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Abstract: Local quasi-likelihood estimation is useful for nonparametric modeling

in a widely-used exponential family of distributions, called generalized linear mod-
els. Yet, the technique cannot be directly applied to situations where a response

variable is missing at random. Three local quasi-likelihood estimation techniques

are introduced: the local quasi-likelihood estimator using only complete-data; the
locally weighted quasi-likelihood method; the local quasi-likelihood estimator with

imputed values. These estimators share basically the same first order asymptotic
biases and variances. Our simulation results show that substantial efficiency gains

can be obtained by using the local quasi-likelihood estimator with imputed values.
We develop the local quasi-likelihood imputation methods for estimating the mean

functional of the response variable. It is shown that the proposed mean imputation
estimators are asymptotically normal with asymptotic variance that can be easily

estimated. Data from an ongoing environmental epidemiologic study is used to
illustrate the proposed methods.
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1. Introduction

Quasi-likelihood estimation is an important extension of maximum likelihood

estimation. This method, proposed by Wedderburn (1974), requires only assump-

tions on the conditional mean and variance functions rather than on the full

likelihood. McCullagh and Nelder (1989) extended the method to the analysis of

parametric generalized linear models. The need to reduce possible modeling bi-

ases and to validate parametric models leads to the development of nonparametric

models. See, for example, Hastie and Tibshrani (1990), Fan and Gijbels (1996)

and Eubank (1999). There are a number of papers that study nonparametric

function estimation in the context of generalized linear models. Methods for ker-

nel estimation were discussed by Staniswalis (1989), Severini and Staniswalis

(1994) and Hunsberger (1994). Fan, Heckman and Wand (1995) developed a

local quasi-likelihood estimation via a local polynomial fitting. Carroll, Fan,

Gujbels and Wand (1997) considered an extension of such estimators to the mul-

tivariate generalized partially linear single-index models. Those techniques allow
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one to analyze data from many useful families of distributions, including the

Bernoulli and the Poisson distributions. Fan, Farmen and Gijbels (1998) pro-

posed a pre-asymptotic substitution method for selecting bandwidths for the lo-

cal quasi-likelihood estimator. The local estimating equations have been studied

in Carroll, Ruppert and Welsh (1998).

The first objective of this paper is to study the local quasi-likelihood es-

timation when the response Y is missing at random (MAR). Data with miss-

ing outcome are common in medical research. For example, in a recent en-

vironmental epidemiologic study, the Collaborative Prenatal Projects (CPP)

(Niswander and Gordon (1972) and Longnecker, Klebnoff, Zhou and Brock

(2002)), the investigators are interested in the nonlinear relationship between

the women’s PCBs exposure (high or low) and the body mass index at the

beginning of the pregnancy. There are about sixty percent of the women’s

PCBs exposures missing in the study. Our research is motivated by the need

to develop a nonparametric estimation method for missing responses. Methods

for regression analysis with missing data have been studied by many authors.

For an introduction to these, see the books by Little and Rubin (1987) and

Gelman, Carlin, Sterm and Rubin (1995), and the papers by Rosenbaum and

Rubin (1983), Little (1992), Cheng (1994), Wang, Wang, Zhao and Ou (1997)

and Wang and Rao (2002), among others.

In the context of the response variable missing at random, observations for

which only covariates have been recorded are not informative about the quantities

to be estimated. The methods based on only complete observations provide a

valid and suitable analysis. Paik (1997) has shown that the imputation methods

which impute missing values by regression fitting can provide a more efficient

estimator if the model for the missing data is correctly specified. These techniques

are extended to nonparametric models. Three estimation techniques − the local

quasi-likelihood estimator using only complete-data, the locally weighted quasi-

likelihood method, and the local quasi-likelihood estimator with imputed values

− are employed. These techniques are complementary to those in Wang, Wang,

Gutierrez and Carroll (1998), which generalized the local linear estimation of

Fan, Heckman and Wand (1995) to the case with covariates missing at random.

They found that the variances of the locally weighted method are the same

when the selection probabilities are either known or unknown, but the biases

are different. In the context where the responses are missing at random, we

show that the three proposed methods basically share the same asymptotic bias

and variance. Yet, finite sample simulations show that the local quasi-likelihood

estimator with imputed data substantially outperforms the two other proposals.

This finding is consistent with the results in parametric modeling by Paik (1997).

Our extensive simulations show that the gains from imputed data are even more
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substantial than for two other estimators when the bandwidths are automatically

selected by data. In fact, with imputed data, there are larger sample sizes and

the selected bandwidths are more stable (most bandwidth selection procedures

involve some degrees of estimating higher order derivatives, which requires a

large amount of data to stabilize the estimate). This leads to more stabilized

nonparametric estimators, resulting in smaller variances, than the two completing

methods, and hence substantially improves the performance. It should be pointed

out that the improvement comes from the fact that the imputation makes a better

choice of the optimal bandwidth − it makes more use of the complete observed

data in the local fitting.

The second objective of our study is to estimate the mean functional of the

response variable when it is missing at random. Tamhane (1978) and Matloff

(1981) considered hypothesis testing and estimation of the mean functional with

a specified regression function. Cheng (1994) discussed nonparametric estima-

tion of the mean functional by using the kernel regression estimator in this MAR

setting. Wang, Linton and Härdle (2004) developed the kernel regression estima-

tor of the mean functional in a semiparametric partially linear regression model.

In this paper, local quasi-likelihood estimators are used to impute each missing

datum. We develop two quasi-likelihood imputation estimators for the mean

functional of the response. The corresponding quasi-likelihood weight imputa-

tion estimators are also investigated. The proposed imputation estimators are

shown to be asymptotically normal, with an asymptotic variance that can be

easily estimated.

The paper is organized as follows. Section 2 introduces the local quasi-

likelihood estimator with the complete-case data, the locally weighted quasi-

likelihood method and the locally quasi-likelihood imputation method. The

asymptotic properties of three methods are studied. The nonparametric quasi-

likelihood imputation estimators of the mean functional of the response variable

are studied in Section 3. Section 4 shows how to access the bias and variance

of the local quasi-likelihood estimators and discusses how to select data-driven

bandwidths. In Section 5, we present results from simulation studies comparing

the proposed estimators. The methods are demonstrated with a data set from

the Collaborative Perinatal Projects in Section 6. Technical proofs are relegated

to the Appendix.

2. Model and Methodology

2.1. The models

Let (X1, Y1, δ1), . . . , (Xn, Yn, δn) be a set of independent random variable

where, for each i, δi = 1 if the Yi is observed and δi = 0 otherwise, and Xi is

an observed covariate having density function f . Furthermore, assume that the
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selection probability is P (δi = 1|Yi, Xi) = P (δi = 1|Xi) ≡ π(Xi) > 0. Suppose

that the conditional mean and conditional variance of Y given X are

E(Y |X = x) = m(x), Var (Y |X = x) = σ2V {m(x)}, (2.1)

for a given function V and an unknown scale parameter σ2. In (2.1), only the

relationship between the conditional mean and the conditional variance is given.

Therefore, it is appropriate to apply the quasi-likelihood method. The quasi-

likelihood function Q(µ, y) is defined via

∂

∂µ
Q(µ, y) =

y − µ

V (µ)
, (2.2)

and the ith data point contributes Q{m(Xi), Yi} to the quasi-likelihood. When

all Y ′s are observed, one can estimate the parameters in the conditional mean

via maximizing the quasi-likelihood.

