
Partially Linear Hazard Regression for
Multivariate Survival Data

Jianwen CAI, Jianqing FAN, Jiancheng JIANG, and Haibo ZHOU

This article studies estimation of partially linear hazard regression models for multivariate survival data. A profile pseudo–partial likeli-
hood estimation method is proposed under the marginal hazard model framework. The estimation on the parameters for the linear part is
accomplished by maximization of a pseudo–partial likelihood profiled over the nonparametric part. This enables us to obtain

√
n-consistent

estimators of the parametric component. Asymptotic normality is obtained for the estimates of both the linear and nonlinear parts. The
new technical challenge is that the nonparametric component is indirectly estimated through its integrated derivative function from a lo-
cal polynomial fit. An algorithm of fast implementation of our proposed method is presented. Consistent standard error estimates using
sandwich-type ideas are also developed, which facilitates inferences for the model. It is shown that the nonparametric component can be
estimated as well as if the parametric components were known and the failure times within each subject were independent. Simulations are
conducted to demonstrate the performance of the proposed method. A real dataset is analyzed to illustrate the proposed methodology.

KEY WORDS: Local pseudo–partial likelihood; Marginal hazard model; Multivariate failure time; Partially linear; Profile pseudo–partial
likelihood.

1. INTRODUCTION

Multivariate survival data arise from many contexts. Some
examples are epidemiologic cohort studies, in which the ages of
disease occurrence are recorded for members of families; ani-
mal experiments, in which treatments are applied to samples of
littermates; clinical trials, in which individual study subject are
followed for the occurrence of multiple events; and interven-
tion trials involving group randomization. A common feature
of the data in these examples is that the failure times are cor-
related. For example, in animal experiments, the failure times
of animals within a litter may be correlated because they share
common genetic traits and environmental factors. Similarly, in
clinical trials in which the patients are followed for repeated re-
current events, the times between recurrences for a given patient
may be correlated.

In general, there are three types of models in the multivariate
failure time literature: overall intensity process models, frailty
models, and marginal hazard models. The overall hazard mod-
els deal with the overall intensity, which is defined as the haz-
ard rate given the history of the entire cluster (Andersen and
Gill 1982). Interpretation of the parameters in an overall hazard
model is conditioned on the failure and censoring information
of every individual in the cluster. The frailty model considers
the conditional hazard given the unobservable frailty random
variables, which is particularly useful when the association of
failure types within a subject is of interest (see Hougaard 2000).
However, such models tend to be restrictive with respect to the

Jianwen Cai is Professor, Department of Biostatistics, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599 (E-mail: cai@bios.unc.edu).
Jianqing Fan is Frederick L. Moore Professor of Finance, Department of Op-
eration Research and Financial Engineering, Princeton University, Princeton,
NJ 08544 (E-mail: jqfan@princeton.edu). Jiancheng Jiang is Assistant Pro-
fessor, Department of Mathematics and Statistics, University of North Car-
olina at Charlotte, NC 28223 (E-mail: jjiang1@uncc.edu) and Associate Re-
search Scholar, Department of Operation Research and Financial Engineer-
ing, Princeton University, Princeton, NJ 08544 (E-mail: jjiang@princeton.edu).
Haibo Zhou is Associate Professor, Department of Biostatistics, University of
North Carolina at Chapel Hill, NC 27599 (E-mail: zhou@bios.unc.edu). This
research was supported in part by National Institutes of Health (NIH) grant R01
HL69720. Additional support was also provided by National Science Founda-
tion grant DMS-03-54223 and NIH grant R01 GM072611 for Fan, National
Science Foundation of China grant 10471006 for Jiang, and NIH grant R01 CA
79949 for Zhou. The authors gratefully acknowledge the constructive sugges-
tions and comments from the associate editor and two anonymous referees that
greatly improved this article.

types of dependence that can be modeled, and model fitting is
usually cumbersome. When the correlation among the obser-
vations is not of interest, the marginal hazard model approach,
which models the “population-averaged” covariate effects, has
been widely used (e.g., Wei, Lin, and Weissfeld 1989; Lee, Wei,
and Amato 1992; Liang, Self, and Chang 1993; Lin 1994; Cai
and Prentice 1995, 1997; Prentice and Hsu 1997; Spiekerman
and Lin 1998; Clegg, Cai, and Sen 1999).

Most statistical methods developed for failure time data as-
sume that the covariate effects on the logarithm of the haz-
ard function are linear and the regression coefficients are con-
stants (see, e.g., Fleming and Harrington 1991; Andersen, Bor-
gan, Gill, and Keiding 1993). These assumptions are chosen
mainly for their mathematical convenience, however. True co-
variate effects can be more complex than the log-linear effect,
and new analytic challenges arise in assessing nonlinear effects.
As an example, in studying the effect of cholesterol on the time
to coronary heart disease (CHD) and cerebrovascular accident
(CVA) in 2,336 men and 2,873 women in the well-known Fram-
ingham Heart Study (Dawber 1980), the investigators are inter-
ested in identifying a nonlinear cholesterol effect. A nonpara-
metric method is desired for providing a continuous trend of
the cholesterol effect that is sufficiently flexible to indicate lo-
cal changes in this trend. Nonparametric modeling of such a
trend has less restriction than the parametric approach and thus
is less likely to distort the underlying relationship between the
failure time and the covariate.

In developing nonparametric methods for analyzing multi-
variate censored survival data, high dimensional covariates may
cause the so-called “curse of dimensionality” problem. One
method for attenuating this difficulty is to model the covariate
effects through a partially linear structure, a combination of lin-
ear and nonparametric parts in the marginal hazard model. It al-
lows one to explore nonlinearity of certain covariates when the
covariate effects are unknown and avoids the curse of dimen-
sionality problem inherent in the saturated multivariate non-
parametric regression model. It also allows the statistical model
to retain the nice interpretability of the traditional linear struc-
ture. The partial linear structure has been systematically stud-
ied in the multivariate regression setting by many authors (e.g.,

© 2007 American Statistical Association
Journal of the American Statistical Association

June 2007, Vol. 102, No. 478, Theory and Methods
DOI 10.1198/016214506000001374

538



Cai et al.: Partially Linear Hazard Regression 539

Wahba 1984; Speckman 1988; Cuzick 1992; Carroll, Fan, Gi-
jbels, and Wand 1997; Lin and Carroll 2001; Liang, Härdle,
and Carroll 1999). An overview of the partially linear model
has been given by Härdle, Liang, and Gao (2004). Some au-
thors have considered modeling nonlinear covariate effects for
the univariate failure time data under the Cox proportional haz-
ards model (e.g., Hastie and Tibshirani 1993; Gentleman and
Crowley 1991; Fan, Gijbels, and King 1997). The partially lin-
ear covariate effects for the univariate failure time data in the
framework of Cox type models have been studied by Huang
(1999) using polynomial splines, where the estimator of para-
metric part achieves root-n consistency and the semiparametric
information bound but lacks a consistent estimator for its as-
ymptotic covariance matrix.

For the multivariate failure time data analyzed in this article,
no formal methodology to address nonlinear covariate effects
has been elaborated in the literature. In this article we develop a
nonparametric approach for the nonlinear covariate effects un-
der the Cox-type marginal hazards model. We consider a semi-
parametric structure by allowing parametric as well as nonpara-
metric components to be included in the hazard regression func-
tion.

We consider two general setups in which multivariate failure
time data commonly arise. In one setup, we assume that there is
a random sample of n subjects from an underlying population
and that we are interested in J different types of failures. In
this setup, J is a prespecified number based on the goal of the
study, and it does not vary across subjects. In the other setup,
we assume that there are n clusters and that in each cluster there
are J different types of members, for example, father and sons
in a family. Because not all members are necessarily available
in a cluster, the cluster size can vary. To incorporate varying
cluster size, we define an indicator variable ξij to be 1 if the jth
member of the ith cluster is available and 0 otherwise. Let J
be the maximum cluster size; then the size of the ith cluster is
Ji = ∑J

j=1 ξij. We use (i, j) to denote the jth failure type of the
ith subject or the jth member of the ith cluster. Without loss of
generality, we refer to failure types of subjects and keep in mind
that the model and the results also apply to members-in-clusters
type of setup.

