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S

We extend the idea of crossvalidation to choose the smoothing parameters of the
‘double-kernel’ local linear regression for estimating a conditional density. Our selection
rule optimises the estimated conditional density function by minimising the integrated
squared error. We also discuss three other bandwidth selection rules, an ad hoc method
used by Fan et al. (1996), a bootstrap method of Hall et al. (1999) for bandwidth
selection in the estimation of conditional distribution functions, modified by Bashtannyk
& Hyndman (2001) to cover conditional density functions, and finally a simple approach
proposed by Hyndman & Yao (2002). The performance of the new approach is compared
with these three methods by simulation studies, and our method performs outstandingly
well. The method is illustrated by an application to estimating the transition density and
the Value-at-Risk of treasury-bill data.

Some key words: Bandwidth selection; Bootstrap; Conditional density function; Crossvalidation; Diffusion
process; Financial application; Transition density.

1. I

A conditional density provides the most informative summary of the relationship
between independent and dependent variables. In particular, in stationary time series with
Markovian structures, conditional densities characterise the probabilistic aspect of the
time series. They determine, except for the initial distribution, the likelihood function of an
observed time series and facilitate statistical prediction (Tong, 1990; Fan & Yao, 2003), as
well as the study of nonlinear phenomena, such as the symmetry, multimodality structure
and sensitivity measures of a time series (Chan & Tong, 2001).

The conditional density function plays a pivotal role in financial econometrics. It is
directly related to the pricing formula of financial derivatives and inferences about para-
meters in financial models (Aı̈t-Sahalia, 1999). Consider the continuous time model in
which an economic variable, X

t
, satisfies the stochastic difference equation

dX
t
=m(X

t
)dt+s(X

t
)dW
t
, (1·1)

where W
t
is a standard Brownian motion and m and s2 are drift and diffusion functions.

This model is widely used in finance and economics, and includes many well-known
single-factor models, such as those of Black & Scholes (1973), Vasicek (1977), Cox et al.
(1980, 1985) and Chan et al. (1992), for modelling stock prices or interest rates. These
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models, except for the last, admit closed forms for the conditional probability density
function, which allows us to evaluate explicitly the prices of financial derivatives based
on X

t
. For other cases, approximations of conditional densities are needed (Aı̈t-Sahalia,

1999).
Nonparametric estimation of the drift and diffusion functions in (1·1) based on discretely

observed data, with a fixed sampling frequency, is a challenging problem of high current
interest in financial econometrics and statistics. An overview of and references for non-
parametric techniques in financial economics are provided in an unpublished technical
report from the Chinese University of Hong Kong by J. Fan. The transition density allows
one to estimate the unknown functions from model (1·1). In fact, it determines the drift
function m( . ) and diffusion function s( . ) in model (1·1); see for example Hansen et al.
(1998) for a spectral approach to such a determination. Thus, a nonparametric estimate
of the transition density based on discretely observed time series data allows us to estimate
and make inferences about the drift and diffusion functions, including checking the validity
of the aforementioned well-known financial models.

A vast variety of papers use estimators of conditional densities as building blocks. Such
papers include those of Robinson (1991), Tjøstheim (1994) and Polonik & Yao (2000),
among others. However, in all of those papers, the conditional density function was
estimated indirectly. Hyndman et al. (1996) studied the kernel estimator of a conditional
density and its bias-corrected version. Fan et al. (1996) developed a direct estimation
method via an innovative ‘double-kernel’ local linear approach. Despite its importance
in various applications, the problem of estimating the conditional density function auto-
matically has not been systematically studied since the pioneering work of Rosenblatt
(1969). In particular, to our knowledge, no consistent data-driven procedure has been
proposed for choosing smoothing parameters.

Fan et al. (1996) used a simple method for selecting the smoothing parameters. Hall
et al. (1999) suggested, for a related topic, a bandwidth selection method for estimating a
conditional distribution function together with a bootstrap approach. Bashtannyk &
Hyndman (2001) and Hyndman & Yao (2002) proposed several simple and useful rules
for selecting bandwidths for conditional density estimation. Hall et al. (2004) applied
the crossvalidation technique to estimate the conditional density and to select relevant
variables. The goal of the present paper is to develop a consistent data-driven bandwidth
selection rule for estimating conditional density functions. The rule is based on the cross-
validation method. Although this paper is motivated by the problem of time series data,
we present our method in a more general context.

2. E   

We assume that data are available in the form of a strictly stationary process (X
i
, Y
i
)

with the same marginal distribution as (X, Y ). Naturally, this includes the case in which
the data (X

i
, Y
i
) are independent and identically distributed. Let g(y|x) be the conditional

density of Y given X=x, evaluated at Y=y. This conditional density can be estimated
via the ‘double-kernel’ local linear method of Fan et al. (1996).

