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Abstract

We propose to model multivariate volatility processes based on the newly defined condi-

tionally uncorrelated components (CUCs). This model represents a parsimonious represen-

tation for matrix-valued processes. It is flexible in the sense that each CUC may be fitted

separately with any appropriate univariate volatility model. Computationally it splits one

high-dimensional optimization problem into several lower-dimensional subproblems. Consis-

tency for the estimated CUCs has been established. A bootstrap method is proposed for

testing the existence of CUCs. The proposed methodology is illustrated with both simulated

and real data sets.
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1 Introduction

One of the most prolific areas of research in financial econometrics literature in the last two

decades is to model time-varying volatility of financial returns. Many statistical models, most

designed for univariate data, have been proposed for this purpose. From a practical point of

view, there are at least two incentives to model several financial returns jointly. First, time-

varying correlations among different securities are important and useful information for portfolio

optimization, asset pricing and risk management. Secondly, models for a single security may

be improved by incorporating the relevant information in other related ones. The quest for

modeling multivariate processes, which are often represented by conditional covariance matrices,

has motivated the attempts to extend univariate volatility models to multivariate cases, aiming

for practical and/or statistical effectiveness. We list some of the endeavors below.

Let {Xt} be a vector-valued (return) time series with

E(Xt|Ft−1) = 0, Var(Xt|Ft−1) = Σt ≡
(
σt,ij

)
,

where Ft is the σ-algebra generated by {Xt,Xt−1, · · · }, and Σt is an Ft−1-measurable d×d semi-

positive definite matrix. One of the most general multivariate GARCH(p, q) models is the BEKK

representation (Engle and Kroner 1995)

Σt = C +
p∑

i=1

m∑

j=1

AijXt−iXτ
t−iA

τ
ij +

q∑

i=1

m∑

j=1

BijΣt−iBτ
ij , (1.1)

where C,Aij ,Bij are d × d matrices, and C is positive definite. Although the form of the

above model is quite general especially when m is reasonably large (Proposition 2.2 of Engle and

Kroner 1995), it suffers from overparametrization. Similar to multivariate ARMA models, not

all parameters in model (1.1) are necessarily identifiable even when m = 1. Overparametrization

will also lead to a flat likelihood function, making statistical inference intrinsically difficult and

computationally troublesome (Engle and Kroner 1995, and Jerez, Casals and Sotoca 2001).

To overcome the difficulties due to overparametrization, a dynamic conditional correlation

(DCC) model (Engle 2002, Engle and Sheppard 2001) has been proposed. It is based on the

decomposition

Σt = DtRtDt, (1.2)

where Dt = diag(σ1/2
t,11, · · · , σ

1/2
t,dd), σt,ii is the conditional variance of the i-th component of Xt,

and Rt ≡ (ρt,ij) is the conditional correlation matrix. A simple way to facilitate such a model is
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to model each σt,ii with a univariate volatility model and to model conditional correlation using

a rolling exponential smoothing as follows

ρt,ij =
t−1∑

k=1

(λiλj)k/2εt−k,iεt−k,j

/{ t−1∑

k=1

λk
i ε

2
t−k,i

t−1∑

k=1

λk
j ε

2
t−k,j

}1/2
,

where εti = Xti/σ
1/2
t,ii and λi, λj ∈ (0, 1) are constants. Even with such a simple specification, the

estimation typically involves solving a high-dimensional optimization problem as, for example,

the Gaussian likelihood function cannot be factorized into several lower-dimensional functions.

To overcome the computational difficulty, Engle (2002) proposes a two-step estimation procedure

as follows: first fit each σt,ii in (1.2) with a univariate GARCH(1,1) model, and then model the

conditional correlation matrix Rt by a simple GARCH(1,1) form

Rt = R(1− θ1 − θ2) + θ1(εt−1ε
′
t−1) + θ2Rt−1, (1.3)

and εt is a d×1 vector of the standardized residuals obtained in the separate GARCH(1,1) fittings

for the d components of Xt, and R is the sample correlation matrix of εt. Note there are only

two unknown parameters θ1, θ2 in model (1.3), so it can be easily implemented even for large or

very large d. However it may not provide adequate fitting when the components of Xt exhibit

different dynamic correlation structures; see the real data examples in section 4 below. Indeed,

the conditional correlation matrix in (1.3) is a linear combination of the static sample correlation

matrix R and the exponential smoothing of {εt−1ε
′
t−1}, which is a nonparametric estimator.