Let Tij denote the potential failure time, Cij the potential cen-
soring time, and Xij = min(Tij,Cij) the observed time for (i, j).
Let �ij be the indicator, which equals 1 if Xij is a failure time
and 0 otherwise. Let Ft,ij represent the failure, censoring, and
covariate information for the jth failure type, as well as the co-
variate information for the other failure types of the ith subject
up to time t. The marginal hazard function is defined as

λij(t) = h−1 lim
h↓0

P[t < Tij ≤ t + h|Tij > t,Ft,ij].
The censoring time is assumed to be independent of the failure
time conditioning on the covariates (i.e., the so-called “inde-
pendent censoring scheme”).

To model partly nonlinear covariates effects, we assume the
model

λij(t) = Yij(t)λ0j(t) exp
[
βτ Wij(t) + g(Zij(t))

]
, (1)

where Zij(·) is a main exposure variable of interest whose effect
on the logarithm of the hazard might be nonlinear, Wij(·) =
(Wij1(·), . . . ,Wijq(·))τ is a vector of covariates that have linear

effect, Yij(·) is an at-risk indicator process [i.e., Yij(t) = 1(Xij ≥
t)], λ0j(·) is an unspecified baseline hazard function, and g(·) is
an unspecified smooth function.

Model (1) allows for a different set of covariates for different
failure types of the subject. It also allows for a different base-
line hazard function for different failure types of the subject.
It is useful when the failure types in a subject have different
susceptibilities to failure. A related class of marginal model is
given by restricting the baseline hazard functions in (1) to be
common for all of the failure types within a subject, that is,

λij(t) = Yij(t)λ0(t) exp
[
βτ Wij(t) + g(Zij(t))

]
. (2)

Although this model is more restrictive, the common baseline
hazard model (2) leads to more efficient estimation when the
baseline hazards are indeed the same for all of the failure types
within a subject. Model (2) is very useful for modeling clus-
tered failure time data in which subjects within clusters are ex-
changeable.

In this article we focus on statistical inference for model (1).
We propose a profile pseudo–partial likelihood estimation to
estimate β . We show that the proposed estimator of β is root-
n consistent. The asymptotic normality is obtained for the pa-
rameters of the linear and nonlinear parts. Consistent estima-
tors of the asymptotic variances are provided. New technical
challenges arise from the fact that the function g is not di-
rectly estimable from the local pseudo–partial likelihood and
must be estimated from its derivative. Thus the estimator of
nonparametric function g(·) uses all observed information, and
the score function of β cannot be expressed asymptotically as
an integral of a predictable process with respect to a martin-
gale. Obtaining the asymptotic properties of the estimators is
very challenging. Furthermore, the cost due to estimation of the
nonparametric component g in the Cox model is very different
than that in the least squares regression model (Speckman 1988;
Carroll et al. 1997). Indeed, even in the univariate case J = 1,
the results are new.

Compared with the polynomial spline estimators for univari-
ate failure time data of Huang (1999), the asymptotic covari-
ance matrix of our estimators for the parametric part admits a
sandwich formula that furnishes a consistent covariance matrix
estimator using the plug-in method, whereas Huang’s estimator
achieves the semiparametric information bound but lacks a con-
sistent covariance estimator; on the other hand, our estimator
for the nonparametric part not only is optimal in convergence
rate, but also has asymptotic normality, which is unavailable
for Huang’s estimation for the nonparametric part.

This article is organized as follows. In Section 2 we describe
the procedure for estimating the coefficient β and the nonpara-
metric component g(·) from model (1). In Section 3 we focus
on the asymptotic properties of the proposed estimators along
with some technical conditions. In Section 4 we conduct inten-
sive simulations and illustrate the proposed estimation through
a real data analysis. We give proofs of the theorems in the Ap-
pendix.

2. MAXIMUM PSEUDO–PARTIAL
LIKELIHOOD ESTIMATION

Let Rj(t) = {i : Xij ≥ t} denote the set of subjects at risk just
before time t for failure type j. If failure times from the same
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subject were independent, then the logarithm of the partial like-
lihood for (1) is

�(β,g(·)) =
J∑

j=1

n∑

i=1

ξij�ij
{
βτ Wij(Xij)

+ g(Zij(Xij)) − Rij(β,g)
}
, (3)

where

Rij(β,g) = log

( ∑

l∈Rj(Xij)

ξlj exp
[
βτ Wlj(Xij) + g(Zlj(Xij))

]
)

.

Because failure times from the same subject are dependent, the
foregoing function is referred to as pseudo–partial likelihood.
We use this pseudo–partial likelihood for our estimation. How-
ever, we do not require that the failure times be independent
or specify a dependence structure among failure times. This
furnishes robustness of our estimation method against the mis-
specification of correlations among failure times. For the uni-
variate case with J = 1, the partial likelihood in (3) is equiv-
alent to the full likelihood if the least informative baseline is
used (see sec. 3.1 of Fan et al. 1997).

Assume that g(·) is smooth so that it can be approximated
locally by a polynomial of order p. For any given point z0, by
Taylor’s expansion,

g(z) ≈ g(z0) +
p∑

k=1

g(k)(z0)

k! (z − z0)
k ≡ α + γ τ Z̃, (4)

where γ = (γ1, . . . , γp)
τ and Z̃ = {z−z0, . . . , (z−z0)

p}τ . Using
the local model (4) for the data around z0, and noting that the
local intercept α cancels in (3), we obtain the logarithm of the
local pseudo–partial likelihood,

�(β,γ ) =
J∑

j=1

n∑

i=1

ξijKh(Zij(Xij) − z0)

× �ij[βτ Wij(Xij) + γ τ Z̃ij(Xij) − R∗
ij(β,γ )], (5)

where

R∗
ij(β,γ ) = log

( ∑

l∈Rj(Xij)

ξlj exp[βτ Wlj(Xij) + γ τ Z̃lj(Xij)]

× Kh(Zlj(Xij) − z0)

)

,

Z̃ij(u) = {Zij(u) − z0, . . . , (Zij(u) − z0)
p}τ , Kh(·) = K(·/h)/h, K

is a probability density called a kernel function, and h repre-
sents the size of the local neighborhood called a bandwidth.
The kernel function is introduced to reflect the fact that the lo-
cal model (4) is applied only to the data around z0. It gives
greater weight to the data closer to the point z0. For the univari-
ate case, the local pseudo–partial likelihood was derived by Fan
et al. (1997) from a local maximum likelihood standpoint.

Let (β̂(z0), γ̂ (z0)) maximize the local pseudo–partial likeli-
hood (5). Then an estimator of g′(·) at the point z0 is simply the
first component of γ̂ (z0), namely ĝ′(z0) = γ̂1(z0). The curve ĝ
can be estimated by integration on the function ĝ′(z0) using the
method of Hastie and Tibshirani (1990). To ensure identifiabil-
ity of g(·), we set g(0) = 0 without loss of generality.

In the context of the generalized linear models, Carroll et al.
(1997) showed that such a naive method produces an estimator
for g that achieves the optimal rate of convergence. However,
the asymptotic variance for estimating g has been inflated. Be-
cause only the local data are used in the estimation of β , the
resulting estimator for β cannot be root-n consistent. We call
(β̂(z0), γ̂ (z0)) the naive estimator. To fix the drawbacks of the
naive estimator, we next propose a new estimator for β that is
root-n consistent.

Our proposed estimator is profile likelihood–based. Specifi-
cally, for a given β , we obtain an estimator ĝ(k)(·,β) of g(k)(·),
and hence ĝ(·,β), by maximizing (5) with respect to γ . Denote
by γ̂ (z0,β) the maximizer. Substituting the estimator ĝ(·,β)

into (3), we can obtain the logarithm of the profile pseudo–
partial likelihood,

�p(β) =
J∑

j=1

n∑

i=1

ξij�ij

{

βτ Wij + ĝ(Zij,β)

− log

( ∑

l∈Rj(Xij)

ξlj exp[βτ Wlj + ĝ(Zlj,β)]
)}

. (6)

Here and hereinafter, for ease of presentation, we sometimes
drop the dependence of covariates on time, with the understand-
ing that the methods developed in this article are applicable
to external time-dependent covariates (Kalbfleisch and Prentice
2002). Let β̂ maximize (6) and γ̂ = γ̂ (z0, β̂). Our proposed es-
timator for the parametric component is simply β̂ , and that for
the nonparametric component is ĝ(·) = ĝ(·, β̂).