Estimation of the conditional density can be regarded as a nonparametric regression
problem. To make this connection, Fan et al. (1996) observed that, as h2� 0,

E{K
h
2

(Y−y) |X=x}� g(y|x), (2·1)
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where K is a nonnegative density function and K
h
(y)=K(y/h)/h. The left-hand side of (2·1)

is the regression function of the random variable K
h
2

(Y−y) given X=x. For each given
x and y, the principle of local linear regression (Fan, 1992) suggests the minimisation of

∑
n

i=1
{K
h
2

(Y
i
−y)−a−b(X

i
−x)}2W

h
1

(X
i
−x), (2·2)

with respect to the local parameters a and b, where W is a nonnegative density function.
The resulting estimate of the conditional density is simply a@ .

It is more convenient to work with matrix notation. Let X be the design matrix of the
local least-squares problem (2·2) and let

W=diag {W
h
1

(X
1
−x), . . . , W

h
1

(X
n
−x)},

Y= (K
h
2

(Y
1
−y), . . . , K

h
2

(Y
n
−y))T.

We define

S
n
(x)=n−1XTWX, T

n
(x, y)=n−1XTWY.

Then, by simple algebra, the estimated conditional density can be expressed as

g@
h
(y|x)=eT

1
S−1
n

(x)T
n
(x, y), (2·3)

where eT
1
= (1, 0) and h= (h1 , h2 )T.

It is also instructive to express the estimated conditional density in the form of the
equivalent kernel (Fan & Yao, 2003, p. 235). Let

W
n
(z; x)=W (z)

s
n,2

(x)−zh
1
s
n,1

(x)

s
n,0

(x)s
n,2

(x)−s
n,1

(x)2
, (2·4)

where s
n,j

(x)=n−1Wn
i=1

(X
i
−x)jW

h
1

(X
i
−x), for j=0, 1, 2. Then the estimator (2·3) can

be written as

g@
h
(y|x)=

1

nh
1
h
2
∑
n

i=1
W
nAXi−x

h
1

; xBKAYi−y

h
2
B . (2·5)

3. B 

3·1. T wo simple methods

Fan et al. (1996) proposed an ad hoc method for selecting the smoothing parameters.
In the density estimation setting, the normal referencing rule (Silverman, 1986, p. 45)
selects the bandwidth

h@
2
=C 8p1/2 ∆K2 (x)dx

3{∆ x2K(x)dx}2D1/5syn−1/5, (3·1)

where s
y
is the sample standard deviation of Y .

For given bandwidth h2 and y, (2·2) corresponds to nonparametric regression of
K
h
2

(Y
i
−y) on X

i
. There are many data-driven methods for selecting the bandwidth h1 .

These include crossvalidation (Stone, 1974), the residual-square criterion (Fan & Gijbels,
1995), the pre-asymptotic substitution method (Fan & Gijbels, 1995), the plug-in method
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(Ruppert et al., 1995) and the empirical bias method (Ruppert, 1997), among others. We
will refer to this method for selecting the smoothing parameters h1 and h2 as the Fan et al.
approach. It is only a simple method, and is not expected to work in all situations. In
our numerical implementations, we use the plug-in method of Ruppert et al. (1995) for
choosing h1 . As shown below, the Fan et al. approach tends to oversmooth the conditional
density in the y-direction.

Bashtannyk & Hyndman (2001) proposed an even simpler method based on the
assumption that the conditional density is normal with linear regression and linear con-
ditional standard deviation estimator, and that the marginal density is either uniform or
truncated normal. They further improved the procedure by combining the idea with that
of Fan et al. (1996). Hyndman & Yao (2002) introduced new conditional density estimators
based on local parametric modelling and derived several bandwidth selectors. When W
and K are Gaussian kernels, Hyndman & Yao (2002) suggested using

h
1
=0·935(ns5/n|d

1
|5 )1/6 , h

2
=|d
1
|h
1
,

by assuming that the conditional density is N(d0+d1x, s2 ) and the marginal density of X
is N(m, n2 ). We will refer to this approach as the Hyndman–Yao method. We include this
method for comparison because of its attractiveness in implementation, which makes it
extremely useful for getting an initial idea of the bandwidths to be used. In fact, Hyndman
& Yao (2002) use this method only as an initial estimator for their more effective method.