A specific case of (2.1) is the generalized linear model (McCullagh and Nelder

(1989)), which assumes that the conditional density of Y given X = x belongs

to a canonical exponential family

fY |X(y|x) = exp
(Θ(x)y − b{Θ(x)}

a(φ)
+ c(y, φ)

)
, (2.3)

for some known functions a(·), b(·) and c(·, ·). Here the unknown parameter Θ(·)
is called the canonical parameter and φ is called the dispersion parameter. Note

that

m(x) = E(Y |X = x) = b′{Θ(x)} and Var (Y |X = x) = a(φ)b′′{Θ(x)}. (2.4)

Thus (2.3) satisfies (2.1). For the exponential family of models, the quasi-

likelihood (2.2) is just the conditional log-likelihood of (Y1, . . . , Yn) given (X1,

. . . , Xn). Thus, the quasi-likelihood approach is an extension of the likelihood

method. If g = (b′)−1, then g is called the canonical link function. Our in-

terest is to estimate, nonparametrically, the function η(x) = g{m(x)}. A local

quasi-likelihood estimator of η(x) is given by Fan, Heckman and Wand (1995).

The goal of this section is to extend their technique to handle cases with missing

data.

2.2. The local quasi-likelihood estimation with the complete-case data

We first study the local quasi-likelihood estimator of η(x) basing on the

complete-case data {(Xi, Yi) : δi = 1, i = 1, . . . , n}. Assume that η possesses

p + 1 derivatives. For each x, approximate the function locally by

η(z) ≈ β0 + · · · + βp(z − x)p, (2.5)
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for z in a neighborhood of the point x. Following Fan, Heckman and Wand

(1995), we construct the local quasi-likelihood for the complete-case data:

`C(β) ≡
n∑

i=1

δiQ[g−1{β0 + · · · + βp(Xi − x)p}, Yi]Kh1
(Xi − x), (2.6)

where Kh1
(·) = K(·/h1)/h1 with K a kernel function and h1 a bandwidth.

Let β̂C(x) = (β̂0,C(x), . . . , β̂p,C(x))T maximize (2.6). Then, the maximum lo-

cal quasi-likelihood estimator of η(υ)(x) with the complete-case data is η̂υ,C(x) =

υ!β̂υ,C(x) for υ = 0, . . . , p, with the convention η̂C(x) = η̂0,C(x).

2.3. The locally weighed quasi-likelihood estimation

An alternative approach to handling missing data is a locally weighted quasi-

likelihood estimation. Similar to the discussion in Section 2.2, a locally weighted

quasi-likelihood can be defined as

`W (β) ≡
n∑

i=1

δi

π(Xi)
Q[g−1{β0 + · · · + βp(Xi − x)p}, Yi]Kh1

(Xi − x), (2.7)

where the weight π(x) is the selection probability defined in Section 2.1. Let

β̂W (x, π) = (β̂0,W (x), . . . , β̂p,W (x))T maximize (2.7). Then, the maximum locally

weighted quasi-likelihood estimator η(υ)(x) can be expressed as η̂υ,W (x, π) =

υ!β̂υ,W (x, π) for υ = 0, . . . , p, with the convention η̂W (x, π) = η̂0,W (x, π).

Note that the selection probability in (2.7) is regarded as known. If the

selection probability is unknown, it can be estimated by a kernel smoothing

method. In that case, an estimated locally weighted quasi-likelihood estimator

β̂W (x, π̂) can be obtained by replacing π(X) by its estimator π̂(X) in (2.7). It is

clear that the locally weighted quasi-likelihood estimators β̂W (x, π) and β̂W (x, π̂)

have the same asymptotic properties in our framework.

2.4. The local quasi-likelihood estimation with the imputed values

The local quasi-likelihood estimator with complete-case data and the locally

weighted quasi-likelihood estimator do not fully explore the information con-

tained in the data. When there are many missing values, a substantial reduction

in estimation efficiency emerges due to discarding incomplete cases in the local

fitting. Stability issues also arise when using only complete case data. Since the

effective number of local data points can be small, the singularity of the Hessian

matrix [`′′(·)] occurs frequently in the analysis of complete case data, particularly

when the bandwidth is small. This is not simply rescued by increasing the size

of bandwidth or using the ridge regression technique (see e.g., Seifert and Gasser

(1996) and Fan and Chen (1999)), because these introduce extra biases.
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We introduce an imputation method to manage the problem of missing data.

The procedure consists of two steps. The first step involves imputing missing Y ’s

based on the complete-case data with an initial bandwidth h0. In the second step,

we substitute Yi by Ŷ ∗
i = δiYi + (1 − δi)g

−1(η̂(Xi)), for i = 1, . . . , n. Then the

local quasi-likelihood based on imputed values is applied, namely maximizing

`(β) ≡
n∑

i=1

Q
[
g−1{β0 + · · · + βp(Xi − x)p}, Ŷ ∗

i

]
Kh2

(Xi − x) (2.8)

with respect to βj , j = 0, . . . , p, where Kh2
(·) is a kernel function and h2 is a

bandwidth. Let β̂I(x) = (β̂0,I , . . . , β̂p,I) maximize (2.8). Then, the local quasi-

likelihood estimators based on the imputed values are η̂
(υ)
I (x) = υ!β̂υ,I(x) for

υ = 0, . . . , p, with the convention that η̂I(x) = η̂
(0)
I (x).
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Figure 1. Comparison of the performances of the local quasi-likelihood esti-
mator with complete-case data and the imputed values. (a) The 10th per-
centile performance among 400 simulations; (b) The median performance
among 400 simulations. Solid curve − true function. Dash curves are the lo-
cal estimators with the complete-case data (short dash) and imputed values
(long dash).

The proposed imputation method improves the effectiveness of the local

quasi-likelihood estimator with complete-case data. To justify our claim, we

use a simulated example to illustrate the proposed method. The selection proba-

bility π(x) = 0.4 and the sample size n = 500. Figure 1 plots a typical estimate of

the local linear quasi-likelihood estimator with the complete-case data and that

of the local imputation method, both using the optimal estimated bandwidth.

Details of simulations can be found in Section 5. In Figure 1(a), the local quasi-

likelihood estimator with the complete-case data does not perform too well, due
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partially to the instability caused by missing values. The proposed imputation

method improves the quality of the local estimator. The local quasi-likelihood

estimator with complete-case data works reasonably well in Figure 1(b). Never-

theless, the local imputation method still improves somewhat on the performance

of the local quasi-likelihood estimator with complete-case data.

2.5. Asymptotic properties

We explore the asymptotic distribution of β̂C(x), β̂W (x, π) and β̂I(x). For

convenience, we use the following notation. Write µj =
∫

ujK(u)du and νj =∫
ujK(u)2du, j = 0, 1, 2, . . .. Let

S = (µi+j−2)1≤i,j≤p+1, S∗ = (νi+j−2)1≤i,j≤p+1, H1 = diag(1, h1, . . . , h
p
1),

(2.9)

be (p+1)×(p+1) matrices. Furthermore, let β(x) = (η(x), η ′(x), . . . , η(p)(x)/p!)T

be the true local parameters.

Theorem 1. Under Condition 1 in the Appendix, if nh1 → ∞ and h1 → 0, then

β̂C(x) and β̂W (x, π) satisfy

√
nh1

(
H1{β̂(x) − β(x)} − η(p+1)(x)

(p + 1)!
S−1Up+1h

p+1
1 + op(h

p+1
1 )

)

−→ N
(
0,

σ2(x)

π(x)f(x)
S−1S∗S−1

)
, (2.10)

where Up+1 = (µp+1, . . . , µ2p+1)
T is a (p + 1)-column vector, and σ2(x) =

[g′{m(x)}]2Var (Y |X = x).

The proof of Theorem 1 is given in the Appendix. Comparing this with

Theorem 1 of Fan, Heckman and Wand (1995), one can easily see that the local

quasi-likelihood estimator based on complete-case data shares the same asymp-

totic bias as that with full data, but has larger asymptotic variance. The extra

factor 1/π(x) can have an adverse effect on the efficiency of estimation, especially

when there are lots of missing values. The results in Theorem 1 also reveal that

the locally weighted quasi-likelihood estimator does not provide any improve-

ment over the local quasi-likelihood estimator with the complete-case data in the

local fitting. The asymptotic normality of the local quasi-likelihood estimator

with the imputed values β̂I(x) can be described as follows.

