal-
ized approach for estimating less regular curves via their
wavelet decomposition have been suggested by several authors
(Antoniadis 1996, Amato and Vuza 1997, Dechevsky and
Penev 1999). The resulting estimators are linear estimators of
shrinkage type with a level dependent shrinking of the empir-
ical wavelet coef� cients. Several data-driven methods were
proposed for the determination of the penalty parameter ‹,
and we refer the readers to the cited papers for rigorous treat-
ments on the choice of the regularization parameter for such
linear estimators. The preceeding leads to a regularized linear
estimator.

In general, one can replace the Sobolev norm by other
penalty functions, leading to minimizing

`4ˆ5 D 2ƒ1˜Yn ƒ Aˆ˜2 C ‹
X

i i0

p4—ˆi—5 (2.3)

for a given penalty function p4 5 and given value i0. This cor-
responds to penalizing wavelet coef� cients above certain reso-
lution level j0. Here, to facilitate the presentation, we changed
the notation ˆj 1 k from a double array sequence into a sin-
gle array sequence ˆi. The problem (2.3) produces stable and
sparse solutions for functions p satisfying certain properties.
The solutions, in general, are nonlinear. See the results of
Nikolova (2000) and Section 3 below.

2.3 Penalty Functions and Nonlinear
Wavelet Estimators

The regularized wavelet estimators are an extension of the
soft- and hard-thresholding rules of Donoho and Johnstone
(1994). When the sampling points are equally spaced and
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Figure 1. Wavelet Interpolations by Method of Frame. As degrees of smoothness s become larger, the interpolated functions become smoother.
(a) The target function and sampling points, true cruve (tick marks); (b)–(d) wavelet interpolations with s D .5,s D 1.4, and s D 6.0.

n D 2J , the design matrix A in (2.1) becomes the inverse
wavelet transform matrix WT . In this case, (2.3) becomes

2ƒ1
nX

iD1

4zi ƒ ˆi5
2 C ‹

X
i¶i0

p4—ˆi—51 (2.4)

where zi is the ith component of the wavelet coef� cient vec-
tor z D WYn. The solution to this problem is a component-
wise minimization problem, whose properties are studied in
the next section. To reduce abuse of notation, and because
p4—ˆ—5 is allowed to depend on ‹, we use p‹ to denote the
penalty function ‹p in the following discussion.

For the L1-penalty [Figure 2(a)],

p‹4—ˆ—5 D ‹—ˆ—1 (2.5)

the solution is the soft-thresholding rule (Donoho et al. 1992).
A clipped L1-penalty

p4ˆ5 D ‹ min4—ˆ—1 ‹5 (2.6)

leads to a mixture of soft- and hard-thresholding rules (Fan
1997):

Ô
j D 4—zj —ƒ ‹5CI 8—zj — µ 105‹9 C —zj —I8—zj — > 105‹90 (2.7)

When the penalty function is given by

p‹4—ˆ—5 D ‹2 ƒ 4—ˆ—ƒ ‹52I4—ˆ— < ‹51 (2.8)

[see Figure 2(b)], the solution is the hard-thresholding rule
(Antoniadis 1997). This is a smoother penalty function than
p‹4—ˆ—5 D —ˆ—I 4—ˆ— < ‹5 C ‹=2I4—ˆ— ¶ ‹5 suggested by Fan
(1997) and the entropy penalty p‹4—ˆ—5 D 2ƒ1‹2I 8—ˆ— 6D 09,
which lead to the same solution. The hard-thresholding rule
is discontinuous, whereas the soft-thresholding rule shifts the
estimator by an amount of ‹ even when —zi— stands way out of
noise level, which creates unnecessary bias when ˆ is large.
To ameliorate these two drawbacks, Fan (1997) suggests using
the quadratic spline penalty, called the smoothly clipped abso-
lute deviation (SCAD) penalty [see Figure 2(c)],

p0
‹4ˆ5 D I 4ˆ µ ‹5 C

4a‹ ƒ ˆ5C

4aƒ 15‹
I4ˆ > ‹5

for ˆ > 0 and a > 2, (2.9)

leading to the piecewise linear thresholding

Ô
j D

8
><
>:

sgn 4zj54—zj —ƒ ‹5 when —zj — µ 2‹1

C 4aƒ15zj ƒa‹ sgn 4zj 5

aƒ2
when 2‹ < —zj — µ a‹1

zj when —zj — > a‹0

(2.10)

Fan and Li (1999) recommended using a D 307 based on a
Bayesian argument. This thresholding estimator is in the same
spirit as that of Gao and Bruce (1997). This penalty function
does not overpenalize large values of —ˆ— and hence does not
create excessive biases when the wavelet coef� cients are large.
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Figure 2. Typical Penalty Functions That Preserve Sparsity. (a) Lp -penalty with p D 1 (long dash), p D .6 (short dash), and p D .2 (solid);
(b) hard-thresholding penalty (2.8); (c) SCAD (2.9) with a D 3.7; (d) transformed L1-penalty (2.11) with b D 3.7.

Nikolova (1999b) suggested the following transformed L1-
penalty function [see Figure 2(d)]:

p‹4—x—5 D ‹b—x—41C b—x—5ƒ1 for some b > 00 (2.11)

This penalty function behaves quite similarly to the SCAD
suggested by Fan (1997). Both are concave on 601ˆ5 and do
not intend to overpenalize large —ˆ—. Other possible functions
include the Lp-penalty introduced (in image reconstruction)
by Bouman and Sauer (1993):

p‹4—ˆ—5 D ‹—ˆ—p 4p ¶ 050 (2.12)

As shown in Section 3.1, the choice p µ 1 is a necessary con-
dition for the solution to be a thresholding estimator, whereas
p ¶ 1 is a necessary condition for the solution to be continu-
ous in z. Thus, the L1-penalty function is the only member in
this family that yields a continuous thresholding solution.

Finally, we note that the regularization parameter ‹ for dif-
ferent penalty functions has a different scale. For example, the
value ‹ in the L1-penalty function is not the same as that in
the Lp-penalty 40 µ p < 15. Figure 2 depicts some of these
penalty functions. Their componentwise solutions to the cor-
responding penalized least squares problem (2.4) are shown in
Figure 3.

3. ORACLE INEQUALITIES AND UNIVERSAL
THRESHOLDING

As mentioned in Section 2.3, there are many competing
thresholding policies. They provide statisticians and engineers

a variety of choices of penalty functions with which to esti-
mate functions with irregularities and to denoise images with
sharp features. However, these have not yet been system-
atically studied. We � rst study the properties of penalized
least squares estimators, and then we examine the extent to
which they can mimic oracle in choosing the regularization
parameter ‹.

3.1 Characterization of Penalized
Least Squares Estimators

Let p4¢5 be a nonnegative, nondecreasing, and differentiable
function on 401ˆ5. The clipped L1-penalty function (2.6) does
not satisfy this condition and will be excluded in the study.
All other penalty functions satisfy this condition. Consider
the following penalized least squares problem: Minimize with
respect to ˆ

`4ˆ5 D 4zƒ ˆ52=2 C p‹4—ˆ—5 (3.1)

for a given penalty parameter ‹. This is a componentwise
minimization problem of (2.4). Note that the function in (3.1)
tends to in� nity as —ˆ— ! ˆ. Thus, minimizers do exist. Let
Ô4z5 be a solution. The following theorem gives the neces-
sary conditions (indeed, they are suf� cient conditions, too) for
the solution to be thresholding, to be continuous, and to be
approximately unbiased when —z— is large.

Theorem 1. Let p‹4¢5 be a nonnegative, nondecreasing,
and differentiable function in 401 ˆ5. Further, assume that the
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Figure 3. Penalized Least Squares Estimators That Possess Thresholding Properties. (a) The penalized L1 estimator and the hard-thresholding
estimator (dashed); (b) the penalized Lp estimator with p D .6; (c) the penalized SCAD estimator (2.10); (d) the penalized transformed L1 estimator
with b D 3.7.

function ƒˆ ƒ p0
‹4ˆ5 is strictly unimodal on 401 ˆ5. Then we

have the following results.

1. The solution to the minimization problem (3.1) exists
and is unique. It is antisymmetric: Ô4ƒz5 D ƒ Ô4z5.

2. The solution satis� es

Ô4z5 D
(

0 if —z— µ p01

zƒ sgn 4z5p0
‹4— Ô4z5—5 if —z— > p01

where p0 D minˆ¶08ˆ C p0
‹4ˆ59. Moreover, — Ô4z5— µ —z—.

3. If p0
‹4¢5 is nonincreasing, then for —z— > p0, we have

—z— ƒ p0 µ — Ô4z5— µ —z—ƒ p0
‹4—z—50

4. When p0
‹4ˆ5 is continuous on 401ˆ5, the solution Ô4z5

is continuous if and only if the minimum of —ˆ—Cp0
‹4—ˆ—5

is attained at point zero.
5. If p0

‹4—z—5 ! 0, as —z— ! Cˆ, then

Ô4z5 D zƒ p0
‹4—z—5 C o4p0

‹4—z—550

We now give the implications of these results. When
p0

‹40C5 > 0, p0 > 0. Thus, for —z— µ p0, the estimate is thresh-
olded to 0. For —z— > p0, the solution has a shrinkage prop-
erty. The amount of shrinkage is sandwiched between the
soft-thresholding and hard-thresholding estimators, as shown
in result 3. In other words, the hard- and soft-thresholding

estimators of Donoho and Johnstone (1994) correspond to the
extreme cases of a large class of penalized least squares esti-
mators. We add that a different estimator Ô may require dif-
ferent thresholding parameter p0 and, hence the estimator Ô is
not necessarily sandwiched by the hard- and soft-thresholding
estimators by using different thresholding parameters. Further,
the amount of shrinkage gradually tapers off as —z— gets large
when p0

‹4—z—5 goes to zero. For example, the penalty func-
tion p‹4—ˆ—5 D ‹rƒ1—ˆ—r for r 2 401 17 satis� es this condition.
The case r D 1 corresponds to the soft-thresholding. When
0 < r < 1,

p0 D 42ƒ r5841 ƒ r5rƒ1‹91=42ƒr51

and when —z— > p0, Ô4z5 satis� es the equation

Ô C ‹ Ôrƒ1 D z0

In particular, when r ! 0,

Ô ! Ô
0 ² 4z C

p
z2 ƒ 4‹5=2 D z=41C ‹zƒ25 C O4zƒ450

The procedure corresponds basically to the Garotte estimator
in Breiman (1995). When the value of —z— is large, one is cer-
tain that the observed value —z— is not noise. Hence, one does
not wish to shrink the value of z, which would result in under-
estimating ˆ. Theorem 1, result 4, shows that this property
holds when p‹4—ˆ—5 D ‹rƒ1—ˆ—r for r 2 40115. This ameliorates
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the property of the soft-thresholding rule, which always shifts
the estimate z by an amount of „. However, by Theorem 1,
result 4, the solution is not continuous.

3.2 Risks of Penalized Least
Squares Estimators

We now study the risk function of the penalized least
squares estimator Ô that minimizes (3.1). Assume Z
N 4ˆ115. Denote by

Rp4ˆ1 p05 D E8 Ô4Z5 ƒ ˆ920

Note that the thresholding parameter p0 is equivalent to the
regularization parameter ‹. We explicitly use the thresholding
parameter p0 because it is more relevant. For wavelet appli-
cations, the thresholding parameter p0 will be in the order
of magnitude of the maximum of the Gaussian errors. Thus,
we consider only the situation where the thresholding level is
large.

In the following theorem, we give risk bounds for penal-
ized least squares estimators for general penalty functions.
The bounds are quite sharp because they are comparable with
those for the hard-thresholding estimator given by Donoho and
Johnstone (1994). A shaper bound will be considered numer-
ically in the following section for a speci� c penalty function.

Theorem 2. Suppose p satis� es conditions in Theorem 1
and p0

‹40C5 > 0. Then

1. Rp4ˆ1p05 µ 1C ˆ2.
2. If p0

‹4¢5 is nonincreasing, then

Rp4ˆ1 p05 µ p2
0 C

p
2=� p0 C 10

3. Rp401p05 µ
p

2=� 4p0 C pƒ1
0 5 exp4ƒp2

0=25.
4. Rp4ˆ1p05 µ Rp401 ˆ5 C 2ˆ2.

Note that properties 1–4 are comparable with those for the
hard-thresholding and soft-thresholding rules given by Donoho
and Johnstone (1994). The key improvement here is that the
results hold for a larger class of penalty functions.

3.3 Oracle Inequalities and Universal
Thresholding

Following Donoho and Johnstone (1994), when the true sig-
nal ˆ is given, one would decide whether to estimate the coef-
� cient, depending on the value of —ˆ—. This leads to an ideal
oracle estimator Ô

o D ZI4—ˆ— > 15, which attains the ideal L2-
risk min4ˆ2115. In the following discussions, the constant n
can be arbitrary. In our nonlinear wavelet applications, the
constant n is the sample size.