3·2. Bootstrap bandwidth selection

Hall et al. (1999) suggested a bootstrap approach for selecting the smoothing parameters
in the context of estimating conditional distribution functions. Their idea can be adapted
here to the conditional density function context; see Bashtannyk & Hyndman (2001).
First, we fit a simple parametric model

Y
i
=a
0
+a
1
X
i
+ . . .+a

k
Xk
i
+se

i
, e
i
~N(0, 1),

where a0 , . . . , ak and s are estimated from the data and k is determined by the Akaike
information criterion. A parametric estimator ǧ(y|x) is then formed, based on the selected
parametric model. For i=1, . . . , n, we generate e*

i
~N (0, 1) and compute

Y *
i
=a@
0
+a@
1
X
i
+ . . .+a@

k@
Xk@
i
+s@e*

i
. (3·2)

Hence, we obtain a bootstrap sample of {Y *
1
, . . . , Y *

n
} and a bootstrap estimate,

g@*
h
(y|x). Let

M(h; x, y)=E[ |g@*
h
(y|x)− ǧ(y|x) | |{(X

i
, Y
i
)}]

be the bootstrap estimator of the absolute deviation error of ǧ(y|x); the expectation is
taken with respect to the bootstrap sample. Finally, we choose h to minimise

M(h)=
1

n
∑
n

i=1
M(h; X

i
, Y
i
)I(X
i
µ[a, b]),

where [a, b] is an interval on which we want to estimate the conditional density. Again,
this method is expected to work well for polynomial regression models and cannot be
consistent for other models. For ease of reference, we call this method the Hall et al.
approach.
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3·3. A crossvalidation method

The above two approaches are simple and ad hoc. They are not intended to optimise
the estimated conditional densities. The bootstrap method provides a good approximation
when the true model is normal and the regression function is polynomial. However, in
real situations, the true model can be asymmetric or heavy-tailed, and then the bootstrap
method fails to select the optimal bandwidths. We here extend a crossvalidation idea of
Rudemo (1982) and Bowman (1984).

Let f (x) be the marginal density of {X
i
} and let [a, b] be an interval on which we wish

to estimate the conditional density. Define the integrated squared error as

=P {g@
h
(y|x)−g(y|x)}2 f (x)I(xµ[a, b])dx dy

=P g@
h
(y|x)2 f (x)I(xµ[a, b])dx dy−2 P g@

h
(y|x)g(y|x) f (x)I(xµ[a, b])dx dy

+P g(y|x)2 f (x)I(xµ[a, b])dx dy. (3·3)

Note that the last term does not depend on h and can be ignored in minimisation of 
with respect to h.

A reasonable estimator of (3·3) is

(h)=
1

n
∑
n

i=1
I(X
i
µ[a, b]) P g@

h,−i
(y|X
i
)2dy−

2

n
∑
n

i=1
g@
h,−i

(Y
i
|X
i
)I(X
i
µ[a, b]), (3·4)

where g@
h,−i

(y|x) is the estimator of (2·5) based on the sample {(X
j
, Y
j
), jN i}. Note that

the first integral in (3·4) can be calculated explicitly by using (2·5). If we define  as

n−1 ∑
n

i=1
I(X
i
µ[a, b]) P {g@

h
(y|X
i
)−g(y|X

i
)}2dy,

then the first term of the quadratic expansion is known and does not need to be estimated.
Its corresponding crossvalidation function is given by

*(h)=
1

n
∑
n

i=1
I(X
i
µ[a, b]) P g@

h
(y|X
i
)2dy−

2

n
∑
n

i=1
g@
h,−i

(Y
i
|X
i
)I(X
i
µ[a, b]).

The crossvalidation method can also be used to select the bandwidth of the Hyndman &
Yao (2002) estimator for conditional density. Further applications of the crossvalidation
method, including selection of relevant variables in conditional densities, can be found in
Hall et al. (2004).

Estimating conditional density is much more involved than the density estimation
setting and  cannot be estimated without bias. In fact, the bandwidths h1 and h2 play
very different roles in the smoothing. It is not clear whether or not the proposed cross-
validation method is reasonable. To appreciate how much bias the  (h) involves, we
would like to compute the expected value of  (h). However, this is not viable in the
regression setting because of the random denominator. Instead, we can compute the
conditional expectation. However, for the times series applications, the design points
{X
t
, t=1, . . . , T−1} involve nearly the whole series. Hence, this approach is not

applicable. The device of asymptotic normality is frequently used to avoid this kind of
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difficulty; see for example Chapter 6 of Fan & Yao (2003). While this can be done in the
current context, it would involve substantial technicality. To mitigate the technicality and
highlight the key insight, we consider the independent random sample setting.

Let {(X
i
, Y
i
), i=1, . . . , n} be an independent random sample from a population with

conditional density g(y|x) and design density f (x). For any random variable, let E
X
(Z) be

the conditional expectation of Z given X1 , . . . , Xn , namely E
X
(Z)=E(Z|X1 , . . . , Xn ). The

following result will be proved in the Appendix.

