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Rejoinder: A Selective Overview of
Nonparametric Methods in
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Jianqing Fan

I am very grateful to the Executive Editor, Edward
George, for organizing this stimulating discussion.
I would like to take this opportunity to thank Pro-
fessors Peter Phillips, Jun Yu, Michael Sørensen, Per
Mykland and Lan Zhang for their insightful and stimu-
lating comments, touching both practical, methodolog-
ical and theoretical aspects of financial econometrics
and their applications in asset pricing, portfolio alloca-
tion and risk management. They have made valuable
contributions to the understanding of various financial
econometric problems.

The last two decades have witnessed an explosion
of developments of data-analytic techniques in statis-
tical modeling and analysis of complex systems. At
the same time, statistical techniques have been widely
employed to confront various complex problems aris-
ing from financial and economic activities. While the
discipline has grown rapidly over the last two decades
and has rich and challenging statistical problems, the
number of statisticians involved in studying financial
econometric problems is still limited. In comparison
with statisticians working on problems in biological
sciences and medicine, the group working on finan-
cial and econometric problems is dismally small. It is
my hope that this article will provide statisticians with
quick access to some important and interesting prob-
lems in financial econometrics and to catalyze the ro-
mance between statistics and finance. A similar effort
was made by Cai and Hong [12], where various aspects
of nonparametric methods in continuous-time finance
are reviewed. It is my intention to connect financial
econometric problems as closely to statistical problems
as possible so that familiar statistical tools can be em-
ployed. With this in mind, I sometimes oversimplify
the problems and techniques so that key features can
be highlighted.

Jianqing Fan is Professor, Benheim Center of Finance
and Department of Operations Research and Financial
Engineering, Princeton University, Princeton, New
Jersey 08544, USA (e-mail: jqfan@princeton.edu).

I am fully aware that financial econometrics has
grown into a vast discipline itself and that it is im-
possible for me to provide an overview within a rea-
sonable length. Therefore, I greatly appreciate what
all discussants have done to expand the scope of dis-
cussion and provide additional references. They have
also posed open statistical problems for handling non-
stationary and/or non-Markovian data with or without
market noise. In addition, statistical issues on various
versions of capital asset pricing models and their re-
lated stochastic discount models [15, 19], the efficient
market hypothesis [44] and risk management [17, 45]
have barely been discussed. These reflect the vibrant
intersection of the interfaces between statistics and fi-
nance. I will make some further efforts in outlining
econometric problems where statistics plays an impor-
tant role after brief response to the issues raised by the
discussants.

1. BIASES IN STATISTICAL ESTIMATION

The contributions by Professors Phillips, Yu and
Sørensen address the bias issues on the estimation of
parameters in diffusion processes. Professors Phillips
and Yu further translate the bias of diffusion parame-
ter estimation into those of pricing errors of bonds and
bond derivatives. Their results are very illuminating
and illustrate the importance of estimation bias in fi-
nancial asset pricing. Their results can be understood
as follows. Suppose that the price of a financial asset
depends on certain parametersθ (the speed of the re-
versionκ in their illustrative example). Let us denote it
by p(θ), which can be in one case the price of a bond
and in another case the prices of derivatives of a bond.
The value of the asset is now estimated byp(θ̂) with θ̂

being estimated from empirical data. Whenθ̂ is overes-
timated (say), which shifts the whole distribution ofθ̂

to the left, the distribution ofp(θ̂) will also be shifted,
depending on the sensitivity ofp to θ . The sensitivity
is much larger for bond derivatives whenκ is close to
zero (see Figure 2 of [46]), and hence the pricing errors
are much larger. On the other hand, as the distribution
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of κ is shifted to the left, from Figure 2 of [46], both
prices of bonds and their derivatives get smaller and so
does the variance of pricing errors. Simulation studies
in [46] suggest that these two effects cancel each other
out in terms of mean square error.