As discussed, the selection of ‹ is equivalent to the choice
of p0. Hence, we focus on the choice of the thresholding
parameter p0. When p0 D

p
2 log n, the universal thresholding

proposed by Donoho and Johnstone (1994), by property (3) of
Theorem 2,

Rp401 p05 µ
p

2=� 842 log n51=2 C 19=n when p0 ¶ 11

which is larger than the ideal risk. To bound the risk of the
nonlinear estimator Ô4Z5 by that of the oracle estimator Ô

o,

we need to add an amount cnƒ1 for some constant c to the
risk of the oracle estimator, because it has no risk at point
ˆ D 0. More precisely, we de� ne

ån1c1p0
4p5 D sup

ˆ

Rp4ˆ1p05

cnƒ1 C min4ˆ2115

and denote ån1c1p0
4p5 by ån1c4p5 for the universal thresh-

olding p0 D
p

2 log n. Then, ån1 c1p0
4p5 is a sharp risk upper

bound for using the universal thresholding parameter p0. That
is,

Rp4ˆ1p05 µ ån1c1p0
4p58cnƒ1 C min4ˆ211590 (3.2)

Thus, the penalized least squares estimator Ô4Z5 performs
comparably with the oracle estimator within a factor of
ån1c1 p0

4p5. Likewise, let

å ü
n1c4p5 D inf

p0

sup
ˆ

Rp4ˆ1p05

cnƒ1 C min4ˆ2115

and
pn D the largest constant attaining å ü

n1c4p50

Then, the constant å ü
n1c4p5 is the sharp risk upper bound using

the minimax optimal thresholding pn. Necessarily,

Rp4ˆ1pn5 µ åü
n1c4pn58cnƒ1 C min4ˆ211590 (3.3)

Donoho and Johnstone (1994) noted that the universal
thresholding is somewhat too large. This is observed in prac-
tice. In this section, we propose a new universal thresholding
policy, that takes the second order into account. This gives
a lower bound under which penalized least squares estima-
tors perform comparably with the oracle estimator. We then
establish the oracle inequalities for a large variety of penalty
functions. Implications of these on the regularized wavelet
estimators are given in the next section.

By Theorem 2, property 2, for any penalized least squares
estimator, we have

Rp4ˆ1 p05 µ 2 log nC
p

4=� 4log n51=2 C 1 (3.4)

if p0 µ
p

2 log n. This is a factor of logn order larger than
the oracle estimator. The extra log n term is necessary because
thresholding estimators create biases of order p0 at —ˆ— p0.
The risk in 60117 can be better bounded by using the following
lemma.

Lemma 1. If the penalty function satis� es conditions of
Theorem 1 and p0

‹4¢5 is nonincreasing and p0
‹40C5 > 0, then

Rp4ˆ1 p05 µ 42 logn C 2 log1=2 n58c=nC min4ˆ21159

for the universal thresholding

p0 D
p

2 log nƒ log41 C d log n51 0 µ d µ c21

with n ¶ 4 and c ¶ 1 and p0 > 1014.
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The results in Donoho and Johnstone (1994) correspond to
the case c D 1. In this case, one can take the new universal
thresholding as small as

p0 D
p

2 logn ƒ log41C logn50 (3.5)

Letting c D 16, we can take

p0 D
p

2 logn ƒ log41C 256 logn50 (3.6)

This new universal thresholding rule works better in practice.
A consequence of Lemma 1 is that

ån1c4p5 ü µ ån1c4p5 µ 2 logn C 2 log1=2 n0 (3.7)

Thus, the penalized least squares perform comparably with
the oracle estimator within a logarithmic order. We remark
that this conclusion holds for the thresholding parameter p0 Dp

� logn for any � ¶ 2. The constant factor in (3.7) depends
on the choice of �, but the order of magnitude does not
change.

The SCAD penalty leads to an explicit shrinkage estimator.
The risk of the SCAD estimator of ˆ can be found analyti-
cally. To better gauge its performance, Table 1 presents the
minimax risks for the SCAD shrink estimator, using the opti-
mal thresholding and the new universal thresholding (3.5) and
(3.6) for c D 1 and c D 16 and for several sample sizes n.
The numerical values in Table 1 were computed by using a
grid search over p0 with increments 0001. For a given p0, the
supremum over ˆ was computed by using a Matlab nonlinear
minimization function.

Table 1 reveals that the new universal thresholding an1c is
much closer to the minimax thresholding pn than that of the
universal thresholding. This is particularly the case for c D 16.
Further, the sharp minimax risk bound åü

n1c1an
with c D 16 is

much smaller than the one with c D 1, used by Donoho and
Johnstone (1994). The minimax upper bound ån1c1 an

produced
by new universal thresholding with c D 16 is closer to å ü

n1 c.
All these bounds are much sharper than the upper bound bn1 c.

Table 1. Coef’ cient pn and Related Quantities for SCAD Penalty for
Several Values of c and n

n pn aa
n1 c (2 log n)1=2 åü

n1c åü
n(DJ) ån1 c1an bb

n1 c

c D 1
64 10501 20584 20884 30086 30124 70351 120396

128 10691 20817 30115 30657 30755 80679 140110
256 10881 30035 30330 40313 40442 100004 150800
512 20061 30234 30532 50013 50182 110329 170472

1024 20241 30434 30723 50788 50976 120654 190129
2048 20411 30619 30905 60595 60824 130978 200772

c D 16
64 0791 10160 20884 10346 30124 10879 120396

128 0951 10606 30115 10738 30755 30046 140110
256 10121 10957 30330 20153 40442 40434 140800
512 10311 20258 30532 20587 50182 50694 170472

1024 10501 20526 30723 30086 50976 70055 190129
2048 10691 20770 30905 30657 60824 80411 200772

NOTE: The coef’ cient å ü
n (DJ) is computed by Donoho and Johnstone (1994) in their table 2

for the soft-thresholding estimator using the universal thresholding p0 .
aan1c D (2 logn ƒ log(1 C c2 logn))1=2: the new thresholding parameter.
bbn D 2 logn C 2(log n)1=2 : the upper bound of minimax risk.

For c D 1, å ü
n1c for the SCAD estimator is somewhat smaller

than that of the soft-thresholding estimator å ü
n(DJ).

3.4 Performance of Regularized
Wavelet Estimators

The preceding oracle inequalities can be directly applied to
the regularized wavelet estimators de� ned via (2.3) when the
sampling points are equispaced and n D 2J . Suppose the data
are collected from model (1.1). For simplicity of presentation,
assume that ‘ D 1. Then, the wavelet coef� cients Z D WYn

N 4ˆ1 In5. Let

Rp4 Ofp1 f 5 D nƒ1
nX

iD1

8 Ofp4ti5 ƒ f4ti59
2

be the risk function of the regularized wavelet estimator Ofp .
Let R4 Ofo1 f 5 be the risk of the oracle wavelet thresholding
estimator, which selects a term to estimate, depending on
the value of unknown wavelet coef� cients. Namely, Ofo is the
inverse wavelet transform of the ideally selected wavelet coef-
� cients 8ZiI4—ˆi— > 159. This is an ideal estimator and serves
as a benchmark for our comparison. For simplicity of presen-
tation, we assume that i0 D 1.

By translating the problem in the function space into the
wavelet domain, invoking the oracle inequalities (3.3) and
(3.7), we have the following results.

Theorem 3. With the universal thresholding p0 D
p

2 logn,
we have

Rp4 Ofp1 f 5 µ ån1c4p58cnƒ1 C R4 Ofo1 f 590

With the minimax thresholding pn, we have the sharper bound:

Rp4 Ofp1 f 5 µ åü
n1c4p58cnƒ1 C R4 Ofo1 f 590

Further, ån1 c4p5 and åü
n1 c4p5 are bounded by (3.7).

The risk of the oracle estimator is relatively easy to com-
pute. Assume that the signal f is in a Besov ball. Because
of simple characterization of this space via the wavelet coef-
� cients of its members, the Besov space ball Br

p1 q4C5 can be
de� ned as

Br
p1 q D

n
f 2 Lp 2

X
j

2j4rC1=2ƒ1=p5˜ˆj¢˜p

q
< C

o
1 (3.8)

where ˆj¢ is the vector of wavelet coef� cients at the resolu-
tion level j. Here, r indicates the degree of smoothness of the
underlying signal f . Note that the wavelet coef� cients ˆ in the
de� nition of the Besov space are continuous wavelet coef� -
cients. They are approximately a factor of n1=2 larger than the
discrete wavelet coef� cients Wf . This is equivalent to assum-
ing that the noise level is of order 1=n. By simpli� ed calcula-
tions of Donoho et al. (1995), we have the following theorem.

Theorem 4. Suppose the penalty function satis� es the con-
ditions of Lemma 1 and r C 1=2 ƒ 1=p > 0. Then, the maxi-
mum risk of the penalized least squares estimator Ofp over the
Besov ball Br

p1 q4C5 is of rate O4nƒ2r=42rC15 log n5 when the
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universal thresholding
p

2nƒ1 logn is used. It also achieves
the rate of convergence O4nƒ2r=42rC15 logn5 when the minimax
thresholding pn=

p
n is used.

Thus, as long as the penalty function satis� es conditions of
Lemma 1, regularized wavelet estimators are adaptively min-
imax within a factor of logarithmic order.

4. PENALIZED LEAST SQUARES FOR
NONUNIFORM DESIGNS

The Sobolev wavelet interpolators introduced in Section 2
could be further regularized by a quadratic penalty in analogy
with what is being done with smoothing splines. However,
the estimators derived in this way, although easy to compute,
are linear. They tend to oversmooth sharp features such as
jumps and short aberrations of regression functions and, in
general, will not recover such important attributes of regres-
sion functions. In contrast, nonlinear regularization methods,
such as the ones studied in the previous sections, can ef� -
ciently recover such attributes. Our purpose in this section
is to naturally extend the results of the previous sections to
the general situation, in which the design matrix is no longer
orthonormal.

Finding a solution to the minimization problem (2.3) cannot
be done by using classical optimization algorithms, because
the penalized loss `4ˆ5 to be minimized is nonconvex, non-
smooth (because of the singularity of p at the origin), and
high-dimensional. In this section, we introduce a ROSE to
solve approximately the minimization problem (2.3). It is
related to the one-step likelihood estimator and hence is sup-
ported by statistical theory (Bickel 1975; Robinson 1988).

4.1 Regularized One-Step Estimator

The following technique is used to avoid minimizing high-
dimensional nonconvex functions and to take advantage of the
orthonormality of the wavelet matrix W. Let us again consider
equation (1.1), and let us collect the remaining rows of the
matrix WT that were not collected into the matrix A into the
matrix B of size 4N ƒn5� N . Then, the penalized least squares
in expression (2.3) can be written as

`4ˆ5 D 2ƒ1˜Y ü ƒ WT ˆ˜2 C
X
i¶i0

p‹4—ˆi—51

where Y ü D 4YT
n 1 4Bˆ5T 5T . By the orthonormality of the

wavelet transform,

`4ˆ5 D 2ƒ1˜WY ü ƒ ˆ˜2 C
X
i¶i0

p‹4—ˆi—50 (4.1)

If Y ü were given, this minimization problem can be easily
solved by componentwise minimizations. However, we do not
know ˆ, and one possible way is to iteratively optimize (4.1).
Although this is a viable idea, we are not sure if the algorithm
will converge. A one-step estimation scheme avoids this prob-
lem, and its theoretical properties can be understood. Indeed,
in a completely different context, Fan and Chen (1999) show
that the one-step method is as ef� cient as the fully iterative
method, both empirically and theoretically, as long as the ini-
tial estimators are reasonably good. In any case, some good

estimates of ˆ are needed, by using either a fully iterative
method or a one-step method.

We now use our Sobolev wavelet interpolators to produce
an initial estimate for ˆ and hence for Y ü . Recall that Ô D
DAT 4ADAT 5ƒ1Yn was obtained via wavelet interpolation. Let

bY ü
0 D 4YT

n 1 4B Ô 5T 5T

be the initial synthetic data. By the orthonormality of W, it is
easy to see that

Ô ü
D WbY ü

0 N 4ˆ ü 1‘ 2V51 (4.2)

where

V D DAT 4ADAT 5ƒ2AD and ˆ ü D DAT 4ADAT 5ƒ1Aˆ

is the vector of wavelet coef� cients. We call the components
of WbYü

0 the empirical synthetic wavelet coef� cients. Note that
ˆ ü is the wavelet interpolation of the signal fn. It does not
create any bias for the function f at observed data points, and
the biases at other points are small (see Figure 1).

The empirical synthetic wavelet coef� cients are nonsta-
tionary with a known covariance structure V. Component-
wise thresholding should be applied. Details are given in
Section 4.2. Let Ô ü

1 be the resulting componentwise thresh-
olding estimator. The resulting estimate Of1 D WT Ô ü

1 is an
(NRSI).

We do not have an automatic choice for the smoothing
Sobolev interpolation parameter s. Although the interpolated
function becomes smoother as s increases, it does not remove
the noise in the observed signal, because the interpolated func-
tion must necessarily pass through all observed points. The
regularization employed by NRSI yields reasonable interpola-
tors allowing some errors in matching the given sample points.

As noted in Section 2, when s D 0, Ô D AT Yn is easy to
compute. In this case, the covariance matrix V D AT A is also
easy to compute. Its diagonal elements can be approximated
by using the properties of wavelets.