T 1. Assume that the kernels K and W are bounded with bounded supports and
vanishing first moments. If f ( . ) is continuous and positive in an open interval containing
[a, b] and g(. |x) is bounded for x in an open interval containing [a, b],

E
X

1

n
∑
n

i=1
g@
h,−i

(Y
i
|X
i
)I(X
i
µ[a, b])=E

X P g@h (y|x)g(y|x) f (x)I(xµ[a, b])dx dy+O
PA 1

nh
1
B .

(3·5)

Furthermore, under the additional condition that f ∞( . ) exists and is continuous in an open
interval containing [a, b], then

E
X

1

n
∑
n

i=1
I(X
i
µ[a, b]) P g@h,−i (y|Xi )2dy=E

X P g@h (y|x)2 f (x)I(xµ[a, b])dx dy+O
PA 1

nh
1
B .

(3·6)

The biases in (3·5) and (3·6) are negligible to the first order since the variance of g@
h
(y|x)

is of order O
P
{1/(nh1h2 )} (Fan et al., 1996).

4. S 

We consider simulation studies to evaluate and compare bandwidth selection methods
for estimating the conditional density that were described in § 3. For each simulation, the
performance of the selection rule is evaluated by the root mean squared error,

=
[W
i
{g@
h
(y
i
|x
i
)−g(y

i
|x
i
)}2I(x

i
µ[a, b])]D

W

i
I(x
i
µ[a, b])

,

where (x
i
, y
i
) are grid points that are evenly distributed across certain regions of interest

and [a, b] is an interval in the x-direction on which we wish to estimate the conditional
density. We let K and W be the Gaussian kernel throughout this section.

Example 1 (L ocation and scale models). We consider a simple quadratic model

Y
i
=0·23X

i
(16−X

i
)+0·4e

i
(i�1). (4·1)

The noise term is simulated from the following situations:
(i) {e

i
} are independent standard normal random variables,

(ii) {e
i
} are a random sample from the t2 distribution, and

(iii) {e
i
} are independent and follow the t4 distribution.

For cases (i)–(iii), X
i
are independent Un [0, 16]. We also consider the following time

series setting:
(iv) X

i+1
=Y
i
with some initial value X1 , where the noise variables e

i
are indepen-

dent random variables having the same distribution as the sum of 48 independent
random variables each uniformly distributed on [−0·25, 0·25].
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In case (iv), the bounded support of e
i
is necessary for the stationarity of the time series

(Chan & Tong, 1994). The conditional density of this model was studied by Fan et al.
(1996).

For each of the 100 samples of size n=1000, we calculate the root mean squared errors
with different bandwidth selection rules. We estimate g(y|x) on a 51×51 regular grid on
the sample space. We take a=2 and b=14 for cases (i)–(iii), and a=4 and b=14 for
case (iv).

We summarise the results in Table 1. The means, standard derivations, medians and
robust standard deviations of  for each of the three bandwidth selection rules are
given; the robust standard deviation is equal to the interquartile range divided by 1·35.
In general, the Hyndman–Yao (2002) and Fan et al. (1996) approaches produce larger
values of  than those of crossvalidation and the Hall et al. (1999) method. The
performance of both crossvalidation and the Hall et al. method are comparable. Note
that we only employ the simple rule of Hyndman & Yao (2002) for ease of implementation.
It is expected that their more sophisticated method should be more effective than what
we present here. Cases (i) and (iv) are ideal for the Hall et al. approach because this is
the model in which the bootstrap sample was generated. Nevertheless, the proposed
crossvalidation approach works comparably to the Hall et al. method, which is a para-
metric approach for this model. However, the performance of the Hall et al. approach
deteriorates when the tails of the noise e

i
become heavier; see case (ii) and Fig. 1, which

presents a typical estimated conditional density with median performance. In fact, for
case (ii), the crossvalidation method outperforms the other two approaches substantially.

The improvement of the crossvalidation method can be even more substantial when
the regression function is not quadratic, as in

Y
i
=20 cosApXi10 B+ei , (4·2)

where the noise e
i
are independent standard normal random variables and

(I) X
i
are independent Un [−20, 20] random variables;

(II) X
i+1
=Y
i
with some initial value X1 , as studied by Fan et al. (1996).