I agree with Phillips and Yu’s observation that dis-
cretization is not the main source of biases for many
reasonable financial applications. Finite-sample esti-
mation bias can be more severe. This partially an-
swers the question raised by Professor Sørensen. On
the other hand, his comments give theoretical insights
into the bias due to discretization. For financial ap-
plications (such as modeling short-term rates) when
the data are collected at monthly frequency, the bias
{1−exp(−κ�)}/�−κ = −0.0019 and−0.00042, re-
spectively, forκ = 0.21459 used in Figure 3 of [34] and
for κ = 0.1 used in the discussion by Phillips and Yu.
For weekly data, using the parameterκ = 0.0446 cited
in [14], the discretization bias is merely 9.2× 10−5.

For other types of applications, such as climatol-
ogy, Professor Sørensen is right that the bias due to
discretization can sometimes be substantial. It is both
theoretically elegant and practically viable to have
methods that work well for all situations. The quasi-
maximum likelihood methods and their modifications
discussed by Professor Sørensen are attractive alter-
natives. As he pointed out, analytical solutions are
rare and computation algorithms are required. This in-
creases the chance of numerical instability in practi-
cal implementations. The problem can be attenuated
with the estimates based on the Euler approximation
as an initial value. The martingale method is a gener-
alization of his quasi-maximum likelihood estimator,
which aims at improving efficiency by suitable choice
of weighting functionsaj . However, unless the con-
ditional density has multiplicative score functions, the
estimation equations will not be efficient. This explains
the observation made by Professor Sørensen that the
methods based on martingale estimating functions are
usually not efficient for low frequency data. The above
discussion tends to suggest that when the Euler approx-
imation is reasonable, the resulting estimates tend to
have smaller variances.

In addition to the discretization bias and finite sam-
ple estimation bias, there is model specification bias.
This can be serious in many applications. In the ex-
ample given by Professors Phillips and Yu, the mod-
eling errors do not have any serious adverse effects
on pricing bonds and their derivatives. However, we
should be wary of generalizing this statement. Indeed,
for the model parameters given in the discussion by

Phillips and Yu, the transition density of the CIR model
has a noncentralχ2-distributions with degrees of free-
dom 80, which is close to the normal transition density
given by the Vasicek model. Therefore, the model is
not very seriously misspecified.

Nonparametric methods reduce model specification
errors by either global modeling such as spline meth-
ods or local approximations. This reduces significantly
the possibility of specification errors. Since nonpara-
metric methods are somewhat crude and often used
as model diagnostic and exploration tools, simple and
quick methods serve many practical purposes. For ex-
ample, in time domain smoothing, the bandwidthh is
always an order of magnitude larger than the sampling
frequency�. Therefore, the approximation errors due
to discretization are really negligible. Similarly, for
many realistic problems, the function approximation
errors can be an order of magnitude larger than dis-
cretization errors. Hence, discretization errors are often
not a main source of errors in nonparametric inference.

2. HIGH-FREQUENCY DATA

Professors Mykland, Zhang, Phillips and Jun address
statistical issues for high-frequency data. I greatly
appreciate their insightful comments and their elabora-
tions on the importance and applications of the subject.
Thanks to the advances in modern trading technology,
the availability of high-frequency data over the last
decade has significantly increased. Research in this
area has advanced very rapidly lately. I would like to
thank Professors Mykland and Zhang for their compre-
hensive overview on this active research area.

With high-frequency data, discretization errors have
significantly been reduced. Nonparametric methods
become even more important for this type of large
sample problem. The connections between the realized
volatility and the time-inhomogeneous model can sim-
ply be made as follows. Consider a subfamily of mod-
els of (8) in [34],

dXt = αt dt + σt dWt .

For high-frequency data the sampling interval is very
small. For the sampling frequency of a minute,� =
1/(252∗ 24 ∗ 60) ≈ 2.756× 10−6. Hence, standard-
ized residuals in Section 2.5 of [34] becomeEt =
�−1/2(Xt+� − Xt) and the local constant estimate of
the spot volatility reduces to

σ̂ 2
j� =

j−1∑
i=−∞

wj−iE
2
i�,
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where{wi} are the weights induced by a kernel func-
tion satisfying

∑∞
i=1 wi = 1. Now, for the weights

with a bounded support, the quadratic variation of the
process or integrated volatility

∫ T
t σ 2

t dt is naturally es-

timated by�
∑T/�−1

i=t/� σ̂ 2
i , which is simply

T/�−1∑
i=t/�

{
Xi� − X(i−1)�

}2
.