As shown in Section 4.3, the NRSIpossesses good sampling
properties. One can also regard this estimator Ô

1 as an initial
estimator and use it to create the synthetic data

bY ü
1 D 4YT

n 1 4B Ô
15

T 5T 0

With the synthetic data, one can now minimize the penalized
least squares

`4ˆ5 D 2ƒ1˜WbY ü
1 ƒ ˆ˜C

X
i¶i0

p‹4—ˆi—5 (4.3)

by componentwise minimization technique. The resulting pro-
cedure is a one-step procedure with a good initial estima-
tor. This procedure is the ROSE. By this one-step procedure,
the interaction of ‹ with the parameter s is largely reduced,
and, with the proper choice of the threshold, a large range of
values of s yields estimates with minimal distorsion. Accord-
ing to Bickel (1975), Robinson (1988), and Fan and Chen
(1999), such a procedure is as good as a fully iterated pro-
cedure when the initial estimators are good enough. Formal
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technical derivations of the statement are beyond the scope of
this article.

4.2 Thresholding for Nonstationary Noise

As shown in (4.2), the noise in the empirical synthetic
wavelet coef� cients is not stationary, but their covariance
matrix is known up to a constant. Thus, we can employ
coef� cient-dependent thresholding penalties to the empirical
synthetic wavelet coef� cients. This is an extension of the
method of Johnstone and Silverman (1997), who extended
wavelet thresholding estimators for data with stationary cor-
related Gaussian noise. In their situation, the variances of the
wavelet coef� cients at the same level are identical, so that they
threshold the coef� cients level by level with thresholds of the
order

p
2 logN‘ j , where ‘ j is a robust estimate of the noise

level at the jth resolution of the wavelet coef� cients.
Let vi be the ith diagonal element of the matrix V. Then,

by (4.2), the ith synthetic wavelet coef� cient, denoted by Z ü
i ,

is distributed as

Z ü
i N 4ˆ ü

i 1 vi‘
250 (4.4)

The coef� cient-dependent thresholding wavelet estimator is to
apply

pi D
p

2vi logn‘ (4.5)

to the synthetic wavelet coef� cient Z ü
i . This coef� cient-

dependent thresholding estimator corresponds to the solution
of (2.3) with the penalty function

PN
i¶i0

p‹i
4—ˆi—5, where the

regularization parameter ‹i is chosen such that pi is the thresh-
olding parameter for the ith coef� cient:

min
ˆ¶0

8ˆ C p0
‹i

4ˆ59 D pi0

Invoking the oracle inequality with c D 1, the risk of this
penalized least squares estimator is bounded by

E4 Ô
i ƒ ˆ ü

i 52 µ 42 logn C 2 log1=2 n5

� 6c‘ 2vi=n C min4ˆ ü 2
i 1‘ 2vi570 (4.6)

Averaging these over i, we obtain an oracle inequality similar
to that of Donoho and Johnstone (1998) in the uniform design
setting.

In the preceding thresholding, one can take pi Dp
2vi log N ‘ . The result (4.6) continues to hold. The constant

2 in pi can be replaced by any constant that is no smaller
than 2.

In practice, the value of ‘ 2 is usually unknown and must
be estimated. In the complete orthogonal case, Donoho et al.
(1995) suggested the estimation of the noise level by taking
the median absolute deviation of the coef� cients at the � nest
scale of resolution and dividing it by .6745. However, in our
setting, it is necessary to divide each synthetic wavelet coef-
� cient by the square root of its variance vi. Moreover, it can
happen that some of these variances are close to 0 due to a
large gap in the design, leading to values of synthetic wavelet

coef� cients that are also close to 0. Taking these into account,
we suggest and have used the estimator

O‘ D MAD8Z ü
J ƒ11k=

p
vJ ƒ11k 2 vJƒ11k > 000019=067451

where Z ü
J ƒ11k is the synthetic wavelet coef� cients at the highest

resolution level J ƒ 1 and vJ ƒ11k is its associated variance.

4.3 Sampling Properties

The performance of regularized wavelet estimators is
assessed by the mean squared risk:

Rp4f5 D nƒ1
nX

iD1

å8 Ofp4ti5 ƒ f4ti59
20

In terms of the wavelet transform for the NRSI, it can be
expressed as

Rp4f 5 D nƒ1å8˜A Ô
1 ƒ Aˆ˜29

D nƒ1å8˜A Ô
1 ƒ Aˆ ü ˜29 µ nƒ1å̃ Ô

1 ƒ ˆ ü ˜20 (4.7)

By (4.6), the mean squared errors are bounded as follows.

Theorem 5. Assume that the penalty function p satis� es
the condition in Lemma 1. Then, the NRSI with coef� cient-
dependent thresholding satis� es

Rp4f 5 µ nƒ1 42 log n C 2 log1=2 n5

�
h
c‘ 2tr4V5=nC

X
min4ˆ ü 2

i 1‘ 2vi5
i
1

where tr4V5 is the trace of matrix V.

Note that when s D 0, the matrix V D AT A µ IN . Hence,
tr4V5 µ N and vi µ 1.

The NRSI was used only as an initial estimator to the penal-
ized least squares estimator (1.2). We consider its performance
over the Besov space Br

p1 q for the speci� c case with s D 0. To
this end, we need some technical conditions. First, we assume
that N =n D O4loga n5 for some a > 0. Let Gn be the empirical
distribution function of the design points 8t11 : : : 1 tn9. Assume
that there exists a distribution function G4t5 with density g4t5,
which is bounded away from 0 and in� nity such that

Gn4t5 ! G4t5 for all t 2 40115 as n ! ˆ0

Assume further that g4t5 has the r th bounded derivative. When
r is not an integer, we assume that the 6r 7 derivative of g sat-
is� es the Lipschitz condition with the exponent r ƒ 6r 7, where
6r7 is the integer part of r .

To ease the presentation, we now use double indices to indi-
cate columns of the wavelet matrix W. Let Wj1 k4i5 be the ele-
ment in the ith row and the 4j1 k5th column of wavelet matrix
WT , where j is the resolution level and k is the dyadic loca-
tion. Let – be the mother wavelet associated with the wavelet
transform W. Assume that – is bounded with a compact sup-
port and has � rst r ƒ 1 vanishing moments. Then,

Wj1 k4i5 2ƒ4Jƒj5=2–42j i=N ƒ k5
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for i1 j1 k not too close to their boundaries. To avoid unneces-
sary technicalities, which do not provide us insightful under-
standing, we assume

Wj1 k4i5 D 2ƒ4Jƒj5=2–42j i=N ƒ k5 for all i1 j1 k0

As in Theorem 4, we assume that ‘ 2 D nƒ1.

Theorem 6. Suppose that the penalty function satis� es the
conditions of Lemma 1 and r C1=2ƒ1=p > 0. Then, the max-
imum risk of the nonlinear regularized Sobolev interpolator
over a Besov ball Br

p1 q is of rate O4nƒ2r=42rC15 log n5 when the
universal thresholding rule is used. It achieves the rate of con-
vergence O4nƒ2r=42rC15 logn5 when the minimax thresholding
pn=

p
n is used.

5. NUMERICAL EXAMPLES

In this section, we illustrate our penalized least squares
method by using three simulated datasets and two real data
examples. The NRSI is used as an initial estimate. The
ROSE method is employed with the SCAD penalty and with
coef� cient-dependent universal thresholding penalties given
by (4.5).

For simulated data, we use the functions heavisine, blocks,
and doppler in Donoho and Johnstone (1994) as testing func-
tions. The noise level is increased so that the signal-to-noise
ratio is around 4. This corresponds to taking ‘ D 05 for the
heavisine function, ‘ D 03 for the blocks function, and ‘ D 04
for the doppler function. A random sample of size 100 is sim-
ulated from model (1.1). The design points are uniformly dis-
tributed on 60117, but they are not equispaced. For the doppler
function, we set the xi’s by choosing 100 design points from
a standard normal distribution and then rescaling and relo-
cating the order statistics of the absolute values of the 100
samples (this yields a denser sampling of the � rst portion of
the Doppler signal, which is the region over which it is vary-
ing rapidly). The simulated data and the testing functions are
shown in Figure 4, (a), (c), (e). The ROSE estimates were
computed by using the symmlets of order 6 and s D 3 for
the heavisine and the doppler functions and the Haar wavelets
and s D 05 for the blocks function. As an indication of the
relative computation speed of the NSRI and ROSE methods,
we report the CPU time in seconds needed by the MATLAB
process to run NSRI, and then ROSE, for producing one esti-
mate of the heavisine function under such a setting: CPU-
NSRID 1.6144e-01 and CPU-ROSE D 1.1840e-02. The larger
value for the NSRI CPU time is due to the initialization of the
Sobolev interpolation over the appropriate grid.

As one can see from the � gures, the blocks data are very
sensitive to small gaps in the design because they have a lot
of discontinuities. The resulting � t for the doppler function
oversmooths the � rst portion of the Doppler signal, because
the random design does not catch the rapid oscillations of the
signal very well. On the other hand, the � t for the heavisine
case is much smoother and better. Note, however, the bias in
the discontinuous parts of the heavisine function due to the
wavelet NRSI initial estimate with s D 3.

We now report on Monte Carlo experiments conducted to
compare the performance of ROSE with Hall and Turlach’s
interpolation method (HALL/TURL) and the one of Kovac and

Silverman (KOVAC/SILV). We used as test functions the heav-
isine and blocks functions, normalized such that their standard
deviations were equal to 5. We set up the xi’s by choosing
n D 100 design points from a standard normal distribution and
then rescaling and relocating their order statistics such that the
� rst and last values were 0 and 1, with a discretization (used
for Sobolev interpolation) of the 60117 interval into a regular
grid of length N D 256. For each set of xi’s so chosen, we
simulated a noisy function with ‘ 2 D 1 (i.e., the standard devi-
ation of the noise is 5 times smaller than the standard devi-
ation of the function). Each noisy function was then used to
estimate the true f over the selected xi’s by using each of the
three wavelet estimation techniques. The quality of the esti-
mate was measured by computing the observed risk, namely,

bR4 Of 1 f 5 D
1
n

nX

iD1

Of 4xi5 ƒ f 4xi5
2
0

To eliminate effects that might be attributable to a particular
choice of the xi’s, we reselected the xi’s for each simulation.
We repeated the above 200 times to obtain 200 observed risks
for each function and each wavelet estimation method. We
used SCAD to select the threshold for ROSE (with s D 3 for
heavisine and s D 05 for blocks), SURE to select the thresh-
old for the Silverman and Kovac algorithm, and a universal
threshold adjusted to the maximal spacing of the design points
for the Hall and Turlach procedure, as advocated by them. We
assumed knowledge of the noise variance ‘ 2 in computing the
thresholds.

Figure 5 displays the boxplots of the observed risks and for
the heavisine and blocks functions. For the heavisine, ROSE
appears to be the best technique, whereas KOVAC/SILV looks
slightly better for the blocks. The universal thresholding rule
advocated by Hall and Turlach leads to a larger risk than
do the other two methods. We can conclude that the ROSE
wavelet scheme works well.

As an example of our regularized wavelet estimation pro-
cedure to an actual unequally sampled time series, we con-
sider the problem of estimating the light curve for the variable
star RU Andromeda. This time series was obtained from the
American Association of Variable Star Observers international
database, which is maintained by J. A. Mattei and is accessible
at www.aavso.org. It was used by Sardy et al. (1999) to illus-
trate the performance of their Haar wavelet–based procedures
for denoising unequally sampled noisy signals. The observed
magnitude values for this star are indicated in Figure 6 by
small dots, which range in time from Julian Day 2,449,004 to
2,450,352 (January 1993 to mid 1996). The magnitudes of this
star are measured at irregularly spaced times because of block-
age of the star by sunlight, weather conditions, and availability
of telescope time. There were 295 observations in all, three of
which were reported as upper limits on the star’s magnitude
and hence were eliminated because their error properties are
quite different from the remaining observations. Of the 292
remaining observations, we selected 100 observations at ran-
dom from the � rst 256 values to conform to the assumption
made throughout this article.

The ROSE method is employed with the Symmlets of order
6, s D 3, and the SCAD penalty with coef� cient-dependent

http://www.aavso.org.
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Figure 4. Estimates by Using ROSE for Two Simulated Data. (a), (c), (e) Simulated data and true regressions; (b), (d), (f) estimate by using
ROSE (solid curve) and true regressions (dashed curves) with s D 3, s D .5, s D 3.

Figure 5. Boxplots of Observed Risks and for Heavisine and Blocks Functions for Each Wavelet Method.
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Figure 6. Light Curve for Variable Star RU Andromeda. Observed
data (points) and ROSE estimates (solid curve).

universal thresholds given by (4.5). The estimated light curve
is indicated in Figure 6 by a solid line. Compared with the
� ndings in Sardy et al. (1999), the estimated light curve tracks
the overall light variations quite nicely.

Figure 7 shows another dataset that was analyzed exten-
sively in the � eld of nonparametric regression. It was dis-
cussed by Silverman (1985) and consists of 133 observations
from a crash test and shows the acceleration of a motor-
cyclist’s head during a crash. Classical wavelet thresholding

Figure 7. Crash Data With Several Wavelet Estimates. (a) Classical Wavelet Thresholding, (b) Thresholding for Unequally Spaced Data,
(c) Robust Thresholding, (d) ROSE estimation with s D 3.

or the interpolation method of Hall and Turlach (1997) for
unequally spaced data produce wiggly estimates, like those
in the � rst row of Figure 5. In both cases, VisuShrink was
applied, and the Symmlets of order 6 were used. Both esti-
mates exhibit large high-frequency phenomena. The second
row in Figure 7 displays a robust estimate obtained by clean-
ing the data from outliers and extreme observations by median
� ltering and then using wavelet thresholding on linearly inter-
polated data on a regular grid, as suggested by Kovac and
Silverman (1999), and the ROSE estimate on the same dataset
with a 256-point Sobolev interpolation using the Symmlets
of order 6, s D 3, and the SCAD penalty with coef� cient-
dependent universal thresholds given by (4.5). Both estimates
are obviously less disturbed by the outliers in the crash dataset;
there are no longer any high-frequency phenomena. This
example shows that ROSE by itself is quite robust to outliers.