Table 1: Example 1. Summary of the root mean squared error for model
(4·1) showing, for each method, the mean (standard deviation) in the
first row, and the median (robust standard deviation) of the root mean

squared error (×10−3 ) in the second row

Case (i) Case (ii) Case (iii) Case (iv)

 1·0899 (0·0601) 0·7641 (0·1497) 1·0143 (0·0683) 1·0903 (0·0673)
1·0882 (0·0616) 0·7842 (0·1277) 1·0141 (0·0712) 1·0888 (0·0679)

 1·0651 (0·0516) 1·0191 (0·1251) 1·0200 (0·0651) 1·0803 (0·0690)
1·0631 (0·0515) 1·0276 (0·1095) 1·0194 (0·0633) 1·0774 (0·0665)

 2·8121 (0·0254) 1·6773 (0·2908) 2·3902 (0·0810) 2·7301 (0·0515)
2·8132 (0·0254) 1·7441 (0·2421) 2·4100 (0·0690) 2·7300 (0·0451)

 3·2158 (0·0247) 1·8855 (0·3392) 2·7433 (0·0912) 3·0160 (0·0508)
3·2172 (0·0234) 1·9577 (0·2954) 2·7644 (0·0795) 3·0129 (0·0521)

, crossvalidation method; , Hall et al. (1999) method; , Fan et al. (1996)
method; , Hyndman–Yao (2002) method.
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Fig. 1: Example 1. Estimated conditional densities for model (4·1) with case (ii). Estimated con-
ditional densities for (a) x=4, (b) x=6, (c) x=8 and (d) x=12, using the crossvalidation method
(thin dash-dot curve), Hyndman–Yao (2002) method (thin solid curve), and Fan et al. (1996)
method (thick dash-dot curve) approaches, are compared with the true densities (thick solid curve).

Table 2 summarises the results based on 100 simulations and sample size n=1000 with
a=−18 and b=18 for case (i), and a=−17 and b=20 for case (ii). Model (4·2) deviates
from the bootstrap model and this is the main reason for the poor performance of the
Hall et al. method. This shows that the Hall et al. method is not consistent.

We have also tested the four bandwidth selection methods on the following scale model,

Y
i
|X
i
~Ga (3, X2

i
+1), (4·3)

where X
i
are independent standard uniform random variables. The crossvalidation and

the Hyndman–Yao methods perform comparably, and outperform the Hall et al. and Fan
et al. methods by approximately 10% in terms of . This shows that the simple method
of Hyndman & Yao can also perform very well beyond its assumed class of models.

Table 2: Example 1. Summary of the root mean squared error for model
(4·2), showing the mean, standard deviation, median and robust standard

deviation (×10−3 ) for each method

Case (i) Case (ii)
       

Mean 2·7404 8·0545 7·2869 9·3314 3·1282 8·2218 7·6028 8·7231
 0·1262 0·1237 0·1060 0·1544 0·1464 0·1201 0·1085 0·1142
Median 2·7182 8·0543 7·2953 9·3279 3·1238 8·2259 7·6091 8·7229
Robust  0·1261 0·1156 0·1071 0·1604 0·1721 0·1156 0·1164 0·1228

, crossvalidation method; , Hall et al. (1999) method; , Fan et al. (1996) method;
, Hyndman–Yao (2002) method; , standard deviation.
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Example 2 (Cox–Ingersoll–Ross model ). We consider the well-known Cox–Ingersoll–
Ross model (Cox et al., 1985) for the evolution of interest rates:

dX
t
=k(h−X

t
)dt+s(X

t
)DdW

t
(t�t

0
). (4·4)

This model is an example of model (1·1). The interest rate X
t
moves around a central

location or long-run equilibrium level h. When X
t
>h, a negative drift pulls it down, and,

when X
t
<h, a positive force drives it up. The parameter k determines its speed. If 2kh>s2,

then it is a positive and stationary process.
We use the transition density to simulate the sample paths of model (4·4); see Cox et al.

(1985). The interest rate X
t
0

at initial time t0 is generated from the invariant density of
process (4·4), which is a Gamma distribution given by p(z)={C(a)ba}−1za−1e−y/b, where
a=2kh/s2 and b=s2/(2k). Given the current interest rate X

t
=x at time t, 2cX

s
at time

s>t has a noncentral chi-squared conditional distribution with 2q+2 degrees of freedom
and noncentrality parameter 2u, where

q=2kh/s2−1, u=cxe−k(s−t), c=2k/{s2 (1−e−k(s−t) )}.

We sampled the process at a weekly frequency with an interval D= 1
52

. The values of
other parameters (k, h, s) are cited from the work of Chapman & Pearson (2000) in our
implementation, that is k=0·21459, h=0·08571 and s=0·07830. We generate a sample
path of 1000 and replicate the experiments 100 times. We take a=0·05, b=0·12 and
s=t+D for one-step forecasting in case (i) and s=t+2D for two-step forecasting in
case (ii). The values of the conditional density g(y|x) are estimated at the observed sample
points. Table 3 shows the simulation results and Fig. 2 presents typical estimates of
conditional densities. The root mean squared errors for estimating conditional density in
two-step prediction are smaller than those for the one-step forecast. This is somewhat
surprising but understandable. The conditional density for one-step forecasting tends
to be larger, i.e. less spread, and hence has a larger estimation error in absolute terms.
The estimates for the conditional density at x=0·085 and x=0·12 are reasonable,
though there are not many local data points available. The marginal density of X

t
is

Ga (0·6, 0·0143), with mean 0·0857 and standard deviation 0·0111. Thus, there are even
fewer data points around x=0·05, which makes estimates unreliable.