The proposed profile likelihood estimator can be computed
by the following backfitting algorithm. The algorithm takes care
of the fact that g(·,β) is defined implicitly. Let zj (j = 1, . . . ,ng)
be a grid of points on the range of the exposure variable Z. Our
algorithm proceeds as follows:

1. Initialization. Use the average of the naive estimator β̄ =
n−1

g
∑ng

j=1 β̂(zj) as the initial value. Set β̂ = β̄ .
2. Estimation of the nonparametric component. Maximize

the local pseudo–partial likelihood �(β̂,γ ) at each grid
point zj and obtain the nonparametric estimator ĝ(·, β̂)

at these grid points. Obtain the nonparametric estimator
at points {Zij} using the linear interpolation. We take the
bandwidth h suitable for estimating β . One example for
such a suitable bandwidth is the ad hoc bandwidth in (7).

3. Estimation of the parametric component. With the esti-
mator ĝ(·, β̂), maximize the profile estimator �p(β) with
g(·,β) = ĝ(·, β̂), using the Newton–Raphson algorithm
and the initial value β̂ from the previous step.

4. Iteration. Iterate between steps 2 and 3 until convergence.
5. Reestimation of the nonparametric component. Fix β at

its estimated value from step 4. The final estimate of ĝ(·)
is ĝ(·, β̂). At this final step, take the bandwidth h suitable
for estimating g(·), such as the estimated optimal band-
width ĥopt based on (10) in Section 3.

Because the initial estimator β̄ is consistent, we do not ex-
pect many iterations in step 4. Because the initial estimator in
step 3 has at least the nonparametric rate Op(n−(p+1)/(2p+3)),
two iterations in the Newton–Raphson algorithm suffices. This
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is backed by the theoretical work of Bickel (1975) and Robin-
son (1988) in parametric models and by Fan and Chen (1999)
and Fan and Jiang (1999) in nonparametric models. In fact,
according to Robinson (1988), if an initial parametric estima-
tor has rate O(n−a), then the difference between the k-step
Newton–Raphson estimator and the maximum likelihood esti-
mator is only of order Op(n−ak). With k = 2, the order of error
is o(n−1/2). Our experience in simulations shows that the re-
sults are consistent with the foregoing theory.

The estimation procedure involves the choice of a smoothing
parameter h on two quite different levels. In steps 2 and 3 of the
algorithm, the aim is to estimate β , and thus the bandwidth h
should be suitable for this task. From our theoretical results in
Section 3, a wide range of choice of bandwidth satisfies those
theoretical requirements. For example, we can use the following
ad hoc bandwidth:

ĥopt × n1/7 × n−1/3 = ĥopt × n−4/21, (7)

where ĥopt is the estimated optimal bandwidth for g′(·) based
on (10). In step 5, however, the goal is to estimate the nonpara-
metric component g′(·), and hence the bandwidth h should be
optimal in this respect. In addition, we suggest using an even p
to avoid boundary effects in estimation of g(·).

With the estimators of β and g(·), we can estimate the cumu-
lative baseline hazard function 
0j(t) = ∫ t

0 λ0j(u)du under mild
conditions by a consistent estimator,


̂0j(t) =
∫ t

0

[
n∑

i=1

ξijYij(u) exp
{
β̂

τ
Wij(u) + ĝ(Zij(u))

}
]−1

×
n∑

i=1

ξij dNij(u), (8)

where Yij(u) = 1(Xij ≥ u) is the at-risk indicator and Nij(u) =
1(Xij ≤ u,�ij = 1) is the associated counting process.

3. ASYMPTOTIC PROPERTIES

The technical challenges of studying the property of the pro-
file pseudo–likelihood estimator maximizing (6) arise from the
implicit estimate of ĝ(·,β) that uses all observed information.
Hence commonly used martingale methods cannot be directly
applied.

To derive the asymptotic properties of our estimators, we
need some notations and technical conditions, which we rele-
gate to Appendix A for ease of exposition. The following theo-
rems demonstrate that our estimators are consistent and asymp-
totically normal.

Theorem 1. Under conditions (a)–(h) in Appendix A, with
probability tending to 1, there exists an estimator, β̂ , which
maximizes the profile pseudo–partial likelihood �p(β), such

that β̂
P→ β0.

Theorem 2. Under conditions (a)–(h) in Appendix A, if
nh5/2 → ∞ and nh2p → 0 for an even p, then the sequence
of estimators in Theorem 1 satisfies that

√
n(β̂ −β0) converges

to a Gaussian distribution with mean 0 and covariance matrix
� = I(β0)

−1�(β0)I(β0)
−1.

Remark 1. From the proof of Theorem 2, the second term
inside the bracket in �(β0) arises due to estimation of the non-
parametric component g(·). The contribution to the covariance
matrix due to estimation of g(·) is very different from those
in the partial linear model (Speckman 1988; Caroll et al. 1997),
because the current model studies estimation in the risk domain.

From Theorem 2, the asymptotic covariance matrix of β̂ is of
sandwich form. This can be estimated by �̂ = Î−1�̂Î−1, where
Î and �̂ are empirical plug-in estimators of I(β0) and �(β0),
which are defined in Appendix A.

Note that Î and �̂ can be shown to be consistent for I(β0)

and �(β0). Thus �̂ is a consistent estimator of � under the
conditions of Theorem 2. Then for the semiparametric testing
problem

H0 :β = β0 ↔ H1 :β �= β0,

where g(·) is a nuisance function, a generalized Wald test sta-
tistic Wn can be defined as

Wn = n(β̂ − β0)
τ �̂

−1
(β̂ − β0). (9)

In particular, this can be applied for testing whether a set of vari-
ables is statistically significant in the semiparametric model. By
Theorem 2, we have the following results.

Theorem 3. Under conditions of Theorem 2, the asymptotic
null distribution of Wn is χ2(q), where q is the dimension of β .

Theorem 3 can be easily extended for testing a subset of the
coefficient of β . The nonparametric component has the follow-
ing result.

Theorem 4. Assume that conditions (a)–(e) hold. If β̂ is
√

n-
consistent and nh2p+3 is bounded, then

√
nh[H(γ̂ − γ ) − bn(z0)] D−→ N (0,V(z0)),

where bn(z0) = g(p+1)(z0)
(p+1)! A−1bp+1hp+1 and V(z0) = σ(z0) ×

A−1BA−1. Furthermore, if g(·) has a continuous (p + 2)th
derivative, then the asymptotic bias term can be expressed as

bn(z0) = g(p+1)(z0)

(p + 1)! A−1bp+1hp+1 + g(p+2)(z0)

(p + 2)! A−1bp+2hp+2.

Remark 2. It is interesting to note that if the failure types
within each subject are from the same population, then the as-
ymptotic property of the proposed estimator for g′(·) reduces
to that of Fan et al. (1997). From the proof of the theorem, we
can see that the asymptotic distribution does not depend on the
correlation of the failure types within each subject, and the es-
timator of nonparametric component performs as well as if the
failure types were independent. For insight into this phenom-
ena, see the work of Masry and Fan (1997) and Jiang and Mack
(2001).

Corollary 1. Under the conditions of Theorem 4 with p = 2,
if K is symmetric, then
√

nh3

[

ĝ′(z0) − g′(z0) − 1

6

∫

u3K∗
1 (u)du g(3)(z0)h

2
]

D−→ N (0, v2(z0)),

where v2(z0) = σ(z0)
∫

K∗
1 (t)2 dt.
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As a result of Corollary 1, the theoretical optimal band-
width, which minimizes the asymptotic weighted mean inte-
grated squared error,

∫ [{
1

6

∫

u3K∗
1 (u)du g(3)(z)h2

}2

+ 1

nh3
v2(z)

]

w(z)dz,

is given by

hopt =
[

27
∫

v2(z)w(z)dz
∫ {g(3)(z)}2w(z)dz (

∫
u3K∗

1 (u)du)2

]1/7

n−1/7. (10)

Using the foregoing formula and the widely used plug-in tech-
nique or the preasymptotic substitution method (see, e.g., Fan
and Yao 2003, p. 245), we can develop a data-driven approach
to the selection of the bandwidth h, but this is beyond of the
scope of current study.