Theorem 2. Under Conditions 1 and 2 in the Appendix, as n → ∞, nh4
0 → 0,

nh2
0/ log(1/h0) → ∞, h2 → 0 and nh2 → ∞,

√
nh2

(
H2{β̂I(x) − β(x)} − λ(x)

)
−→ N

(
0,

σ2(x)

π(x)f(x)
S−1S∗S−1

)
, (2.11)
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where H2 = diag(1, h2, . . . , h
p
2), Uk = (µk, . . . , µp+k)

T , (k = 0, p + 1), and

λ(x) =
η(p+1)(x)

(p + 1)!

(
S−1Up+1h

p+1
2 + (1 − π(x))eT

1 S−1Up+1S
−1U0h

p+1
0

)

+op(h
p+1
2 + hp+1

0 ).

In particular, we have the asymptotic expansion

√
nh2 (η̂I(x) − η(x) − λ0(x)) −→ N

(
0,

σ2(x)

π(x)f(x)
S−1S∗S−1

)
, (2.12)

with λ0(x) = η(p+1)(x)eT
1 S−1Up+1

(
hp+1

2 + (1 − π(x))hp+1
0

)
/(p + 1)! + op(h

p+1
2 +

hp+1
0 ).

The proof of Theorem 2 is in the Appendix. Note that the imputation

method has a rather simple asymptotic expression. If h0 = o(h2) in the impu-

tation, the bias of β̂I is the same as that of β̂C . We can select h0 and h2 such

that the bias of β̂I less than β̂C . For example, if h2 = h0 < (2−π(x))−1/(p+1)h1,

then the bias of β̂I is smaller than that of β̂C . Another gain is that the impu-

tation method has more local data points and is more stable in implementation.

Thus, it improves the finite sample properties. The simulation results in Section

5 reinforce this statement about finite sample behavior.

2.6. Optimal bandwidth

The bandwidth parameter is important in nonparametric curve estimation.

From Theorems 1 and 2, the asymptotic optimal bandwidths h1,opt and h2,opt

can be chosen by minimizing their asymptotic weighted mean integrated squared

errors, respectively. Denote S−1 = (Sij)0≤i,j≤p and let

K∗
υ(t) = eT

υ+1S
−1(1, t, . . . , tp)T K(t) =

( p∑

j=0

Sυjtj
)
K(t)

be the equivalent kernel. Then, the asymptotically optimal bandwidth for esti-

mating η̂C(·) based on the complete-case data is given by

h1,opt = C0,p(K)




∫ σ2(x)w(x)
π(x)f(x) dx

∫
{η(p+1)(x)}2w(x)dx




1

2p+3

n− 1

2p+3 , (2.13)

and the asymptotically optimal bandwidth h2,opt for the estimator η̂I(x) can be
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expressed by solving the following equation:

h2p+3
2,opt +

∫
{η(n+1)(x)}2(1 − π(x))w(x)dx

2(p + 1)
∫
{η(p+1)(x)}2w(x)dx

hp+1
0 hp+2

2,opt

= C0,p(K)2p+3

∫ σ2(x)w(x)
π(x)f(x) dx

n
∫
{η(p+1)(x)}2w(x)dx

, (2.14)

where w is a weight function, h0 is an initial bandwidth and

C0,p(K) =

[
(p + 1)!2

∫
K∗2

0 (t)dt

2(p + 1){
∫

tp+1K∗
0 (t)dt}2

] 1

2p+3

.

This theoretical optimal bandwidth depends on unknown quantities. In Sec-

tion 4, we provide a data-driven bandwidth selection based on the generalized

pre-asymptotic methods of Fan and Gijbels (1995) and Fan, Farmen and Gijbels

(1998).

3. Quasi-likelihood Imputation Estimation of The Mean Functionals

We turn to the investigation of the estimation of the mean functionals θ =

E(Y ) using imputed values. Cheng (1994) studied a kernel regression imputation

estimator of the mean functional. Each missing datum Y is imputed by kernel

regression imputation. The estimate of the mean parameter θ can be taken as

θ̂K =
1

n

n∑

i=1

[δiYi + (1 − δi)m̂(X)], (3.1)

where m̂(X) is the Nadaraya-Watson kernel estimator based on the complete-case

data {(Xi, Yi) : δi = 1, i = 1, . . . , n}. Wang, Linton and Härdle (2004) developed

the kernel regression estimators of the mean functionals in a semiparametric

partially linear regression model.

In the section, we develop the nonparametric local quasi-likelihood estima-

tors of the mean functionals. The local quasi-likelihood estimators developed in

Section 2 are used to impute each missing datum. Four quasi-likelihood impu-

tation estimators for the mean functional of the response are introduced. The

quasi-likelihood imputation estimator and the weighted quasi-likelihood imputa-

tion estimator can be expressed by, respectively,

θ̂Q =
1

n

n∑

i=1

[δiYi + (1 − δi)g
−1{η̂C(Xi)}], (3.2)

θ̂GW =
1

n

n∑

i=1

[
δi

π̂(Xi)
Yi + (1 − δi

π̂(Xi)
)g−1{η̂C(Xi)}

]
, (3.3)
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where π̂(Xi) =
∑n

j=1 δjKa(Xj − Xi)/
∑n

j=1 Ka(Xj − Xi), with Ka(·) a kernel

function and a a bandwidth.

By using the local quasi-likelihood estimator with the imputed values, a

two-step quasi-likelihood imputation estimator of the mean functional and the

corresponding two-step weighted quasi-likelihood imputation estimator can be

expressed as

θ̂T =
1

n

n∑

i=1

[δiYi + (1 − δi)g
−1{η̂I(Xi)}], (3.4)

θ̂TW =
1

n

n∑

i=1

[
δi

π̂(Xi)
Yi + (1 − δi

π̂(Xi)
)g−1{η̂I(Xi)}

]
. (3.5)

The following Theorem 3 establishes the asymptotic normality of the pro-

posed quasi-likelihood imputation estimators of mean functionals.

Theorem 3. Under Conditions 1 and 2 in the Appendix, as n → ∞, nh4
0 → 0,

and nh2
0/ log(1/h0) → ∞, the quasi-likelihood imputation estimator

√
n(θ̂−θ−λ)

has an asymptotic normal distribution N(0,Λ), where λ = Op(h
p+1
0 ) and Λ =

Var {m(X)} + E {Var (Y |X)/π(X)}.
The proof is given in the Appendix. The result shows that the proposed

local quasi-likelihood imputation estimators have the (p + 1)st order asymptotic

bias Op(h
p+1
0 ). Comparing our results with those in Theorem 1 in Cheng (1994),

the proposed imputation estimators have a higher order asymptotic bias than

that of the kernel imputed method although both estimators share the same

asymptotic variance. When the data are full, i.e., the selection probability π(x) =

1, Theorem 3 reduces to the classical result: the asymptotic variance of θ̂ is

(1/n) [Var {m(X)} + E {Var (Y |X)}] = (1/n)Var (Y ). A consistent estimator for

the asymptotic variance Λ is

Λ̂ =
1

n

n∑

i=1

{(
g−1(η̂(Xi)) −

1

n

n∑

j=1

g−1(η̂(Xj))
)2

+
V̂ar (Y |Xi)

π̂(Xi)

}
, (3.6)

where V̂ar (Y |x) =
n∑

i=1
δiY

2
i Ka(Xi − x)/

n∑
i=1

δiKa(Xi − x) − g−1(η̂(Xi))
2. For

the logistic regression and Poisson regression with the canonical links, we can

specifically estimate the variance by V̂ar (Y |x) = exp{η̂(x)}/(1 + exp{η̂(x)})2

and V̂ar (Y |x) = exp{η̂(x)}, respectively.