When θ1 + θ2 = 1, it is a pure nonparametric (exponential smoothing) estimator. The biases are

inevitable in such an estimation for the conditional correlation.

Alexander (2001) proposes an orthogonal GARCH model which fits each principal component

(PC) with a univariate GARCH model separately, and treats all PCs as conditionally uncorrelated

random variables. Since PCs are only unconditionally uncorrelated, such a misspecification may

lead to non-negligible errors in the fitting; see the first example in section 4.

Other multivariate volatility models include, for example, vectorized multivariate GARCH

models of Bollerslev, Engle and Wooldridge (1988), constant conditional correlation multivariate

GARCH models of Bollerslev (1990), a multivariate stochastic volatility model of Harvey, Ruiz and

Shephard (1994), a generalized orthogonal GARCH models of van der Weide (2002), an easy-to-fit

ad hoc approach of Wang and Yao (2005), a hidden Markov switching model of Pelletier (2006);

see also a survey in Bauwens, Laurent and Rombouts (2006) and the references therein.
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In this paper, we propose a new alternative for modeling multivariate volatilities. The basic

idea is to assume that Xt is a linear combination of a set of conditionally uncorrelated compo-

nents (CUCs); see section 2.1 below. One fundamental difference from the orthogonal GARCH

model is that we use CUCs, instead of PCs, which are genuinely conditionally uncorrelated. The

advantages of the new approach include: (i) the CUC decomposition leads to a parsimonious and

identifiable representation, and the number of parameters in the model is significantly reduced

comparing to, for example, the BEKK representation or the vectorized multivariate GARCH

models, (ii) it has the flexibility to model each CUC separately with any appropriate univari-

ate volatility models, (iii) computationally it splits a high-dimensional optimization problem into

several lower-dimensional subproblems, and (iv) it allows the volatility model for one CUC to

depend on the lagged value of the other CUCs. However the estimation of CUCs involves solv-

ing a nonlinear optimization problem with d(d− 1)/2 variables, where d is the dimension of Xt.

This poses some limitation on the dimensionality d with the available computing capacity. We

view the CUC as a model capable to catch sophisticated dynamical correlation structures, but

its potential may only be fully capitalized with further development in computing power and/or

high-dimensional optimization algorithms.

The idea of using CUCs is similar to the so-called independent component analysis (Hyvärinen,

Karhunen and Oja 2001). However instead of requiring all the component series are independent

with each other, we only impose a weaker condition that the component series are conditionally

uncorrelated; see (2.1) below. This relaxation is critical for the problem concerned in this paper.

Of course like independent components, CUCs may not always exist. We propose a bootstrap

test to assess the existence of CUCs. Our empirical experience indicates that for a large number

of practical examples with small or moderately large d, there is no significant evidence to reject

the hypothesis on the existence of CUCs.

Literature on applying independent components analysis to financial and economic time series

includes, for example, Back and Weigend (1997), Kiviluoto and Oja (1998), Mălăroiu, Kiviluoto

and Oja (2000), and van der Weide (2002). Although our basic idea is somehow similar to van

der Weide (2002) which deals with Gaussian innovation models only, our approach is completely

different; we separate the estimation for the CUCs from fitting the volatility models for the CUCs.

In fact, fitting each CUC becomes a univariate volatility modeling problem.

The rest of the paper is organized as follows. Section 2 contains a detailed description of the
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proposed new methodology and the associated theoretical results. Simulation results are reported

in section 3. Illustration with two real data examples of dimension, respectively, d = 4 and

d = 10 is presented in section 4. Applicability of the CUC method beyond its standard setting is

discussed in section 5. Technical proofs are relegated to the Appendix.