4. NUMERICAL STUDIES

4.1 Simulations

In this section we evaluate the finite-sample performance of
the proposed estimation approach and compare it with the ap-
proach of Huang (1999) by simulations. First, we consider the
case in which J failure types are considered for each subject
or, in the clustered failure time data setup, there are J mem-
bers within each cluster (fixed cluster size). Multivariate failure
times are generated from a multivariate extension of the model
of Clayton and Cuzick (1985) in which the joint survival func-
tion for (T1, . . . ,TJ) given (Z1, . . . ,ZJ) and (W1, . . . ,WJ) is

S(t1, . . . , tJ;Z1, . . . ,ZJ,W1, . . . ,WJ)

=
{

J∑

j=1

Sj(tj)
−1/θ − (J − 1)

}−θ

, (11)

where Sj(t) is the marginal survival probability for the jth fail-
ure type. Note that θ is a parameter that represents the de-
gree of dependence within a subject. The relationship between
Kendall’s τ and θ is τ = 1/(2θ + 1). The marginal distribution
of T1j is taken to be exponential with failure rate

λ0j exp{βτ Wj + g(Zj)}
for g(z) = −8z(1 − z2). Then the marginal survival function is

Sj(t) = exp
{−tλ0j exp[βτ

0Wj + g(Zj)]
}
.

We consider the settings with n = 100, 200 and J = 2 (fixed
cluster size, Ji ≡ J). The baselines λ01 = 1 and λ02 = 4 are

used. The true parameter is set as β = (.6, .4)τ . We first sim-

ulate Zij
iid∼ U(0,1), and Wij = (W(1)

ij ,W(2)
ij )τ with W(1)

ij inde-
pendently generated from a binomial distribution (taking 1 or 0
each with probability .5) and (W(2)

i1 ,W(2)
i2 ) from a bivariate nor-

mal distribution with the correlation coefficient .5 and the mar-
ginal distributions N(0,1). For given (Zi1,Zi2) and (Wi1,Wi2),
we generated (Ti1,Ti2) using the algorithm of Cai and Shen
(2000, p. 2967). The censoring time distribution was generated
from exponential distribution with mean chosen to produce a
certain amount of censoring.

We used p = 2 and used the Epanechnikov kernel function
for smoothing. The parameter θ was set as 100 and .01, which
correspond to weak and strong correlation within each subject.
By the argument in Section 2, the bandwidth h was taken as
.3n−1/3 for estimation of β in steps 2–3, and .3n−1/7 for esti-
mation of g′(·) in step 5 of the algorithm. We assess the sensi-
tivity of the estimation methods as the bandwidth changes over
a large range by using half of and double the foregoing band-
widths.

The estimators and their standard deviations (SDs) for the pa-
rameters were evaluated along with the average of the estimated
standard error (ŝe) for the estimators. The coverage rate (CPse)
of the 95% confidence intervals for β was also calculated based
on the normal approximation in Theorem 2. A naive but simple
method for estimating the covariance of β̂ (and hence the SE
of its elements) is to use Î−1. The corresponding coverage rate
(CPna) of the 95% confidence intervals based only on Î−1 is
also computed. We include the naive method here for compari-
son.

Tables 1 and 2 report the simulation results for the settings
with no censoring and 40% censoring. It is evident that the pro-
posed estimation performs well because the bias is small, the
estimated standard error is close to the sample standard de-
viation, and the coverage rate of the constructed intervals is
close to the nominal level. The naive method fails when there
is nonignorable correlation between survival times (small θ ).
This is evidenced by the fact that the estimated SEs [column
“Mean(Î−1)”] are too small, and the CPna’s are much lower
than the nominal level. When the within-subject dependence is
weak, the naive method works reasonably, as expected. In addi-
tion, it is seen that the variance of the parameter estimator gets
larger as the censoring percentage increases and gets smaller
when the sample size increases.

We now report the performance of the estimated functions.
The typical estimated functions with performance at 10th, 50th

Table 1. Summary of Simulation Results (β1 = .6 and β2 = .4)

Size
(n, J)

Model No censoring

θ β Mean(β̂) SD(β̂) Mean(ŝe) Mean(Î
−1

) 95% CPse 95% CPna

(100, 2) .01 β1 .6137 .2107 .1987 .1515 .938 .848
β2 .4146 .1015 .0890 .0782 .914 .872

(100, 2) 100 β1 .5959 .1558 .1460 .1512 .948 .956
β2 .4052 .0818 .0753 .0782 .920 .938

(200, 2) .01 β1 .6151 .1444 .1408 .1050 .952 .832
β2 .4050 .0706 .0633 .0537 .930 .876

(200, 2) 100 β1 .6034 .1068 .1028 .1047 .938 .936
β2 .4011 .0559 .0531 .0537 .932 .940
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Table 2. Summary of Simulation Results (β1 = .6 and β2 = .4)

Size
(n, J)

Model 40% censoring

θ β Mean(β̂) SD(β̂) Mean(ŝe) Mean(Î
−1

) 95% CPse 95% CPna

(100, 2) .01 β1 .6119 .2578 .2413 .1919 .934 .854
β2 .4175 .1233 .1200 .0994 .934 .900

(100, 2) 100 β1 .5920 .2041 .2092 .1918 .948 .934
β2 .4013 .1075 .1109 .0993 .938 .934

(200, 2) .01 β1 .6138 .1694 .1708 .1340 .952 .890
β2 .4043 .0844 .0866 .0685 .958 .908

(200, 2) 100 β1 .6121 .1304 .1267 .1337 .940 .960
β2 .4015 .0706 .0702 .0684 .956 .934

(median), and 90th percentiles of the mean integrated squared
errors (MISEs) among the 500 simulations are presented to as-
sess the quality of estimated functions. We presented only the
case where n = 200 in Figure 1 to save space. It is seen that the
typical estimated curves in Figure 1 capture the form of the true
curve well, reflecting the effectiveness of the proposed estima-
tion method.

To appreciate the sampling variability of the estimated non-
parametric functions at each point, we present the 2.5th, 50th
(median), and 97.5th percentiles of the estimated functions at
each grid points among the 500 simulations. The 2.5th and

97.5th percentiles form a 95% pointwise confidence interval
for the nonparametric function. This indicates the variability of
the estimated functions at each point. Again, to save space, we
present only the case with n = 100 in Figure 2. The results show
that the function is estimated with reasonably good accuracy;
the shape of function is captured well.

Comparing the estimated curves in Figures 1 and 2 for θ =
100 and .01, which correspond to weak and strong correlations
within each subject, shows that the estimators of the nonpara-
metric part do not depend heavily on the correlation. This ex-
emplifies our statement in Remark 2.

(a) (b)

(c) (d)

Figure 1. Typical Estimated Curves in Terms of Percentiles of MISEs Among the 500 Simulations With n = 200 and J = 2. (a) θ = .01, no
censoring; (b) θ = 100, no censoring; (c) θ = .01, 40% censoring; (d) θ = 100, 40% censoring. ( —–, true curve; − · −·, the 10th percentile; − − −,
the 50th percentile; · · · ·, the 90th percentile.)
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(a) (b)

(c) (d)

Figure 2. Sampling Variability of Estimated Functions at Each Point Based on the 500 Simulations With n = 100 and J = 2. (a) θ = .01, no
censoring; (b) θ = 100, no censoring; (c) θ = .01, 40% censoring; (d) θ = 100, 40% censoring. ( −−−, mean; · · · · , median; −·− · , 95% envelopes
formed by the 2.5th and 97.5th percentiles in 500 simulations; —–, true curve.)

By setting the bandwidths used in simulations double or half
of those used earlier, we found that the estimators of the para-
metric part are very similar to the foregoing results, indicat-
ing that the estimation of finite parameters is robust against the
bandwidth over a large range. The results are omitted to save
space.

To assess the performance of the proposed method under the
varying cluster size situation, we generate the random clus-
ter size Ji for the ith cluster such that P(Ji = j) = 1/6 for
j = 1, . . . ,6. For this setup, the maximum cluster size is 6. For
cluster i (i = 1, . . . ,n), Ji correlated failure times are generated
from model (11). We consider n = 100 and λ0j = j2, and set the
true parameter β as before.

Table 3 reports the simulation results for the settings with
57% censoring and different correlation structures. It can be
seen that for the parametric part the proposed method works
well under the varying cluster size situation. Figures 3 and 4
display the typical estimated curves and percentiles of the es-
timated functions among 500 simulations. Similar conclusions
as before can be drawn for the varying cluster size example.

Finally, we compare the proposed profile pseudo–partial like-
lihood method with the efficient estimation method of Huang
(1999). Because Huang’s method deals with univariate failure
time data, we focus on model (11) with J ≡ 1. We again set the

true parameter β as before. For Huang’s estimation, we need to
choose the number and locations of knots used in spline approx-
imation. We follow Huang’s suggestion and specify the degrees
of freedom as 3. Table 4 gives the simulation results from both
estimation methods. The results with larger degrees of freedom
for Huang’s method are similar but with increased variance (re-
sults not shown). From the table, we see that both estimators
perform similarly.