4. Estimation of Bias and Variance and Bandwidth Selection

In this section, we assess the bias and variance of the local quasi-likelihood

estimator with complete-case data. Combining the generalized pre-asymptotic
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methods of Fan and Gijbels (1995) and Fan, Farmen and Gijbels (1998), we pro-

pose a new data-driven bandwidth selector. The method is also applicable to the

locally weighted estimator and the local imputation estimator.

4.1. Assessing the bias and variance of the estimator

Suppose that η(x) has a (p +1 + b)th derivative at the point x for a positive

integer a. Let

r(Xi) = η(Xi) −
p∑

j=0

η(j)(x)
(Xi − x)j

j!
, for i = 1, . . . , n.

Since the bias of the estimator β̂C(x) comes from the approximation error in the

Taylor expansion, r(Xi) can be approximated by

βp+1(Xi − x)p+1 + · · · + βp+b(Xi − x)p+b ≡ ri, (4.1)

where b denotes the order of the approximation. In general, we put b = 2 as

recommended by Fan and Gijbels (1995). Therefore, for given quantities ri, a

more precise local quasi-likelihood is given by

`∗(β) ≡
n∑

i=1

δiQ[g−1{β0 + · · · + βp(Xi − x)p + ri}, Yi]Kh(Xi − x). (4.2)

Let β̂∗
C(x) = (β̂∗

0,C(x), . . . , β̂∗
p,C(x)) maximize (4.2). Then the bias of β̂C(x) can

be estimated by β̂C(x) − β̂∗
C(x). Following Fan, Farmen and Gijbels (1998), the

estimated bias and variance of β̂C(x) can be written, respectively, as

B̂(β̂C(x), h) =

(
n∑

i=1

δiq2

(
XT

i β̂C(x) + ri, Yi

)
XiX

T
i Kh(Xi − x)

)−1

×
n∑

i=1

δiq1

(
XT

i β̂C(x) + ri, Yi

)
XiKh(Xi − x), (4.3)

V̂ (β̂C(x), h) =̇ [σ2(x)]−1

(
n∑

i=1

δiq2

(
XT

i β̂C(x), Yi

)
XiX

T
i Kh(Xi − x)

)−1

×
(

n∑

i=1

δiXiX
T
i K2

h(Xi − x)

)

×
(

n∑

i=1

δiq2

(
XT

i β̂C(x), Yi

)
XiX

T
i Kh(Xi − x)

)−1

, (4.4)
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where σ2(x) = [g′{m(x)}]2Var (Y |x). For binary and Poisson regression with

canonical links, σ̂2(x) = (1 + exp{XT
i β̂C(x)})2/ exp{XT

i β̂C(x)} and σ̂2(x) =

1/ exp{XT
i β̂C(x)}, respectively. In general, σ2(x) can be estimated by the local

residual variance defined by

σ̂2(x) =

n∑
i=1

δi

(
Yi − g−1(X∗T

i β̂(p+b))
)2

[g′{m̂∗(Xi)}]2Kh∗(Xi − x)

n∑
i=0

δiKh∗(Xi − x)

, (4.5)

where β̂(p+b) = (β̂0, . . . , β̂p+b)
T is the result of the (p+b)th-order local polynomial

fit (2.6) using the pilot bandwidth h∗ and X∗
i = (1, Xi − x, . . . , (Xi − x)p+b)T ,

and m̂∗(Xi) = g−1(X∗
i β̂

(p+b)). In the same way, r1, . . . , rn in the estimated bias

(4.3) can be estimated by (4.1), using the estimator β̂(p+b).

4.2. Bandwidth selection

In order to derive an estimator of the theoretical optimal bandwidth, a pilot

bandwidth is needed in order to assess the bias and variance. This in turn

requires the selection of a pilot bandwidth. We define a Generalized Residual

Squares Criterion (GRSC) as follows:

GRSC(x;h) = σ̂2(x){1 + (p + 1)N}, (4.6)

where σ̂2(x) is given by (4.5) and N is the first diagonal element of the matrix

(
n∑

i=1

δiXiX
T
i Kh(Xi−x)

)−1( n∑

i=1

δiXiX
T
i K2

h(Xi−x)

)(
n∑

i=1

δiXiX
T
i Kh(Xi−x)

)−1

.

The intuition behind the GRSC criterion is the same as for the least squares

case proposed in Fan and Gijbels (1995). When the bandwidth h is too large,

the polynomial function may not fit well − the bias is large and so is σ̂2(x). On

the other hand, if the bandwidth h is too small, the variance of the fit will be

large and hence N will be large as well. The GRSC quantity protects against

both extreme choices. A justification for the GRSC can be found in the following

theorem.

Theorem 4. Under Condition 1 in the Appendix, as hn → 0 and nhn → ∞,

then

E{GRSC(x;hn)|X1, . . . , Xn}

= σ2(x) + Cp
h2p+2

n

(p + 1)!2
[η(p+1)(x)]2+a0

(p + 1)σ2(x)

π(x)f(x)nhn
+ op

(
h2p+2

n +
1

nhn

)
, (4.7)



LOCAL QUASI-LIKELIHOOD ESTIMATION 1083

where Cp = (µ2p+2 − UT
p+1S

−1Up+1)/µ0, a0 = eT
1 S−1S∗S−1e1 and e1 = (1, 0, . . .,

0)T , and other symbols are the same as those in Theorem 1.

Theorem 4 can be proved by using arguments similar to those in Fan and

Gijbels (1995). The minimizer of the weighted integration of (4.7) leads to the

optimal pilot bandwidth as follows:

h∗
p = arg min

h

{∫
GRSC(x;h)w(x)dx

}

=

[
(p + 1)!2

∫
K∗2

0 (t)dt
∫

σ2(x)w(x)/(π(x)f(x))dx

2nCp

∫
{η(p+1)}2w(x)dx

] 1

2p+3

, (4.8)

for some given weight function w. The relationship between h∗
p and h1,opt in

(2.13) is given by

h1,opt =

[
Cp

∫
K∗2

0 (t)dt

(p + 1)
{∫

tp+1K∗
0 (t)dt

}2 ∫
K∗2

0 (t)dt

] 1

2p+3

h∗
p

≡ adj0,opt(K)h∗
p. (4.9)

This shows that the minimizer of (4.6) is only a constant factor away from the tar-

get optimal bandwidth. The adjusting constant adj0,opt(K) is a known constant

that depends only on the kernel function K.

After selecting a pilot bandwidth h∗
p+b from (4.6) and (4.8), an estimator

β̂(p+b) = (β̂0, . . . , β̂p+b)
T can be derived by fitting a polynomial of degree p +

b locally based on (2.6). Then the estimated bias B̂(β̂C(x), h) and variance

V̂ (β̂C(x), h) of β̂C(x) are obtained. Therefore, the MSE of the first element of

β̂C(x) can be estimated by

ˆMSEp,0(x, h) = B̂p,0(β̂C(x), h)2 + V̂p,0(β̂C(x), h). (4.10)

Furthermore, a data-driven optimal bandwidth selector is given by

ĥ1,opt = argmin
h

{∫
ˆMSEp,0(x, h)w(x)dx

}
, (4.11)

where w(·) is a given weight function.

When the curve η(·) admits various degrees of smoothness at different loca-

tions, a variable bandwidth selector can be used to enhance the performance of

the proposed local quasi-likelihood estimator.

5. Simulation Studies

Monte Carlo simulations are designed to evaluate the finite sample properties

of the three proposed estimators. The incomplete random sample is {(Xi, Yi, δi),
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Figure 2. Simulation results for Example 1 with selection probability π1(x)

and n = 500. (a) The average RASE as a function of bandwidth for the three

estimation methods; (b) The scatter plot for the RASE of the local quasi-

likelihood estimator with the imputed values versus that of the complete-case

data, using data driven bandwidth (dashed line indicates that both meth-

ods have the same performance); (c) Pointwise variance of 400 estimated

functions of the three estimation procedures; (d) Pointwise averages of 400

estimated functions of the three estimation procedures. Solid curve is the

local quasi-likelihood estimator with the imputed-data η̂I(x). Dash curves

(from shortest to longest dash) are the local quasi-likelihood estimator with

the complete-case data η̂C(x), the local weighted quasi-likelihood estimator

η̂W (x, π) and the local quasi-likelihood estimator with full data, respectively.