This shows that our nonparametric estimation of the
integrated volatility for high-frequency data is indeed
the same as the realized volatility.

As suggested by Professors Mykland, Zhang,
Phillips and Yu, the applications of realized volatili-
ties are not without difficulties. Market microstructure
noises emerge at such a fine frequency of observation
and market prices can contain multiple jumps due
to the flux of information during a trading session.
Figure 1 in the discussion by Mykland and Zhang
demonstrates convincingly the existence of the mar-
ket microstructure noise. Aït-Sahalia, Mykland and
Zhang [1] and Zhang, Mykland and Aït-Sahalia [50]
give comprehensive accounts of this under the assump-
tion that the observed prices are the true ones conta-
minated with random noise of market microstructure:
Yt = Xt + εt . However, they do not take into account
that the price processes{Xt } may contain jumps in
addition to random noises. An effort in this direction
has been made recently by Fan and Wang [38] using
wavelet techniques.

3. ESTIMATING COVARIANCE MATRICES

Covariance matrices play an important role in risk
management and asset allocation. They are featured
prominently in many financial econometrics problems.
For example, the smallest and largest eigenvalues are
related to the minimum and the maximum of the
volatility of portfolios and their corresponding eigen-
vectors are related to portfolio allocation. See [40] for
applications of covariance matrices to portfolio selec-
tion and [43] for their applications to other scientific
problems. There are a couple of approaches to these
kinds of problems, depending on the size of the co-
variance matrices. I hereby give a brief overview and
address some of the open challenges.

The simplest estimate of a covariance matrix is prob-
ably the sample covariance matrix of the log-returns
of p assets over a period ofn days prior to the current
time t . This is indeed a nonparametric estimation of
the covariance matrix localizing in time and has been

studied in multivariate analysis whenp is finite and
the underlying model is correct, that is, the covariance
matrix remains the same in then days prior to timet .
See, for example, [26, 27, 47]. However, the impact of
the biases in nonparametric methods on the estimation
of eigenvalues and eigenvectors has not yet been thor-
oughly investigated.

The sample covariance matrices can be augmented
by using the information from the state domain, which
is an extension of the method discussed in Section 3.6
of [34] and allows us to use the historical information.
This is particularly useful for estimating the covari-
ance matrices of bonds with different maturities. Use-
ful parametric models such as affine models have been
popularly used in interest rate modeling. See, for exam-
ple, [20, 24, 23]. Nonparametric methods provide use-
ful alternatives to estimating the covariance matrices
and to validating parametric models. A naive extension
involves high-dimensional smoothing in the state do-
main. But this can be avoided by localizing only on the
yields of a few bonds with intermediate length of ma-
turity.

Another class of techniques is to use a form of
GARCH model [28] to estimate covariance matri-
ces. As noted in [30], the number of parameters
grows rapidly with the dimensionalityp. Various ef-
forts have been made to reduce the complexity of
the models. These include constant conditional cor-
relation multivariate GARCH models [10], vectorized
multivariate GARCH models [11], dynamic condi-
tional correlation models [29, 31], orthogonal GARCH
models [2], generalized orthogonal GARCH mod-
els [48] and conditionally uncorrelated component
models [37]. For a survey, see [8].

In portfolio allocation and risk management, the
number of stocksp can be well in the order of hun-
dreds, which is typically in the same order as the sam-
ple sizen. The sample covariance matrix may not be a
good estimator of the population one. The estimated
variance of a portfolio based on the sample covari-
ance may far exceed the true one. The estimation errors
can accumulate quickly whenp grows withn. Indeed,
Johnstone [43] shows that the largest eigenvalue of the
covariance matrix is far larger than the population one.
There are many studies on the behavior of random ma-
trices when the dimensionalityp grows with n. See,
for example, [5, 22, 21, 49]. For a survey, see [4].