2 Methodology

2.1 Basic setting

To simplify the matter concerned, we assume Var(Xt) = Id — the d × d identity matrix. In

practice, this amounts to replacing Xt by S−1/2Xt, where S is the sample covariance matrix of

Xt. We assume that each component of Xt is a linear combination of d conditionally uncorrelated

components (CUCs) Zt1, · · · , Ztd which satisfy the conditions E(Zti|Ft−1) = 0, Var(Zti) = 1, and

E(ZtiZtj |Ft−1) = 0, for all i 6= j. (2.1)

Put Zt = (Zt1, · · · , Ztd)τ . The above setting implies that

Xt = AZt, (2.2)

for a constant matrix A. Necessarily, Var(Xt) = AτVar(Zt)A = AAτ = Id. Hence, A is a d× d

orthogonal matrix with d
2(d− 1) free elements and Zt = AτXt. Put

Var(Zt|Ft−1) = diag(σ2
t1, · · · , σ2

td), (2.3)

i.e. σ2
tj = Var(Ztj |Ft−1). It is easy to see that once we have specified σ2

tj – the volatility of the j-th

CUC, for j = 1, · · · , d, volatilities for any portfolios can be deduced accordingly. For example,

for any portfolios ξt = bτ
1Xt and ηt = bτ

2Xt it holds that

Var(ξt|Ft−1) =
d∑

j=1

b2
j1 σ2

tj , Cov(ξt, ηt|Ft−1) =
d∑

j=1

bj1bj2 σ2
tj .

where (b1j , · · · , bdj) = bτ
j A (j = 1, 2). Hence, the CUC decomposition (2.2) facilitates a parsimo-

nious modeling for d-dimensional multivariate volatility process via d univariate volatility models.

In this way, we reduce the number of parameters involved substantially.

The assumption that Var(Xt) = Id is not essential. It is introduced to reduce the free param-

eters in A from d2 to d(d − 1)/2. This is similar to the independent component analysis which

4



performs a principal component analysis to reduce a d2-dimensional optimization problem to a

d(d−1)/2-dimensional one; see, for example, section 7.4 of Hyvärinen, Karhunen and Oja (2001),

and also section 2.2.1 below.

2.2 Estimation of CUCs

2.2.1 Estimation for A

By (2.2), Ztj = aτ
j Xt, and a1, · · · ,ad are d orthogonal vectors. The goal is to estimate the

orthogonal matrix A = (a1, · · · ,ad). Condition (2.1) is equivalent to

∑

B∈Bt

∣∣E{ZtiZtjI(B)}∣∣ = 0 (2.4)

for any π-class Bt ⊂ Ft−1 such that the σ-algebra generated by Bt is equal to Ft−1 (Theorem 7.1.1

of Chow and Teicher, 1997). In practice, we use some simple Bt for the sake of tractability. This

leads to choosing an orthogonal matrix A = (a1, · · · ,ad)τ which minimizes

Ψn(A) ≡
∑

1≤i<j≤d

∑

B∈B
w(B)

k0∑

k=1

1
n− k

∣∣∣aτ
i

{ n∑

t=k+1

XtXτ
t I(Xt−k ∈ B)

}
aj

∣∣∣, (2.5)

where k0 ≥ 1 is a prescribed integer, B consists of countable subsets in Rd, and w(·) is a weight

function such that
∑

B∈B w(B) < ∞. We denote by Â = (â1, · · · , âd)τ the resulting estimator.

Note that the order of a1, · · · ,ad is arbitrary and ai may be replaced by −ai. Therefore we

measure the estimation error by

D(Â, A) = 1− 1
d

d∑

i=1

max
1≤j≤d

|aτ
i âj |. (2.6)

Note that for any orthogonal matrices A and B, D(A,B) ≥ 0. Furthermore, if the columns of A

are obtained from a permutation of the columns of B or their reflections, D(A,B) = 0.