Note that the longest dashed curve in (d) is the true function.

i = 1, . . . , n}, where the (Xi, Yi)’s come from a population (X,Y ) whose con-

ditional distribution is a Bernoulli with P (Y = 1|X = x) = exp{η(x)}/(1 +

exp{η(x)}), and δ is a 0-1 random variable with the selection probability π(δ =

1|Y,X) = π(X). Two simulation models from Fan, Farmen and Gijbels (1998)
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are employed here as testing examples. Their logistic regression functions are

given by

Example 1. η(x) = 3 sin(2x)

Example 2. η(x) = 7[exp{−(x + 1)2} + exp{−(x − 1)2}] − 5.5,

where the design density is the uniform distribution on [−2, 2]. The selection

probability given X is taken in turn as π1(x) = exp{x}/(1+exp{x}), π2(x) = 0.4,

and π3(x) = 0.9 − 0.2|x| if |x| ≤ 0.6, and = 0.3 + 0.1|x| if 0.6 < |x| < 2. For

each of the above examples with three selection probabilities, 400 simulations are

conducted with sample sizes n = 250, 500 and 1, 000.
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Figure 3. Simulation results for Example 1 with the selection probability
π2(x) and n=500. Similar captions to Figure 2 are used. Note that η̂C(x) and
η̂W (x, π) are identical under π2(x) and hence there are only two procedures.

In the implementation, we employ the local linear fit with the Epanechnikov

kernel K(t) = 0.75(1 − t2)+. The performance of each given estimator η̂(x) is
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assessed via the square-root of the Average Square Errors (RASE):

RASE =

(
n−1

grid

ngrid∑

j=1

{η̂(xj) − η(xj)}2

) 1

2

, (5.1)

where {xj , j = 1, . . . , ngrid} are the grid points at which the function η(·) is
estimated.
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Figure 4. Simulation results for Example 1 with the selection probability
π3(x). Captions similar to Figure 2 are used.

Consider Example 1 with the three selection probabilities π1(x), π2(x) and
π3(x). Figures 2−4 summarize the performance of the local quasi-likelihood
estimator with the complete-case data η̂C(x), the local weighted quasi-likelihood
estimator η̂W (x, π), and the locally quasi-likelihood estimator with the imputed
values η̂I(x), based on 400 simulations with the sample size n = 500. To examine
the efficacy of the imputed-values method in the local fitting, we also give the
performance of the local quasi-likelihood estimator with the full data (use both
the complete-case data and missing data) η̂(x).
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Part (a) in Figures 2−4 depicts the average of RASEs, resulting from 400

simulations, as a function of the bandwidth. The average RASE curve for η̂I(x)

is smaller than those for η̂C(x) and η̂W (x, π) for a reasonable range of the band-

width, while the average RASE curve for η̂C(x) is almost the same as that for

η̂W (x, π). This implies that η̂I(x) outperforms η̂C(x) and η̂W (x, π) when band-

widths are properly chosen and that η̂C(x) and η̂W (x, π) perform nearly the

same. Of course, the average RASE curve for η̂(x) is the smallest for a reason-

able range of the bandwidth since it uses all data including the complete-case

data and missing data. In part (b) of Figures 2−4, we compare, sample-by-

sample, the performance of η̂I(x) with η̂C(x), both using the optimal estimated

bandwidth in Section 4. For each simulated sample, the RASE of η̂I(x) is plotted

against the RASE of η̂C(x). The slope dashed line is a diagonal which marks

the position where η̂I(x) and η̂C(x) have the same performance. Figure (2b)

indicates that η̂I(x) outperforms η̂C(x) more frequently among 400 simulation

trials. To better understand the performance of the three procedures, we plot in

part (c) the pointwise variance of 400 estimated curves resulting from 400 simu-

lations. It is evident that η̂I(x) has smaller variance and hence gives more stable

performance. The variances of η̂I(x) and η̂(x) are closer for all local points. This

indicates that η̂I(x) can improve substantially on η̂C(x) and η̂W (x, π). Part (d)

of the figures shows the average of 400 estimated curves. It indicates the bias of

three competing procedures − they have about the same amount of bias.

We now consider Example 2. The performance is summarized in Figure 5.

Similar to that in Example 1, substantial gains are obtained by the local quasi-

likelihood estimator with the imputed values. The proposed imputation method

outperforms those that use only the complete-case data. This is somewhat ex-

pected since the imputation method makes better use of the observed data in

the local fitting. Again, η̂I(x) is a more stable estimator.

Table 1 presents the results for the imputation estimators θ̂K θ̂G, θ̂GW , θ̂T

and θ̂TW for both Examples 1 and 2 with the different missing selection probabil-

ities. The sample sizes studied are n = 250, and 400 simulations are conducted.

We make the following observations. (i) All the imputation estimators of the

mean functionals are valid. (ii) The proposed estimated variances ŜE in (3.6)

provide good estimates for the variances of θ. (iii) The proposed quasi-likelihood

imputation estimators θ̂G, θ̂GW , θ̂T and θ̂TW have smaller variances than that of

the kernel imputation θ̂K , while the two-step imputation estimator θ̂T has the

smallest variance.
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Figure 5. Simulation results for Example 2 with the three selection proba-

bilities. Captions similar to Figure 2−4 are used.

6. Application to Data

We illustrate the proposed methods by analyzing a data set from the Col-

laborative Perinatal Project (CPP). CPP was a prospective study designed to
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Table 1. Simulation study for the estimators of the mean functionals. The

results are based on different missing functions π(x), and the sample size

n = 250.

Examples π(x) θ Estimator θ̂K θ̂G θ̂GW θ̂T θ̂TW

1 π1(x) 0.5000 Mean 0.4981 0.4981 0.4982 0.4994 0.4983

SE 0.0409 0.0409 0.0401 0.0397 0.0401

ŜE 0.0400 0.0401 0.0401 0.0411 0.0411

π2(x) 0.5000 Mean 0.4960 0.4951 0.4956 0.4956 0.4958
SE 0.0434 0.0446 0.0429 0.0426 0.0428

ŜE 0.0436 0.0439 0.0439 0.0458 0.0458

π3(x) 0.5000 Mean 0.4964 0.4960 0.4961 0.4965 0.4962
SE 0.0389 0.0387 0.0383 0.0374 0.0383

ŜE 0.0392 0.0395 0.0395 0.0405 0.0405

2 π1(x) 0.5571 Mean 0.5574 0.5598 0.5560 0.5560 0.5562

SE 0.0455 0.0452 0.0450 0.0444 0.0450

ŜE 0.0423 0.0425 0.0425 0.0429 0.0429

π2(x) 0.5571 Mean 0.5564 0.5573 0.5545 0.5515 0.5546

SE 0.0496 0.0499 0.0491 0.0488 0.0488

ŜE 0.0468 0.0471 0.0471 0.0478 0.0478

π3(x) 0.5571 Mean 0.5502 0.5523 0.5530 0.5557 0.5526

SE 0.0431 0.0429 0.0423 0.0422 0.0423

ŜE 0.0413 0.0415 0.0415 0.0420 0.0420

identify determinants of nuerodevelopmental deficits in children (Niswander and

Gordon (1972)) About 56,000 pregnant women were recruited between 1959 and

1966 in the U.S. and blood serum samples were collected during pregnancy. In a

recent study (Longnecker, Klebnoff, Zhou and Brock (2002)). the investigators

thawed a subsample of 344 of the frozen blood serum samples and measured

the extent of exposure to Polychlorinated biphenyls (PCBs), an ubiquitous en-

vironmental contaminant, for these women. In this analysis, we looked at the

relationship between the women’s PCBs exposure (high or low) and their body

mass index at the beginning of the pregnancy. In addition to the 344 women

with the outcome variable (level of PCBs), we also have an additional subsample

of 696 where we observe only the covariate (the body mass index). The total

sample size in this example is 1,040.