Estimating covariance matrices for largep is in-
trinsically challenging. For example, whenp = 200,
there are more than 20,000 free parameters. Yet, the
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available sample size is usually in the order of hun-
dreds or a few thousand. Longer time series (largern)
will increase modeling biases. Without imposing struc-
tures on the covariance matrices, they are hard to esti-
mate. Thanks to the multi-factor models (see Chapter 6
of [13]), if a few factors can capture completely the
cross-sectional risks, the number of parameters can be
significantly reduced. For example, using the Fama–
French three-factor models [32, 33], there are 4p in-
stead ofp(p+1)/2 parameters. Natural questions arise
with this structured estimate of the covariance matrix,
how largep can be such that the estimation error in the
covariance matrix is negligible in asset allocation and
risk management. The problems of this kind are inter-
esting and remain open.

Another possible approach to the estimation of co-
variance matrices is to use a model selection ap-
proach. First of all, according to Chapter 3 of [39],
the Cholesky decomposition admits nice autoregres-
sive interpretation. We may reasonably assume that the
elements in the Cholesky decomposition of the covari-
ance matrix are sparse. Hence, the penalized likelihood
method [3, 35, 42] can be employed to select and es-
timate nonsparse elements. The sampling property of
such a method remains unknown. Its impact on portfo-
lio allocation and risk management needs to be studied.

4. STATISTICS IN DERIVATIVE PRICING

Over last three decades, option pricing has witnessed
an explosion of new models that extend the original
work of Black and Scholes [9]. Empirically pricing fi-
nancial derivatives is innately related to statistical re-
gression problems. This is well documented in papers
such as [6, 7, 15, 16, 25, 41]. See also a brief review
given by Cai and Hong [12]. For a given stochastic
model with given structural parameters under the risk-
neutral measure, the prices of European options can
be determined, which are simply the discounted ex-
pected payoffs under the risk-neutral measure. Bakshi,
Cao and Chen [6] give the analytic formulas of op-
tion prices for five commonly used stochastic mod-
els, including the stochastic-volatility random-jump
model. They then estimate the risk-neutral parame-
ters by minimizing the discrepancies between the ob-
served prices and the theoretical ones. With estimated
risk-neutral parameters, option prices with different
characteristics can be evaluated. They conduct a com-
prehensive study of the relative merits of competing
option pricing models by computing pricing errors for
new options. Dumas, Fleming and Whaley [25] model

the implied volatility function by a quadratic func-
tion of the strike price and time to maturity and deter-
mine these parameters by minimizing pricing errors.
Based on the analytic formula of Bakshi, Cao and
Chen [6] for option price under the stochastic volatil-
ity models, Chernov and Ghysels [16] estimate the
risk neutral parameters by integrating information from
both historical data and risk-neutral data implied by
observed option prices. Instead of using continuous-
time diffusion models, Heston and Nandi [41] assume
that the stock prices under the risk-neutral world fol-
low a GARCH model and derive a closed form for
European options. They determine the structural pa-
rameters by minimizing the discrepancy between the
empirical and theoretical option prices. Barone-Adesi,
Engle and Mancini [7] estimate risk-neutral parame-
ters by integrating the information from both historical
data and option prices. Christoffersen and Jakobs [18]
expand the flexility of the model by introducing long-
and short-run volatility components.