4.2 Applications to the Framingham Heart Study Dataset

In this section we apply our proposed procedure to analyze
data from the well-known Framingham Heart Study (Dawber
1980), which began in 1948. The cohort consists of 2,336 men
and 2,873 women. The participants were between age 30 and 62
years at the first examination, and they were recalled and exam-
ined every 2 years after entry into the study. Times until coro-
nary heart disease (CHD) and cerebrovascular accident (CVA)
were recorded; those times recorded from the same individual
might be correlated. The dataset used here included all partici-
pants in the study who underwent examination at age 44 or 45
and were disease-free at that examination, in the sense that there
was no history of hypertension or glucose intolerance and no
previous CHD or CVA. There was a total of 1,571 disease-free
subjects. The percentage of censoring was about 90.42%. The
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Table 3. Summary of Simulation Results Under the Varying Cluster Size Situation (β1 = .6 and β2 = .4)

Size
(n, J)

Model 57% censoring

θ β Mean(β̂) SD(β̂) Mean(ŝe) Mean(Î
−1

) 95% CPse 95% CPna

(100, 1–6) .01 β1 .5881 .1484 .1405 .1286 .918 .908
β2 .4062 .0775 .0727 .0647 .920 .908

(100, 1–6) 100 β1 .5879 .1378 .1352 .1283 .928 .928
β2 .3963 .0717 .0668 .0645 .918 .916

(a) (b)

Figure 3. Typical Estimated Curves in Terms of Percentiles of MISEs Among the 500 Simulations With n = 100 and Varying Cluster Size.
(a) θ = .01, 57% censoring; (b) θ = 100, 57% censoring. ( —–, true curve; − · − · , the 10th percentile; − − −, the 50th percentile; · · · · , the 90th
percentile.)

(a) (b)

Figure 4. Sampling Variability of Estimated Functions at Each Point Based on the 500 Simulations With n = 100 and Varying Cluster Size.
(a) θ = .01, 57% censoring; (b) θ = 100, 57% censoring. ( − − −, mean; · · · · , median; − · − · , 95% envelopes formed by the 2.5 and 97.5th
percentiles in 500 simulations; —–, true curve.)

Table 4. Comparison Between the Proposed and Huang’s Estimators (β1 = .6 and β2 = .4)

Size Parameter
(n, J) β Method Mean(β̂) SD(β̂) Mean(ŝe) 95% CPse

(100, 1) β1 PPL .6144 .2256 .2093 .934
HS .6292 .2280 ∗ ∗

β2 PPL .4016 .1153 .1081 .924
HS .4132 .1174 ∗ ∗

(200, 1) β1 PPL .6021 .1526 .1463 .944
HS .6136 .1537 ∗ ∗

β2 PPL .4041 .0811 .0752 .930
HS .4124 .0821 ∗ ∗

NOTE: PPL; the proposed method; HS; Huang’s global spline method.
∗ Not available for estimation.
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Table 5. Estimated Parameters for the FHS Data

Effect β̂ ŝe p value

Age at “age 45” .0304 .0887 .7322
Body mass index, kg/m2 .0371 .0137 .0065
Systolic blood pressure, mm Hg .0171 .0044 .0001
Smoking status: yes = 1; no = 0 .3578 .1186 .0026
Sex: female = 1; male = 0 −.5730 .0993 <.0001
Waiting time, year .0031 .0162 .8465

NOTE: β̂ represents the estimated parameters; ŝe, the standard error of β̂ .

risk factors of interest were sex, systolic blood pressure, body
mass index, cholesterol level, cigarette smoking, and waiting
time. Clegg et al. (1999) previously analyzed the dataset based
on a marginal mixed baseline hazards model, where the effects
of all of the covariates were specified as linear in the marginal
regression. However, there is no evidence in theory or practice
validating the linear effects of covariates. To explore the possi-
ble nonlinear effects of some covariate (e.g., total cholesterol),
we used the proposed method to assess the association between
these risk factors on the times to CHD and CVA. Specifically,
we used the following hazards model:

λij(t;Wij,Zij) = λ0j(t) exp[βτ Wij + g(Zij)],
where Zij = cholesterol and

Wij = (Age at “age 45”, Smoking, BMI,

SBP, Waiting time, Sex)τ .

Table 5 reports the estimated parameters and their estimated
standard errors, along with their p values from the Wald test
in (9). It is evident that all of the selected risk factors are sta-
tistically significant at the .01 significance level except for the
confounding factors Age and Waiting time. Figure 5 shows the
estimated function g and its derivative with 95% confidence in-
tervals based on the normal approximation in Corollary 1. The
nonlinear form of g is evidenced by the confidence intervals
of its derivative estimator, because the derivative function is
not a constant. It reveals that the effect of cholesterol is lowest
around the normal levels (160 ∼ 170 mg/dL) and is monotone-
increasing as the cholesterol level moves out of the normal

range. Because there are only six participants with cholesterol
levels >360, the estimator of the nonparametric function is un-
reliable on the sparse data region. Figure 5 displays only the
estimated functions in the region with cholesterol <360.

5. DISCUSSION

Marginal hazard models have been shown to be useful for
analyzing multivariate survival data. However, no formal work
in the literature is available for Cox type models with linear
and nonlinear risk factors in the marginal hazard regression.
This article fills in the gap in this area. Without specifying the
correlation structure among failure types within each subject,
we suggest a profile pseudo–partial likelihood estimation ap-
proach to fit the partial linear hazard regression model. Our the-
ory demonstrates that the finite parameters can be estimated at
a root-n rate, whereas the nonparametric part can be estimated
with the optimal rate independent of the parametric part. We
also derived consistent estimates for the covariance matrix of
the estimators, which facilitates the inference for the parame-
ters. We illustrated the methodology with an application to the
Framingham Heart Study data.

Variable selections based on the nonconcave penalized likeli-
hood also can be developed following the framework of Fan and
Li (2004). Ongoing research is focusing on the testing problem
of significance of the nonparametric component. This, together
with our current work, will provide a practical inference tool
for the analysis of multivariate survival data using the marginal
hazard model.

Our model (1) allows us to explore the nonlinear effect of
the one-dimensional covariate Z, but the proposed methodology
can be extended in at least two directions when Z is a multivari-
ate covariate vector. One direction is to use the partly linear ad-
ditive structure, as was done by Huang (1999), and estimate the
nonparametric part through a two-stage procedure with series
estimator in the first stage (e.g., Horowitz and Mammen 2004)
and our estimation method in the second stage. The other direc-
tion is to use the partially linear single-index structure of Carroll
et al. (1997), as pointed out by a referee. For the first direction,

(a) (b)

Figure 5. Estimated Function g (a) and Its Derivative (b) With 95% Confidence Intervals. ( —–, estimated curve; −·−· , 95% pointwise confidence
intervals.)
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we anticipate that the results will be similar to ours with an or-
acle property in the sense that one nonparametric component
can be estimated as if the others were known. For the second
direction, our methodology in this article continuously applies,
but with many more techniques involved.

APPENDIX A: NOTATIONS AND ASSUMPTIONS

Let (�,F,P) be a family of complete probability spaces with a
history F for an increasing right-continuous filtration Ft ⊂ F . Put
N̄·j(u) = ∑n

i=1 ξijNij(u)
/∑n

i=1 ξij and nj(u) = P(X1j ≤ u,�1j = 1).
Let Ft,ij = σ {I(Xij < u,�ij = 1), I(Xij(u) < u,�ij = 0),Wij(u),

Zij(u),Yij(u−), 0 ≤ u ≤ t} be information received up to time t for each
(i, j), and let Mij(t) = Nij(t) − ∫ t

0 Yij(u)λij(u)du, for i = 1, . . . ,n, j =
1, . . . , J. Assume that Nij(t) is F -adapted and that the observation
period is [0, τ0], where τ0 is the study end time. Then Mij(t) is a
martingale with respect to the marginal filtration Ft,ij and the σ -field
generated by

⋃n
i=1 Ft,ij, under the independent censoring scheme.

