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Additive models with backfitting algorithms are popular multivariate nonparametric fitting techniques. However, the inferences of the
models have not been very well developed, due partially to the complexity of the backfitting estimators. There are few tools available to
answer some important and frequently asked questions, such as whether a specific additive component is significant or admits a certain
parametric form. In an attempt to address these issues, we extend the generalized likelihood ratio (GLR) tests to additive models, using
the backfitting estimator. We demonstrate that under the null models, the newly proposed GLR statistics follow asymptotically rescaled
chi-squared distributions, with the scaling constants and the degrees of freedom independent of the nuisance parameters. This demonstrates
that the Wilks phenomenon continues to hold under a variety of smoothing techniques and more relaxed models with unspecified error
distributions. We further prove that the GLR tests are asymptotically optimal in terms of rates of convergence for nonparametric hypothesis
testing. In addition, for testing a parametric additive model, we propose a bias corrected method to improve the performance of the GLR.
The bias-corrected test is shown to share the Wilks type of property. Simulations are conducted to demonstrate the Wilks phenomenon and
the power of the proposed tests. A real example is used to illustrate the performance of the testing approach.

KEY WORDS: Additive models; Backfitting algorithm; Generalized likelihood ratio; Local polynomial regression; Wilks phenomenon.

1. INTRODUCTION

Additive models constitute an important family of structured
multivariate nonparametric models. They model a random sam-
ple {(Yi,Xi)}n

i=1 by

Yi = α +
D∑

d=1

md(Xdi) + εi, i = 1, . . . ,n, (1)

where {εi} is a sequence of iid random variables with mean 0
and finite variance σ 2. The additive models, which were
suggested by Friedman and Stuetzle (1981) and Hastie and
Tibshirani (1990), have been widely used in multivariate non-
parametric modeling. Because all of the unknown functions
are one-dimensional, the difficulty associated with the so-called
“curse of dimensionality” is substantially reduced (for details,
see Stone 1985; Hastie and Tibshirani 1990). In fact, Fan,
Härdle, and Mammen (1998) have shown that an additive com-
ponent can be estimated as well as in the case where rest of
the components are known. Similar oracle properties were ob-
tained by Linton (1997) and Mammen, Linton, and Nielsen
(1999). Several methods for estimating the additive functions
have been proposed, including the marginal integration esti-
mation methods of Tjøstheim and Auestad (1994) and Linton
and Nielsen (1995), the backfitting algorithms of Buja, Hastie,
and Tibshirani (1989) and Opsomer and Ruppert (1998), the
estimating equation methods of Mammen et al. (1999), the
Fourier series approximation approach of Amato, Antoniadis,
and De Feis (2002), the linear wavelet strategies of Amato
and Antoniadis (2001), and the nonlinear wavelet estimation
method of Sardy and Tseng (2004) using the block coordinate
relaxation algorithm of Sardy, Bruce, and Tseng (2000), among
others. Among these methods, the backfitting algorithm is con-
sidered a useful fitting tool and has received much attention for
its easy of implementation. Har̈dle and Hall (1993) and Ansley
and Kohn (1994) explored the convergence of the algorithm
based on projection smoothers. Opsomer and Ruppert (1997)
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studied asymptotic properties of the backfitting estimators for
a bivariate additive model based on a nonprojection smoother,
local polynomial regression, and Wand (1999) and Opsomer
(2000) extended the results to general D-dimensional addi-
tive models. Recently, Hastie and Tibshirani (2000) considered
Bayesian backfitting, which is a stochastic generalization of
the backfitting algorithm discussed earlier. A simulation study
comparing the finite-sample properties of backfitting and mar-
ginal integration methods was conducted by Sperlich, Linton,
and Härdle (1999).

After fitting the additive model via a backfitting algorithm,
one often asks whether a specific additive component in (1)
is significant or admits a certain parametric form, such as a
polynomial function. This amounts to testing whether the ad-
ditive component is 0 or of a polynomial form. However, only
limited tools are available for such kinds of frequently asked
questions. Compared with the studies on estimation, the un-
derstanding of such testing problems is limited in the additive
model. To our knowledge, the literature contains virtually no
formal and theoretical work on testing under the present set-
tings. Recently, Härdle, Sperlich, and Spokoiny (2001) used
wavelets along with the adaptive Neyman type of idea (Fan and
Gijbels 1996) to test additive components. Although this pro-
cedure is useful, it is tailored to their specific problem and is
not easy to comprehend. In contrast, we develop an easily un-
derstandable and generally applicable approach to testing prob-
lems. The idea is based on comparisons of likelihood functions
under null and alternative hypotheses. If the likelihood func-
tion for the best model fit under the alternative hypothesis is
much larger than that under the null hypothesis, then the null
hypothesis looks implausible and should be rejected. How do
we determine the critical value? Does the null distribution of
the likelihood ratio test depend on nuisance parameters? These
questions are poorly understood, particularly for additive mod-
els. This motivates us to unveil a new phenomenon for additive
models.

Fan, Zhang, and Zhang (2001) proposed generalized likeli-
hood ratio (GLR) tests and showed that the Wilks type of results
hold for a variety of useful models, including univariate non-
parametric regression models and varying-coefficient models
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and their extensions. The procedure was motivated by the fact
that the nonparametric maximum likelihood estimate (MLE)
usually does not exist and even when it does exist, the result-
ing maximum likelihood ratio test is not optimal. The idea is to
replace the MLE with a nonparametric estimate, which results
in a more relaxed family of tests, called GLR tests. Fan et al.
(2001) have shown that the resulting tests are optimal. Like the
wide applicability of likelihood ratio tests for parametric mod-
els, the GLR tests should be useful in our setting. However, in
general, because the distribution of εi is unknown, the likeli-
hood function is unavailable. Two important questions that re-
late to the GLR tests arise naturally: first, it is unclear how to
construct a GLR statistic for a variety of unknown error distrib-
utions of εi; second, it remains unknown whether a particularly
constructed GLR test will follow the Wilks’ type of results and
share certain optimality. In this article we develop GLR tests
and their bias-corrected versions for the additive model to ad-
dress the foregoing questions. This not only will provide useful
tools to address frequently asked questions in additive model-
ing, but also will enrich the GLR test theory. Our results, to-
gether with those of Fan et al. (2001), convincingly show the
generality of the Wilks phenomenon, and the wide applicability
of the GLR tests. This will encourage other researchers to apply
GLR tests to related problems.

The technical derivations of GLR tests for the additive
model (1) based on local polynomial fitting and a backfitting
algorithm are very involved, due to the lack of simple ex-
pressions for the backfitting estimators. Furthermore, the GLR
statistics involve nonparametric estimators in complicated non-
linear forms. Even though they are approximated by gener-
alized quadratic forms, technical challenges include deriving
quadratic approximations and the distributions of the quadratic
functionals with a backfitting estimator. Because the additive
model and local polynomial smoother are widely used in multi-
variate nonparametric modeling, determined efforts have been
made in this article to examine the null distribution and powers
of the GLR tests for the additive model. Such efforts enable
us to answer some important questions, such as whether the
Wilks type of results hold for additive models and whether the
intuitively appealing GLR tests are powerful enough.

We prove that, under general assumptions on the error dis-
tribution of εi, the proposed GLR tests follow the Wilks type
of results and have the asymptotic optimality for nonparamet-
ric hypothesis testing. In addition, unlike the classical Wilks
type of results and their generalization by Fan et al. (2001), the
additivity of degrees of freedom does not hold. The additivity
property holds in a more generalized sense (see Thm. 2). Fur-
thermore, testing a hypothesis on one additive component has
the same asymptotic null distribution as the case where the rest
of the components are known (Remark 1). These types of adap-
tive results are in line with the oracle property given by Fan
et al. (1998) and Mammen et al. (1999). Our theoretical results
from the proposed GLR tests shed some light on the validation
of the Wilks phenomenon and even future research directions
on nonparametric inferences.

This article proceeds as follows. In Section 2 we describe the
backfitting estimators based on a local polynomial smoother. In
Section 3 we develop the theoretical framework for the GLR
tests. We introduce the bias-corrected GLR tests and a condi-
tional bootstrap method for approximating the null distributions

of the GLR statistics in Section 4. In Section 5 we demonstrate
the performance of GLR tests on simulated data, and in Sec-
tion 6 we provide an example of testing on a real dataset. We
defer technical proofs to Appendix B.

2. BACKFITTING ESTIMATORS

To ensure identifiability of the additive component func-
tions md(xd), we impose the constraint E[md(Xdi)] = 0 for
all d. Fitting the additive component md(xd) in (1) requires
choosing bandwidths {hd}. The optimal choice of hd can
be obtained as was done by Opsomer and Ruppert (1998)
and Opsomer (2000). Here we follow notation introduced by
Opsomer (2000). Put Khd (x) = h−1

d K( x
hd

), Ks(v) = vs−1K(v),

Hd = diag(1,hd, . . . ,hpd
d ), md = {md(Xd1), . . . ,md(Xdn)}T ,

and Y = (Y1, . . . ,Yn)
T . The smoothing matrices for local poly-

nomial regression are

Sd = (
sd,Xd1 , . . . , sd,Xdn

)T
,

where sT
d,xd

represents the equivalent kernel (Fan and Gijbels
1996) for the dth covariate at the point xd ,

sT
d,xd

= eT
1

(
XdT

xd
Kxd Xd

xd

)−1XdT
xd

Kxd , (2)

with ei as a vector with a 1 in the ith position and 0’s elsewhere,
the matrix Kxd = diag{Khd (Xd1 − xd), . . . ,Khd (Xdn − xd)} for a
kernel function K(x) and bandwidths hd ,

Xd
xd

=



1 (Xd1 − xd) · · · (Xd1 − xd)

pd

...
...

. . .
...

1 (Xdn − xd) · · · (Xdn − xd)
pd



 ,

and pd is the degree of the local polynomial for fitting md(x).
The intercept α = E(Yi) is typically estimated by α̂ =∑n

i=1 Yi/n. The md’s can be estimated through the solutions
to the set of following normal equations (see Buja et al. 1989;
Opsomer and Ruppert 1998):





In S∗
1 · · · S∗

1
S∗

2 In · · · S∗
2

...
...

. . .
...

S∗
D S∗

D · · · In









m1
m2
...

mD



=





S∗
1

S∗
2
...

S∗
D



Y,

where S∗
d = (In − 11T/n)Sd is the centered smoother matrix.

In practice, the backfitting algorithm (Buja et al. 1989) is usu-
ally used to solve these equations, and the backfitting estimators
converge to the solution





m̂1
m̂2
...

m̂D



 =





In S∗
1 · · · S∗

1
S∗

2 In · · · S∗
2

...
...

. . .
...

S∗
D S∗

D · · · In





−1



S∗
1

S∗
2
...