The performance of the Hall et al. (1999) and crossvalidation methods is competitive.
Note that the noncentral chi-squared distribution with many degrees of freedom, 12 for
the given parameters, is similar to a normal distribution; see Fig. 2. Some researchers

Table 3. Summary of root mean squared errors for Example 2, showing the
mean, standard deviation, median and robust standard deviation of  for

each method

Case (i) Case (ii)
       

Mean 1·2088 1·2081 1·6531 2·1260 0·7259 0·7207 0·9828 1·4740
 0·0688 0·0652 0·1527 0·0589 0·0431 0·0431 0·1104 0·0297
Median 1·2151 1·2146 1·6932 2·1198 0·7320 0·7267 0·9190 1·4715
Robust  0·0393 0·0304 0·2109 0·0382 0·0354 0·0333 0·1504 0·0278

, crossvalidation method; , Hall et al. (1999) method; , Fan et al. (1996) method;
, Hyndman–Yao (2002) method; , standard deviation.
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Fig. 2: Example 2. Two-step transition densities for the Cox–Ingersoll–Ross (1985) model. (a) shows
the true conditional density function. In (b)–(d) estimated densities, for (b) x=0·05, (c) x=0·085
and (d) x=0·12, using the crossvalidation method (thin dash-dot curve), Hall et al. (1999) method
(thin solid curve) and Fan et al. (1996) method (thick dash-dot curve) approaches, are compared with

the true densities (thick solid curve).

even use a normal distribution to generate the Cox–Ingersoll–Ross model, although this
generating method incurs the problem of discretisation errors. Hence, the crossvalidation
method works as well as the Hall et al. method.

5. A

Our illustration concerns the yields of the U.S. twelve-month treasury bills from the
secondary market rates. The data consist of 2112 weekly observations from 17 July 1959
to 31 December 1999. The time series plot is depicted in Fig. 3(a). We take a=3 and
b=10 and let Y

t
=Z
t
−Z
t−1

and X
t
=Z
t−1

, where Z
t
is the yield of twelve-month treasury

bills. The estimated conditional density of Y
t

given X
t
=x, using the crossvalidation

approach as the bandwidth selection rule, is shown in Fig. 3. A distinctive feature is that
the conditional variance increases as the interest rates increase. The discrepancies between
this empirically estimated transition density and that from the Cox–Ingersoll–Ross (1985)
model, see Fig. 2(a), can be seen.

To investigate the performance, we use the first 1381 observations to estimate the con-
ditional density of Y

t
given X

t
=x, and the last 14 years’ observations to check the 90%

predictive interval. A more interesting comparison is to construct a 95% conditional lower
confidence limit based on the estimated conditional density. This lower confidence limit
is related to the Value-at-Risk (VaR), a measure of risk of a portfolio in risk management
(Jorion, 2000).

Table 4 summarises the average lengths and the coverage probabilities of the predictive
intervals using the crossvalidation approach. Also included in Table 4 is the RiskMetrics
approach of J. P. Morgan, given in the firm’s ‘RiskMetrics technical document’, and which
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Fig. 3. Yields (%) of treasury bills from 17 July 1959 to 31 December 1999. (a) shows
the data; (b) shows the estimated conditional density of X

t
given X

t−1
=x, based on

the crossvalidation approach.

Table 4: T reasury bill data. Performance comparisons of the Risk-
Metrics and double-kernel local linear regression using the cross-

validation approaches

90%  95% lower bound
Period    

1/1/1986–31/12/1999 RiskMetrics 0·33 91·57% −0·16 5·61%
 0·46 95·62% −0·22 2·46%

1/1/1993–31/12/1999 RiskMetrics 0·27 91·80% −0·14 3·83%
 0·26 89·09% −0·14 3·28%

1/8/1997–31/12/1999 RiskMetrics 0·24 89·76% −0·12 7·09%
 0·27 93·70% −0·13 4·72%

Methods: RiskMetrics of J. P. Morgan; , crossvalidation.
, predictive interval; , average length; , empirical coverage probability;
, average lower bound;  exceedence ratio.



830 J F  T H Y

is a popular method with which to forecast Value-at-Risk. Let r
t
=Y
t
/X
t
be the observed

return at time t. The idea behind the RiskMetrics is to estimate the volatility s@
t

by
exponential smoothing:

s@2
t
=0·94s@2

t−1
+0·06r2

t−1
.