For ease of exposition, we consider only the model with time-
independent covariate Z; the time-dependent covariate model can
be developed similarly. The following notations and conditions are
needed for the proofs of our theoretical results. For any vector a,
define a⊗k = 1,a, and aaτ for k = 0,1,2, where aτ denotes the
transpose of a. Let ũ = (u, . . . ,up)τ , νk = ∫

ũ⊗kK(u)du, and ν∗
k =

∫
uũ⊗kK(u)du for k = 0,1,2. Put K∗

1 (t) = tK(t)/
∫

u2K(u)du, A =
ν2 − ν⊗2

1 , B = ∫
K2(u)(ũ − ν1)⊗2 du, and bk = ∫

uk(ũ − ν1)K(u)du

for k = 1, p + 1, and p + 2. Write c(K) = eτ
1A−1b1 and d(K) =

eτ
1A−1(ν∗

1 − ν1ν∗
0), with e1 as a vector with a 1 in the first position

and 0’s elsewhere. Assume that the following conditions hold:

(a) The kernel function K(·) is a bounded density with a compact
support [−1,1], say.

(b) nh → ∞ and h → 0 as n → ∞. Let H = diag(h, . . . ,hp) and
Z̃∗

ij = H−1Z̃ij.

(c) The density fj(·) of Z1j is of compact support and has a bounded
second derivative for j = 1, . . . , J, where J < ∞. Assume that for
each j, {ξij}n

i=1 are independent and identically distributed. Suppose
that ξij is independent of {Xij,�ij,Wij,Zij}. Let pj = P(ξ1j = 1),
j = 1, . . . , J.

(d) The function g(·) has a continuous (p + 1)th derivative with
g(0) = 0.

(e) Let β0 be the true value of the parameter β . The conditional
expectations

ρjk(u|z) = E
[
s1j(u,β0)(W1j(u))⊗k|Z1j = z

]

are equicontinuous in z, for j = 1, . . . , J and k = 0,1, where sij(u,

β0) = Yij(u) exp(βτ
0Wij(u) + g(Zij)) is the risk function for the jth

failure type in the ith subject. The conditional expectation ρj0(u|z)
has a continuous second derivative with respect to z. Let ηjk(u|z) =
ρjk(u|z)fj(z) for k = 0,1,2. Put 
j(t, z) = ∫ t

0 ρj0(u|z)λ0j(u)du. As-
sume that

σ−1(z) =
J∑

j=1

pjfj(z)
j(τ0, z) > 0

for z ∈ ⋃J
j=1 supp(fj). It can be shown that

σ−1(z) =
J∑

j=1

pjfj(z)E[�1j|Z1j = z].

Assume that σ(z) has a bounded second derivative in
⋃J

j=1 supp(fj).

(f)
∫ τ0

0 λ0j(t)dt < ∞ for each j ∈ {1,2, . . . , J}.

(g) There exists a neighborhood B of β0 such that for k = 0,1,2,3,

E
{

sup
(β,t)∈B×[0,τ0]

Yij(t)‖Wij(t)‖k exp[βτ Wij(t) + g(Zij)]
}

< ∞.

(h) Let α(z) = ∫ τ0
0 Dz[ρj1(u|z)

ρj0(u|z) ]ρj0(u|z)λ0j(u)du,

χ(z) = −d(K)

J∑

j=1

pj

∫ z

0
σ(z∗)fj(z

∗)α(z∗)dz∗,

and rjk(β,u) = E{s1j(u,β)(W1j(u) + χ(Z1j))
⊗k} for k = 0,1,2,

where Dz denotes the derivative with respect to z. The functions
rj0(·,u), rj1(·,u), and rj2(·,u) are continuous in β ∈ B, uniformly in
u ∈ [0, τ0]; rj0 is bounded away from 0 on B × [0, τ0]; and rj1 and rj2
are bounded on B×[0, τ0]. The matrix I(β0) is finite positive definite,
where

I(β) =
J∑

j=1

pj

∫ τ0

0

[
rj2(β,u)

rj0(β,u)
−

(
rj1(β,u)

rj0(β,u)

)⊗2]

rj0(β0,u)λ0j(u)du.

These conditions are similar to those of Andersen and Gill (1982)
and Fan et al. (1997). Conditions (a)–(e) are standard for nonpara-
metric component estimation using local partial likelihood. Conditions
(f)–(h) guarantee the local asymptotic quadratic properties for the par-
tial likelihood function, and thus the asymptotic normality of the esti-
mators (see Andersen and Gill 1982; Murphy and van der Vaart 2000
for details).

Write

ϕ(u, z;β0) = ρj1(u|z) + χ(z)ρj0(u|z) − ρj0(u|z) rj1(β0,u)

rj0(β0,u)
,

aj(z) =
∫ τ0

0
ϕ(u, z;β0)r−1

j0 (β0,u)dnj(u),

s(z) =
J∑

j=1

pj

∫ z

−∞
aj(z

∗)fj(z
∗)dz∗,

Gij(β) =
∫ τ0

0
Hij(u)dMij(u),

and

�(β) = E

{ J∑

j=1

ξ1jG1j(β)

}⊗2

,

where

Hij(u) = Wij(u) + χ(Zij) − rj1(β,u)

rj0(β,u)
− V(u,Zij)

and

V(u,Zij)

= σ(Zij)s(Zij)
{
c(K)Dz[logσ(Zij)] + d(K)Dz[logηj0(u|Zij)]

}
.

Let F̂j(z∗) be the empirical distribution function for Z1j based on

the observed {Zij}n
i=1, that is, F̂j(z∗) = ∑n

i=1 ξij1(Zij ≤ z∗)/
∑n

i=1 ξij.
Write

ρ̂jk(u|z) = Ê
[
ŝ1j(u)(W1j(u))⊗k|Z1j = z

]
,

where ŝij(u) = Yij(u) exp(β̂
τ

Wij(u)+ ĝ(Zij)) is the estimated risk cor-
responding to sij(u,β0) and Ê(·|·) denotes a consistent estimator of
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E(·|·), such as the Nadaraya–Watson estimator or the local linear esti-
mator in nonparametric regression. Put α̂(z) = ∫ τ0

0 Dz[ρ̂j1(u|z)/ρ̂j0(u|
z)]ρ̂j0(u|z)d
̂0j(u). Then the plug-in estimator of χ(z) is

χ̂(z) = −d(K)

J∑

j=1

p̂j

∫ z

0
σ̂ (z∗)α̂(z∗)dF̂j(z

∗),

where p̂j = n−1 ∑n
i=1 1(ξij = 1) and σ̂ (z) = {∑J

j=1 p̂jf̂j(z)Ê[�1j|
Z1j = z]}−1. Let the empirical estimator of rjk(t) be

r̂jk(t) =
n∑

i=1

ξijŝij(t)(Wij(t) + χ̂(Zij))
⊗k/

n∑

i=1

ξij.

Then the empirical estimator of I is

Î =
J∑

j=1

p̂j

n∑

i=1

ξij�ij

{
r̂j2(Xij)

r̂j0(Xij)
−

(
r̂j1(Xij)

r̂j0(Xij)

)⊗2}/ n∑

i=1

ξij.

The matrix �̂ is defined as follows. Let η̂j0(u|z) and ŝ(z) be the plug-

in estimators of ηj0(u|z) and s(z), that is, η̂j0(u|z) = f̂j(z)ρ̂j0(u|z) and

ŝ(z) = ∑J
j=1 p̂j

∫ z
−∞ âj(z∗)dF̂j(z∗), where

âj(z) =
∫ τ0

0

[

ρ̂j1(u|z)+ χ̂(z)ρ̂j0(u|z)− ρ̂j0(u|z) r̂j1(u)

r̂j0(u)

]

r̂−1
j0 (u)dN̄·j(u)

is the plug-in estimator of aj(z). Set the empirical plug-in estimator of
Gij as

Ĝij = �ijĤij(Xij) −
n∑

m=1

ξmj�mjŝij(Xmj)r̂
−1
j0 (Xmj)Ĥij(Xmj)

/ n∑

m=1

ξmj,

where Ĥij(u) = Wij(u)+ χ̂(Zij)− r̂j1(u)

r̂j0(u)
− V̂(u,Zij), with V̂(u,Zij) the

plug-in estimator of V(u,Zij), that is,

V̂(u,Zij)

= σ̂ (Zij)ŝ(Zij)
[
c(K)Dz(log σ̂ (Zij)) + d(K)Dz(log η̂j0(u|Zij))

]
.

Then the empirical estimator of � is �̂ = n−1 ∑n
i=1[∑J

j=1 ξijĜij]⊗2.