6. OTHER APPROACHES

In this section, we present an alternative approach to esti-
mate regression functions from nonequispaced samples by
using the GNC algorithm to � nd a local minimum of the
penalized least squares problem (2.3). This method is more
computationally intensive than the NRSI and ROSE, and
its implementations depend on a number of tuning parame-
ters. Nevertheless, it offers nice ideas for optimizing high-
dimensional nonconvex functions.
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6.1 Graduated Nonconvexity Algorithm

The graduated nonconvexity algorithm was developed in
the image processing context (Blake and Zisserman 1987;
Blake 1989). It can minimize a broad range of nonconvex
functions. Basically, the GNC algorithm can be seen as a
deterministic relaxation technique (Blake 1989) that substi-
tutes a sequence of local minimizations along a sequence of
approximate (relaxed) functions `rk

for the minimization of `.
Here, 8rk9K

kD0 is an increasing sequence of positive relaxation
parameters that are similar to the cooling temperatures in the
simulated annealing. The � rst relaxed objective function `r0

is strictly convex, and hence its minimization can be found
by using standard techniques. A local minimizer of `rk

4ˆ5
serves as the initial value for minimization of `rkC1

4ˆ5. The
last one � ts the function `, which is the object that we want
to minimize.

The GNC algorithm requires the family of relaxed functions
`r , depending on a parameter r 2 40115, to satisfy the follow-
ing conditions:

1. The functions `r 4ˆ5 are C1-continuous in ˆ and contin-
uous in r .

2. The concavity of `r is relaxed monotonously when r
decreases.

3. There exists r0 > 0 such that `r is strictly convex for any
r µ r0.

4. limr!1 `r 4ˆ5 D `4ˆ5.

Thus, the function `r has a unique minimum for r µ r0. When
r increases to one, the local minima progressively approach a
local minima of the object function `.

The implementation of the algorithm depends on the choice
of relaxation sequence 8rk9

K
kD0. The GNC minimization starts

from calculating the unique minimum Ô
r0

of `r0
. Afterward,

for each rk, an intermediate minimum Ô
rk

of `rk
is calculated

by a local descent method in a vicinity of previously obtained
intermediate minimum; namely, Ô

rk
is obtained by iterating a

local decent algorithm with the initial value Ô
rkƒ1

. The � nal
estimate is Ô

rK
.

The closeness of the ultimate estimate Ô
rK

to the global
minimum of ` depends critically on the sequence of relaxed
functions. It is therefore reasonable to require that the relaxed
functions `r closely approximate the original functional `.

6.2 Applications to Penalized Least Squares

The success of a GNC optimization to compute estimates
corresponding to nonsmooth penalties in Section 2.3 closely
depends on the pertinence of the approximation involved in the
relaxed penalized functions. An extension of the GNC algo-
rithm to ill posed linear inverse problems and a systematic way
to calculate initializations for which a local minimization of
` provides meaningful estimates was given by Nikolova et al.
(1999). Here, we brie� y summarize key ideas in Nikolova
et al. (1999) and extend the GNC algorithm to our case. To
facilitate notation, we drop the dependence of notation ‹ and
rewrite (2.3) as

`4ˆ5 D 2ƒ1˜Yn ƒ Aˆ˜2 C
X
i¶i0

p4—ˆi—50 (6.1)

In our applications, the nonconvexity comes from noncon-
vexity penalties. Hence, we need only to relax the penalized
term in (6.1). Penalty functions satisfying the conditions of
Theorem 1 have strictly concave parts, but their concavity
vanishes at in� nity, namely, the second derivative at in� nity
is nonnegative. They usually reach their maximum concavity
at some � nite point. More precisely, let

p004t5 D lim
˜!0

˜ƒ28p4t C ˜5 C p4t ƒ ˜5 ƒ 2p4t59 for t > 01

and let T be the largest minimizer of p004¢5 over t > 0. That is,
T is the location where the maximum concavity inf t2òC p004t5

of the function p occurs. Given such a penalty function, a
relaxed penalty pr should satisfy the following conditions
(Nikolova et al., to appear):

1. The functions pr4—t—5 are C1-continuous in t, and for any
t � xed they are continuous in r .

2. pr 4—t—5 should not stray too much from p4—t—5 for each r

and limr!1 pr 4—t—5 D p4—t—5.
3. The maximum concavity of pr4—t—5, occurring at

Tr , is required to increase continuously and strictly
monotonously toward 0 as r ! r0 so that pr0

is a convex
function.

An appropriate choice of a relaxed penalty is usually based on
the closeness of Tr to the original T and the way Tr decreases
toward T as r increases toward 1. One way to construct such
relaxed penalties pr is to � t splines in the vicinity of the points
where p is not differentiable and nonconvex. This technique
was proposed by Blake and Zisserman (1987) for the relax-
ation of a clipped quadratic penalty.

To ensure the convexity of initial approximation

`r 4ˆ5 D 2ƒ1˜Yn ƒ Aˆ˜2 C
X
i¶i0

pr4—ˆi—51

it is necessary to � nd an r such that the Hessian matrix of `r

is nonnegative de� nite for any ˆ:

AT AC P 00
r 4ˆ5 > 0 for all ˆ1

where Pr 4ˆ5 D P
i¶i0

pr 4—ˆi—5 and P 00
r 4ˆ5 is its corresponding

Hessian matrix. Because the matrix AT A is singular and pr

has its concave parts, such a condition is dif� cult to ful� ll.
Thus, some modi� cations on family of relaxation pr for r near
r0 are needed. A possible way to do this is to render convexity
of the initial relaxed penalty pr , as done by Nikolova et al. (in
press).

Take a number � 2 4r0115. With slight abuse of notation,
modify the de� nition of Pr for r 2 6r01�7 as

Pr 4ˆ5 D P�4ˆ5 C
�ƒ r

�ƒ r0

Q4ˆ51

where Q4ˆ5 D P
i q4—ˆi—5 for a convex function q. To ensure

the convexity of Pr0
, Q has to compensate for the nonconvex

parts of P�, and at the same time Q should not deform P� too
much. The auxiliary penalty q should be C1-continuous and
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symmetric with q405 D 0. A possible choice of the function q

is given by

q4—t—5 D p�4u�5 ƒ p�4—t—5

C 4—t—ƒ u�5 Pp�4u�5 I 4—t— ¶ u�51 (6.2)

where u� > 0 is such that p� is strictly convex over the interval
—t— < u�.

An illustration, let us consider the transformed L1 penalty
function (2.11), which has been used in the context of image
processing for restoring blurred images by Nikolova et al. (in
press). For this type of penalty, the maximum concavity occurs
at T D 0 with the minimum of the second derivative ƒ2b2.
Consider the family of relaxed functions

pr 4—t—5 D
(

br t2

1Ccr t2 if —t— < 1ƒr
r

1
b—t—

1Cb—t— if —t— ¶ 1ƒr

r

(6.3)

with br D 2rb

1ƒr
and cr D r4rC2bƒ2br5

41ƒr52 . The penalty and its relaxed
form are depicted in Figure 8(c). The constants br and cr

are determined by the C1-continuity of the function pr . The
maximum concavity occurs at Tr D 1

cr
< 1ƒr

r
with the mini-

mum of the second derivative ƒrb=41ƒ r5. This initial choice
of relaxed functions are not convex for all r > 0. Thus, we

Figure 8. GNC Algorithm. (a) The data (points) and the true regres-
sion function (solid curve). (b) The unknown function is computed by
solving (2.3) using the GNC algorithm; dashed curve: the true function;
solid curve: estimated function. (c) Relaxing the concave penalty (2.11)
with b D 3.7 (solid curve) by using a relaxing function pr with r D .5
(dashed curve) de’ ned by Equation (6.3).

appendix a convex term according to (6.3):

q4—t—5 D
(

0 if —t— < u�1
b�

4c�
ƒ p�4—t—5 C 4—t— ƒ u�5g if —t— ¶ u�1

where u� D 1p
3c�

and g D 9b�

8
p

3c�

. As an illustration of the GNC

algorithm, we simulated 100 data points from the heavisine
function with a signal-to-noise ratio about 3. The data and the
true regression function are shown in Figure 8(a). We apply
the GNC algorithm with the number of relaxing steps K D 40
to solve the penalized least squares problem (2.3) with ‹ D 6
and penalty function (2.11) with b D 307. The GNC algorithm
found a reasonably good estimate, which is superimposed as
a solid line to the true function (dashed curve) in Figure 8(b).

APPENDIX A: PROOF OF THEOREM 1

The existence of the solution was noted. When z D 0, it is clear that
Ô4z5 D 0 is the unique minimizer. Without loss of generality, assume
that z > 0. Then, for all ˆ > 0, `4ƒˆ5 > `4ˆ5. Hence, Ô4z5 ¶ 0. Note
that for ˆ > 0,

`04ˆ5 D ˆ ƒ z C p0
‹4ˆ50

When z < p0, the function ` is strictly increasing on 401 ˆ5 because
the derivative function is positive. Hence, Ô4z5 D 0. When the func-
tion `04ˆ5 is strictly increasing, there is at most one zero-crossing,
and hence the solution is unique. Thus, we only need to consider the
case that `04ˆ5 has a valley on 401ˆ5 and z > p0. In this case, there
are two possible zero-crossings for the function `0 on 401 ˆ5. The
larger one is the minimizer because the derivative function at that
point is increasing. Hence, the solution is unique and satis� es

Ô4z5 D z ƒp0
‹4 Ô4z55 µ z0 (A.1)

Thus, Ô4z5 µ z ƒ p0
‹4z5 when p0

‹4¢5 is nonincreasing. Let ˆ0 be the
minimizer of ˆ C p0

‹4ˆ5 over 601 ˆ5. Then, from the preceding argu-
ment, Ô4z5 > ˆ0 for z > p0. If p0

‹4¢5 is nonincreasing, then

p0
‹4 Ô4z55 µ p0

‹4ˆ05 µ ˆ0 C p0
‹4ˆ05 D p00

This and (A.1) prove result 3. It is clear that continuity of the solution
Ô4z5 at the point z D p0 if and only if the minimum of the function
—ˆ—Cp0

‹4—ˆ—5 is attained at 0. The continuity at other locations follows
directly from the monotonicity and continuity of the function ˆ C
p0

‹4ˆ5 in the interval 401ˆ5. The last conclusion follows directly
from (A.1). This completes the proof.

APPENDIX B: PROOF OF THEOREM 2

First, Rp4ˆ1p05 is symmetric about 0 by Theorem 1, result 1. Thus,
we can assume without loss of generality that ˆ ¶ 0. By Theorem 1,
results 1 and 2,

E4 Ô ƒ ˆ52 µ E4Z ƒˆ52I 4 Ô 62 601 ˆ75 C ˆ2P4 Ô 2 601 ˆ75

µ 1 Cˆ20 (B.1)

To prove result 2, we note that E4 Ô ƒ ˆ52 D 1 C 2E4Z ƒ ˆ5 4 Ô ƒ
Z5C E4 Ô ƒZ520 For Z > ˆ, we have Ô µ Z by Theorem 1, result 3,
which implies that 4Z ƒ ˆ54 Ô ƒ Z5 µ 00 Similarly, for Z < 01
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4Z ƒ ˆ54 Ô ƒ Z5 µ 00 Thus, E4 Ô ƒ ˆ52 µ 1 C 2E4ˆ ƒ Z54Zƒ Ô5I40 µ
Z µ ˆ5 CE4 Ô ƒZ520 By Theorem 1, result 3, — Ô ƒ Z— µ p00 Thus,

E4 Ô ƒ ˆ52 µ 1C 2p0E4ˆƒ Z5I4Z µ ˆ5 Cp2
0 µ 1 Cp0

p
2=� Cp2

00

This establishes result 2.
Result 3 follows directly from the fact that

Rp401p05 µ EZ2I8—Z— ¶ p090

To show result 4, using the fact that R0
p401p05 D 0 due to symmetry,

we have by the Taylor expansion that

Rp4ˆ1 p05 µ Rp401 p05 C
1
2

sup
0µ‡µ1

R00
p4‡1p05ˆ2

for ˆ 2 6ƒ11 170 (B.2)

We now compute the second derivative. Let ”4¢5 be the standard
normal density. Then, by simple calculation, we have

R0
p4ˆ1p05 D

Z ˆ

ƒˆ
4ˆ C z ƒ2 Ô5”4zƒˆ5dz

D 2ˆ ƒ2
Z ˆ

ƒˆ
Ô”4zƒˆ5dz

and R00
p4ˆ1p05 D 2 C 2E Ô4ˆ ƒ Z50

By using the same arguments as those in the proof of result 2, we
have for ˆ > 0

R0 0
p4ˆ1 p05 µ 2 C2E Ô4ˆ ƒZ5I40 µ Z µ ˆ50

Noting that Ô D 0 for —Z— µ p0, we have for p0 ¶ 1 R00
p4ˆ1p05 µ 20 For

the general case, using the fact that — Ô— µ —Z—, we have for ˆ 2 60117

R00
p4ˆ1 p05 µ 2 C2ˆE4ˆ ƒZ5I40 µ Z µ ˆ5

D 2 C
p

2=� ˆ41 ƒ exp4ƒˆ2=255 µ 40

By (B.2), result 4 follows for ˆ 2 6ƒ1117. For ˆ outside this interval,
4 follows from (B.1). This completes the proof.