In practice, we may let B be the collection of all the balls centered at the origin in Rd. Note

EXt = 0 and Var(Xt) = Id. When the distribution of Xt is spherically symmetric and unimodal,

B is the collection of the minimum volume sets which determine the distribution of Xt (Polonik,

1997). With any given n observations, effectively such a B consists of {x ∈ Rd | ||x|| ≤ ||Xt||} for

t = 1, · · · , n, and therefore has at most n different members. Hence we may let w(B) = 1/n.

To overcome the difficulties in handling the constraint AτA = Id in solving the above opti-

mization problem, we parametrize A as follows:

A =
∏

1≤i<j≤d

Γij(ϕij), (2.7)

5



where Γij(ϕij) is obtained from the identity matrix Id with the following replacements: both the

(i, i)-th and the (j, j)-th elements are replaced by cosϕij , the (i, j)-th and the (j, i)-th elements

are replaced, respectively, by sinϕij and − sinϕij (Vilenkin 1968, van der Weide 2002). Obviously

Γij(ϕij) is an orthogonal matrix, so is A given in (2.7). Writing A in (2.2) in the form of (2.7),

the constrained minimization of (2.5) over orthogonal A is transformed to an unconstrained

minimization problem over a d(d−1)
2 × 1 vector ϕ = (ϕ12, ϕ13, · · · , ϕ1d, ϕ23, · · · , ϕd−1,d)τ . This

minimization problem is typically solved by iterative algorithms. We stop the iteration when

D(Ak,Ak+1) is smaller than a prescribed small constant, where Ak denotes the value of A in the

k-th iteration. Note that Ψn(A) = Ψn(B) for any orthogonal A and B with D(A,B) = 0.

2.2.2 Asymptotic properties

Let

Ψ(A) ≡
∑

1≤i<j≤d

∑

B∈B
w(B)

k0∑

k=1

∣∣E{aτ
i XtXτ

t ajI(Xt−k ∈ B)}∣∣. (2.8)

Theorem 1 below states that the estimator Â is consistent under the regularity conditions (A1) –

(A5) listed in the Appendix. Note that Theorem 1 does not require the condition that the CUCs

exist. Instead condition (A3) only assumes that there exists an A0 which is a unique minimizer,

under D-distance, of Ψ(A). Since function Ψn cannot tell any difference between orthogonal A

and B as long as D(A,B) = 0, we call Â a consistent estimator of A0 if the D-distance between

Â and A0 converges to 0 in probability.

Theorem 1. Let k0 ≥ 1 be a fixed integer. Under conditions (A1)–(A3), D(Â,A0) → 0 in

probability as n →∞. If, in addition, condition (A4) holds, it holds that for any orthogonal A

Ψn(A)−Ψ(A) = OP (n−1/2).

Furthermore, n1/2D(Â,A0) = OP (1) provided that, in addition, condition (A5) also holds.

When the CUCs exist, Ψ(A0) = 0. On the other hand, when the CUCs do not exist, Ψ(A0) 6= 0

and A0 may now depend on the choice of B. In this case, we naturally seek for an orthogonal

transform such that the resulting components are the least conditionally correlated. Note that

Ψ(·) defined in (2.8) may be written as

Ψ(A) =
∑

1≤i<j≤d

∑

B∈B
w(B)

k0∑

k=1

∣∣Corr(aτ
i Xt,aT

j Xt|Xt−k ∈ B)
∣∣P (Xt−k ∈ B). (2.9)
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We view Ψ(A) as a collective conditional correlation measure among the d direction a1, · · · ,ad.

Thus, our criterion may be seen as to find an orthogonal transform A to minimizer Ψ(A). (See

also the discussion in section 5 below.) Theorem 2 below indicates that asymptotically the trans-

formed components along any other orthogonal matrix B̂ lead to a higher collective conditional

correlation, in terms of Ψ(·), than that along Â.

Theorem 2. Let k0 ≥ 1 be a fixed integer, and conditions (A1) and (A2) hold. Then for any

other orthogonal transform B̂,

lim sup{Ψ(Â)−Ψ(B̂)} ≤ 0.

The proof of Theorem 1 is more involved and is presented in the Appendix. We omit the proof

of Theorem 2 to save space.