APPENDIX B: PROOFS OF THEOREMS

These proofs involve the martingale theory, the theory of em-
pirical processes, and the techniques commonly used in nonpara-
metric literature. Given the identifiability condition ĝ(0,β) = 0,
we have that ĝ(z0,β) = ∫ z0

0 ĝ′(z,β)dz. Let χ n(z0) = ∂ ĝ(z0,β)

∂β
|β=β0 =

∫ z0
0

∂ ĝ′(z,β)

∂β
|β=β0 dz and

κn(z0) = ∂2ĝ(z,β)

∂β ∂βτ

∣
∣
∣
∣
β=β0

=
∫ z0

0

∂2ĝ′(z,β)

∂β ∂βτ

∣
∣
∣
∣
β=β0

dz0.

Then for any β in a neighborhood of β0, using Taylor’s expansion, we
have

ĝ(z0,β)

≈ ĝ(z0,β0) + χn(z0)τ (β − β0) + 1

2
(β − β0)τ κn(z0)(β − β0).

Recall that the global profile pseudo–partial likelihood is (6), which
can be written as

�p(β) ≡
J∑

j=1

n∑

i=1

ξij

∫ τ0

0

{

βτ Wij(u) + ĝ(Zij,β)

− log

( n∑

�=1

Y�j(u) exp[βτ W�j(u) + ĝ(Z�j,β)]
)}

dNij(u).

(B.1)

By Taylor expansion around point β0,

�p(β) = �p(β0) + (β − β0)τ
∂�p(β)

∂β

∣
∣
∣
∣
β=β0

+ 1

2
(β − β0)τ

∂2�p(β)

∂β ∂βτ

∣
∣
∣
∣
β=β0

(β − β0) + Rn(β∗), (B.2)

where β∗ lies between β and β0 and

Rn(β∗) = 1

6

∑

j,k,�

(βj − β0j)(βk − β0k)(β� − β0�)

×
[

∂3�p(β)

∂βj ∂βk ∂β�

∣
∣
∣
∣
β=β∗

]

, (B.3)

with βj and β0j the jth elements of β and β0. It can be shown

that n−1 ∂3�p(β)

∂βj ∂βk ∂β�
is bounded in probability, and thus n−1Rn(β) =

Op(‖β − β0‖3) for β ∈ B.
Let γ ∗ = Hγ and γ̂ ∗(β) ≡ γ̂ ∗(z0,β) = Hγ̂ (z0,β). Define, for k =

0,1,2,

�njk(u,β,γ ∗) =
n∑

�=1

ξ�js̃�j(u;β,γ ∗)Z̃∗⊗k
�j Kh(Z�j − z0)

/ n∑

�=1

ξ�j,

(B.4)

where s̃�j(u;β,γ ∗) = Y�j(u) exp[βτ W�j(u) + γ ∗τ Z̃∗
�j]. Note that

γ ∗τ Z̃∗
�j = g(Z�j) − g(z0) + O(hp+1). Simple algebra gives that for

k = 0,1,

E[�njk(u,β0,γ ∗)]
= e−g(z0)

{
ηj0(u|z0)νk + hν∗

kDz[ηj0(u|z0)]} + O(h2) (B.5)

and var[�njk(u,β0,γ ∗)] = O( 1
nh ), uniformly for u ∈ [0, τ0]. Then,

using the same argument as for lemma 1 of Fan et al. (1997), we get

sup
0≤u≤τ0

∥
∥
∥
∥

�nj1(u,β0,γ ∗)

�nj0(u,β0,γ ∗)
− ν1

∥
∥
∥
∥

P−→ 0 (B.6)

and

�nj0(u,β0,γ ∗)�nj2(u,β0,γ ∗) − �⊗2
nj1(u,β0,γ ∗)

�2
nj0(u,β0,γ ∗)

= A + op(1)

(B.7)

uniformly for u ∈ [0, τ0].
In what follows, we first give the proof of Theorem 4, and then

introduce some lemmas for the proofs of Theorems 1 and 2.

Proof of Theorem 4

By (5), γ̂ ∗ ≡ γ̂ ∗(z0, β̂) satisfies

n−1
J∑

j=1

n∑

i=1

ξij

∫ τ0

0
Kh(Zij − z0)

{

Z̃∗
ij − �nj1(u, β̂, γ̂ ∗)

�nj0(u, β̂, γ̂ ∗)

}

dNij(u) = 0,

where �njk is as defined in (B.4). It can be shown from the assumption

that β̂ − β0 = Op(n−1/2) that

sup
u∈[0,τ0]

∥
∥
∥
∥

�nj1(u, β̂, γ̂ ∗)

�nj0(u, β̂, γ̂ ∗)
− �nj1(u,β0, γ̂ ∗)

�nj0(u,β0, γ̂ ∗)

∥
∥
∥
∥ = Op

(
n−1/2)

.
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Thus γ̂ ∗ satisfies

n−1
J∑

j=1

n∑

i=1

ξij

∫ τ0

0
Kh(Zij − z0)

×
{

Z̃∗
ij − �nj1(u,β0, γ̂ ∗)

�nj0(u,β0, γ̂ ∗)

}

dNij(u) = Op
(
n−1/2)

.

As before, we let Û(γ̂ ∗, z0) denote the left side of the foregoing equa-
tion; then Û(γ̂ ∗, z0) = op(1/

√
nh). The consistency of γ̂ ∗ can be de-

rived using the same argument as given by Fan et al. (1997). Then, by
Taylor’s expansion, we obtain

Û(γ ∗, z0) + ∂Û(γ̃ ∗, z0)

∂γ ∗ (γ̂ ∗ − γ ∗) = op(1/
√

nh), (B.8)

where γ̃ ∗ lies between γ̂ ∗ and γ ∗, and thus γ̃ ∗ → γ ∗ in probability.
Simple algebra gives that

−∂Û(γ ∗, z0)

∂γ ∗

= n−1
J∑

j=1

n∑

i=1

ξij

∫ τ0

0
Kh(Zij − z0)

×
�nj0(u,β0,γ ∗)�nj2(u,β0,γ ∗) − �⊗2

nj1(u,β0,γ ∗)

�2
nj0(u,β0,γ ∗)

dNij(u).

It follows from (B.7) that

−∂Û(γ ∗, z0)

∂γ ∗ = Aσ−1(z0) + op(1). (B.9)

In addition, using the Doob–Meyer decomposition Nij(u) = Mij(u) +
∫ u

0 Yij(s)λij(s)ds, we can express Û(γ ∗, z0) as

Û(γ ∗, z0) = dn(τ0) + qn(τ0), (B.10)

where dn(τ0) and qn(τ0) are defined similarly to Û(γ ∗, z0), except that
dNij(u) is replaced by Yij(u)λij(u)du. Note that

qn(τ0) = n−1
J∑

j=1

n∑

i=1

ξij

∫ τ0

0
Kh(Zij − z0)

{

Z̃∗
ij − �nj1(u,β0,γ ∗)

�nj0(u,β0,γ ∗)

}

× Yij(u) exp[βτ
0Wij(u)]

× {
exp(g(Zij)) − exp(g(z0) + γ ∗T Z̃∗

ij)
}
λ0j(u)du. (B.11)

Because the kernel function K(·) is of compact support, it suffices to
consider only Zij − z0 = O(h) in the asymptotic analysis. By Taylor’s
expansion of exp[g(Zij)] around z0 and (B.6), we have

qn(τ0) = hp+1

(p + 1)!g(p+1)(z0)bp+1σ−1(z0)

+ hp+2

(p + 2)!g(p+2)(z0)bp+2σ−1(z0) + op(hp+2). (B.12)

Rewrite dn(τ0) in (B.10) as

dn(τ0) = 1

n

J∑

j=1

n∑

i=1

ξij

∫ τ0

0
Kh(Zij − z0)(Z̃∗

ij − ν1)dMij(u)

+ 1

n

J∑

j=1

n∑

i=1

ξij

∫ τ0

0
Kh(Zij − z0)

×
[

ν1 − �nj1(u,β0,γ ∗)

�nj0(u,β0,γ ∗)

]

dMij(u). (B.13)

Note that ν1 − �nj1(u,β0,γ
∗)

�nj0(u,β0,γ
∗) is a bounded Fu,ij-predictable process,

which, combined with (B.6) and the dominated convergence theorem,
ensures that the second of the foregoing terms is of mean 0 and vari-
ance o( 1

nh ). Thus

dn(τ0) = dn1(τ0) + op(1/
√

nh),

where dn1(τ0) is the first term in (B.13). We now treat the process
dn1(t), using the martingale central limit theorem (see thm. 5.35 of
Fleming and Harrington 1991). It can be shown that the asymptotic
variance of d∗

n(τ0) = √
nhdn1(τ0) is

var(d∗
n(τ0)) = Bσ−1(z0) + D12(z0) + o(1),

where

D12(z0) = lim
n→∞ E

{ J∑

j=1

J∑

k=1,�=j

ξ1jξ1kh

×
∫ τ0

0
Kh(Z1j − z0)(Z̃∗

1j − ν1)dM1j(u)

×
∫ τ0

0
Kh(Z1k − z0)(Z̃∗

1k − ν1)τ dM1k(u)

}

.