APPENDIX C: PROOF OF LEMMA 1

For —ˆ— > 1, by (3.4), we have for n ¶ 4

Rp4ˆ1p05 µ 2 log nC 24log n51=20

Thus, we need to show that the inequality holds for ˆ 2 601 17. First,
by Theorem 2, result 4,

Rp4ˆ1p05 µ Rp401 ˆ5 C2ˆ20

Let g4ˆ5 D 4Rp401p05 C 2ˆ25=4c=nCˆ250 If Rp401p05 µ 2c=n, then
g4ˆ5 µ 2 µ 2 logn0 Hence, the result holds. When Rp401p05 >

2c=n, g4ˆ5 is monotonically decreasing and hence g4ˆ5 µ g405 D
cƒ1nRp401 p050 By Theorem 2, result 3, we have

g4ˆ5 µ ncƒ1p041 Cpƒ2
0 5

p
2=� exp4ƒp2

0=25

µ 2� ƒ1=2cƒ141 Cpƒ2
0 54log n51=241C d1=24log n51=250

By using the fact that for p0 > 1014, � ƒ1=241Cpƒ2
0 5 µ 1, we conclude

that g4ˆ5 µ 2cƒ1d1=24log n5 C2cƒ14log n51=20

APPENDIX D: PROOF OF THEOREM 4

Write Z D 4Zj1k5 and ˆ D 4ˆj1k5, j D 01 : : : 1 J ƒ1, k D 11 : : : 12j ,
where Zj1 k and ˆj1k are the wavelet coef� cients at the jth resolution
level. Then, by the model assumption, Zj1k N 4ˆj1k1 nƒ15. By The-
orem 3, we need only to compute the maximum risk of the oracle
estimator Ôo

j1k D Zj1kI 4—Zj1k— > nƒ15. Note that under the n1=2-scale
transform between the discrete and continuous wavelet coef� cients,
the risk function for the oracle estimator becomes

R4 Ofo1 f 5 D
Jƒ1X

jD1

2jX

kD1

E4 Ôo
j1k ƒ ˆj1 k520

Now, the risk for the componentwise oracle estimator is known to be

E4 Ôo
j1k ƒˆj1k52 D min4ˆ2

j1 k1 nƒ15 D nƒ18min4
p

n—ˆj1k —1 15920 (D.1)

Choose an integer J0 such that 2J0 D n1=42rC15. Then, it follows from
(D.1) that

J0X

jD0

X

k

E4 Ôo
j1k ƒˆj1k52 µ 2J0C1=n D O4nƒ2r=42rC1550 (D.2)

For p µ 2, by (D.1), we have

Jƒ1X

jDJ0C1

X

k

E4 Ôo
j1k ƒˆj1k52 µ nƒ1

Jƒ1X

jDJ0C1

X

k

4
p

n—ˆj1 k—5p 0

By the de� nition of the Besov ball, the last expression is bounded by

Cp=qnƒ1Cp=2
Jƒ1X

jDJ0C1

2ƒjap D O4nƒ1Cp=22ƒJ0ap5

D O4nƒ2r=42rC1551 (D.3)

where a D r C 1=2 ƒ1=p. A combination of (D.2) and (D.3) yields

Rp4 Ofp1 f 5 D
J ƒ1X

jD0

X

k

E4 Ôo
j1 k ƒˆj1k52 D O4nƒ2r=42rC155

uniformly for all ˆ 2 Br
p1 q4C5. We now need only to deal with the

case p > 2. Note that ˜ˆj ¢˜2 µ 241=2ƒ1=p5j˜ˆj¢˜p, because ˆj¢ has 2j

elements. It follows from this that Br
p1 q Br

21q . The conclusion fol-
lows from the result for the case p D 2.

APPENDIX E: PROOF OF THEOREM 6

As one expects, rigorous proof of this theorem involves a lot of
technicalities, such as approximating discrete summations by their
continuous integrations for wavelet coef� cients below a certain reso-
lution level. In fact, some of these approximations at high-resolution
levels are not valid, and one can modify the estimator slightly with-
out estimating wavelet coef� cients above a certain level. For these
reasons, we will only outline the key ideas of the proof without tak-
ing care of nonintrinsic parts of technicalities. Hence, the key ideas
and the intrinsic parts of the proofs are highlighted.

As noted, vj1k µ 1 because V µ IN . By Theorem 5 and noting the
factor nƒ1=2 difference between the discrete and continuous wavelet
coef� cients, we have

Rp4f5 µ 62 log nC 24logn51=27

� N=n2 C
Jƒ1X

jD1

2jX

kD1

min4ˆ ü 2
j1k1 nƒ15 0 (E.1)
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Thus, we need only to show that ˆ 2 Br
p1 q . Note that ˆ D AT fn.

Thus,

ˆj1k D 2ƒJ /2
Z 1

0
–j1 k4t5f4t5dGn4t5

D 2ƒJ /2
Z 1

0
–j1 k4t5f 4t5g4t5dt41 Co41550

Because f is in the Besov ball Br
p1 q4C5 and g is continuously dif-

ferentiable with a derivative bounded away from 0, it follows that
fg also belongs to a Besov ball Br

p1 q4C 05 with C 0 C . The factor
2ƒJ/2 is the difference between the discrete and continuous wavelet
coef� cients. Therefore, ˆ 2 Br

p1 q4C 05. By (E.1), we have

Rp4f5 D O4log n5 N /n2 C
X

j1 k

min4ˆ 2
j1k1 nƒ15 0

The result follows from the proof of Theorem 4.
[Received December 1999. Revised November 2000.]
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Discussion
Brani Vidakovic

Anestis Antoniadis and Jianqing Fan deserve congratula-
tions for a wonderful and illuminating paper.

Links among wavelet-based penalized function estimation,
model selection, and now actively explored wavelet-shrinkage
estimation are intriguing and attracted the attention of many
researchers. Antoniadis and Fan provide numerous references.
The nonlinear estimators resulting as optimal in the process
of regularization, for some speci� c penalty functions, turn out
to be the familiar hard- or soft-thresholding rules, or some
of their sensible modi� cations. Simply speaking, the penalty
function determines the estimation rule, and in many cases, a
practicable and ad hoc shrinkage rule can be linked to a reg-
ularization process under a reasonable penalty function. The
authors explore the nature of penalty functions resulting in
thresholding-type rules. They also show that for a large class
of penalty functions, corresponding shrinkage estimators are
adaptively minimax and have other good sampling properties.

My discussion is directed toward the link of the regu-
larization problem and Bayesian modeling and inference in
the wavelet domain, which is only hinted at by Antoniadis
and Fan.

1. BAYES WAVELET MODELING

Any decision made about the model, including an estimate,
a test, or a prediction, should take into account available prior
information and possible costs of inaccurate actions. Bayesian
decision theory is concerned with devising actions that mini-
mize the average cost to the decision maker using a coherently
obtained posterior that incorporates both observations and the
a priori information. Some of the bene� ts of Bayesian model-
ing in the wavelet domain are now well understood, and a vari-
ety of methods, based on the Bayes estimation of the signal
part in an observed wavelet coef� cient, can incorporate par-
ticular information about unknown signals (smoothness, peri-
odicity, and self-similarity, for instance).

It is now a standard practice in wavelet shrinkage to spec-
ify a location model on wavelet coef� cients, elicit a prior on
their locations (the signal part in wavelet coef� cients), exhibit
the Bayes estimator for the locations, and, if resulting Bayes
estimators are shrinkage, apply the inverse wavelet transfor-
mation to such estimators.

In considering this model-induced shrinkage, the main con-
cern is, of course, performance of induced shrinkage rules,
measured by the realized mean square error, whereas the
match between models and data in the wavelet domain is
paid no special attention. It is certainly desirable for selected
models to describe our empirical observations well for the
majority of signals and images. At the same time, the

Brani Vidakovic is Associate Professor, School of Industrial and Systems
Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0205 . This
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calculation of shrinkage rules should remain inexpensive. Our
experience is that the realistic but complicated models, for
which the rules are obtained by expensive simulations, are
seldom accepted bypractitioners, despite their reportedly good
performance. The two desirable goals of simplicity and reality
can be achieved simultaneously, and Bayesian interpretation
of regularization provides a way, which is the point of my
discussion.

The authors consider a paradigmatic normal location model
with known variance, in which a typical wavelet coef� cient z
is modeled as ”4zƒˆ51 where ˆ is the signal part. The choice
of prior ˆ often is based on inspecting the empirical realiza-
tions of coef� cients of the pure signals (noiseless data). Lack
of intuition on links between function features and nature of
wavelet coef� cients and a great variety of possible signals call
for use of automatic priors.

Berger and Müller indicated in late 1993 (personal com-
munication) that priors from the …-contamination family are
suitable for the signal part in the wavelet domain because the
resulting Bayes rules are close in shape to standard threshold-
ing rules. The point mass at zero, „405, in

� 4ˆ5 D …„405 C 41 ƒ …5�4ˆ5 (1)

induces nonlinear shrinkage and models sparsity, whereas
�4ˆ5 is a spread distribution that models wavelet coef� cients
with large energies (squared magnitudes). This spread distri-
bution can be improper. Besides, adequate changes in … pro-
vide a possibility of levelwise adaptive rules.

Various priors on the signal part were proposed by many
authors. Papers by Abramovich, Sapatinas, and Silverman
(1998), Clyde, Parmigiani, and Vidakovic (1998), Chipman,
Kolaczyk, and McCulloch (1997), Vidakovic (1998a), and
many others propose priors with different degrees of intricacy
but that are in spirit similar to the Berger–Müller proposal (1).
An overview can be found in Vidakovic (1998b).

Interesting automatic (objective) priors were proposed as
well. Berger and Pericchi (1996) demonstrated that in the con-
text of Bayesian model selection, in testing that the signal part
is 0, Jeffreys’s prior is

� 4ˆ1‘ 5 D
1
‘

…„405 C 41ƒ …5
1

�‘ 41C ˆ2=‘ 25
1

and the intrinsic prior is

� 4ˆ1‘ 5 D
1
‘

…„405 C 41 ƒ …5
1 ƒ exp4ƒˆ2=‘ 25

2
p

� 6ˆ2=‘ 7
0

The shrinkage rules, involving Bayes factors, in both cases
can have simple approximations.
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Figure 1. MAP Priors to Penalties (AF 2.6), (AF 2.8), (AF 2.11), and Penalty From Fan (1997). In all cases, ‹ = 1.5, and for the prior in panel

(d), b = 2.

2. MAP PRINCIPLE

All information in Bayesian inference is contained in the
posterior, and posterior location measures (mean, median,
mode) are standard Bayes rules for the location parameters.
Typically, it is more dif� cult to exhibit the mean or median of
a posterior than the value at which the posterior is maximized,
a posterior mode. This is because for the mean or median,
an exact expression for the posterior is needed. MAP rules
that maximize the posterior also maximize, at the same time,
the product of the likelihood and prior, and they are typically
shrinkage rules.

Given an observation z, the posterior distribution of ˆ is
proportional to

� 4ˆ—z5 / ”4z ƒ ˆ5 ¢� 4ˆ50 (2)

Let s4ˆ5 D ƒ log� 4ˆ5 be the score of the prior. Notice that
the posterior is maximized at the same argument at which

s4ˆ5ƒ log”4z ƒ ˆ5 D
1

2‘ 2
4zƒ ˆ52 C s4ˆ5 (3)

is minimized. If s4ˆ5 is strictly convex and differentiable, the
minimizer of (3) is a solution Ô of

s 04ˆ5 C
1

‘ 2
4ˆ ƒ z5 D 00

One � nds

Ô D hƒ14z51 h4u5 D uC‘ 2s 04u50 (4)

Generally, the inversion in (4) may not be analytically fea-
sible, but a solution may be achieved via an approximate
sequence of invertible functions. The authors provide exam-
ples of prior distributions on ˆ for which an analytical max-
imization is possible. Some additional solvable cases can be
found in Fan (1997), Hyvärinen (1998), and Wang (1999).

For example, if � 4ˆ5 D 1p
2
eƒ

p
2—ˆ—, then s 04ˆ5 D

p
2 sign4ˆ51

and Ô4d5 D sign4d5 max401 —z—ƒ
p

2‘ 250

For

� 4ˆ5 / eƒaˆ2=2ƒb—ˆ—1 a1 b > 01
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i.e., if s04ˆ5 D a ˆ C b sign4ˆ51 the MAP rule is

Ô4d5 D
1

1 C‘ 2a
sign4d5 max401 —d—ƒ b ‘ 250

If � is a super Gaussian probability density,

� 4ˆ5 /
p

�4� C 15 C
ˆ

b

�C3

1

the corresponding MAP rule is

Ô4d5 D sign4d5

� max 01
—d—ƒab

2
C

1
2

p
4—d—Cab52 ƒ4‘ 24� C35 1

(5)

where a D
p

�4� C 15=21 and Ô4d5 is set to 0 if the square
root in (5) is imaginary.