S∗
D



Y

≡ M−1CY, (3)

provided that the inverse of M exists.
Following Opsomer (2000), we define the additive smoother

matrix as

Wd = EdM−1C, (4)

where Ed is a partioned matrix of dimension n × nD with
an n × n identity matrix as the dth “block” and 0’s else-
where, so that the backfitting estimator for md is m̂d = WdY.
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Let W[−d]
M be the additive smoother matrix for the data gener-

ated by the (D − 1)-variate regression model, Y ′
i =∑D

k=1,�=d mk(Xki) + εi. Denote m = ∑D
d=1 md and WM =

∑D
d=1 Wd . The backfitting estimator of m is then m̂ = WMY.

If ‖S∗
dW[−d]

M ‖ < 1 for some d ∈ (1, . . . ,D) and a matrix
norm ‖ · ‖, then by lemma 2.1 of Opsomer (2000), the back-
fitting estimators exist and are unique and

Wd = In − (
In − S∗

dW[−d]
M

)−1
(In − S∗

d)

= (
In − S∗

dW[−d]
M

)−1S∗
d

(
In − W[−d]

M

)
. (5)

For a finite n in practice, the foregoing existence and uniqueness
condition can be numerically verified. To ensure the existence
of the backfitting estimators when n is sufficiently large, here
we consider only the design points, denoted by X , such that

lim sup
n

∥∥S∗
dW[−d]

M

∥∥< 1 (6)

for a matrix norm ‖ · ‖. In practice, the smoothing operators
S1, . . . ,Sd are conducted over compact sets of design densities.
Hence we need to deal only with the case where the design den-
sities have bounded support. In the case of D = 2, a sufficient
condition for (6) is

sup
x1,x2

∣∣∣∣
f12(x1, x2)

f1(x1)f2(x2)
− 1

∣∣∣∣< 1,

where fd(xd) is the density of Xd and f12(x1, x2) is the joint den-
sity of X1 and X2. This is exactly the restriction (4) of Opsomer
and Ruppert (1997). Then, by Lemma B.2 in Appendix B and
direct matrix multiplication,

lim sup
n

‖S∗
1S∗

2‖r < 1,

where ‖A‖r = max1≤i≤n
∑n

j=1 |aij| denotes the norm of the
maximum row sum. However, for D > 2, the condition in (6) is
not easily replaced with other conditions. In fact, for the back-
fitting algorithm using any smoothing technique, condition (6)
must be satisfied to ensure the existence of the backfitting esti-
mators. Hence we restrict the design points in X .

3. GENERALIZED LIKELIHOOD RATIO TESTS

3.1 The Generalized Likelihood Ratio Test

In this section we define the GLR statistics and develop their
asymptotic theory under model (1), which is based on the local
polynomial smoother and the backfitting algorithm. The Wilks
phenomenon and optimality are unveiled in this general setting.

For simplicity, we first consider the hypothesis testing prob-
lem

H0 : mD(xD) = 0 vs. H1 : mD(xD) �= 0. (7)

This tests whether the Dth variable has any significant contri-
bution to the dependent variable. The testing problem is a non-
parametric null hypothesis versus a nonparametric alternative,
because the nuisance parameters under H0 are still nonparamet-
ric. Testing the significance of more than one variable can be
dealt with analogously.

Because the distribution of εi is unknown, we do not have
a known likelihood function. Pretending that the error distrib-
ution is normal, N (0, σ 2), the log-likelihood under model (1)
is

−n

2
log(2πσ 2) − 1

2σ 2

n∑

k=1

(
Yk − α −

D∑

d=1

md(Xdk)

)2

.

Replacing the intercept α and the unknown function md(·) by
α̂ and m̂d(·) leads to

−n

2
log(2πσ 2) − 1

2σ 2
RSS1,

where RSS1 =∑n
k=1(Yk − α̂ −∑D

d=1 m̂d(Xdk))
2. Maximizing

over the parameter σ 2, we obtain a likelihood of the alternative
model,

−n

2
log(2π/n) − n

2
log(RSS1) − n

2
.

Therefore, up to a constant term, the log-likelihood of model (1)
is taken as �(H1) = − n

2 log(RSS1). Similarly, the log-likelihood
for H0 can be taken as �(H0) = − n

2 log(RSS0), with RSS0 =∑n
k=1(Yk − α̂ −∑D−1

d=1 m̃d(Xdk))
2 and m̃d(xd) as the estimator

of md(xd) under H0, using the same backfitting algorithm and
bandwidths. Following Fan et al. (2001), we define the follow-
ing GLR statistic:

λn(H0) = [�(H1) − �(H0)] = n

2
log

RSS0

RSS1

≈ n

2

RSS0 − RSS1

RSS1
, (8)

which compares the likelihood of the nearly best fitting under
the alternative models with that under the null models. The null
hypothesis is rejected when λn(H0) is too large.

3.2 Asymptotic Null Distribution

Let νi = ∫
uiK(u)du for i = 0,1, . . . , and S̃d = (νi+j−2) for

i, j = 1, . . . ,pd + 1, be a (pd + 1) × (pd + 1) matrix. Denote
the convolution of Ks(x) with Kt(x) by Ks ∗ Kt, where Ks(x) =
xs−1K(x) for s, t = 1,2, . . . . Put cj,pd+j = (νj, . . . , νpd+j)

T ,

(s̃d,1, . . . , s̃d,pd+1) = eT
1 S̃−1

d , and C( j)
d = eT

1 S̃−1
d cj,pd+j for j =

0, . . . ,pd + 1 and d = 1, . . . ,D. Let

µn = |�D|
hD

[ pD+1∑

t=1

s̃D,tKt(0) − 1

2

pD+1∑

s,t=1

s̃D,ss̃D,tKs ∗ Kt(0)

]
,

σ 2
n = 2|�D|

hD

∥∥∥∥∥

pD+1∑

t=1

s̃D,t Kt − 1

2

pD+1∑

s,t=1

s̃D,ss̃D,tKs ∗ Kt

∥∥∥∥∥

2

2

,

and

rK ≡ 2µn

σ 2
n

=
∑pD+1

t=1 s̃D,t Kt(0) − 1
2

∑pD+1
s,t=1 s̃D,ss̃D,t Ks ∗ Kt(0)

‖∑pD+1
t=1 s̃D,tKt − 1

2

∑pD+1
s,t=1 s̃D,ss̃D,tKs ∗ Kt‖2

2

,

where |�d| is the length of the support of the density fd(xd)

of Xd . The following theorem describes our generalized Wilks
type of results conditional on X .
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Theorem 1. Suppose that condition A in Appendix A holds.
Then, under H0 for the testing problem (7),

P
{
σ−1

n

(
λn(H0) − µn − d1n

)
< t|X } L−→ 	(t),

where d1n = Op(1 + ∑D
d=1 nh2(pd+1)

d + ∑D
d=1

√
nhpd+1

d ) and
	(·) is the standard normal distribution. Furthermore, if for
d = 1, . . . ,D, nh2(pd+1)

d hD → 0, then, conditional on X ,

rKλn(H0)
a∼ χ2

rKµn
.

In Theorem 1, asymptotic normality is given with d1n un-
specified. An asymptotic expression for this item is very com-
plicated and in our opinion unnecessary. The theorem gives the
asymptotic null distribution, but the d1n can be negligible under
the condition nh2(pd+1)

d hD → 0 for d = 1, . . . ,D. The foregoing

condition holds if nh2pD+3
D → 0 and hpd+1

d = O(hpD+1
D ).

Remark 1. When K(·) is a symmetric density kernel and
pd = 1 for d = 1, . . . ,D, direct computation yields that µn =
|�D|
hD

[K(0) − 1
2 K ∗ K(0)], σ 2

n = 2|�D|
hD

‖K − 1
2 K ∗ K‖2

2, and

rK = K(0)− 1
2 K∗K(0)

‖K− 1
2 K∗K‖2

2
. This coincides with the result in the one-

dimensional nonparametric regression of Fan et al. (2001).
Therefore, for the additive model, the GLR test has an ora-
cle property in the sense that although the nuisance functions
md(xd)’s (for d = 1, . . . ,D − 1) are unknown, the GLR test be-
haves as though they were known.

From Theorem 1, under certain conditions the asymptotic
null distribution of the GLR statistic is independent of the in-
tercept and the nuisance functions md(·) (d = 1, . . . ,D−1), the
nuisance design densities fd(·) (for d = 1, . . . ,D − 1), and the
nuisance error distributions over a large range of bandwidths.
We call such a result the Wilks phenomenon.

The asymptotic null distribution offers a method for deter-
mining approximately the critical value of the GLR tests, but
one cannot expect this kind of approximation to be highly ac-
curate unless the bandwidth hD is sufficiently small so that the
degree of freedom rKµn is large. However, the Wilks type of re-
sult allows us to simulate the null distributions of the GLR tests
over a large range of bandwidths with nuisance functions fixed
at their estimated values. This justifies the conditional bootstrap
method given in Section 4.2. An alternative approximation of
the null distribution can be obtained by using a calibration idea
of Zhang (2003). When hD → ∞, the local polynomial fitting
becomes a global polynomial fitting. Hence one would expect
the degrees of freedom to be pD. This prompted Zhang to use
χ2

rKµn+pD
to approximate the null distribution.

Now we consider a little more complicated hypothesis testing
problem,

H0 : mD−d0

(
xD−d0

)= · · · = mD(xD) = 0

vs. H1 : mD−d0

(
xD−d0

) �= 0, . . . , or mD(xD) �= 0,

(9)

for some integer d0. This generalizes problem (7). Let

µ′
n =

D∑

d′=D−d0

|�d′ |
hd′

×
[ pd′+1∑

t=1

s̃d′,t Kt(0) − 1

2

pd′+1∑

s,t=1

s̃d′,ss̃d′,tKs ∗ Kt(0)

]
,

σ ′2
n =

D∑

d′=D−d0

2|�d′ |
hd′

∥∥∥∥∥

pd′+1∑

t=1

s̃d′,tKt − 1

2

pd′+1∑

s,t=1

s̃d′,ss̃d′,tKs ∗ Kt

∥∥∥∥∥

2

2

,

and r′
K = 2µ′

n/σ
′2
n .

Theorem 2. For the hypothesis testing problem (9), under
the same conditions as in Theorem 1, the results in Theo-
rem 1 continue to hold but with µn, σ 2

n , and rK replaced by

µ′
n, σ ′2

n , and r′
K , where the condition nh2(pd+1)

d hD → 0 for

all d’s is replaced by nh2(pd+1)

d hd′ → 0, for all d’s and any
d′ ∈ {D − d0, . . . ,D}.

Interestingly, µ′
n and σ ′2

n are the summation of the individual
µn’s and σ 2

n ’s given in Theorem 1. However, the normalization
constant r′

K changes with the testing problem, and the degrees
of freedom r′

Kµ′
n are no longer the summation of those for test-

ing individual problems such as (7). These mark the difference
from those given by Fan et al. (2001). The result is also different
from the case of the degrees of freedom of the fit for an additive
penalized spline model (see Ruppert, Wand, and Carroll 2003,
sec. 8.3). However, when all pd’s are equal, the additivity of
degrees of freedom holds.