We apply the Bernoulli likelihood and logit link function to these data. The

proposed local quasi-likelihood estimation with complete-case data and the local

quasi-likelihood estimation with imputed values are used to estimate logitP (Y =

1|X = x). The Epanechnikov kernel is used. We apply the data-driven band-
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width developed in Section 4 to select the optimal bandwidths. The corre-

sponding bandwidths are h1 = 2.79 and h2 = 2.32. Figure 6(a) shows the

estimated logit functions for both local estimators. The solid line is the local

quasi-likelihood estimator with the imputed values and the dashed line is the lo-

cal quasi-likelihood estimator with the complete-case data. Figure 6(b) plots the

estimated conditional probability by the imputation method. The dashed lines

are the estimated function plus (or minus) twice the estimated standard errors

at each given point. They give us rough ideas about the estimation errors. For

comparison purposes, we have also employed local estimation with the complete-

case data. Figure 6(c) summarizes the results. Comparing the figures, one can

see that the imputation estimator is more efficient than the one that uses only

complete cases. The reduction in the variance is evident.

••

• • •

••

•

••• ••

•

• ••

•

••

••

•• •

• •

•

•

••

• •

• ••• •• ••

•

•• • ••

• •

•• •••

••

• • • •• • •• ••

• •

• •

•

• •

•

•

•

•

•

•• •• ••• ••••

•

•

•

•••

•

•• •

•• •

• ••

•

• • ••

•

•

• ••

••

•

• •

•

•

•

•••

• • ••

••

•

••

•

•

• •• •

• ••

• • •• ••••

•• •

• •

•

• •• ••• •

• •••

•

•

•• •• ••

• •

•

• •• •

••••

•

••

•

•

•

•

•

•

•

••

• ••

•

•

•

•

•• •

••

•

•••

••

•

• •• ••

•• ••

••

••

•

• • •• ••• •• •• •• • •••• •• ••• • •

•

• •• ••• •

•

•

•

•• ••• ••••

•

•• •••

•

•• ••

•

•

•

••

•

• •• •• • •• ••• •

•

•

• •

•

•

•

•

•• •

•• •

•••

•

•

••

••

• •• •• ••

• • ••

• • •

••

•

••• ••

•

• ••

•

••

••

•• •

• •

•

•

••

• •

• ••• •• ••

•

•• • ••

• •

•• •••

••

• • • •• • •• ••

• •

• •

•

• •

•

•

•

•

•

•• •• ••• ••••

•

•

•

•••

•

•• •

•• •

• ••

•

• • ••

•

•

• ••

••

•

• •

•

•

•

•••

• • ••

••

•

••

•

•

• •• •

• ••

• • •• ••••

•• •

• •

•

• •• ••• •

• •••

•

•

•• •• ••

• •

•

• •• •

••••

•

••

•

•

•

•

•

•

•

••

• ••

•

•

•

•

•• •

••

•

•••

••

•

• •• ••

•• ••

••

••

•

• • •• ••• •• •• •• • •••• •• ••• • •

•

• •• ••• •

•

•

•

•• ••• ••••

•

•• •••

•

•• ••

•

•

•

••

•

• •• •• • •• ••• •

•

•

• •

•

•

•

•

•• •

•• •

•••

•

•

••

••

• •• •• ••

• •

PSfrag replacements

-4

-3

-2

-1

0

1

2

3

4

6

(a) (b) (c)

(d)

A result with 10th percentile rank

A result with median rank
Performance comparisons on RASE

Scatterplot of RASEs
Scatterplot of RASEs
Scatterplot of RASEs

Pointwise variance functions
Pointwise average functions

Pointwise variance functions
Pointwise average functions

Changes in Bandwith (a)

Comparisons on RASE

-0
.5

-1
.0

-1
.5

0
.0

0
.0

0
.0

0.1

0
.2

0
.2

0.3

0
.4

0
.4

0
.5

0
.6

0
.6

0.7

0
.8

0
.8

1
.0

1
.0

1
.0

1.1

1.2

1.3

1.4

1.5

1.6

2.0

10

151515 202020 252525 303030 353535

lo
g
it
(c

o
n
d
it
io

n
a
l
p
ro

b
a
b
il
it
y
)

C
o
n
d
it
io

n
a
l
p
ro

b
a
b
il
it
y

C
o
n
d
it
io

n
a
l
p
ro

b
a
b
il
it
y

Figure 6. Analysis of CPP data where Y is level of PCBs and X is the body

mass index. (a) estimated logit function. Solid curve is the local quasi-

likelihood estimator with the imputed data, and dashed curve is the local

quasi-likelihood estimator with the complete-case data; (b) estimated con-

ditional probability function by the local quasi-likelihood estimator with the

imputed values and the observed data; (c) estimated conditional probability

function of the local estimator with the complete-case data and the observed

data.

7. Concluding Remarks

Local maximum quasi-likelihood estimation is a useful technique for nonpara-

metric fitting of generalized linear models. We extend this technique to handle

data with the response variable missing at random. Three local quasi-likelihood



LOCAL QUASI-LIKELIHOOD ESTIMATION 1091

estimators have been proposed. We have shown that the locally weighted quasi-

likelihood estimator does not provide any improvement over the local quasi-

likelihood estimator with the complete-case data. The proposed imputation

method, on the other hand, outperforms the other two methods. The local

imputation method provides a more stable estimate. Specifically, the local im-

putation method is more efficient than the one that uses only complete cases for

the finite small sample. The improvement does not merely come from incomplete

observations, but from the fact that imputed data allow for more stable choices

of the optimal bandwidth.

We have developed a class of quasi-likelihood imputation estimations of the

mean functional with the use of the imputed values. It is shown that the proposed

mean estimators are asymptotically normal with asymptotic variance that can be

easily estimated. It has a higher order asymptotic bias than the kernel imputed

method. Simulation studies have shown that the proposed imputation estimators

perform well. In the implementation of the local linear regression smoothers,

a data-driven bandwidth selection with the missing data has been established.

Numerical examples in Section 5 show that the choices of bandwidth parameters

are useful.
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Appendix. Proofs of Theorems 1, 2 and 3

We now impose some regularity conditions for the following theorems.

Let ql(x, y) = (∂l/∂xl)Q{g−1(x), y}, l = 1, 2, 3. Then

q1(x, y) = {y − g−1(x)}ρ1(x) and q2(x, y) = {y − g−1(x)}ρ′1(x) − ρ2(x), (A.1)

where ρl(x) =
[
g′(m(x))lV (m(x))

]−1
, l = 1, 2.

For each given point x, the following conditions are needed.

Condition 1.

(1) The function q2(x, y) < 0 for x ∈ < and y in the range of the response

variable.

(2) The functions f(·), π(·), η(p+1)(·), V ′(·) and g′′′(·) exist and are continuous at

the point x.

(3) Assume that ρ2(x) 6= 0, V ar(Y |X = x) 6= 0, g′{m(x)} 6= 0, f(x) 6= 0 and

π(x) 6= 0.

(4) E(Y 4|X = .) is bounded in a neighborhood of the point x.
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(5) K has bounded support.

Condition 2.

(1) The density function of X has a continuous second derivative.

(2) The function η(p+1)(·) is continuous on its support D, which is assumed to

be bounded.

(3) The function V ′′(·) is continuous.

(4) The function ρ2(x) is twice differentiable in x ∈ D.