The 95% lower bound of r
t
of RiskMetrics is−1·645s

t
; that is, the J. P. Morgan estimate

of the 95%VaR at time t is −1·645s
t
. The exceedence ratio is given by

=n−1 ∑
T+n

t=T+1
I(r
t
<−1·645s

t
),

where T+1 and T+n are the first and last observations in the validation period. It
measures the performance of different VaR methods. Overall, our method tends to be
more conservative, leading to high empirical coverage probability and low . Note that
the RiskMetrics method is based on time-domain smoothing, which uses mainly recent
data, and the conditional density approach is based on state-domain smoothing, which
uses mainly historical data. In fact, our method does not use data from the most recent
14 years. This can be improved by using a window of data close to the predicted time
point, resulting in a time-varying prediction rule. An interesting challenge will be to
determine how to use information from both time-domain smoothing and state-domain
smoothing to enhance the predictability.

To examine the impact of the period under consideration, we now use the data up until
31 December 1992 as a training set and those from 1 January 1993 to 31 December 1999
as a prediction period. In addition, we also employ the data up until 31 July 1997 as a
training period and the data after 31 July as a prediction period. The results for these two
periods are also summarised in Table 4. They indicate clearly that the performance of
each method depends on the training and prediction periods. The performance of the
state-domain smoothing approach improves as the training period becomes longer so that
more recent data are used in the prediction and more data are used in the estimation. On
the other hand, because of its time-domain smoothing, the RiskMetrics estimation mainly
uses the information from the most recent year, no matter how long the training period is.
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allocation of the Research Grants Council grant from the Chinese University of Hong
Kong and by The Institute of Mathematical Sciences of the Chinese University of
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A

Proofs

We now outline the key ideas of the proofs. Throughout, we use C to denote a generic constant,
which may vary from line to line.

Proof of (3·5). We first compute the difference between g@
h
(y|x) and g@

h,−i
(y|x). To this end, we

add the subscript ‘−i ’ to any quantities that do not involve the ith data point (X
i
, Y
i
).
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Let W
j,h
1

(z)=zjW (z/h
1
)/h
1
. Then,

s
n,j,−i

(x)= (n−1)−1 ∑
kNi

W
j,h
1

(X
k
−x).

By simple algebra, we obtain

s
n,j,−i

(x)−s
n,j

(x)=
1

n(n−1)
∑
kNi

W
j,h
1

(X
k
−x)−

1

n
W
j,h
1

(X
i
−x).

As W has a bounded support and is bounded, it follows that |W
j,h
1

(z) |∏Chj−1
1

, and hence that

|s
n,j,−i

(x)−s
n,j

(x) |∏
Chj−1
1
n

.

Substituting this into the definition of the equivalent kernel, we can show easily that

|W
n
(z; x)−W

n,−i
(z; x) |∏

C

nh
1
,

for all z and x such that s
n,0,−i

(x)s
n,2,−i

(x)−s2
n,1,−i

(x)>C−1h2
1
. The above holds with probability

tending to one. Hence,

|W
n
(z; x)−W

n,−i
(z; x) |=O

PA Cnh
1
B . (A·1)

Note that the above quantities involve only the design points. Hence, the O
P

term will be
exchangeable with the conditional expectation E

X
, and, for simplicity, we drop the notation O

P
in (A·1). As W (z) vanishes with, say, |z|�1, it follows that

|W
n
(z; x)−W

n,−i
(z; x) |∏

C

nh
1
I( |z|∏1). (A·2)

We now investigate the difference between g@
h
(y|x) and g@

h,−i
(y|x). Observe that

|g@
h,−i
−g@
h
|∏I
1
+I
2
+I
3
, (A·3)

where

I
1
=

1

nh
1
h
2
∑
kNi
KWn,−iAXk−x

h
1

; xB−W
nAXk−x

h
1

; xBKKAYk−y

h
2
B ,

I
2
=

1

n(n−1)h
1
h
2
∑
kNi
KWn,−iAXk−x

h
1

; xBKKAYk−y

h
2
B ,

I
3
=

1

nh
1
h
2
KWnAXi−x

h
1

; xBKKAYi−y

h
2
B .

We now deal with each of the above terms. By (A·2), we have

I
1
∏

1

nh
1
h
2
∑
kNi

C

nh
1
I( |X
k
−x|∏h

1
)KAYk−y

h
2
B .

By simple calculation, we have

E
X
(I
1
)∏

C

n2h2
1
∑
kNi

I( |X
k
−x|∏h

1
)=O

PA 1

nh
1
B .

Similarly,

E
X
(I
2
)∏

C

n(n−1)h
1
∑
kNi
KWn,−iAXk−x

h
1

; xBK .
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Note that, by the Cauchy–Schwartz inequality, we have

1

(n−1)h
1
∑
kNi
KWn,−iAXk−x

h
1

; xBK∏2+o
P
(1).