The GLR tests are also applicable to testing the problems
with parametric models as the null hypothesis. Consider the fol-
lowing testing problem with parametric null hypothesis:

H0 : mθ (x1, . . . , xD) ∈M�

vs. H1 : mθ (x1, . . . , xD) /∈M�, (10)

where M� = {mθ (x1, . . . , xD) =∑D
d=1 md(xd; θ) : θ ∈ �} is a

set of functions of parametric forms and the parameter space �

contains the true parameter value θ0. As before, we can use the
local polynomial fitting technique and backfitting algorithm to
fit the alternative model and obtain the log-likelihood �n(H1)

for H1. By maximizing the likelihood for the fully paramet-
ric model under H0, we build the log-likelihood �n(H0). Let
λn(M�) denote the GLR statistic for the testing problem (10).
To derive the asymptotic null distribution of the test statistic,
some conditions on M� and � are required to render the like-
lihood ratio test statistic of order op(h

−1/2
D ) for the following

parametric testing problem:

H′
0 : m(x1, . . . , xD) = mθ0(x1, . . . , xD)

vs. H′
1 : m(x1, . . . , xD) ∈ M�.

For ease of exposition, we call the required conditions “con-
dition B.” Conditions similar to those of Cramér [see, e.g.,
conditions (C1)–(C5) of Le Cam and Yang 1990, p. 120] are
sufficient in the present setting, because the classical Wilks the-
orem holds, and hence the likelihood ratio statistic is of or-
der Op(1).
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Theorem 3. Suppose that condition A in Appendix A and
condition B hold. Then, under H0 for the testing problem (10),

P
{
σ ∗−1

n

(
λn(M�) − µ∗

n − d1n
)
< t|X } L−→ 	(t),

where d1n = Op(1 +∑D
d=1 nh2(pd+1)

d +∑D
d=1

√
nhpd+1

d ). Fur-

thermore, if for all d’s and any d′, nh2(pd+1)

d hd′ → 0, then, con-
ditioning on X ,

r∗
Kλn(M�)

a∼ χ2
r∗
Kµ∗

n
,

where µ∗
n and σ ∗2

n are the same as µ′
n and σ ′2

n with D − d0 = 1
and r∗

K = 2µ∗
n/σ

∗2
n .

3.3 Power of Generalized Likelihood Ratio Tests

We now consider the power of GLR tests in the framework of
Fan et al. (2001). For simplicity, we focus on the null hypothesis
in (7).

Assume that hD = o(n−1/(2pD+3)), so that the second term
in the definition of d1n is of smaller order than σn. As is
stated later in Theorem 5, the optimal bandwidth for the testing
problem (7) is hD = O(n−2/(4pD+5)), which satisfies the condi-
tion hD = o(n−1/(2pD+3)). Under these assumptions, Theorem 1
leads to an approximate level-α test based on the GLR statistic,

φh = I{λn(H0) − µn ≥ zασn}.
If we consider the contiguous alternative of form

H1n : mD(XD) = Gn(XD),

where Gn(XD) → 0 as n → ∞, then the power of the GLR test
can be approximated using the following theorem.

Theorem 4. Suppose that condition A in Appendix A holds
and that for d = 1, . . . ,D, nh2(pd+1)

d hD → 0. If

E{Gn(XD)|X1, . . . ,XD−1} = 0 and

hD ·
n∑

i=1

G2
n(XDi)

P→ C(G)

for some constant C(G), then, under H1n for the testing prob-
lem (7),

P
{
σ−1

1n

(
λn(H0) − µn − d2n

)
< t|X } L−→ 	(t),

where µn is the same as that in Theorem 1,

d2n =
n∑

i=1

G2
n(XDi)

(
1 + op(1)

)
,

and

σ1n =
√√√√σ 2

n + σ−2
n∑

i=1

G2
n(XDi).

Remark 2. For testing problem (7), the alternative hypothesis
depends on many nuisance functions md for d = 1, . . . ,D − 1.
Theorem 4 shows that the asymptotic alternative distribution of
the GLR testing statistic is independent of the nuisance func-
tions md(xd), for d �= D, over a large range of bandwidths. This
allows us to compute the power of the test via simulations over
a large range of bandwidths with nuisance functions fixed at
their estimated values.

Let z1−α be the (1−α)th percentile of N (0,1). By Theorems
1 and 4, the power of the test is approximately given by

PH1n(W) ≈ 1 − 	(σ−1
1n σnz1−α − σ−1

1n d2n).

To study the optimal property of the GLR test, we consider
the class of functions Gn, satisfying the regularity conditions

var(G2
n(XD)) ≤ M

(
E[G2

n(XD)])2,
nE[G2

n(XD)] > Mn → ∞,
(11)

for some constants M > 0 and Mn → ∞. For a given ρ > 0, let

Gn(ρ) = {
Gn ∈ Gn : E[G2

n(XD)] ≥ ρ2}.

The maximum of the probabilities of type II errors is then given
by

β(α,ρ) = sup
Gn∈Gn(ρ)

β(α,Gn),

where β(α,Gn) = P(φh = 0|mD = Gn) is the probability of
type II error at the alternative H1n : mD = Gn. The minimax rate
of φh is defined as the smallest ρn such that:

(a) for every ρ > ρn, α > 0, and for any β > 0, there exists
a constant c such that β(α, cρ) ≤ β + o(1), and

(b) for any sequence ρ∗
n = o(ρn), there exist α > 0 and β > 0

such that for any c > 0, P(φh = 1|mD = Gn) = α + o(1) and
lim infn β(α, cρ∗

n ) > β .

This measures how close are the alternatives that can be de-
tected by the GLR test φh.

Theorem 5. Under condition A in Appendix A, if hpd+1
d =

O(hpD+1
D ) for d = 1, . . . ,D − 1, then for the testing prob-

lem (7), the GLR test can detect alternatives with rate ρn =
n−2(pD+1)/(4pD+5) when hD = c∗n−2/(4pD+5) for some con-
stant c∗.

Remark 3. The GLR tests are asymptotically optimal in
terms of rates of convergence for nonparametric hypothesis
testing according to the formulations of Ingster (1993) and
Spokoiny (1996). Although Ingster (1993) and Spokoiny (1996)
focused only on the univariate setting, their minimax lower
bound is applicable to our additive model with known func-
tions, md’s, for d = 1, . . . ,D − 1. Its rate of convergence is the
same as the rate of the upper bound given in Theorem 5.

Because the distributional property in Theorem 1 depends
implicitly on the assumption for the bandwidths, hd’s, in par-
ticular, nh2(pd+1)

d hD = o(1) is required to ensure the Wilks
properties. This suggests that the bandwidths well suited for
curve estimation may not be the best for testing. The power
of the GLR tests depends on the smoothing parameters. In
fact, Theorem 5 shows that theoretical optimal bandwidth hD

is c∗n−2/(4pD+5) for some constant c∗.

4. IMPLEMENTATION OF GENERALIZED
LIKELIHOOD RATIO TESTS

The GLR test involves determination of the null distribution
and the choice of bandwidth in practice. We now address these
two issues.
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4.1 Bias Reduction

The asymptotic null distribution of the GLR statistic λn(H0)

involves a bias term d1n. The bandwidth must be sufficiently
small to make it negligible. However, in practice the size of
bandwidth that would make the bias negligible is unknown, and
it is desirable to reduce bias automatically. For the testing prob-
lem (10), we demonstrate how this objective can be achieved.
The basic idea is inspired by the prewhitening technique of
Press and Tukey (1956) in spectral density estimation and the
technique used by Härdle and Mammen (1993) for univariate
nonparametric testing. The method is also related to the non-
parametric estimator that uses a parametric start of Hjort and
Glad (1995) and Glad (1998). Recently, Fan and Zhang (2004)
advocated using the bias-reduction method in the study of test-
ing problems for spectral density.

Consider the testing problem (10). The additive model (1) is
equivalent to

Y∗
i = m∗(X1i, . . . ,XDi) + εi, (12)

where Y∗
i = Yi − α̂ − m(X1i, . . . ,XDi; θ̂ ) and

m∗(X1i, . . . ,XDi)

= α + m(X1i, . . . ,XDi) − α̂ − m(X1i, . . . ,XDi; θ̂ ),

with θ̂ being the least squares estimator of θ under the null hy-
pothesis in (10). Therefore, the testing problem (10) is reduced
to the following problem:

H∗
0 : m∗(X1, . . . ,XD) ∈M0 vs. H∗

1 : m∗(X1, . . . ,XD) /∈ M0,

where M0 = {α∗ = 0,m∗
1 = · · · = m∗

D = 0}. This is the spe-
cific case of (10), and hence the GLR test can be applied. Let
λ∗

n(M�) denote the resulting GLR statistic. Because the regres-
sion function m∗(X1, . . . ,XD) is nearly 0 under H0, little bias is
involved for the backfitting estimator. This is demonstrated by
the following theorem, which allows virtually all of the band-
widths that are used in practice.

Theorem 6. Suppose that condition A in Appendix A and
condition B hold. Then, conditioning on X under H0 for the
testing problem (10),

r∗
Kλ∗

n(M�)
a∼ χ2

r∗
Kµ∗

n
,

where µ∗
n and r∗

K are the same as those in Theorem 3.

4.2 Conditional Bootstrap

To implement the GLR tests, we need to obtain the null
distributions of the test statistics. In Section 3.2 we gave the
asymptotic distributions of the GLR statistics, demonstrating
that the asymptotic null distributions are independent of nui-
sance parameters/functions. For a finite sample, this means that
the null distributions do not sensitively depend on the nui-
sance parameters/functions. Therefore, the null distributions
can be approximated by simulation methods via fixing nui-
sance parameters/functions at their reasonable estimates. This
simulation method is referred to as the conditional bootstrap
method, which is detailed as follows [to be more specific,
consider (3.1)]:

1. Fix the bandwidths at their estimated values (ĥ1, . . . , ĥD),
and then obtain the estimators of the additive components
under both the null and the unrestricted additive models.

2. Compute the GLR test statistic λn(H0) and the residuals ε̂i
(for i = 1, . . . ,n) from the unrestricted model.

3. For each Xi, draw a bootstrap residual ε̂∗
i from the cen-

tered empirical distribution of ε̂i and compute Y∗
i = α̂ +

m̂1(Xi1) + · · · + m̂D−1(Xi,D−1) + ε̂∗
i , where α̂ and m̂j(·)

( j ≤ D − 1) are the estimated regression functions un-
der the unrestricted additive model in step 1. This forms a
conditional bootstrap sample, {Xi,Y∗

i }n
i=1.

4. Using the bootstrap sample in step 3 with the bandwidths
(ĥ1, . . . , ĥD), obtain the GLR statistic λ∗

n(H0) in the same
manner as λn(H0).