Leporini and Pesquet (1998) explore cases for which
the prior is an exponential power distribution 6¥°¤4�1 ‚57.
If the noise also has an ¥°¤4a1 b5 distribution with
0 < ‚ < b µ 1, this MAP solution is a hard-thresholding rule.
If 0 < ‚ µ 1 < b, then the resulting MAP rule is

Ô4d5 D d ƒ
‚ab

b�‚

1=4bƒ15

—d—4‚ƒ15=4bƒ15 C o4—d—4‚ƒ15=4bƒ1550

The same authors also consider the Cauchy noise and explore
properties of the resulting rules. When the priors are hierar-
chical (mixtures), Leporini, Pesquet, and Krim (1999) demon-
strated that the MAP solution can be degenerated, and
they suggested the maximum generalized marginal likeli-
hood method. Some related derivations can be found in
Chambolle et al. (1998) and Pesquet et al. (1996).

3. PENALTIES IN THE MAP CONTEXT

What are the common properties of priors linked to some
penalty functions considered by Antoniadis and Fan? It
is interesting that the priors look like histograms of typi-
cal wavelet coef� cients, corresponding to noiseless signals
and images. Such empirical densities exhibit sharp, double
exponential–like peaks around 0 and fairly � at tails.

On the other hand, shapes of the priors are in the spirit of
the standard modeling family (1), where the point mass at 0
is softened by a peak at 0. The tail parts are in some of the
examples improper (� at).

As an illustration, we consider the priors corresponding to
(AF 2.6), (AF 2.8), and (AF 2.11) and the penalty suggested

in Fan (1997), p‹4ˆ5 D —ˆ—14—ˆ— < ‹5 ƒ ‹=214—ˆ— ¶ ‹50 They
are

� 4ˆ5 / eƒ‹¢min4—ˆ—1‹51

� 4ˆ5 / eƒ‹2C4—ˆ—ƒ‹5214—ˆ—<‹51

� 4ˆ5 / eƒ‹b—ˆ—41Cb—ˆ—5ƒ1
1

� 4ˆ5 / eƒ—ˆ—14—ˆ—<‹5ƒ‹=214—ˆ—¶‹51

and they are depicted in Figure 1.
In conclusion, I point to some bene� ts of the MAP point of

view on regularized wavelet estimation:

1. honest statistical models whose marginals well match the
observations

2. possible incorporation of prior information
3. use of Bayesian machinery to exhibit solutions in cases

when simple, closed-form solutions are impossible.

Finally, I thank the editor for the kind invitation to discuss
this important paper.
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Discussion
Pierre Moulin

I congratulate the authors on a well-written and insight-
ful article on nonparametric wavelet regression. Of the many
interesting aspects of the article, the characterization and
risk analysis of penalized least squares estimators particularly
caught my attention. In this discussion, I comment on closely
related work in the statistical signal and image processing lit-
erature.

1. CHARACTERIZATION OF PENALIZED
LEAST SQUARES ESTIMATORS

Several of the problems considered take the form (2.4)

min
ˆ

1
2

nX

iD1

4zi ƒ ˆi5
2 C ‹

X
i¶i0

p4—ˆi—5 1 (1)

where 8ˆi9 are the unknown wavelet coef� cients and 8zi9 are
the transformed data. This yields a set of independent one-
dimensional optimization problems whose solution is of the
form Ô

i D F‹4zi5 for i ¶ i0. Problems of the form (2.4) have
also been encountered in the statistical signal processing lit-
erature. In particular, the papers by Nikolova (in press) and
Moulin and Liu (1999) contain results that are analogous to
Theorem 1 and eatablish the existence of thresholding effects
in the shrinkage function F‹, when the penalty p4¢5 is non-
differentiable at the origin. A very interesting by product of
Theorem 1 is that the soft- and hard-thresholding estimators
are extreme cases of a broad class of penalized least squares
estimators.

2. RELATED WORK IN STATISTICAL SIGNAL AND
IMAGE PROCESSING LITERATURE

Nonsmooth (including nonconvex) penalties such as
p4—ˆ—5 D —ˆ—r 1 r 2 401 171 have been popular in the image
processing literature, because of the edge-preserving prop-
erties of the resulting estimators. See German and
Reynolds (1992),Bouman and Sauer (1993), Nikolova (1996),
Simoncelli (1996), and Charbonnier et al. (1997). An anal-
ysis of the resulting shrinkage functions was presented by
Moulin and Liu (1999). The complexity penalty p4—ˆ—5 D —ˆ—6D0

(which the authors call entropy penalty, for reasons unknown
to me) has close connections to the model selection prob-
lem. Recently, Nowak and de Figueiredo (in press) studied
the penalty p4—ˆ—5 D ln4c C —ˆ—51 which is derived from Jef-
freys’s prior. From a practical point of view, numerous image
denoising experiments showed that the choice of the shape
of the shrinkage function has a relatively mild effect on the
quality of the estimates, if the asymptotic bias —F‹4Zi5 ƒ Zi—
is 0 or at least small and if the threshold discontinuity is rel-
atively benign; for instance, the squared L2 risks obtained by

Pierre Moulin is Associate Professor, Electrical and Computer Engineering,
University of Illinois, Urbana, IL 61801 (E-mail: moulin@ifp.uiuc.edu).

using the shrinkage functions derived from the Generalized
Gaussian (GG) family p4—ˆ—5 D —ˆ—r 1 with r 2 4 1

2
1 171 are typ-

ically within 15% of each other. Another useful property of
nonsmooth penalties is that they yield sparse estimates for sig-
nals and images, because of the thresholding effects discussed
earlier.

Although the use of � xed universal shrinkage functions is
elegant and is asymptotically nearly opltimal for a variety of
function classes, substantial performance improvements were
obtained by applying level-dependent shrinkage functions to
the empirical wavelet coef� cients. For instance, Donoho and
Johnstone’s SureShrink algorithm performs much better than
VisuShrink. A related idea appears in a paper by Chambolle
et al. (1998), which explores the use of Besov penalties on
wavelet coef� cients. The criterion they minimize is

min
ˆ

1

2

X
jk

4Zjk ƒ ˆjk5
2 C ‹

X
jk

2jrs —ˆjk—r 1 (2)

where j 2 is the scale and k 2 is the location parameter.
This criterion penalizes lack of smoothness of the function,
measured by using Lr norm 4r ¶ 15 and smoothness index s.
This results in scale-dependent shrinkage functions. Neverthe-
less, Chambolle et al. observed that the resulting estimator.
Increased � exibility in the estimator can be obtained by min-
imizing the criterion

min
ˆ

1
2

X

jk

4Zjk ƒ ˆjk5
2 C

X

jk

‹j —ˆjk—r 1 (3)

where the parameters 8‹j 9 are selected in a data-driven
way, see Moulin and Liu (1999) and Belge, Kilmer, and
Miller (2000).

Lastly, Simoncelli (1996) studied the minimum mean
squared error estimator for a problem in which 8Zjk9 are the
sum of 8ˆjk9 and white Gaussian noise and 8ˆjk9 follow a GG
distribution. This yields continuous shrinkage functions whose
aspect is nevertheless fairly similar to the shrinkage functions
derived from a MAP criterion.

2.1 Wavelet-Based Interpolation

A variety of problems in computer vision, such as recovery
of motion � elds and disparity � elds, surface interpolation, and
edge detection (Blake and Zisserman 1997, Bertero, Poggio,
and Torre 1988), involve interpolation, from data acquired on
an irregular grid. Other problems, such as resolution enhance-
ment, involve interpolation from data acquired on an irregular
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grid. Other problems, such as resolution. In all cases, accu-
rate recovery of jumps, edges, and other singularities presents
major problems. Wavelet methods have been used to construct
interpolation algorithms based on a characterization of sig-
nals and images in the wavelet domain; see, e.g., Mallat and
Hwang (1992), Ford and Etter (1998), Carey, Chuang, and
Hemami (1999), and Vazquez, Konrad, and Dubois (2000).
So far, the emphasis has been placed on the ability to recover
singularities and on the visual aspect of the interpolated func-
tions. The analytical framework developed in Section 4 of the
article provides a new perpective on these applications. The
recent paper by Choi and Baraniuk (1999), which formulates
the interpolation problem as a penalized least squares prob-
lem by using a Besov norm as a roughness penalty, is closely
related to the authors’ approach. Choi and Baraniuk’s opti-
mization criterion is convex, and their results seem excellent.

2.2 Nonadditive Penalties

Although the authors developed a powerful framework for
generalizing Donoho and Johnstone’s thresholding methods
and analyzing penalized least squares estimators, it would
be useful to further generalize that analysis to nonadditive
penalties on the wavelet coef� cients. The advantages of such
penalties were demonstrated in several papers in the image
processing literature. For instance some of the best denoising
results to date were obtained by exploiting the dependencies
between wavelet coef� cients. This can be done conveniently
by using statistical modeling of these coef� cients. One con-
structs a tractable prior (usually containing a few hyperpa-
rameters that are empirically estimated from the data) and
then evaluates or approximates the MAP estimator. Excel-
lent results have been obtained by Crouse, Nowak, and
Baraniuk (1998), using hidden Markov models, and by Simon-
celli (1997, 1999) and M hçak et al. (1999, 1999b), using
models that capture the spatial clustering of signi� cant wavelet
coef� cients.
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Discussion
T. Tony Cai

Professors Antoniadis and Fan are to be congratulated for
their valuable work on the penalized least squares method
for wavelet regression. In this very interesting article the
authors present a general characterization of the penalized
least squares estimators for a class of additive smooth penalty

T. Tony Cai is Assistant Professor, Department of Statistics, The Wharton
School, University of Pennsylvania , Philadelphia, PA, 19104 supported in part
by NSF grant DMS-0072578.

functions. A main contribution of this article is the uni� ed and
systematic derivation of the oracle inequalities and minimax
properties for a whole class of wavelet estimators. An impor-
tant advantage of the approach taken by the authors is its gen-
erality. As demonstrated nicely by the authors, the penalized
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least squares method can be used successfully to treat both
equispaced and nonequispaced samples. It can also be readily
applied to other nonparametric function estimation problems
using wavelets.

My remarks are primarily con� ned to the discussion of
extensions of the penalized least squares method presented.

As in the article, I use in the following discussion both a
single index i and the more conventional double indices 4j1 k5
for wavelet coef� cients.

1. PENALIZED LEAST SQUARES

The general penalized least squares can be written as

`4ˆ5 D ˜Yn ƒ Aˆ˜2 C ‹p4ˆ50 (1)

Assuming for the moment that the sample is equispaced and
the sample size is a power of 2, then the matrix A is the inverse
discrete wavelet transform W ƒ1, and (1) can be equivalently
written as

`4ˆ5 D ˜Zn ƒ ˆ˜2 C ‹p4ˆ51 (2)

where Zn D W Yn is the empirical wavelet coef� cients. The
estimator Ô of ˆ minimizes `4ˆ5 in (2). The performance of
the penalized least squares estimator depends on the penalty
p4ˆ5 and the regularization parameter ‹. Let us � rst consider
the effect of the penalty function p4ˆ5.

Among possible choices of p4ˆ5, the additive penalty
p4ˆ5 D

P
i p4—ˆi—5 is the most intuitive choice. When an

additive penalty is used, the minimization problem becomes
separable. Minimizing (2) is equivalent to minimizing `4ˆi5 D
˜zi ƒˆi˜2 C‹p4—ˆi—5 for each coordinate i. The resulting penal-
ized least squares estimator in this case is separable. That
is, the estimate of any coordinate ˆi depends solely on the
empirical wavelet coef� cient zi , not on any other coef� cients
zj . This is intuitively appealing. However, separable estima-
tors have their drawbacks. The dif� culty arises through the
need to guard against false positives about the presence of true
signi� cant coordinates (corresponding to irregularities of the
regression function f ). Consequently it is unvoidable to intro-
duce a logarithmic factor into both the thresholding constant
‹ and the convergence rate. As a result, the estimator is often
oversmoothed. The problem is unavoidable for separable esti-
mators, because decisions about individual terms are based on
a relatively low level of information. See Cai (1999a, 2000b)
and Hall, Kerkyacharian, and Picard (1999).

Therefore, there are true bene� ts to considering a more gen-
eral penalty function p4ˆ5 in (2). One possibility is to use
a blockwise additive penalty. First, we divide the coef� cients
into nonoverlapping blocks, and then we de� ne a blockwise
additive penalty

p4ˆ5 D
X

b

p4ˆ4b551 (3)

where ˆ4b5 denotes the coef� cient vector in the bth block.
For example, one can divide the coef� cients into equal-
length blocks of size L. Denote the indices in the bth
block by 4b5 D 84b ƒ 15L C 11 : : : 1 bL9 and denote by ˆ4b5 D

4ˆ4bƒ15LC11 : : : 1 ˆbL5 and z4b5 D 4z4bƒ15LC11 : : : 1 zbL5 the true
and empirical wavelet coef� cient vectors in the bth block,
respectively. Let the penalty be

p4ˆ4b55 D ‹I8ˆ4b5 6D 090 (4)

Then the solution to the penalized least squares problem (2)
is a block thresholding estimator:

Ô
i D ziI8˜z4b5˜`2 > ‹9 for i 2 4b50

Block thresholding estimators increase the estimation accu-
racy by pooling information about neighboring coef� cients to
make a simultaneous thresholding decision. The estimators
were shown to enjoy some desirable properties for appropri-
ately chosen block size L and thresholding constant ‹. For
example, the estimators can attain the exact minimax con-
vergence rate without a logarithmic penalty and enjoy good
numerical performance (Hall et al. 1999; Cai 1999b).