Consequently, E
X
(I2 )=O

P
(n−1 ). For I3 , we have

E
X
(I
3
)∏

C

nh
1
KWnAXi−x

h
1

; xBK=O
PA 1

nh
1
B .

It follows from (A·3) that

E
X
|g@
h,−i

(y|x)−g@
h
(y|x) |=O

PA 1

nh
1
B . (A·4)

We are now ready to prove (3·5). As g@
h,−i

(y|x) does not involve the ith data point, by the double
expectation formula, we have

E
X
∑
n

i=1
g@
h,−i

(Y
i
|X
i
)I(X
i
µ[a, b])= ∑

n

i=1
P E
X
g@
h,−i

(y|X
i
)I(X
i
µ[a, b])g(y|X

i
)dy.

Therefore, it follows from (A·4) that

E
X
1

n
∑
n

i=1
g@
h,−i

(Y
i
, X
i
)I(X
i
µ[a, b])=P E

X
g@
h
(y|x)I(xµ[a, b])g(y|x) f (x)dx dy+O

PA 1

nh
1
B .

This completes the proof of (3·5).

Proof of (3·6). We first note that, by Chebyshev’s inequality,

s
n,j

(x)=hj
1CP ujW (u){ f (x)+h

1
u f ∞(x)}du+O

Pqh21+ 1

√(nh
1
)rD .

Next we calculate the difference between s
n,j,−i

(x)s
n,k,−i

(x) and s
n,j

(x)s
n,k

(x). Using the fact that W
has a bounded support and is bounded, we obtain

|s
n,j,−i

(x)s
n,k,−i

(x)−s
n,j

(x)s
n,k

(x) |∏GChj+k
1

/n, for both j, k=2,

Chj+k+1
1

/n, for either j or k=1,

Chj+k+2
1

/n, for both j, k=1.

Substituting this into the definition of the equivalent kernel, one can show that

|W
n,−i

(z
1
; x)W

n,−i
(z
2
; x)−W

n
(z
1
; x)W

n
(z
2
; x) |∏

C

n
I(z
1
∏h
1
)I(z
2
∏h
1
),

for all z1 , z2 and x such that

{s
n,0,−i

(x)s
n
2
,−i

(x)−s2
n,1,−i

(x)}2�C−1h4
1
.

We now investigate the difference between ∆ g@
h
(y|x)2dy and ∆ g@

h,−i
(y|x)2dy. Observe that

KP g@
h,−i

(y|x)2dy−P g@
h
(y|x)2dyK∏I

1
+I
2
+I
3
+I
4
, (A·5)
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where

I
1
= ∑
kNi
∑
lNi

1

(n−1)2h2
1
h
2
KWn,−iAXk−x

h
1

; xBWn,−iAXl−x

h
1

; xB
−W
nAXk−x

h
1

; xBWnAXl−x

h
1

; xBKK1KAYk−Y
l

h
2
B ,

I
2
= ∑
kNi
∑
lNi

2n−1

n2 (n−1)2h2
1
h
2
KWn,−iAXk−x

h
1

; xBK KWn,−iAXl−x

h
1

; xBKK1KAYk−Y
l

h
2
B ,

I
3
=2 ∑

n

k=1

1

n2h2
1
h
2
KWnAXk−x

h
1

; xBWnAXi−x

h
1

; xBKK1KAYk−Y
i

h
2
B,

I
4
=

1

n2h2
1
h
2
KWnAXi−x

h
1

; xBK2K1K(0).

We now deal with each of the above terms. By simple calculation, we have

E
X
(I
1
)∏

1

(n−1)2h2
1
∑
kNi
∑
lNi

C

n
I( |X
k
−x|∏h

1
)I( |X

l
−x|∏h

1
)=O

PA1nB .
By the Cauchy–Schwartz inequality, we can show that

E
X
(I
2
)∏O

PA1nB , E
X
(I
3
)∏O

PA 1

nh
1
B , E

X
(I
4
)∏O

PA 1

n2h2
1
B .

By (A·5), we have

E
XKP g@

h,−i
(y|x)2dy−P g@

h
(y|x)2dyK=O

PA 1

nh
1
B . (A·6)

We are now ready to prove (3·6). Since ∆ g@
h,−i

(y|x)2dy does not involve the ith data point, by the
double expectation formula, we have

E
X
∑
n

i=1
I(X
i
µ[a, b]) P g@

h,−i
(y|X
i
)2dy=E

X P ∑n
i=1

I(xµ[a, b])g@
h,−i

(y|x)2dy f (x)dx.

Therefore, by (A·6), we obtain (3·6).
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