5. Repeat steps 3 and 4 many times to obtain a sample of
statistic λ∗

n(H0).
6. Use the bootstrap sample in step 5 to determine the quan-

tiles of the test statistic under H0. The p value is the per-
cent of observations from the bootstrap sample of λ∗

n(H0)

whose value exceeds λn(H0).

Note that the null distribution of λn(H0) depends on α,
(m1, . . . ,mD−1) and distribution of ε. As shown in Theorem 1,
such a dependence is asymptotically negligible. Hence they can
be fixed at the values (α̂, m̂1, . . . , m̂D−1) and the distribution
of ε̂∗. The following theorem shows the consistency of the con-
ditional bootstrap method.

Theorem 7. Assume that the conditions in Theorem 1 hold.
Then, under H0 in (7),

P
{
σ−1

n

(
λ∗

n(H0) − µn − d1n
)
< t|X ,Fn

} L−→ 	(t),

where Fn denotes the empirical distribution of the sample
{Xi,Yi}n

i=1.

4.3 Choice of Bandwidth

The test statistic λn(H0) depends on the choice of the band-
widths {hd} for d = 1, . . . ,D. In fact, it can be regarded as a
family of the test statistics indexed by hd . The optimal band-
widths for hypothesis testing differ somewhat from those for
estimating the additive components, which was elaborated in
Section 3.3.

The choice of optimal bandwidths for hypothesis testing has
not been seriously explored in the literature, but the optimal
bandwidths for estimating the underlying additive components
provide a good proxy for those in the testing problem. Opsomer
(2000) gave theoretic optimal bandwidths for a D-dimensional
additive model. We use these theoretic optimal bandwidths in
our simulation study. For real data examples, we use the auto-
matic bandwidth selection rule of Opsomer and Ruppert (1998).
Because of the difference of the optimal bandwidths between
the fitting and testing, it is a good practice for us to explore the
sensitivity of the testing results by varying the bandwidths over
a relatively large range. The correlation between λn(H0) using
bandwidth h1 and that using bandwidth h2 is expected to be
large when h1 ≈ h2. (See Zhang 2003 for the result on nonpara-
metric regression, which corresponds to D = 1.) Thus, for many
applications, it suffices to use h = hopt/1.5,hopt,1.5hopt, corre-
sponding to “undersmooth,” “right smooth,” and “oversmooth,”
where hopt is the asymptotically optimal bandwidth used for es-
timation. We follow this idea in our simulations and real data
analysis.
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5. SIMULATIONS

The purpose of the simulations is twofold: demonstrating the
Wilks phenomenon and the power of the proposed GLR tests.
The effect of the error distributions on the performance of the
GLR tests is also investigated. Numerical results show that the
GLR tests with bias correction outperform their counterparts.
Throughout this section, the Epanechnikov kernel is used.

Example 1. Consider the bivariate additive model

Y = m1(X1) + m2(X2) + ε, (13)

where m1(X1) = .5 − 6X2
1 + 3X3

1 , m2(X2) = sin(πX2), and the
error ε is distributed as N (0,1). The covariates are generated
by the following transformation to create correlation:

(
X1
X2

)
=
(

1 .5
.5 1

)(
U1
U2

)
, (14)

where Ui
iid∼ U(−.5, .5).

We use the optimal bandwidth hd,opt for the smoother on
md(xd) (see Opsomer 2000). To demonstrate the Wilks phe-
nomenon for the GLR test, we evaluate three levels of band-
width with h2 fixed at its optimal value, h1 = 2

3 h1,opt, h1,opt,
or 3

2 h1,opt. The null hypothesis is taken as H0 : m2(x2) = 0,
where m1(x1) is a nuisance function. We also use three levels
of m1(X1) to demonstrate that the test does not depend on the
nuisance function m1(X1):

m1,β(X1) = [
1 + β

√
var(.5 − 6X2

1 + 3X3
1)
]
(.5 − 6X2

1 + 3X3
1),

where β = −1.5,0,1.5. For the GLR test, we drew 1,000 sam-
ples of 200 observations. Based on the 1,000 samples, we
obtained 1,000 GLR test statistics. Their distribution is ob-
tained via a kernel estimate with a rule-of-thumb bandwidth,
h = 1.06sn−.2, where s is the standard error of the normal-
ized GLR statistics. Figure 1 shows that the estimated densities
of the normalized GLR statistics, rKλn(H0). As expected, they
look like densities from chi-squared distributions or, more gen-
erally, gamma distributions. Figure 1(a) shows that the null dis-
tributions follow chi-squared distributions over a wide range of
bandwidth h1 (with the degree of freedom depending on band-
width h2 but not on h1). Figure 1(b) demonstrates the Wilks
type of phenomenon; for three very different choices of nui-
sance functions, the null distributions are nearly the same.

For the power assessment, we evaluate the power for a se-
quence of alternative models indexed by θ ,

Hθ : m2,θ (x2) = θ sin(πx2), 0 ≤ θ ≤ 1, (15)

ranging from the null model to reasonably far away from it.
Figure 2(a) reports the differences between the null and the al-
ternatives in (15).

For each given value of θ , we use 3,000 Monte Carlo repli-
cates for the calculation of the critical values via the conditional
bootstrap method (see Sec. 4.2), and compute the rejection fre-
quencies based on 600 simulations. The parameter θ is related
to the separation distance between the null and the alternative
hypotheses. Note that when θ = 0, the alternative is the same
as the null hypothesis, so that the power should approximately
be .05 (or .10) at the .05 (or .10) significance level. This is in-
deed the case, as shown in Table 1, which again implies that the

(a)

(b)

(c)

Figure 1. Results for Example 1: Estimated Densities for the GLR
Statistics Among 1,000 Simulations. (a) With fixed h2 = h2, opt, but dif-
ferent bandwidths for h1 (—– h1 = 2

3 h1, opt; − − − h1 = h1, opt; − · −·
h1 = 3

2 h1, opt). (b) With different nuisance functions and optimal band-
widths hd = hd, opt (—– β = −1.5; − − − β = 0; − · −· β = 1.5). (c) Esti-
mated densities for the GLR statistics under different errors [—– normal;
− − − t(5); ····· χ2(5); − · −· χ2(10)].
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(a) (b)

Figure 2. Difference Between the Null and the Alternative Hypotheses for (a) Example 1 and (b) Example 2. (∗ ∗ ∗ θ = 0; · · · · · θ = .2; ×××
θ = .4; + + + θ = .8; —– θ = 1.0.)

Monte Carlo method gives a correct estimator of the null dis-
tribution. When θ increases, the alternative moves further away
from the null hypothesis. One would expect the rejection rates
of the null hypothesis to get higher and higher, which is evi-
denced in Table 1.

To investigate the power and the influence of different error
distributions on the GLR tests, we now consider the model (13)
with different error distributions of ε. In addition to the standard
normal distribution, the standardized t(5) and the standardized
χ2(5) and χ2(10) are also used. Note that the t(5) distribution
has a heavy tail, and that chi-squared distributions are asym-
metric. They are used to assess the stability of the performance
of the GLR tests for different error distributions. The sample
size is n = 200. The estimated densities of the normalized GLR
statistics under the aforementioned four different error distribu-
tions are reported in Figure 1(c). The figure shows that the null
distributions of the tests are approximately the same for differ-
ent error distributions and again exemplifies the Wilks phenom-
enon stated in Theorem 1. The powers of the GLR tests for the
alternative sequence in (15) under different error distributions
are given in Table 1, which shows a surprisingly stable perfor-
mance of the tests for different error distributions with the char-
acteristics of light or heavy tails and symmetric or asymmetric
densities. The numerical results here suggest that the GLR tests
not only have high power for differentiating the null and the
smooth alternatives, but also have robustness against error dis-
tributions to some extent.

Example 2. Instead of considering a nonparametric null hy-
pothesis against a nonparametric alternative, we deal with

Table 1. Powers of the Proposed Tests Under Different
Error Distributions

α Error distribution\θ 0 .2 .4 .6 .8 1.0

.05 N (0, 1) .057 .192 .592 .948 .997 1.000
t(5) .043 .146 .537 .903 .998 1.000

χ2(5) .048 .175 .640 .963 .995 1.000
χ2(10) .053 .230 .657 .952 .995 1.000

.10 N (0, 1) .095 .280 .728 .977 .997 1.000
t(5) .090 .255 .710 .952 1.000 1.000

χ2(5) .088 .268 .727 .973 .997 1.000
χ2(10) .087 .298 .717 .967 .998 1.000

parametric null hypothesis to compare the performance of
the bias-corrected GLR test with its counterpart for a testing
problem with a parametric null hypothesis. The following three-
dimensional additive model is used:

Y = m(X1,X2,X3) + ε, (16)

where m(X1,X2,X3) = m1(X1) + m2(X2) + m3(X3), m1(X1) =
b1X3

1 , m2(X2) = sin(b2X2), and m3(X3) = sin(b3X3) with b =
(b1,b2,b3) = (9,3π,3π). The covariates are generated from
a joint distribution with marginals N (0,1/9), the correlation
between X1 and X2 is .25, and X3 is independent of (X1,X2). We
rejected all observations in which one of the covariates fell out
[−.5, .5] and replaced them with new observations, so that the
support of the covariates is bounded. The error ε is distributed
as N (0,1/4). The null model is taken as H0 : {(b1,b2,b3) ∈
R3}, which is fully parametric and can be easily fitted by the
nonlinear regression function “nlinfit” in Matlab. Throughout
this example, the bandwidths are fixed at their optimal values
and the sample size is n = 200.

The power of the GLR test is evaluated at the following se-
quence of alternative models:

Hθ : mθ (X1,X2,X3) = m(X1,X2,X3) + θX3 · m3(X3), (17)

where 0 ≤ θ ≤ 1. When θ = 0, Hθ = H0. As θ increases, the
alternative model Hθ deviates away from H0. Figure 2(b) shows
the difference between the null and the alternative models.

For each given θ , we simulated data from the alternative
model Hθ . The percentages of rejection for H0 were computed
based on the same simulation method as in Example 1. The re-
sults are given in Figure 3. When θ = 0, the powers of both tests
become the test sizes. It is evident from Figure 3 that the bias-
corrected test is more powerful than its counterpart. Note that
the bandwidths used earlier are optimal for estimation. Setting
the bandwidths to be half of their optimal values makes the bias
of the backfitting estimator decreases and the relative advantage
of the bias-correction method over its counterpart decline. This
is evidenced in Figure 3, where the power of the bias-corrected
test increases faster than its counterpart as the bandwidths in-
crease. These are in line with our asymptotic results.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Power Functions of the GLR Tests for Example 2. (a), (b), and (c): h = hopt ; (d), (e), and (f): h = hopt/2. From left to right, significance
levels are α = .10 [(a), (d)], .05 [(b), (e)], and .01 [(c), (f)]. The dashed lines represent the bias-corrected method, the solid lines, the tests without
bias reduction.