The penalty in (4) is only a particular choice and can be
replaced by other penalty functions. The block size can be
allowed to vary from level to level. It will be interesting to
study the properties of estimators derived from this class of
blockwise additive penalty functions using the same uni� ed
approach as in this article.

1.1 From Equispaced to Nonequispaced

Wavelet methods for nonequispaced data in the literature
are mostly based on interpolation and approximation, either
in the original function domain or in the wavelet domain. The
regularized Sobolev interpolators used in this article can be
regarded as approximation in the wavelet coef� cient space. As
indicated by Figure 1 in the article, the regularization param-
eter s appears to be an important parameter. It will be inter-
esting to � nd an empirical rule for choosing the value of s.

The approach of the regularized Sobolev interpolators has
the advantage of naturally extending the results for equi-
spaced data to nonequispaced data. For example, one can eas-
ily extend the penalized least squares equation (4.3) to other
penalty functions, such as a blockwise additive penalty. This
will result in a block thresholding estimator based on the syn-
thetic data.

1.2 Choice of the Regularization Parameter ‹

Besides the penalty function p4ˆ5, the regularization param-
eter ‹ plays a crucial role in the performance of the resulting
estimators. In fact, some of the results in this article appear
to indicate that the performance of the penalized least squares
estimators do not differ signi� cantly for all the smooth penalty
functions under consideration. This means that it might be
even more important to choose ‹ in an optimal way than to
choose the penalty function. Penalized least squares were con-
sidered by Chambolle et al. (1998) in the context of image
processing. The regularization parameter ‹ in Chambolle et al.
(1998) was chosen empirically by minimizing an upper bound
of the risk. A similar approach can be used here for the gen-
eral class of smooth penalty functions. The advantage of this
approach is that it is computationally simple and fast. Another
possibility is to use cross validation, which is computationally
more intense.
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2. OTHER FUNCTION ESTIMATION PROBLEMS

The penalized least squares approach can be applied to other
statistical contexts. In particular, it can be used in statistical
inverse problems where one observes a function of the inter-
est indirectly. For example, let us consider the estimation of
the derivative of a regression function. Suppose we observe

yi D f 4i/n5C …i1 i D 11 : : : 1 n4D 2J 51 …i

iid
N 401 ‘251

and we wish to estimate the derivative f 0 under the mean
squared error E˜ Of 0 ƒ f 0˜2

2. By using the Vaguelet wavelet
decomposition approach (Abramovich and Silverman 1998;
Cai to appear), one can � rst construct an appropriate estima-
tor Of of f and then use its derivative Of 0 as an estimator of f 0.
Suppose f has the standard orthonormal wavelet expansion

f4x5 D
2j0X

kD1

�j1k”j01 k4x5C
X̂

jDj0

2jX

kD1

ˆj1k–j1k4x51

where ” and – are the father and mother wavelets, respec-
tively. Let

Of 4x5 D
2j0X

kD1

O�j0 1 k”j01 k4x5C
Jƒ1X

jDj0

2jX

kD1

Ô
j1k–j1k4x50

Then, under regularity conditions, the risk E˜ Of 0 ƒ f 0˜2
2 of Of 0

as an estimator of f 0 equals

E
2j0X

kD1

2j0 4 O�j01 k ƒ �j01 k5”0
j0 1 k4x5

C
Jƒ1X

jDj0

2jX

kD1

2j4 Ô
j1 k ƒ ˆj 1 k5–

0
j1k4x5C

X̂

jDJ

2jX

kD1

2jˆj1k–0
j1 k4x5

2

22j0 E˜ O�j01 ƒ �j0 1 ˜2
`2 C

J ƒ1X

jDj0

22jE˜ Ô
j1 ƒ ˆj1 ˜2

`2

C
X̂

jDJ

22j˜ˆj 1 ˜2
`21

where – 0
j1k4x5 D 2j/2– 042jx ƒ k5, ˆj1 D 4ˆj111 : : : 1 ˆj1 2j 5, and

”0
j0 1 k1 �j01 and Ô

j1 are de� ned analogously.
Ignoring higher order approximation errors, this problem is

in principle equivalent to the following normal mean problem.
Given

zj1 k D ˆj1 k C …j1k1 …j1k

iid
N 401 nƒ1‘25

with k D 11 : : : 12j1 j D j01 : : : 1 J ƒ 1, and 2J D n, we wish to
estimate ˆ under the risk

R4 Ô 1 ˆ5 D
J ƒ1X

jDj0

2jX

kD1

22jE4 Ô
j1k ƒ ˆj1k5

20

The minimax convergence rate over a Besov ball Br
p1 q 4C5

in this case is n24rƒ15/41C2r5. The penalized least squares
approach can be used to construct near-optimal estimators

of ˆ. For example, by using an additive penalty p‹4ˆ5 with
p0 D 46 logn51/2 as de� ned in Theorem 1 [instead of the stan-
dard choice p0 D 42 logn51/2], the resulting estimator is adap-
tively within a logarithmic factor of the minimax risk over a
wide range of Besov balls Br

p1 q4C5, assuming that the addi-
tive penalty p in (2) satis� es the conditions of Lemma 1. The
blockwise additive penalty (4) can also be used here to obtain
an exact rate-optimal block thresholding estimator of ˆ.

This problem can also be reformulated as a more general
penalized weighted least squares problem. By renormalizing
zj1k1 ˆj1k , and …j1k, one can equivalently consider the follow-
ing heteroscedastic normal mean problem. Given

zj1k D ˆj1k C …j1k1 …j1k

iid
N 401 22jnƒ1‘25

with k D 11 : : : 12j1 j D j01 : : : 1 J ƒ 1, and 2J D n, we wish
to estimate ˆ under the conventional mean squared error
E˜ Ô ƒˆ ˜2

`2 . In this case, estimators of ˆ can be constructed
by solving a penalized weighted least squares problem. The
estimator Ô minimizes

`4ˆ 5 D
J ƒ1X

jDj0

X

k

2ƒ2j4zj1k ƒ ˆj1k5
2 C ‹p4ˆ 50 (5)

The weights here are inverse proportional to the variances of
zj1k. For general inverse problems, the weights 2ƒ2j in (5) are
replaced by aƒ2j for some a > 0.

3. CONCLUSION

Penalized least-squares provides a uni� ed framework for
many seemingly different wavelet thresholding rules in differ-
ent nonparametric function estimation contexts. This general
framework enables us to systematically study a large class
of wavelet estimators simultaneously. Clearly, there is much
work ahead of us. This paper provides us a means for gener-
ating new ideas that can guide our future research in this area.
I thank the authors for their clear and imaginative work.
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Discussion
V. Solo

The authors are to be congratulated on a stimulating piece
of work on wavelet methods for function estimation. There are
three main contributions: extension of wavelet asymptotics for
nonquadratically penalized least squares estimates to handle
new kinds of penalty; a new two-stage estimation algorithm
(ROSE) for wavelet � tting with irregularly spaced data; and
the bringing of attention to other types of nonquadratic penal-
ties less well known in the statistics literature.

To apply an estimator beyond the situation in which it � rst
appears, it is useful to exhibit it as an instance of an estimation
principle. In this vein, the point of departure in this article,
taking wavelet function � tting beyond its usual domain of reg-
ularly gridded data, is the recognition that soft thresholding is
the solution to an l1 penalized least squares problem (Donoho
et al. 1992; DeVore and Lucier 1992). This leads the authors
to replace the l1 penalty with something more � exible, and so
to ROSE.

Yet, other kinds of nonquadratic penalties are possible,
including robust-statistics-type (Huber) penalties (Stevenson,
Schmitz, and Delp 1994; Li 1995). Other nonwavelet for-
mulations are possible, too, such as total variation denois-
ing (Rudin, Osher, and Fatemi 1992), which is a nonwavelet
method in which an L1 penalty is applied to the function
derivative. There are also important methods based on smooth
approximations to the L1 penalty (Vogel and Oman 1996).

I have also used the l1 penalized formulation to extend
a wavelet-based estimation to deal with correlated noise
(Solo 1998) [in a manner different from Johnstone and
Silverman (1997)] and, in joint work with a Ph.D. student, to
deal with optical � ow estimation (i.e., motion estimation from
image sequences) (Ng and Solo 1999).

Turning to Section 4.1 and ROSE, we now point out that
some of the discussion and computation can be simpli� ed.
The idea of starting computations with an interpolator is a
nice one, which I have independently used in the context of
inverse problems. However, the Sobolev weighting is a clever
and novel variation I have not seen before. With the interpo-
lator Ô D DAT 4ADAT 5ƒ1Y , we can use the interpolation prop-
erty A Ô

D D Y plus the orthogonality

IN � N D W W T D AT A C BT B

to � nd that in (4.2)

Ô ü T D Y ü T
D W T

D Y T 1 ÔT
DBT A

B

D Y T A C ÔT
DBT B

V. Solo is Professor, School of Electrical Engineering and Telecommunica-
tions, University of New South Wales, Sydney, Australia.

D ÔT
D4AT A C BT B5

D ÔT
D0

So Ô
D already consists of the empirical synthetic wavelet coef-

� cients. Thus, once the Sobolev interpolation is carried out,
no extended data bY ü

0 need to be generated.
Similarly, we can avoid computing the extended data bY ü

1 as
follows. We develop an expression for the second-step empir-
ical wavelet coef� cients in (4.3),

4 ÔE5T D bY ü T
1 W T

D
h
Y T 1 Ô ü T

1 BT
i A

B

D Y T A C Ô ü T
1 BT B

D Y T A C Ô ü T
1 4I ƒ AT A5

D Ô ü T
1 C 4Y ƒ A Ô ü

15T A

) ÔE D Ô ü
1 C AT e ü

11

where e ü
1 are residuals. Let us � nally note that ÔE is an inter-

polator because (AAT D In� n and so)

A ÔE D A Ô ü
1 C e ü

1 D Y 0

The steps of the simpli� ed algorithm are then as follows.

1. Get Ô ü D Ô
D .

2. Do weighted theresholding of Ô ü to get Ô ü
1 (which could

be called Ô ü
NRSI).

3. Calculate the residuals e ü
1 D Y ƒ A Ô ü

1 . (This avoids cal-
culation of B Ô ü

1 .)
4. Calculate the second-step empirical wavelet coef� cients

ÔE D Ô ü
1 C AT e ü

1 . (More computations are saved here.)
5. Calculate ÔE

1 , i.e., ÔE
ROSE, by weighted thresholding of ÔE .

To plot the � nal estimator, we need the function estimate
OfROSE D W T ÔE

ROSE.
If we denote the componentwise threshold operator by H,

we can see that if the iteration converges (say, to Ô
R), it must

satisfy
Ô
R D H4 Ô

R C AT 4Y ƒ A Ô
R550

It would be interesting to be able to say something about this
equation; for example, how does its solution relate to the opti-
mizer of (1.2)?

With all these estimation procedures, there is the prob-
lem of estimating tuning parameters. The authors present an

© 2001 American Statistical Association
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asymptotic rule for the threshold p0 D ‘ vj

p
2 logn. How-

ever, for traditional wavelet thresholding, SURE (Stein’s
unbiased risk estimator) was also suggested (Donoho and
Johnstone 1995). I subsequently showed (Solo 1996) how
SURE provides a powerful method for generating tun-
ing parameter estimators for arbitrary linear or nonlinear
ill-conditioned inverse problems with linear or nonlinear reg-
ularization. This approach was illustrated for total variation
denoising in Solo (1999, 2000) and for optical � ow in Ng and
Solo (1997).

For regularly gridded data with e D y ƒ ˆ, SURE is
given by

bR D
˜e˜2

n
ƒ

2ƒ‘ 2

n
C‘ 21

ƒ D èn
1

¡ei

dyi

1

D n ƒ èn
1

¡ Ô
i

¡yi

0

From Theroem 1, result 2 (replace z with y), we � nd

¡ Ô
¡y

D
I 4—y— ¶ p05

1C p00
‹4— Ô—5

0

And so
ƒ D nƒ è Ô

i 6D0

1

1 C p00
‹4— Ô

i—5
0

With a weighting as used by the authors, we get

ƒ D n ƒ è Ô
i 6D0

1

1C vip
00
‹4— Ô

i—5
0

The empirical behavior of the consequent approximate SURE
remains to be seen.
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Rejoinder
A. Antoniadis and J. Fan

We are very grateful to the editor, Martin Tanner, for orga-
nizing this discussion, and we would like to thank all discus-
sants for their insightful and stimulating comments, touching
both theoretical and practical aspects, and for offering some
original insights and providing several relevant references
from the Bayesian, signal, and image processing literature.
Their contributions are very helpful for our understanding of
this work from various perspectives.