Using the boundedness of E[M1j(τ0)M1k(τ0)|Z1j,Z1k], we obtain

D12(z0) = O
(
h E[Kh(Z1j − z0)(Z̃∗

1j − ν1)Kh(Z1k − z0)(Z̃∗
1k − ν1)τ ])

= O(h).

Write d∗
n(t) as

√
nh

n

n∑

i=1

J∑

j=1

ξij

∫ t

0
Kh(Zij − z0)H∗

ij(u)dMij(u) ≡ 1√
n

n∑

i=1

√
hD∗

i (t,h).

Then for |Zij − z0| = O(h), H∗
ij(u) is a bounded random variable. It can

be shown that the following Lindeberg condition holds for any given
ε > 0:

n−1
n∑

i=1

hE
[‖D∗

i (t,h)‖2I(
√

h/n D∗
i (t,h) > ε)

] → 0.

This establishes the asymptotic normality of d∗
n(τ0) and thus

√
nh ×

dn(τ0), which, together with (B.8)–(B.10) and (B.12), yields the result
of the theorem.

The following lemmas are needed to prove Theorems 1 and 2. Re-
call the expressions given in Appendix A.

Lemma B.1. Under conditions (a)–(h), if nh2 → ∞, then the fol-
lowing items hold uniformly for z ∈ ⋃J

j=1 supp(fj):

(a) κn(z) = κ(z)+op(1), where κ(z) = −d(K)
∑J

j=1 pj
∫ z

0 σ(z0)×
fj(z0)ρ∗

j (z0)dz0, with

ρ∗
j (z0) =

∫ τ0

0
Dz

[
ρj2(u|z0)

ρj0(u|z0)
−

(
ρj1(u|z0)

ρj0(u|z0)

)⊗2]

ρj0(u|z0)d
0j(u).

(b) ∂3ĝ′(z,β)
∂βj ∂βk ∂β�

= Op(1) for β ∈ B.

Lemma B.2. Let Q(u,Zij) = c(K)Dz(logσ(Zij)) + d(K) ×
Dz(logηj0(u|Zij)). Assume that the conditions (a)–(h) hold. If n ×
h5/2 → ∞ and nh2p → 0 for an even p, then

1√
n

∂�p(β)

∂β

∣
∣
∣
∣
β=β0

= 1√
n

J∑

j=1

n∑

i=1

ξij

∫ τ0

0

{

Wij(u) + χ(Zij)

− rj1(β0,u)

rj0(β0,u)
− σ(Zij)s(Zij)Q(u,Zij)

}

dMij(u)

+ op(1).
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The proofs of Lemmas B.1 and B.2 are tedious. Detailed proofs
are provided in a related technical report from the University of North
Carolina at Chapel Hill (Cai, Fan, Jiang, and Zhou 2006).

Lemma B.3. Suppose that the conditions (a)–(h) hold. Then

n−1 ∂2�p(β)

∂β ∂βτ

∣
∣
∣
∣
β=β0

p→ −I(β0).

Proof. By (B.1), simple algebra gives that

n−1 ∂2�p(β)

∂β ∂βτ

∣
∣
∣
∣
β=β0

= −n−1
J∑

j=1

n∑

i=1

ξij

∫ τ0

0

[
Rnj2(β0,u)

Rnj0(β0,u)
−

R⊗2
nj1(β0,u)

R2
nj0(β0,u)

]

dNij(u)

− n−1
J∑

j=1

n∑

i=1

ξij

∫ τ0

0

[

κn(Zij) − Knj1(β0,u)

Knj0(β0,u)

]

dNij(u),

where Knjm(β0,u) = ∑n
�=1 ξ�jŝ�j(u,β0)(κn(Z�j))

m/
∑n

�=1 ξ�j, for
m = 0,1. By Lemma B.1 and ĝ(z,β0) = g(z) + op(1) uniformly for

z ∈ ⋃J
j=1 supp[fj(·)],

n−1 ∂2�p(β)

∂β ∂βτ

∣
∣
∣
∣
β=β0

= −n−1
J∑

j=1

n∑

i=1

ξij

∫ τ0

0

[
rj2(β0,u)

rj0(β0,u)
−

(
rj1(β0,u)

rj0(β0,u)

)⊗2]

dNij(u)

− n−1
J∑

j=1

n∑

i=1

ξij

∫ τ0

0

[

κ(Zij) −
K∗

nj1(β0,u)

K∗
nj0(β0,u)

]

dNij(u) + op(1),

where K∗
njm(β0,u) is defined similarly to Knjm(β0,u) except with

κn(Z�j) and ĝ(Z�j,β0) replaced by κ(Z�j) and g(Z�j). The second term
equals

−n−1
J∑

j=1

n∑

i=1

ξij

∫ τ0

0

[

κ(Zij) −
K∗

nj1(β0,u)

K∗
nj0(β0,u)

]

dMij(u) = op(1);

therefore,

n−1 ∂2�p(β)

∂β ∂βτ

∣
∣
∣
∣
β=β0

= −
J∑

j=1

pj

∫ τ0

0

[
rj2(β0,u)

rj0(β0,u)
−

(
rj1(β0,u)

rj0(β0,u)

)⊗2]

× rj0(β0,u)d
j0(β0,u) + op(1)

≡ −I(β0) + op(1).

Proof of Theorem 1

By Lemma B.2,

n−1 ∂�p(β)

∂β

∣
∣
∣
∣
β=β0

P→ 0.

Thus, with probability tending to 1, for any small given ε > 0, if β ∈
Sε ≡ {β :‖β − β0‖ ≤ ε}, then

∣
∣
∣
∣(β − β0)τ

[

n−1 ∂�p(β)

∂β

∣
∣
∣
∣
β=β0

]∣
∣
∣
∣ ≤ ε3. (B.14)

Let a be the minimum eigenvalue of positive definitive matrix I(β0).
By Lemma B.3, we conclude that for all β ∈ Sε ,

(β − β0)τ
[

n−1 ∂2�p(β)

∂β ∂βτ

∣
∣
∣
∣
β=β0

]

(β − β0) ≤ −aε2, (B.15)

with probability tending to 1. By the argument immediately after (B.3),
with probability tending to 1, there is a constant C > 0 such that

|n−1Rn(β)| ≤ Cε3. (B.16)

Then substituting (B.14)–(B.16) into (B.2), we conclude with proba-
bility tending to 1 that when ε is small enough,

n−1�p(β) − n−1�p(β0) ≤ 0. (B.17)

Therefore, �p(β) has a local maximum in the interior of Sε , and, with
probability tending to 1, there exists a consistent estimator sequence
β̂ for β0 that maximizes the global profile pseudo–partial likelihood
�p(β).

Proof of Theorem 2

Lemma B.3 entails n−1 ∂2�p(β)

∂β ∂βτ |β=β0

p→ −I(β0). Note that β̂ is

consistent. Plugging the foregoing expression into (B.2), we obtain

�p(β̂) = �p(β0) + (β̂ − β0)τ
∂�p(β)

∂β

∣
∣
∣
∣
β=β0

− n

2
(β̂ − β0)τ I(β0)(β̂ − β0)

+ op
{
(
√

n‖β̂ − β0‖ + 1)2}
. (B.18)

Using corollary 1 of Murphy and van der Vaart (2000) and Lemma B.2,
we obtain

√
n(β̂ − β0)

= I(β0)−1 1√
n

∂�p(β)

∂β

∣
∣
∣
∣
β=β0

+ op(1)

= I(β0)−1 1√
n

J∑

j=1

n∑

i=1

ξij

∫ τ0

0

{

Wij(u) + χ(Zij) − rj1(β0,u)

rj0(β0,u)

− σ(Zij)s(Zij)Q(u,Zij)

}

dMij(u) + op(1 + √
n‖β̂ − β0‖).

Then by martingale central limit theorem and Slutsky’s theorem,

√
n(β̂ − β0)

D−→N
(
0, I(β0)−1�(β0)I(β0)−1)

.

[Received May 2005. Revised September 2006.]
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