6. REAL DATA EXAMPLE

We use the proposed GLR tests on the Boston Housing
dataset to demonstrate their use in applications. The dataset
comprises the median value of homes in 506 census tracts
in the Boston Standard Metropolitan Statistical Area in 1970,
along with 13 accompanying sociodemographic and related
variables. It was previously studied by several authors, in-
cluding Harrison and Rubinfeld (1978), Belsley, Kuh, and
Welsch (1980), Breiman and Friedman (1985), and Opsomer
and Ruppert (1998). Of the 13 variables, we use the follow-
ing dependent variable and covariates of interest to demonstrate
how our GLR tests work in practice:

• MV , median value of owner-occupied homes (in $1,000)
• RM, average number of rooms
• TAX, full property tax rate ($/$10,000)
• PTRATIO, pupil/teacher ratio by town school district
• LSTAT , proportion of population that is of “lower sta-

tus” (%).

The last four covariates were also chosen by Breiman and Fried-
man (1985) and Opsomer and Ruppert (1998) to investigate the
factors that affect the median value of owner-occupied homes.

Opsomer and Ruppert (1998) analyzed the dataset via a four-
dimensional additive model,

E[MV − MV|X1,X2,X3,X4]
= m1(X1) + m2(X2) + m3(X3) + m4(X4), (18)

where X1 = RM, X2 = log(TAX), X3 = PTRATIO, and X4 =
log(LSTAT). The local linear smoother and a fully automated
bandwidth selection method were used after six outliers were
removed. Opsomer and Ruppert suggested that the fitted ad-
ditive components have apparent features, a linear term for
PTRATIO and logarithmic terms for TAX and LSTAT .

We now focus on the model diagnostic problems. Specifi-
cally we check whether the fitted functions are of certain para-
metric forms. Added variable plots (Cook and Weisberg 1982)
are useful in this case (see Opsomer and Ruppert 1998). Fit-
ting the data with model (18) via the method of Opsomer and
Ruppert (1998) gives the partial residuals. Figure 4 reports the
partial residual plots along with their simple polynomial regres-
sion to indicate their trends and the fitted additive components
based on the backfitting algorithm with a local linear smoother.
More precisely, the following fully parametric models are fitted
to the partial residuals:

m1(Xi) = a1 + b1X1 + c1X2
1,

m2(X2) = a2 + b2X2,

m3(X3) = a3 + b3X3,

m4(X4) = a4 + b4X4.

(19)

Intuitively, apart from the fitted line for the variable RM, these
regression lines seem consistent with the data. It is natural
to ask whether the additive components apart from the vari-
able RM admit these parametric forms, namely whether the fol-
lowing semiparametric model is consistent with the data:

mi(Xi) = ai + biXi for i = 2,3,4, (20)

where m1(X1) is unspecified.
We now use our GLR statistic to test whether the semipara-

metric null model (20) holds against the additive alternative
model (18). To compute the p value of the test statistic, we
need to find the null distribution of the GLR statistic λn(H0).
This can be estimated by the conditional bootstrap method
given in Section 4.2. The p value of our GLR test is estimated
as 0 by using the optimal bandwidth and using 1,000 boot-
strap replicates. This does not come as a surprise to us, be-
cause the p value depends heavily on the sample size. With a
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(a) (b)

(c) (d)

Figure 4. Partial Residual Plots Along With Fitted Regression Curves
for the Boston Housing Dataset. (a) RM; (b) log(TAX); (c) PTRATIO;
(d) log(LSTAT). The solid lines represent estimated additive functions;
dashed lines, empirical regression lines based on model (19).

sample size as large as 500, a small deviation from the null
hypothesis should lead to a tiny p value. Hence we take a ran-
dom subsample of n = 200 for analysis. The partial residuals
from model (18) for the subsample are reported in Figure 5,
which also shows the fitted additive components from mod-
els (18) and (19). The optimal bandwidth from the automated
bandwidth selection rule of Opsomer and Ruppert (1998) is
computed as hopt = (1.1129, .2530,2.1432, .2315)T . Visually,
similar parametric forms of the additive components are sug-
gested from Figures 4 and 5. Our interest is to test whether
the model (20) is adequate for the subsample. Table 2 reports
the results of the GLR tests for five different bandwidths, using
1,000 bootstrap replicates. This provides stark evidence that the
semiparametric model is appropriate for this dataset within the
additive models at the .01 significance level.

7. DISCUSSION

7.1 Other Tests

Many nonparametric tests have been designed for certain
specific problems. Most are in the univariate nonparametric re-
gression setting. (See Fan et al. 2001 for an overview of the
literature.) Although these tests can be powerful for the prob-
lems for which the tests were designed, extensions to multivari-
ate settings can pose some challenges. Further, these tests are

Table 2. Results of the GLR Tests

Bandwidth RSS0 RSS1 GLRT p value

1
2 hopt 1,974.3 1,721.9 31.0 .097
2
3 hopt 2,044.0 1,812.5 27.0 .034
hopt 2,091.2 1,904.3 20.8 .016
3
2 hopt 2,158.6 2,042.3 12.0 .046
2hopt 2,301.7 2,231.6 6.65 .179

NOTE: RSS0 and RSS1 are the sum of squared residuals for the GLR test under H0 and H1;
GLRT is the normalized GLR statistic.

(a) (b)

(c) (d)

Figure 5. Partial Residual Plots Along With Fitted Regression Curves
for a Random Subsample of the Boston Housing Dataset. (a) RM;
(b) log(TAX); (c) PTRATIO; (d) log(LSTAT). The solid lines represent
estimated additive functions; dashed lines, empirical regression lines
based on model (19).

usually not distribution-free when null hypotheses involve nui-
sance functions. This hampers their applicability.

Hypothesis testing for multivariate regression problems is
difficult due to the curse of dimensionality. Aerts, Claeskens,
and Hart (1999) constructed tests based on orthogonal series for
the bivariate regression setting. Fan and Huang (2001) proposed
various testing techniques based on the adaptive Neyman test
for various alternative models in the multiple regression setting.
These problems become conceptually simple by using our gen-
eralized likelihood method. Delgado and González-Manteiga
(2001) developed a test for selecting explanatory variables in
nonparametric regression based on functionals of a U-process,
whereas this test can detect a specific class of contiguous alter-
natives at a rate n−1/2. However, this requires that one estimate
the joint density of the significant variables and the regression
function. In addition, Gozalo and Linton (2001) studied sev-
eral tests for additivity in generalized nonparametric regression
based on the integration estimation method and the generalized
method of moments. Neumeyer and Sperlich (2003) developed
a test for difference of impacts from a specific covariate on the
regression curve in two independent samples via comparing a
distance of the fitted curves based on the integration estimation
approach.

Our GLR tests are motivated by comparing the pseudolike-
lihood of the nearly best fitting in the null and alternative
models, which leads to the log ratio of the variance estimators
under the null and the alternative. This lends further support to
the widely used goodness-of-fit test for a parametric regression
constructed based on the variance estimators from a paramet-
ric fitting and a nonparametric kernel smoother (see, e.g., Dette
1999). Our GLR tests are asymptotically distribution-free and
yield the Wilks type of results. They are asymptotically optimal
in terms of convergence for nonparametric hypothesis testing
according to the formulations of Ingster (1993) and Spokoiny
(1996).
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7.2 Extension

Under iid errors, the GLR tests are derived for nonlinear ad-
ditive models (1) based on the local polynomial smoother and
the backfitting algorithm. For heteroscedastic errors, for exam-
ple, the model

Yi = α +
D∑

d=1

md(Xdi) + εi, i = 1, . . . ,n,

where εi = σ(Xi)ui and σ 2(Xi) =∑D
d=1 σ 2

d (Xdi), is also of ad-
ditive form, to assuage the curse of dimensionality. Note that

ε2
i = σ 2(Xi) + σ 2(Xi)(u

2
i − 1). (21)

Our method continues to apply by considering the GLR statistic
for {ui}, which consists of the following three steps:

1. Fit the regression components by backfitting algorithm,
and obtain the residuals ε̂i = Yi − Ȳ −∑D

d=1 m̂d(Xdi).
2. Obtain the estimator σ̂ (Xi) by fitting the model (21)

with εi replaced by ε̂i, and get the RSS1 =∑n
i=1 û2

i , where
ûi = ε̂i/σ̂ (Xi).

3. Compute RSS0 = ∑n
i=1(ε̂

0
i )

2/σ̂ 2(Xi) and form the
GLR (8), where ε̂0

i is the residual under H0.

The conditional bootstrap approximation in Section 4.2 can also
be adapted to this situation, if one draws bootstrap residuals
from the centered empirical distribution of {ûi}n

i=1. For other
forms of the conditional standard deviation σ(Xi), the fore-
going method still applies, but with other fitting techniques
for σ(Xi). The techniques can also be extended to generalized
additive models (Hastie and Tibshirani 1990). We would expect
similar results to continue to hold.

In implementation, two forms of bandwidths have been in-
troduced: constant bandwidth and constant span (see, e.g.,
LOWESS in Cleveland 1979). The constant span form has the
advantage of avoiding the sparsity of design points, but the
bandwidths at such regions are large, and hence it can intro-
duce large modeling biases. When the constant span is used, its
effective bandwidth depends on the design density and usually
is not a constant. Our asymptotic results can be extended to the
constant span case, but its normalization constant and degree of
freedom will depend on nuisance functions under the null hy-
pothesis. In other words, the Wilks phenomenon does not hold,
which makes estimating the null distribution harder. The sit-
uation is very much like using the ordinary GLR tests in the
heteroscedastic model. The asymptotic results can be extended,
but the normalization constant and degrees of freedom depend
on the unknown variance function. See remark 4.2 of Fan et al.
(2001) for this kind of result.

APPENDIX A: CONDITION A

To derive the asymptotic distributions of the testing statistics, we
make the following technical assumptions and use the following nota-
tion:

1. The kernel function K(x) is bounded and Lipschitz-continuous
with a bounded support.

2. The densities fd(xd) of Xd are Lipschitz-continuous and bounded
away from 0, and have bounded supports �d for d = 1, . . . ,D.

3. The joint density of Xd and Xd′ , fdd′ (xd, xd′ ), is Lipschitz-
continuous on its support �d × �d′ .

4. As n → ∞, hd → 0 and nhd/ log(n) → ∞ for d = 1, . . . ,D.
5. The (pd + 1)st derivatives of md (for d = 1, . . . ,D) exist and are

bounded and continuous.
6. E|εi|4 < ∞.

APPENDIX B: PROOFS

In this appendix we give technical proofs of the theorems. Let
P1 ≈ P2 denote P1 = P2(1 + o(1)) a.s., componentwise for any ma-
trices P1 and P2 of the same dimension. For any constant d, d is the
n-valued vector (d, . . . ,d)T . Denote by �Z the average of components
of any vector Z. To facilitate the exposition of the proofs, we ignore
the intercept α and introduce the following technical lemmas. Because
α̂ is root-n consistent, the same arguments can be used for the case
with the unknown intercept.