In order to prove Theorems 2 and 3, the following lemmas on uniform con-

vergence are needed.

Lemma 1. Let (X1, Yn), . . . , (Xn, Yn) be i.i.d. random vectors, where the Y ′
i s are

scalar random variables. Assume that E|Y |s < ∞ and supx

∫
|y|sf(x, y)dy < ∞,

where f denotes the joint density of (X, Y ). Let K be a bounded positive function

with a bounded support, satisfying a Lipschitz condition. Then,

sup
x∈D

∣∣∣∣∣n
−1

n∑

i=1

{Kh0
(Xi − x)Yi − E[Kh0

(Xi − x)Yi]}
∣∣∣∣∣ = Op

{[
nh0

log( 1
h0

)

]− 1

2
}

,

provided that n2ε−1h0 → ∞ for ε < 1 − s−1.

Proof. It follows immediately from the result obtained by Mack and Silverman

(1982).

Lemma 2. Under the assumptions in Theorem 3, we have

sup
x∈D

∣∣∣∣∣η̂(x) − η(x) − 1

nf(x)π(x)ρ2(x)

n∑

i=1

WiKh0
(Xi − x)

∣∣∣∣∣

= Op

{
hp+1

0 cn + c2
n log

1

2 (
1

h0
)

}
,

where Wi is the first element of the vector δiq1(η̄i(x), Yi)S
−1Zi, and cn =

(nh0)
−1/2.

Proof. The proof can be completed by using Lemma 1 and Lemma A.1 in

Carroll, Fan, Gijbels and Wand (1997).

Proof of Theorem 1. The proof of this theorem can be completed by methods

similar to those in Fan, Heckman and Wand (1995).

Proof of Theorem 2. First of all, we consider the normalized estimator

β̂∗
I = a−1

n H2(β̂I(x) − β(x)) = a−1
n (β̂0 − η(x), . . . , hp

2{β̂p −
η(p)(x)

p!
})T ,
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where an = (
√

nh2)
−1. Let Z∗

i = (1, (Xi − x)/h2, . . . , (Xi − x)p/hp
2)

T , Ŷ ∗
i =

δiYi + (1 − δi)g
−1(η̂(Xi)), Y ∗

i = δiYi + (1 − δi)g
−1(η(Xi)). Then, β̂∗

I maximizes

the normalized function

`n(β∗
I ) ≡ h2

n∑

i=1

{
Q
[
g−1{η̄i(x) + anβ∗T

I Z∗
i }, Ŷ ∗

i

]
− Q

[
g−1{η̄i(x), Ŷ ∗

i

]}

×Kh2
(Xi − x). (A.2)

By Taylor expansion of Q[g−1{·}, Ŷ ∗
i ], it follows that

`n(β∗
I ) = VT

n β∗
I +

1

2
β∗

IBnβ∗
I {1 + op(1)}, (A.3)

where Vn = h2an
∑n

i=1 q1

(
η̄i(x), Ŷ ∗

i )
)
Z∗

i Kh2
(Xi − x), and Bn = h2a

2
n

∑n
i=1

q2

(
η̄i(x), Ŷ ∗

i )
)

Z∗
i Z

∗T

i Kh2
(Xi−x). Now define ‖ η̂−η ‖∞ = supx∈D |η̂(x) − η(x)|.

By Lemma 2, ‖ η̂ − η ‖∞= Op(h
p+1
0 ). It can be shown that

Bn = −ρ2(x)f(x)(µi+j−2)1≤i,j≤p+1 + op(1) ≡ −B + op(1). (A.4)

In fact,
∣∣∣∣∣Bn − h2a

2
n

n∑

i=1

q2 (η̄i(x), Y ∗
i )Z∗

i Z
∗T

i Kh2
(Xi − x)

∣∣∣∣∣

≤ OP (‖ η̂ − η ‖∞)

∣∣∣∣∣
1

n

n∑

i=1

Z∗
i Z

∗T

i Kh2
(Xi − x)

∣∣∣∣∣ = op(1).

By (B∗
n)ij = (EB∗

n)ij + Op({Var (B∗
n)ij}1/2), we have

h2a
2
n

n∑

i=1

q2

(
η̄i(x), Ŷ ∗

i

)
Z∗

i Z
∗T

i Kh2
(Xi − x)

= E
[
q2

(
η̄1(x), Ŷ ∗

1

)
Z∗

1Z
∗T

1 Kh2
(X1 − x)

]
+ op(1)

= E
[
q2 (η̄1(x),m(X1))Z

∗
1Z

∗T

1 Kh2
(X1 − x)

]
+ op(1) ≡ −B + op(1).

This establishes the result in (A.4). On the other hand, we have

Vn = h2an

n∑

i=1

q1 (η̄i(x), Y ∗
i )Z∗

i Kh2
(Xi − x)

+h2an

n∑

i=1

[
q1

(
η̄i(x), Ŷ ∗

i

)
− q1 (η̄i(x), Y ∗

i )
]
Z∗

i Kh2
(Xi − x)

≡ Vn1 + Vn2.
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By Lemma 2, the second term in the above expression can be expressed as

Vn2 = h2an

n∑

i=1

(1 − δi)[g
−1(η(Xi))]

′(η̂(Xi) − η(Xi))ρ1(η̄i(x))Z∗
i Kh2

(Xi − x)

+OP

{
(nh2)

1/2 ‖ η̂ − η ‖2
∞

}

= h2an

n∑

i=1

(1 − δi)ρ1(η̄i(x))

nf(Xi)π(Xi)ρ1(Xi)

×
n∑

j=1

eT
1 δjq1(η̄j(Xi), Yj)S

−1ZjZ
∗
i Kh2

(Xi − x)Kh0
(Xj − Xi)

+Op

{
(nh2)

1/2hp+1
0 cn + (nh2)

1

2 c2
n log

1

2 (
1

h0
)

}
+ OP

{
(nh2)

1

2 h
2(p+1)
0

}

≡ Tn + op(1).

By Taylor’s expansion, η̄j(Xi) − η(Xj) = −η(p+1)(Xi)(Xj − Xi)
p+1/(p + 1)! +

op

{
(Xj − Xi)

p+1
}
, and therefore

Tn = h2an

n∑

j=1

δjq1(η(Xj), Yj)

×
[ n∑

i=1

(1 − δi)ρ1(η̄i(x))

nf(Xi)π(Xi)ρ1(Xi)
eT
1 S−1ZjZ

∗
i Kh2

(Xi − x)Kh0
(Xj − Xi)

]

− h2an

(p + 1)!

n∑

j=1

δjq2(η(Xj), Yj)

×
[ n∑

i=1

(1 − δi)ρ1(η̄i(x))

nf(Xi)π(Xi)ρ1(Xi)
η(p+1)(Xi)(Xj − Xi)

p+1

×eT
1 S−1ZjZ

∗
i Kh2

(Xi − x)Kh0
(Xj − Xi)

]

+op

{
(nh2)

1

2 hp+1
0

}

≡ Tn1 + Tn2 + op

{
(nh2)

1

2 hp+1
0

}
.