The above approaches can be summarized as fol-
lows. Using the notation in Section 4.1 of [34], the
theoretical option price with option characteristics
(Si,Ki, Ti, ri, δi) is governed by a parametric form
C(Si,Ki, Ti, ri, δi, θ), whereθ is a vector of structural
parameters of the stock price dynamics under the risk-
neutral measure. The form depends on the underlying
parameters of the stochastic model. This can be in one
case a stochastic volatility model and in another case
a GARCH model. The parameters are then determined
by minimizing

n∑
i=1

{Ci − C(Si,Ki, Ti, ri, δi, θ)}2

or similar discrepancy measures. The success of a
method depends critically on the correctness of model
assumptions under the risk-neutral measure. Since
these assumptions are not on the physical measure,
they are hard to verify. This is why so many para-
metric models have been introduced. Their efforts can
be regarded as searching an appropriate parametric
form C(·; θ) to better fit the option data. Nonparamet-
ric methods in Section 4.1 provide a viable alternative
for this purpose. They can be combined with paramet-
ric approaches to improve the accuracy of pricing.

As an illustration, let us consider the options with
fixed (Si, Ti, ri, δi) so that their prices are only a func-
tion of K or equivalently a function of the moneyness
m = K/S,

C = exp(−rT )

∫ ∞
K

(x − K)f ∗(x) dx.
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(a) (b)

FIG. 1. (a) Scatterplot of the response variable computed based on option prices with consecutive strike price against the moneyness.
(b) The implied volatilities of the options during the period July 7–11, 2003.

DenotingD = exp(rT )C/S and lettingF̄ ∗(x) = 1 −
F ∗(x) = ∫ ∞

x f ∗(y) dy be the survival function, then by
integration by parts,

D = −S−1
∫ ∞
K

(x − K)dF̄ ∗(x) = S−1
∫ ∞
K

F̄ ∗(x) dx.

By a change of variable, we have

D =
∫ ∞
m

F̄ (u) du,

whereF(u) = F ∗(Su) is the state price distribution
in the normalized scale (the stock price is normalized
to $1). Let us write explicitlyD(m) to stress the depen-
dence of discounted option price on the moneynessm.
Then

D(m1) − D(m2)

m2 − m1
= (m2 − m1)

−1
∫ m2

m1

F̄ (u) du

= F̄

(
m2 + m1

2

)
+ O

(
(m2 − m1)

2).
Assume that the moneynessmi = Ki/St has already
been ordered forNt options with strike prices{Ki, i =
1, . . . ,Nt } traded at timet . Let xi = (mi + mi+1)/2 =
(Ki + Ki+1)/(2S) and yi be the observed value of
D(mi)−D(mi+1)

mi+1−mi
, namely,

yi = exp(rtTt ){Ci − Ci+1}/{Ki+1 − Ki},
i = 1, . . . ,Nt − 1,

wherert , Tt andSt are, respectively, the risk-free inter-
est rate, time to maturity and spot stock price at timet ,
andCi+1 andCi are the option prices at timet associ-
ated with strike pricesKi+1 andKi . Then, estimating

the state price distribution becomes a familiar nonpara-
metric regression problem,

yi ≈ F̄ (xi) + εi.

In the above equation, the dependence ont is sup-
pressed. Figure 1(a) shows the scatterplot of the pairs
(xi, yi) based on the closing call option prices (average
of bid-ask prices) of the Standard and Poor’s 500 index
with maturity ofTt = 75− t days on the week of July 7
to July 11, 2003 (t = 0, . . . ,4). The implied volatility
curve is given in Figure 1(b). It is not a constant and
provides stark evidence against the Black–Scholes for-
mula.

The waterfall shape of the regression curve is very
clear. The naive applications of nonparametric tech-
niques will incur large approximation biases resulting
in systematic pricing errors. One possible improve-
ment is to use a parametric method such as the ad-hoc
Black–Scholes model of Dumas, Fleming and Wha-
ley [25] to estimate the main shape of the regression
function and then use a nonparametric method to esti-
mate the difference. This kind of idea has been investi-
gated by Fan and Mancini [36]. When we aggregate the
data in the week of July 7 to July 11, 2003, the times
to maturityTt vary slightly. Semiparametric techniques
can be used to adjust for this effect. Similarly to many
practical problems, we always have side information
available that can be incorporated into modeling and
analysis of the data. This reinforces the claim that pric-
ing financial derivatives is fundamentally a statistical
problem where statisticians can play an important role.
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