Lemma B.1. Let assumptions 1–4 in condition A hold. Then

sT
d,xd

≈ n−1f −1
d (xd)eT

1 S̃−1
d H−1

d XdT
xd

Kxd ,

uniformly for xd ∈ �d.

Proof. The result was derived by Fan and Gijbels (1996, p. 64).

Lemma B.2. Under assumptions 1–4 in condition A, the following
asymptotic approximations hold uniformly over all elements of the
matrices:

S∗
d = Sd − 11T

n
+ o

(
11T

n

)
a.s.,

S∗
dS∗

d′ = T∗
dd′ + o

(
11T

n

)
a.s.,

where T∗
dd′ is a matrix with (i, j)th element

[T∗
dd′ ]ij = 1

n

[
fdd′ (Xdi,Xd′j)

fd(Xdi)fd′(Xd′j)
− 1

]
.

Proof. This is shown in lemma 3.1 of Opsomer and Ruppert (1997).

Lemma B.3. Denote by An1 = (W[−D]
M − In)T (W[−D]

M − In) and
An2 = (WM − In)T (WM − In). If assumptions 1–4 in condition A
hold, then, conditional on X ,

RSS0 − RSS1 = YT [An1 − An2]Y (B.1)

and

An1 − An2 = SD + ST
D − ST

DSD

−
(D−1∑

d=1

Sd

)T

SD − ST
D

(D−1∑

d=1

Sd

)
+ Rn, (B.2)

where Rn is a matrix whose (i, j)th element is [Rn]ij such that

E
{[Rn]i1 j1 [Rn]i2 j2

}= O(1/n2)

and [Rn]ij = O( 1
n ) a.s. uniformly for 1 ≤ i, j; i1, j1; i2, j2 ≤ n.

Proof. By definition, we have (B.1). Using an argument similar
to that in the proof for theorem 3.1 of Opsomer (2000), we ob-

tain S∗
dW[−d]

M = O( 11T

n ) a.s., and (In − S∗
dW[−d]

M )−1 = In + O( 11T

n ),
uniformly over all elements of the matrix. Throughout the proof of
this lemma, the term O(11T/n) means that each element is of order
O(1/n). Then by (2.4), Lemma B.2, and direct matrix multiplications,

WM =
D∑

d=1

Wd =
D∑

d=1

(
In − S∗

dW[−d]
M

)−1S∗
d
(
In − W[−d]

M

)

= S + U,
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where S =∑D
d=1 Sd and U = O( 11T

n ) a.s. Hence,

An2 = ST S − S − ST + In + Rn2,

where Rn2 = O( 11T

n ) a.s. Similarly, we have

W[−D]
M = S[−D] + U[−D] (B.3)

and

An1 = S[−D]T
S[−D] − S[−D] − S[−D]T + In + Rn1,

where S[−D] =∑D−1
d=1 Sd , U[−D] = O( 11T

n ) a.s., and Rn1 = O( 11T

n )

a.s. Therefore,

An1 − An2 = SD + ST
D − ST

DSD

−
(D−1∑

d=1

Sd

)T

SD − ST
D

(D−1∑

d=1

Sd

)
+ Rn,

with Rn = O( 11T

n ) a.s. Furthermore, by assumption 2 in condition A,
we complete the proof of the lemma.

Lemma B.4. Let

Qd =




sT
d,Xd1

Qmd (Xd1)

...

sT
d,Xdn

Qmd (Xdn)





and

Q∗
d =

(
In − 11T

n

)
Qd,

where

Qmd (xd) =



(Xd1 − xd)pd+1

...

(Xdn − xd)pd+1




∂pd+1md(xd)

∂x pd+1
d

.

If assumptions 1–5 in condition A hold, then

Qd = Cpd+1
d hpd+1

d Dpd+1md + o(hpd+1
d ) a.s.,

where

Dpd+1md =





∂pd+1md(Xd1)

∂x
pd+1
d
...

∂pd+1md(Xdn)

∂x
pd+1
d




.

Proof. The lemma follows by Taylor’s expansion.

Lemma B.5. Put B(d) = E[WdY − md|X] and B = E[WMY − m|
X] = (WM − In)m, where B is the conditional bias in estimation of m
by the model (1). If condition A holds, then

B(D) = (
In − S∗

DW[−D]
M

)−1
[

1

(pD + 1)!Q∗
D − S∗

DB−D

]

+ m̄DO(1) + o(hpD+1
D ) a.s.,

B = O

( D∑

d=1

hpd+1
d

)
+

D∑

d=1

m̄d · O(1) a.s., (B.4)

uniformly over all elements of the vector, where B−D = (W[−D]
M −

In)m(−D) is the conditional bias in estimation of m(−D) by the
(D − 1)-variate regression model

Y ′
i =

D−1∑

d=1

md(Xdi) + εi.

Proof. Applying the same Taylor expansion approximations as in
theorem 2.1 of Ruppert and Wand (1994), we obtain

Sdmd = md + 1

(pd + 1)!Qd + o(hpd+1
d ).

Then, by Lemma B.2,

(In − S∗
d)md = m̄d1 − 1

(pd + 1)!Q∗
d + o(hpd+1

d ).

It follows from (5) that

(In − WD)mD = (
In − S∗

DW[−D]
M

)−1
(In − S∗

D)mD

= (
In − S∗

DW[−D]
M

)−1
[

m̄D1 − 1

(pD + 1)!Q∗
D

]

+ o(hpD+1
D ) a.s. (B.5)

Note that

(In − WD)m(−D) = (
In − S∗

DW[−D]
M

)−1
(In − S∗

D)m(−D)

= m(−D) + (
In − S∗

DW[−D]
M

)−1S∗
DB−D.

This, together with (B.5), leads to

B(D) = m̄DO(1) + (
In − S∗

DW[−D]
M

)−1
[

1

(pD + 1)!Q∗
D − S∗

DB−D

]

+ o(hpD+1
D ) a.s.

Hence (B.4) holds by a recursive argument.

Lemma B.6. If condition A holds, then, under H0 : mD = 0,

d1n ≡ mT (An1 − An2)m + 2εT (An1 − An2)m

= Op

(
1 +

D∑

d=1

nh2(pd+1)
d +

D∑

d=1

√
nhpd+1

d

)
, (B.6)

where An1 and An2 are as defined in Lemma B.3. Furthermore,
d1n ≡ Op(1) if md(·) is a polynomial of order pd for d = 1, . . . ,D.

Proof. a. Under H0, we obtain from Lemma B.5 that

mT (An1 − An2)m = BT−DB−D − BT B

= Op

(
1 +

D∑

d=1

nh2(pd+1)
d

)
. (B.7)

By Lemmas B.3 and B.5, we have, under H0,

mT (An1 − An2)Tε = BT−D
(
W[−D]

M − In
)
ε − BT (WM − In)ε,

E[(WM − In)ε] = 0,

and

(WM − In)ε = WMε − ε

=
D∑

d=1

Sdε − ε + Op

( D∑

d=1

nh2(pd+1)
d

)
.

By directly computing the mean and variance and using Lemma B.1,

we obtain BT Sε = Op(1 + ∑D
d=1

√
nhpd+1

d ), BTε = Op(1 +
∑D

d=1
√

nhpd+1
d ), and hence BT (WM − In)ε is bounded by Op(1 +

∑D
d=1

√
nhpd+1

d ). By the same argument, BT−D(W[−D]
M − In)ε =

Op(1 + ∑D
d=1

√
nhpd+1

d ). Therefore, the second term in d1n is

Op(1 +∑D
d=1

√
nhpd+1

d ), which, combined with (B.7), leads to (B.6).
b. Assume that md(·) is a polynomial of order pd (for d =

1, . . . ,D); then Qd = 0. Using recursive reasoning, we obtain B−D =
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∑D−1
d=1 m̄dO(1) = Op( 1√

n
) and B = Op( 1√

n
). Hence the first term

in d1n is Op(1). Similarly, the second term in d1n is Op(1), which
completes the proof of the lemma.

Proof of Theorem 1

The proof consists mainly of the following four steps:

1. Asymptotic expression for RSS0 − RSS1. By definition, we have

RSS0 − RSS1 = ∥∥W[−D]
M Y − Y

∥∥2 − ‖WMY − Y‖2,

which can be written, using the notation of Lemma B.3, as

RSS0 − RSS1 = YT [An1 − An2]Y
= εT (An1 − An2)ε

+ [
mT (An1 − An2)m + 2εT (An1 − An2)m

]

≡ εT (An1 − An2)ε + d1n. (B.8)

From Lemma B.6, d1n is bounded by Op(1 + ∑D
d=1 nh2(pd+1)

d +
∑D

d=1
√

nhpd+1
d ). In the following, we show that the first term in (B.8)

can be approximated as

εT [An1 − An2]ε

≈ 2

nhD

∑

i<j

εiεjf
−1
D (XDi)

×
{

2
pD+1∑

t=1

s̃D,tKt

(
XDj − XDi

hD

)

−
pD+1∑

s,t=1

s̃D,ss̃D,tKs ∗ Kt

(
XDj − XDi

hD

)}
+ µ∗

n + op(h−1
D )

≡ W(n) + µ∗
n + op(h−1

D ), (B.9)

where µ∗
n = 2σ 2µn with

µn = |�D|
hD

(pD+1∑

t=1

s̃D,t Kt(0) − 1

2

pD+1∑

s,t=1

s̃D,ss̃D,t Ks ∗ Kt(0)

)
.

Then, by (B.8),

RSS0 − RSS1 ≈ W(n) + 2σ 2µn + d1n + op(h−1
D ). (B.10)

For readers who are not interested in the proof of (B.9), please skip to

step 2. Note that the ( j, �)th element of H−1
d XdT

Xdk
KXdk is now

1

hd
Kj

(
Xd� − Xdk

hd

)
.

By Lemma B.1, direct matrix multiplications give the (i, j)th element
of Sd ,

(Sd)ij ≈ 1

nhd
f −1
d (Xdi)

pd+1∑

t=1

s̃d,tKt

(
Xdj − Xdi

hd

)
. (B.11)

Then by directly computing the mean and variance, we obtain, from
the Chebyshev inequality,

n∑

i=1

ε2
i (Sd)ii ≈ σ 2

hd
|�d|

pd+1∑

t=1

s̃d,tKt(0) (B.12)

and

∑

i �=j

εiεj(Sd)ij ≈ 1

nhd

∑

i �=j

εiεj f −1
d (Xdi)

pd+1∑

t=1

s̃d,tKt

(
Xdj − Xdi

hd

)
.