It can be shown via calculating the second moment that

Tn1 − T ′
n1

p−→ 0 and Tn2 − T ′
n2

p−→ 0, (A.5)
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where

T ′
n1 = h2an

n∑

j=1

δjq1(η(Xj), Yj)
(1 − π(Xj))ρ1(η̄j(x))

π(Xj)ρ1(Xj)
eT
1 S−1U0Z

∗
jKh2

(Xj − x),

T ′
n2 = −hp+1

0 h2an

(p + 1)!

n∑

j=1

δjq2(η(Xj), Yj)

×(1 − π(Xj))ρ1(η̄j(x))

π(Xj)ρ1(Xj)
η(p+1)(Xj)e

T
1 S−1Up+1Z

∗
jKh2

(Xj − x),

with U0 = (1, µ1, . . . , µp)
T and eT

1 S−1U0 = 1. Combining (A.3)-(A.5), we have

`n(β∗
I ) = (Vn1 + T ′

n1 + T ′
n2)

T β∗
I − β∗

IBβ∗
I /2 + op(1). Then, applying the same

citation as before, we get

β̂∗
I = B−1(Vn1 + T ′

n1 + T ′
n2) + op(1). (A.6)

Since Vn1 + T ′
n1 + T ′

n2 is a sum of i.i.d. random vectors, we can establish the

asymptotic normality of β̂∗
I by calculating the first two moments. Similar to the

proof of Theorem 1, it is easy to show that

E(Vn1 + T ′
n1 + T ′

n2)

= a−1
n E

{
q1

(
η̄1(x), δ1Y1 + (1 − δ1)g

−1(η(X1))
)
Z∗

1Kh2
(X1 − x)

}

−hp+1
0 a−1

n

(p + 1)!
E

{
δ1q2(η(X1), Y1)

(1 − π(X1))ρ1(η̄1(x))

π(X1)ρ1(X1)
η(p+1)(X1)e

T
1 S−1Up+1

×Z∗
1Kh2

(X1 − x)

}

=
√

nh2
η(p+1)(x)hp+1

2

(p + 1)!
ρ2(x)f(x)Up+1 {1 + op(1)}

+
√

nh2
η(p+1)(x)hp+1

0

(p + 1)!
(1 − π(x))ρ2(x)f(x)eT

1 S−1Up+1U0 {1 + op(1)} ,

Var (Vn1 + T ′
n1 + T ′

n2)

= h2Var

{
q1

(
η̄1(x), δ1Y1 + (1 − δ1)g

−1(η(X1))
)
Z∗

1Kh2
(X1 − x)

+δ1q1(η(X1), Y1)
(1 − π(X1))ρ1(η̄1(x))

π(X1)ρ1(X1)
Z∗

1Kh2
(X1−x)+Op(h

p+1
0 )+Op(h

p+1
2 )

}
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=

[
π(x)Var (Y |x)ρ1(x)2f(x)S∗ + 2(1 − π(x))Var (Y |x)ρ1(x)2f(x)S∗

+π(x)Var (Y |x)ρ1(x)2
(1 − π(x))2

π(x)2
f(x)S∗

]
{1 + op(1)}

=
ρ2(x)f(x)

π(x)
S∗ {1 + op(1)}

≡ W {1 + op(1)} .

It can be shown that Liapounov’s condition is satisfied and hence
(
β̂∗

I −B−1E(Vn1 + T ′
n1 + T ′

n2)
)
→ N

(
0,B−1WB−1

)
.

We have established Theorem 4.

Proof of Theorem 3. (i) We prove Theorem 3 for θ̂G. It follows from (3.2)
that

√
n
(
θ̂G − θ

)
=

1√
n

n∑

i=1

{
g−1(η(Xi)) − θ

}
+

1√
n

n∑

i=1

δi

{
Yi − g−1(η(Xi))

}

+
1√
n

n∑

i=1

(1 − δi)
{
g−1(η̂(Xi)) − g−1(η(Xi))

}

≡ I1 + I2 + I3. (A.7)

By Lemma 2, the third term in the above expression can be written as

I3 =
1√
n

n∑

i=1

(1 − δi)[g
−1(η(Xi))]

′ {η̂(Xi)−η(Xi)} + OP

(
n

1

2 ‖ η̂−η ‖2
∞

)

=
1√
n

n∑

i=1

(1−δi)
[g−1(η(Xi))]

′

nf(Xi)π(Xi)ρ2(Xi)

n∑

j=1

eT
1 δjq1(η̄j(Xi), Yj)S

−1ZjKh0
(Xj−Xi)

+Op

{
n

1

2 hp+1
0 cn + n

1

2 c2
n log

1

2 (
1

h0
)

}
+ OP

(
n

1

2 h
2(p+1)
0

)

≡ I31 + op(1).

Since η̄j(Xi) − η(Xj) = Op

{
(Xj − Xi)

p+1
}
, we obtain

I31 =
1√
n

n∑

j=1

eT
1 δjq1(η(Xj), Yj)S

−1

×
[

n∑

i=1

(1 − δi)
g′{m(Xi))}Var (Yi|Xi)

nf(Xi)π(Xi)
ZjKh0

(Xj − Xi)

]
+ OP

(
n

1

2 hp+1
0

)

≡ I32 + Op

(
n

1

2 hp+1
0

)
.
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By calculating the second moment, it can be shown that

I32 − I ′32
p−→ 0, (A.8)

where I ′32 =n−1/2
∑n

j=1 δjq1(η(Xj), Yj)e
T
1 S−1U0(1−π(Xj))/[π(Xj)ρ1(Xj)]. Com-

bining (A.7), (A.8) and the result eT
1 S−1U0 = 1 leads to

√
n
(
θ̂G − θ

)

=
1√
n

n∑

i=1

{[
g−1(η(Xi)) − θ

]
+
[
δi

(
Yi − g−1(η(Xi)

)]

+

[
δi

(
1

π(Xi)
− 1

)(
Yi − g−1(η(Xi))

)
eT
1 S−1U0

]}
+ Op

(
n

1

2 hp+1
0

)
.

=
1√
n

n∑

i=1

{[
g−1(η(Xi))−θ

]
+

[
δi

π(Xi)

(
Yi−g−1(η(Xi)

)]}
+Op

(
n

1

2 hp+1
0

)
. (A.9)

By the Central Limit Theorem, θ̂G is asymptotically normal.

(ii) We prove Theorem 3 for θ̂GW . Based on (3.3), we have

√
n
(
θ̂GW − θ

)
=

1√
n

n∑

i=1

{
g−1(η(Xi)) − θ

}
+

1√
n

n∑

i=1

δi

π(Xi)

{
Yi − g−1(η(Xi))

}

+
1√
n

n∑

i=1

(1 − δi

π(Xi)

{
g−1(η̂(Xi)) − g−1(η(Xi))

}

+
1√
n

n∑

i=1

δi(π̂(Xi) − π(Xi))

π(Xi)

{
Yi − g−1(η(Xi))

}
+ op(1)

≡ J1 + J2 + J3 + J4 + op(1). (A.10)

Similar to the proof of (i), the third term can be reduced to

J3 =
1√
n

n∑

j=1

eT
1 δjq1(η(Xj), Yj)S

−1

×
[

n∑

i=1

(
1 − δi

π(Xi)

)
g′{m(Xi))}Var (Y |Xi)

nf(Xi)π(Xi)
ZjKh0

(Xj − Xi)

]
+ op(1)

= Op

(
n

1

2 hp+1
0

)
. (A.11)

Next, by using the kernel estimator π̂(Xi) =
∑n

j=1 δjKa(Xj−Xi)/
∑n

j=1 Ka(Xj−
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Xi), we have

J4 =
1√
n

n∑

i=1

δi(π̂(Xi) − π(Xi))

π2(Xi)

{
Yi − g−1(η(Xi))

}

=
1√
n

n∑

j=1

[δj − π(Xj)]
1

na

n∑

i=1

δj

π2(Xi)f(Xi)

{
Yi − g−1(η(Xi))

}
Ka(Xi − Xj)

+op(1)

= op(1). (A.12)

Therefore, we have

√
n
(
θ̂GW − θ

)
=

1√
n

n∑

i=1

{
g−1(η(Xi)) − θ

}
+

1√
n

n∑

i=1

δi

π(Xi)

{
Yi − g−1(η(Xi))

}

+OP

(
n

1

2 hp+1
0

)
. (A.13)

This together with a limit theorem, establishes Theorem 3 for θ̂GW .

(iii) With the same proofs as in (i) and (ii), we have proved the asymptotic

normality of θ̂T and θ̂TW . This completes the proof of Theorem 3.
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