1. NONQUADRATIC PENALIZED LEAST SQUARES

We are most grateful to Professor Solo for providing an ef� -
cient simpli� cation of our two-step algorithm for computing
the ROSE estimator. Such a simpli� cation fully exploits the
structure of the discrete wavelet transform matrix W . It helps
a great deal for our understanding of the two-step estimation
procedure and leads to a much more ef� cient method for com-
puting the ROSE estimator. By using his notation, Professor

Solo raises an insightful question on the existence of the solu-
tion to the equation

Ô
R D H Ô

R C AT Y ƒ A Ô
R (1)

and its relation to the original minimization problem (1.2).
The system of Equation (1) must be satis� ed if the iterative
solution to the original problem (1.2) converges. In an attempt
to answer this question, let us consider a speci� c case with
the L1-penalty function, namely, minimizing

J4ˆ5 D ˜Yn ƒ Aˆ˜2
2 C ‹

NX

iD1

—ˆi—0
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The criterion J 4ˆ5 is exactly the same as the one studied by
Alliney and Ruzinsky (1994) and also by Solo (1998). Because
in our case the matrix A has full rank, J 4ˆ5 is a strictly con-
vex functional of ˆ and therefore has a unique minimum. Fol-
lowing the development in Alliney and Ruzinsky (1994), the
necessary conditions for Q̂ to be the minimizer are

rk C ‹ sgn4 Q̂
k5 D 01 Q̂

k 6D 01 —rk— µ ‹1 Q̂
k D 01

where r D AT Yn ƒ AT A Q̂ . If one uses the Gauss–Seidel kind
of iterative algorithm, as in Alliney and Ruzinsky (1994), to
determine the minimum point Q̂ of J4ˆ5, one can easily see,
using their expression (4.1) and the remark following their
theorem 4, that the solution indeed satis� es Equation (1).
The same conclusion is true if the minimization is performed
with the constraint that ˆ must vary within our interpolation
Sobolev space. However, for more general penalty functions,
the situation is more complicated because the functional J 4ˆ5
is no longer convex and therefore does not necessarily have
a unique minimum. The question then is whether the solution
to (1) is a local minimizer to the problem (2.1). More work
is needed. However, Solo’s question on the existence of the
solutions to equation (1) can be answered positively. For con-
tinuous thresholding rules, by the � xed-point theorem, there
exists a solution to equation (1).

2. CHOICE OF THE REGULARIZATION PARAMETER

We wholeheartedly agree with the emphasis by professors
Cai, Moulin, and Solo on the importance of the choice of
the regularization parameter in practice. The minimax optimal
thresholding parameter and the universal thresholding rule,
introduced by Donoho and Johnstone (1994) and extended fur-
ther in this article, provide a simple solution from the min-
imax point of view. They are not necessarily optimal for a
given denoising problem, but nevertheless they serve as a start-
ing point for choosing an optimal regularization parameter. In
the context of choosing the regularization parameter ‹ for the
hard- and soft-thresholding wavelet estimators, a variety of
methods, such as SURE and cross validation, have been intro-
duced. Many of these can be extended to the penalized least
squares problem with a nonquadratic penalty.

Professor Solo suggests a data-based estimator of the regu-
larization parameter ‹ in the same spirit as the SURE criterion
proposed by Donoho and Johnstone (1995). He provides
a simple SURE formula for general penalty functions. His
disarmingly simple method deserves more thorough studies,
including careful and detailed simulation studies, such as those
in Bruce and Gao (1996), for the classical WaveShrink pro-
cedure. We, however, speculate that this SURE method shares
the same drawback as Donoho and Johnstone’s SureThresh
procedure in the situations of extreme sparsity of the wavelet
coef� cients. This drawback could possibly be addressed by
using a hybrid scheme. Similar to one of Donoho and
Johnstone’s procedures, the following heuristic can be used:
If a set of empirical wavelet coef� cients are judged to be
sparsely represented, then the hybrid scheme defaults to the
universal thresholding rule; otherwise, the SURE criterion is
used to select a thresholding value.

Another possible way to address the optimal choice of the
regularization parameter is the cross-validation criterion as
suggested by Professor Cai. The cross-validation criterion has
been widely employed as a data-driven procedure for choos-
ing regularization parameters. As correctly pointed out by
Professor Cai, the cross-validation method is usually inten-
sive in computation, unless there are some updating formu-
lae that allow us to calculate the leave-one-out estimators
based on the estimators using the full dataset. Such formu-
las are easy to derive for the projection-type of estimators, as,
for example, in the wavelet-based linear methods, suggested
by Antoniadis (1996) and independently by Amato and Vuza
(1997). By using a weighted quadratic penalty, the parameter
‹ is chosen by cross validation in Amato and Vuza (1997).
The approach in Antoniadis (1996) is based on risk mini-
mization, and it depends on a preliminary consistent estima-
tor of the noise level. Of course, the preceding linear wavelet
methods are not designed to handle spatially inhomogeneous
functions with low degree of regularities. For such functions,
an appropriate penalty is the one of Chambolle et al. (1998)
leading to nonlinear thresholding or nonlinear shrinkage meth-
ods. Recall that the leave-one-out principle underlying cross
validation is achieved when an appropriate compatibility con-

dition holds. In our setting, if Ô ƒ4i5

i denotes the ith component
of the estimator of ˆ based on the sample without the ith

observation, compatibility means that Ô ƒ4i5

i D Q̂
i holds, where

Q̂
i is the estimator based on the sample with the ith observa-

tion replaced by its � tted value 4A Ô ƒ4i5
5i . Under such a condi-

tion, the cross-validation functional can be expressed in terms
of the ordinary residuals. Unfortunately, for nonlinear shrink-
age or thresholding, the compatibility condition is violated.
One way to proceed is to pretend that it holds approximately,

that is, Ô ƒ4i5

i ’ Q̂
i , as done in Jansen, Malfait, and Bultheel

(1997). In our case, the GCV criterion advocated by these
authors takes the form

GCV4‹5 D
˜ Ô ƒ Ô

R˜2=N

4N0=N 52
1

where Ô is the wavelet coef� cients from the Sobolev interpre-
tor, Ô

R is the vector of the ROSE coef� cients with the regular-
ization parameter ‹, and N0=N is the proportion of wavelets
coef� cients replaced by 0. It is clear that this is an area where
further theoretical and practical work is needed.

3. BLOCKWISE SEPARABLE PENALTY FUNCTIONS

We greatly appreciate the points made by Professors Cai
and Moulin on nonadditive or separable penalties, touch-
ing an area that is currently theoretically explored by many
researchers. Our wavelet regularization procedure with addi-
tive penalty achieves adaptivity through term-by-term thresh-
olding of the empirical wavelet coef� cients. However, as
pointed out by Professor Cai, this term-by-term rule is not
optimal: it removes too many terms from the empirical wavelet
expansion. As a result, the resulting wavelet estimators con-
tain too much bias and have suboptimal Lp-risk (1 µ p < ˆ) in
terms of rate of convergence. One way to increase estimation
precision is to pull information from neighboring empirical
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wavelet coef� cients. In other words, empirical wavelet coef-
� cients could be thresholded or shrunk in blocks (or groups)
rather than individually. As a result, the amount of information
available for estimating the length of the empirical wavelet
coef� cients within a block would be an order of magnitude
larger than in the case of a term-by-term thresholding rule.
This would allow thresholding decisions to be made more
accurately and permit convergence rates to be improved. This
is the spirit of blockwise thresholding rules outlined in the
discussion by Professor Cai. The blockwise thresholding esti-
mators or their extensions can be regarded as the penalized
least squares with blockwise additive penalty functions. This
is elucidated below.

Professor Cai has correctly pointed out that the blockwise
penalty function

p4ˆ4b55 D ‹I8ˆ4b5 6D 09

results in a blockwise thresholding estimator

Ô
i D ziI 8˜z4b5˜ ¶ ‹9 for i 2 4b50

This complexity penalty function is discontinuous, making
computation more involved. It is a limit of the family of
entropies

P
4b5 ˜ˆ4b5˜� as � ! 0. (This partially answers the

query raised by Professor Moulin regarding why this com-
plexity penalty is called an entropy penalty in our text.) An
important contribution of this work is to replace the indicator
function by a smoother function, called the hard-thresholding
penalty function. This enhances the degree of regularity of the
penalized least squares criterion and hence facilitates the com-
putation. In the blockwise inference context, a natural exten-
sion of our work is to minimize, in the wavelet coef� cients
domain, the following penalized least squares:

X

4b5

˜z4b5 ƒ ˆ4b5˜2 C
X

4b5

p‹4˜ˆ4b5˜51 (2)

where p‹4¢5 is a penalty function given in Theorem 1. Sim-
ilar to equation (3) of Professor Moulin’s contribution, the
� exibility can be further enhanced by introducing a weight
‹4b5 in the penalty part of (2) or more generally by using
a block-dependent penalty function p

4b5

‹ 4˜ˆ4b5˜5. The solution
to (2) and its generation is blockwise separable, leading to
minimizing

˜z4b5 ƒ ˆ4b5˜2 C p‹4˜ˆ4b5˜50 (3)

The solution to problem (3) is surprisingly simple. Let us
drop the subscript 4b5. Problem (3) can be written as

min
r

min
˜ˆ˜Dr

˜zƒ ˆ˜2 C p‹4r5 0 (4)

The minimum of the terms inside the brackets is achieved at
Ô
r D rz=˜z˜. Substituting this into (4), we need to minimize

min
r

84˜z˜ ƒ r52 C p‹4r590 (5)

The solution problem to (5) is characterized in Theorem 1.
Let Or4˜z˜5 be the solution to (5). Then, the minimizer to the
problem (3) is given by

Ô4z5 D Or4˜z4b5˜5z4b5=˜z4b5˜0

In particular, when ˜z4b5˜ µ minr¶08r C p0
‹4r59, Ô4z5 D 0.

Speci� cally, if the hard-thresholding penalty function (2.8) is
used,

Ô4z4b55 D z4b5I 4˜z4b5˜ ¶ ‹51

and when the L1-penalty function (2.5) is employed,

Ô4z4b55 D 1 ƒ ‹=˜z4b5˜ Cz4b50

The former is the same as the blockwise thresholding rule
given in Professor Cai’s discussion, with the advantage that
the penalty function is smoother.

The blockwise penalized least squares (2) admit nice
Bayesian interpretation. They model the correlated wavelet
coef� cients in the same block by using some corre-
lated prior distributions [spherically symmetric distributions
in (2)]. Abramovich, Besbeas, and Sapatinas (2000) consid-
ered Bayesian wavelet block shrinkage and blockwise thresh-
olding estimators and indicated that they outperform existing
classical blockwise thresholding estimators in terms of mean
squared error via simulation studies. It would be interesting to
see, with the remarks made by Professor Vidakovic, if these
estimators can have a similar MAP interpretation.

We thank Professor Cai and Professor Moulin for suggest-
ing some ways to select the smoothing parameters, block
length, and threshold level. As Professor Cai points out con-
vincingly, there is much work ahead of us for analyzing such
procedures.

4. BAYESIAN WAVELET MODELING

We are very grateful to Professors Moulin and Vidakovic
for drawing more attention to the links of the regularization
problem with Bayesian modeling and inferences in the wavelet
domain and for providing relevant references in the litera-
ture. Professor Vidakovic’s identi� cation of the priors gives
not only nice Bayesian interpretation of our proposed proce-
dures but also the possibility of deriving adaptive choice of
thresholding rules.

When prior distributions are a scale mixture of two distri-
butions, an important distinction should be made between the
two types of mixtures: a scale mixture of two normal distri-
butions [considered by Chipman, Kolaczyk, and McCulloch
(1997)] and a scale mixture of a normal distribution with
a point mass at zero [considered by Clyde, Parmigiani, and
Vidakovic (1998) and Abramovich, Sapatinas, and Silverman
(1998)]. The former prior distributions lead to nonvanishing
Bayesian estimates of wavelet coef� cients, yet the latter prior
distributions can result in the Bayesian estimates of wavelet
coef� cients that possess bona � de thresholding properties.
In both cases, as long as the prior is proper, the resulting
Bayesian estimates of wavelet coef� cients will have bias in the
frequentist analysis, even when the true wavelet coef� cients
are way above the noise level. This kind of unnecessary bias
can be attenuated by using the prior distributions with heavier
tails; this would result in penalty functions with � atter tails.
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Consider the hierarchal model

ˆ — ƒ N 401ƒ’ 251

ƒ Bernoulli4„50

The binary random variable ƒ determines whether the wavelet
coef� cient is nonzero (ƒ D 1), arising from a N 401 ’ 25 distri-
bution, or zero (ƒ D 0), arising from a point mass at zero. It is
assumed that ƒ has a Bernoulli distribution with P4ƒ D 15 D
1 ƒ P4ƒ D 05 D „ for some � xed hyperparameter 0 „ 1.
The prior parameters „ and ’2 can depend on the resolu-
tion level, resulting in level-dependent wavelet threshold and
shrinkage estimators. Once z is observed, the posterior distri-
bution on the wavelet coef� cient ˆ is given by

ˆ — ƒ1 z1‘ 2 N ƒ
’ 2

‘2 C ’ 2
z1ƒ

‘2’ 2

‘2 C ’ 2
0

To incorporate model uncertainty about which of the wavelet
coef� cients ˆ are zero, we now average over all possible ƒ.
The marginal posterior distribution of ˆ conditionally on ‘ 2

is then given by

ˆ — z1‘ 2 p4ƒ D 1 — z1‘ 25 N
’ 2

‘2 C ’ 2
z1

‘ 2’2

‘ 2 C ’2

C 41 ƒ p4ƒ D 1 — z1‘ 255 „4051

where „405 is a point mass at zero. It is not dif� cult to see that

p4ƒ D 1 — z1‘ 25 D
1

1C O4z1 ‘25
1

where the posterior odds ratio O4z1‘ 25 is given by

O4z1‘ 25 D
1ƒ „

„

4‘ 2 C ’251/2

‘
exp ƒ

’ 2z2

2‘ 24‘ 2 C ’ 25
0

This leads to thresholding or shrinkage, according to the Bayes
rules that are used.
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