(B.13)

Similarly, using Lemma B.1, we have the (i, j)th element of ST
d Sd′ ,

(ST
d Sd′)ij ≈ 1

n

pd+1∑

s=1

pd′+1∑

t=1

s̃d,ss̃d′,t

× 1

n

n∑

k=1

[
f −1
d (Xdk)f

−1
d′ (Xd′k)

1

hd
Ks

(
Xdi − Xdk

hd

)

× 1

hd′
Kt

(
Xd′j − Xd′k

hd′

)]

≡ n−1
pd+1∑

s=1

pd′+1∑

t=1

s̃d,ss̃d′,t
1

n

n∑

k=1

Pdd′ijkh. (B.14)

Then
∑

i �=j

εiεj(S
T
d Sd′)ij

= 1

n

∑

i �=j

εiεj

pd+1∑

s=1

pd′+1∑

t=1

s̃d,ss̃d′,t
1

n

∑

k �=i,j

Pdd′ijkh

+ 1

n

∑

i �=j

εiεj

pd+1∑

s=1

pd′+1∑

t=1

s̃d,ss̃d′,t
1

n
[Pdd′ijih + Pdd′ijjh]

≡ Lndd′1 + Lndd′2. (B.15)

It can easily be shown that E(Lndd′2) = 0 and

var(Lndd′2) = O

(
1

n2h2
dhd′

+ 1

n2h2
d′hd

)
,

which implies that Lndd′2 = Op( 1
nhd

√
hd′

+ 1
nhd′

√
hd

). By the definition

of Pdd′ijkh and taking the iterative expectation, we get for d �= d′ and
k �= i, j (i �= j),

E[Pdd′ijkh|Xdi,Xd′j] = νs−1νt−1
fdd′ (Xdi,Xd′j)

fd(Xdi)fd′ (Xd′j)
+ op(1),

uniformly for i, j = 1, . . . ,n. Hence for d �= d′,

Lndd′1 ≈ 2(n − 2)

n2

∑

i<j

εiεj

pd+1∑

s=1

pd′+1∑

t=1

s̃d,ss̃d′,tE[Pdd′ijkh|Xdi,Xd′j]

= 2(n − 2)

n2

∑

i<j

εiεjC
(0)
d C(0)

d′
fdd′ (Xdi,Xd′j)

fd(Xdi)fd′ (Xd′j)
(
1 + op(1)

)

= Op(1),

where the first approximation is from

E

[
n−1

∑

k �=i,j

(
Pdd′ijkh − E(Pdd′ijkh|Xdi,Xd′j)

)]2

≤ n−2
∑

k �=1,2

E
[
P2

dd′12kh

]= O

(
1

nhdhd′

)
. (B.16)

Then, by (B.15), for d �= d′,
∑

i �=j

εiεj(S
T
d Sd′ )ij = Op

(
1 + 1

nhd
√

hd′
+ 1

nhd′
√

hd

)
. (B.17)

By (B.16), we have

n−1
∑

k �=i,j

Pdd′ijkh = E(Pdd′ijkh|Xdi,Xd′j) + op(1),
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uniformly for i, j = 1, . . . ,n, so that

(ST
d Sd′ )ij ≈ 1

nhd

pd+1∑

s,t=1

s̃d,ss̃d,tνs−1νt−1
fdd′ (Xdi,Xd′j)

fd(Xdi)fd′ (Xd′j)

= 1

n

fdd′ (Xdi,Xd′j)
fd(Xdi)fd′ (Xd′j)

. (B.18)

Therefore, for d �= d′,
n∑

i=1

ε2
i (ST

d Sd′)ii ≈ n−1
n∑

i=1

ε2
i C(0)

d C(0)
d′

fdd′ (Xdi,Xd′j)
fd(Xdi)fd′ (Xd′j)

= Op(1). (B.19)

By the definition of Pddijkh and using a change of variable, we obtain
for i �= j and k �= i, j,

E[Pddijkh|Xdi,Xdj] = 1

h2
d

∫
f −1
d (u)Ks

(
Xdi − u

hd

)
Kt

(
Xdj − u

hd

)
du

≈ 1

hd
f −1
d (Xdi)Ks ∗ Kt

(
Xdj − Xdi

hd

)
,

which, combined with (B.16), leads to

n−1
∑

k �=i,j

Pddijkh ≈ 1

hd
f −1
d (Xdi)Ks ∗ Kt

(
Xdi − Xdj

hd

)
. (B.20)

It follows from (B.14) and (B.20) that for i �= j,

(ST
d Sd)ij ≈ 1

nhd

pd+1∑

s,t=1

s̃d,ss̃d,t f −1
d (Xdi)Ks ∗ Kt

(
Xdi − Xdj

hd

)
. (B.21)

By the definition of Lndd1 and (B.20), we have

Lndd1 ≈ 2(n − 2)

n2

∑

i<j

εiεj

pd+1∑

s,t=1

s̃d,ss̃d,t

× 1

hd
f −1
d (Xdi)Ks ∗ Kt

(
Xdj − Xdi

hd

)
. (B.22)

Observing that Lndd2 = Op( 1
nhd

√
hd

) = op(h−1
d ), by (B.15) and (B.20)

we obtain

∑

i �=j

εiεj(S
T
d Sd)ij ≈ 2(n − 2)

n2

∑

i<j

εiεj

pd+1∑

s,t=1

s̃d,ss̃d,t
1

hd
f −1
d (Xdi)

× Ks ∗ Kt

(
Xdj − Xdi

hd

)
+ op(h−1

d ). (B.23)

By (B.21) and the same argument as that for (B.12), we obtain

n∑

j=1

ε2
j (ST

d Sd)jj ≈ σ 2

hd
|�d|

pd+1∑

s,t=1

s̃d,ss̃d,tKs ∗ Kt(0). (B.24)

Applying Lemma B.3, we obtain εT Rnε = op(h−1
D ) and

εT [An1 − An2]ε

= 2εT SDε − εT (ST
DSD)ε − 2εT

(D−1∑

d=1

Sd

)T

SDε + op(h−1
D ).

This, together with (B.12), (B.13), (B.17), (B.19), (B.23), and (B.24),
entails (B.9).

2. Asymptotic normality of W(n). Denote

G(x) = 2
pD+1∑

t=1

s̃D,tKt(x) −
pD+1∑

s,t=1

s̃D,ss̃D,tKs ∗ Kt(x).

Then, by the definition of W(n) and direct computation,

var
[
W(n)

∣∣X
] = 4σ 4

n2h2
D

∑

i<j

[
1

f (XDi)
G

(
XDj − XDi

hD

)]2

≡ 4σ 4σ∗2
n .

Applying proposition 3.2 of de Jong (1987), we obtain

1

2σ 2
σ∗−1

n W(n)

∣∣X L−→N (0,1).

Note that

σ∗2
n ≈ 1

2h2
D

E

[
f −1(XD1)G

(
XD2 − XD1

hD

)]2

≈ 2
|�D|
hD

∥∥∥∥∥

pD+1∑

t=1

s̃D,tKt − 1

2

pD+1∑

s,t=1

s̃D,ss̃D,tKs ∗ Kt

∥∥∥∥∥

2

2

≡ σ 2
n .

It follows that, conditional on X ,

1

2σ 2
σ−1

n W(n)
L−→ N (0,1). (B.25)

3. Asymptotic expression RSS1/n = σ 2 + op(1). By the definition
of RSS1, we have

RSS1 = εT An2ε + mT An2m + 2εT An2m

= εT An2ε + BT B + 2BT (WM − In)ε.

Referring to the results in the proof of Lemma B.6, we obtain

RSS1/n = n−1εT An2ε + op(1).

It remains to show that n−1εT An2ε = σ 2 + op(1). Note that from the
proof of Lemma B.3,

An2 = In + ST S − S − ST + Rn2,

where Rn2 = O( 11T

n ) uniformly over all elements of the matrix. Using
an argument similar to that for (B.9), we can obtain

n−1εT An2ε = n−1εT Inε + op(1)

= σ 2 + op(1).

4. Conclusion. By step 3, (B.10), and the definition of λn(H0), we
have

λn(H0) − µn − 1

2σ 2
d1n + op(h−1

D ) ≈ 1

2σ 2
W(n). (B.26)

The combination of (B.26) and (B.25) leads to

P

{
σ−1

n

(
λn(H0) − µn − 1

2σ 2
d1n

)
< t
∣∣∣X
}

L→ 	(t),

which reduces to the first result of the theorem. If nh2(pd+1)
d ×

hD → 0 for d = 1, . . . ,D, then d1n = op(h−1
D ), which is dominated

by µn. Then rKλn(H0)|X a∼ χ2
rKµn

.

Proof of Theorem 2

This follows by the same argument as for Theorem 1.
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Proof of Theorem 3

Let mθ0(x1, . . . , xD) denote the true function of m(x1, . . . , xD).
Then the GLR statistic λn(M�) for testing problem (10) can be de-
composed as

λn(M�) = λn
(
mθ0

)− λ∗
n(θ), (B.27)

where λn(mθ0) is the GLR statistic for the fabricated testing problem
with the simple null hypothesis

H′
0 : m(x1, . . . , xD) = mθ0(x1, . . . , xD)

vs. H1 : m �= mθ0(x1, . . . , xD),

and λ∗
n(θ) is the GLR statistic for another fabricated testing problem

with simple null hypothesis

H′
0 : m(x1, . . . , xD) = mθ0(x1, . . . , xD)

vs. H′
1 : m(x1, . . . , xD) ∈M�.

By the standard parametric hypothesis theory, the second term

in (B.27) is op(h−1/2
D ), which is entailed by condition B. This term

is negligible in the asymptotic distribution. Hence, by the same argu-
ment as for Theorem 1, the result of the theorem holds.

Lemma B.7. Suppose that condition A in Appendix A holds and

that nh2pD+3
D → 0. Then, under H1n, there exists a λ0 > 0 such that

d2n ≡ GT
n
(
W[−D]

M − In
)T(W[−D]

M − In
)
Gn

≥ λ0

n∑

i=1

G2
n(XDi) + o(h−1

D ).

Proof. Note that by (5),

S∗
D
(
In − W[−D]

M

)= (
In − S∗

DW[−D]
M

)
WD,

and by (B.5),

WDGn = Gn − (
In − S∗

DW[−D]
M

)−1
[
�Gn1 − 1

(pD + 1)!Q∗
D

]

+ o(hpD+1
D ) a.s.

Then, by Lemma B.4,

S∗
D
(
In − W[−D]

M

)
Gn

= (
In − S∗

DW[−D]
M

)
Gn + O(hpD+1

D ) + o

(
1√
n

)
a.s.

This entails that

d∗
2n ≡ GT

n
(
In − W[−D]

M

)T S∗T
D S∗

D
(
In − W[−D]

M

)
Gn

= GT
n
(
In − S∗

DW[−D]
M

)T(In − S∗
DW[−D]

M

)
Gn + o(h−1

D ) a.s.

Because ‖S∗
DW[−D]

M ‖ < 1 when n is large enough, the matrix

(In −S∗
DW[−D]

M )T (In −S∗
DW[−D]

M ) is positive definite. Denote its min-
imum eigenvalue by λ0 (> 0). Then

d∗
2n ≥ λ0

n∑

i=1

G2
n(XDi) + o(h−1

D ).

Using (B.11), for any n×1 scalar vector Z, we have S∗
DZ ≈�Z1, which

implies that

ZT S∗T
D S∗

DZ ≈ n�Z 2.

Hence,

‖S∗
D‖2 ≡ sup

‖Z‖=1

√
ZT S∗

DSDZ

≈ sup
‖Z‖=1

√
n�Z 2 ≤ 1,

using the Cauchy–Schwartz inequality. Therefore, the matrix
In −S∗T

D S∗
D is asymptotically nonnegative definite, and its eigenvalues

are in [0,1]. It follows that

d2n = d∗
2n + GT

n
(
In − W[−D]

M

)T
(In − S∗T

D S∗
D)
(
In − W[−D]

M

)
Gn

≥ λ0

n∑

i=1

G2
n(XDi) + o(h−1

D ). (B.28)

Furthermore, if hD
∑n

i=1 G2
n(XDi) = O(1) a.s., then, by direct but te-

dious algebra, we obtain

d2n = O

( n∑

i=1

G2
n(XDi)

)
= O(h−1

D ). (B.29)

Proof of Theorem 4

Write

RSS0 − RSS1

= YT [An1 − An2]Y
= εT [An1 − An2]ε + 2εT [An1 − An2]m + mT [An1 − An2]m
≡ In1 + In2 + In3. (B.30)

Under H1n, by the definition of B and B−D,

In3 = BT−DB−D − BT B + 2BT−D
(
W[−D]

M − In
)
Gn

+ GT
n
(
W[−D]

M − In
)T(W[−D]

M − In
)
Gn.

Note that from Lemma B.5, both B and B−D are of order

Op(
∑D

d=1 hpd+1
d + 1√

n
). It follows that

In3 = 2BT−D
(
W[−D]

M − In
)
Gn

+ GT
n
(
W[−D]

M − In
)T(W[−D]

M − In
)
Gn

+ Op

(
1 +

D∑

d=1

nh2(pd+1)
d

)
. (B.31)

By the definitions of An1 and An2 in Lemma B.3 and the result in the
proof of Lemma B.6, we obtain

In2 = 2εT(W[−D]
M − In

)T B−D

+ 2εT(W[−D]
M − In

)T(W[−D]
M − In

)
Gn − 2BT (WM − In)ε

= 2εT(W[−D]
M − In

)T(W[−D]
M − In

)
Gn

+ Op

(
1 +

D∑

d=1

√
nhpd+1

d

)
. (B.32)

The combination of (B.30) with (B.31) and (B.32) leads to

RSS0 − RSS1

= In1 + εT(W[−D]
M − In

)T(W[−D]
M − In

)
Gn

+ 2BT−D
(
W[−D]

M − In
)
Gn



Fan and Jiang: Nonparametric Inferences for Additive Models 905

+ GT
n
(
W[−D]

M − In
)T(W[−D]

M − In
)
Gn

+ Op

(
1 +

D∑

d=1

√
nhpd+1

d +
D∑

d=1

nh2(pd+1)
d

)

≡ In1 + Cn + Dn + d2n

+ Op

(
1 +

D∑

d=1

√
nhpd+1

d +
D∑

d=1

nh2(pd+1)
d

)
. (B.33)

We now assess each of the foregoing terms. Note that by (B.9),

In1 = W(n) + 2σ 2µn + op(h−1
D ). (B.34)

Using (B.3), we obtain

Dn = 2BT−DS[−D]Gn − 2BT−DGn + 2BT−DU[−D]Gn.

By the Cauchy–Schwartz inequality, we have

|BT−DGn| ≤ ‖B−D‖‖Gn‖ = op(1)

and

BT−DU[−D]Gn = O(n−1)

n∑

i=1

|(B−D)i|
n∑

j=1

|Gn(XDj)| = op(h−1
D ).

Using (B.11), we get

BT−DS[−D]Gn = op(h−1
D ).

Hence

Dn = op(h−1
D ). (B.35)

Observing that both Sd and ST
d′Sd (for d,d′ �= D) are of order R3n ≡

O( 11T

nhD
), we obtain from (B.3) that

d2n = GT
n Gn + GT

n R3nGn.

Note that R3n does not involve XD1, . . . ,XDn. By conditioning argu-
ments and directly computing the mean and variance, the second term
above is op(h−1

D ). Hence we have

d2n =
n∑

i=1

G2
n(XDi) + op(h−1

D ). (B.36)

Similarly, we have

Cn = εT Gn + εT R3nGn = εT Gn + op(h−1
D ),

which, conditional on X , is asymptotically identically distributed as
N (0,

C(G)
hD

). This, together with (B.25) and (B.33)–(B.36), yields the
result of the theorem.

Proof of Theorem 5

The argument used here is similar to that for theorem 8 of Fan
et al. (2001), but the technical details are much more complex.
Under H1n : mD(XD) = Gn(XD) and under condition A, it follows
from (B.33), (B.34), and (B.35) that for hD → 0,

−λn(H0)σ 2 = −µnσ 2(1 + op(1)
)− W(n)/2 − d2n/2

+ Op

(
1 +

D∑

d=1

√
nhpd+1

d +
D∑

d=1

nh2(pd+1)
d

)
− Cn/2,

uniformly in Gn ∈ Gn. Thus, by definition,

β(α,Gn)

= P
{
σ−1

n
(−λn(H0) + µn

)≥ zα |X }

= P

{
σ−1

n

[
−W(n)

2σ 2
− d2n

2σ 2
− Cn

2σ 2

+ Op

(
1 +

D∑

d=1

√
nhpd+1

d +
D∑

d=1

nh2(pd+1)
d

)]
≥ zα

∣∣∣X
}

= P1n + P2n,

with

P1n = P

{
σ−1

n

(
−W(n)

2σ 2

)
+ √

nh(2pD+3)/2
D b1n

+ nh(4pD+5)/2
D b2n −√

hDb3n ≥ zα,

|b1n| ≤ M, |b2n| ≤ M
∣∣∣X
}
,

P2n = P

{
σ−1

n

(
−W(n)

2σ 2

)
+ √

nh(2pD+3)/2
D b1n

+ nh(4pD+5)/2
D b2n −√

hDb3n ≥ zα,

|b1n| ≥ M, |b2n| ≥ M
∣∣∣X
}
,

b1n = (√
nh(2pD+3)/2

D σn
)−1Op

(
1 +

D∑

d=1

√
nhpd+1

d

)
= Op(1),

b2n = (
nh(4pD+5)/2

D σn
)−1Op

( D∑

d=1

nh2(pd+1)
d

)
= Op(1),

and

b3n = (√
hDσnσ 2)−1 1

2
[d2n + Cn].

Note that E[Cn|X ] = 0 and

var(Cn|X ) = σ 2GT
n AT

n1An1Gn = O

( n∑

i=1

G2
n(XDi)

)
.

Hence we have Cn = Op(
√

d2n ). This, together with (B.28) and (B.29),
yields

√
hDb3n → ∞ only when n

√
hDρ2 → ∞.

When hD ≤ c−1/(pD+1)
0 n−1/(2(pD+1)), we have

√
nh(2pD+3)/2

D ≥
c0nh(4pD+5)/2

D ,
√

nh(2pD+3)/2
D → 0, and nh(4pD+5)/2

D → 0. Thus for
hD → 0 and nhD → ∞, it follows that β(α,ρ) → 0 only when

n
√

hDρ2 → +∞. This implies that ρ2
n = n−1h−1/2

D , and the possible

minimum value of ρn in this setting is n−(4pD+3)/(8(pD+1)). When

nh2(pD+1)
D → ∞, for any δ > 0, there exists a constant M > 0 such

that P2n < δ
2 uniformly in Gn ∈ Gn. Then

β(α,ρ) ≤ δ

2
+ P1n.

Note that supGn(ρ) P1n → 0 only when B(hD) ≡ nh(4pD+5)/2
D M −

nh1/2
D ρ2 → −∞. Because B(hD) attains the minimum value

−4(pD + 1)

4pD + 5
[(4pD + 5)M]−1/(4(pD+1))nρ(4pD+5)/(2(pD+1))
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at hD = [ρ2/((4pD + 5)M)]1/(2(pD+1)). Now simple algebra shows
that in this setting the corresponding minimum value of ρn is
n−2(pD+1)/(4pD+5) with hD = c∗n−2/(4pD+5) for some constant c∗.

Proof of Theorem 6

Using exactly the same argument as that for the proof of Theorem 3,
and noting that from Lemma B.6, d1n = O(1) in the current situation,
we obtain the result of the theorem.

Proof of Theorem 7

Let RSS∗
0 and RSS∗

1 be defined similarly as RSS0 and RSS1, based on
a bootstrap sample {Xi,Y∗

i }n
i=1. We use the superscript ∗ of a quantity

as its bootstrap analog. Then

λ∗
n(H0) ≈ n

2

RSS∗
0 − RSS∗

1
RSS∗

1
.

It can be shown that under H0, for given bandwidths satisfying condi-
tion A,

P
{
σ−1

n
(
λ∗

n(H0) − µn − d1n
)
< t|X ,Fn

} L−→ 	(t), (B.37)

which is proven through the following three steps:

1. Noting that Y∗ = m̂(−D) + ε̂∗, it follows that

RSS∗
0 − RSS∗

1

= ε̂∗T (An1 − An2)ε̂∗

+ [
m̂(−D)(An1 − An2)m̂(−D) + 2ε̂∗T (An1 − An2)m̂(−D)

]

≡ ε̂∗T (An1 − An2)ε̂∗ + d∗
1n.

2. Using the same argument as for (B.11), conditional on Fn, we
have

RSS∗
0 − RSS∗

1 ≈ W∗
(n) + 2σ 2µn + d∗

1n + op(h−1
D ),

where W∗
(n)

is defined similarly as W(n) but with εi replaced

by ε̂∗
i . By an argument similar to that for Lemma B.6 [note that

m̂(−D) = m0(1 + op(1))], we have

d∗
1n ≈ m0(An1 − An2)m0 + 2ε̂∗T (An1 − An2)m0

≈ Op

(
1 +

∑

d

nh2(pd+1)
d +

∑

d

√
nhpd+1

d

)
.

3. Note that RSS∗
1/n ≈ σ 2, E[ε̂∗

i |Fn] = 0, E[ε̂∗2
i |Fn] = σ 2, and

var
[
W∗

(n)

∣∣Fn
] = 4σ 4

n2h2
D

∑

i<j

[
1

f (XDi)
G

(
XDj − XDi

hD

)]2

≈ 4σ 4σ 2
n ,

where G(·) is defined as in the proof of Theorem 1. Then, apply-
ing proposition 3.2 of de Jong (1987), we get

1

2σ 2
σ−1

n W∗
(n)

L−→N (0,1).

Combining steps 1–3 yields (B.37). Note that ĥd,d =
1, . . . ,D, satisfy the bandwidth restriction in condition A.
Consistency of the bootstrap estimate of the conditional null dis-
tribution is obtained.

[Received March 2004. Revised July 2004.]
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