2.3 Modelling volatilities for CUCs

Once the CUCs have been identified, we may fit each σ2
tj with an appropriate univariate volatility

model such as GARCH or stochastic volatility model; see the survey by Shephard (1996). As a

simple illustration, we establish below an extended GARCH(1,1) model for each σ2
ti given in (2.3).

2.3.1 Extended GARCH(1,1) models

We assume, for the j-th CUC, j = 1, · · · , d,

Ztj = σtjεtj , σ2
tj = γj +

d∑

i=1

αjiZ
2
t−1,i + βjσ

2
t−1,j , (2.10)

where {εtj , −∞ < t < ∞} is a sequence of i.i.d. random variables with mean 0 and variance

1, εtj is independent of Ft−1, γj > 0 and αj , αji, βj ≥ 0. To ensure Var(Ztj) = 1, we set

γj = 1−βj−
∑

1≤i≤d αji. This model contains extra d−1 terms
∑

i 6=j αjiZ
2
t−1,i from the standard

GARCH(1,1) model, which incorporates the possible association between the j-th CUC and the

other CUCs, while the conditional zero-correlation condition (2.1) still holds. Such dependence

is termed as that the i-th component (if αji 6= 0) is causal in variance to the j-th component

(Granger, Robins and Engle 1984). Note under the specification (2.10), the CUC becomes a

restricted form of the BEKK representation.
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In practice, we expect that σ2
tj may depend on Z2

t−1,i only for a small number of i’s, including

i = j, i.e. many coefficients αji (for i 6= j) may be 0. Section 2.3.3 below outlines a data-analytic

approach for building such a component-dependent model.

Model (2.10) may be viewed as a special case of the vectorized ARMA-GARCH model of

which the conditions for stationary and ergodicity may be found in, for example, Ling and

McAleer (2003). When βj ∈ [0, 1), (2.10) admits the representation

σ2
tj = Var(Ztj |Ft−1) =

γj

1− βj
+

d∑

i=1

αji

∞∑

k=1

βk−1
j Z2

t−k, i

= 1−
∑d

i=1 αji

1− βj
+

d∑

i=1

αji

∞∑

k=1

βk−1
j Z2

t−k,i. (2.11)

2.3.2 quasi-MLE

To facilitate a likelihood estimation, let us assume hypothetically that εtj in (2.10) is standard

normal. The implied (negative) twice log-likelihood function for θj ≡ (αj1, · · · , αjd, βj)τ is

lj(θj) =
n∑

t=ν+1

{
log σtj(θj)2 + Z2

tj/σtj(θj)2
}
, (2.12)

for a given integer ν ≥ 1, where σtj(θj)2 = Var(Ztj |Ft−1) is given by (2.11). The quasi-maximum

likelihood estimator θ̃j minimizes (2.12). In practice, we let Zti ≡ 0 for all t ≤ 0 on the right hand

side of (2.11). The sum in (2.12) is taken from t = ν + 1 to alleviate the effect of this truncation.

2.3.3 Selection of causal components

To obtain a parsimonious representation for σ2
tj , we may select only those significant Zt−1,i on

the RHS of the second equation in (2.10). This is particularly important when the number of

components d is large. It may be achieved by using the ideas for variable selection in regression

analysis. Below we outline an algorithm based on a combination of the stepwise addition method

and the BIC criterion, which is particularly computationally effective. An obvious alternative is

to adopt a forward search algorithm based on the statistical tests for the causality in variance

(Cheung and Ng 1996, and Hafner and Herwartz 2006).

We start with the standard GARCH(1,1) model (i.e. αjj 6= 0 and αji = 0 for j 6= i). We then

add one more Zt−1,i each time which maximizes the (quasi-)likelihood. More precisely, suppose

the model contains (k − 1) terms Zt−1,j1 , · · · , Zt−1,jk−1
already. We choose an additional term
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Zt−1,` among ` 6∈ {j, j1, · · · , jk−1} which maximizes the quasi-likelihood function. Note that this

is a two-step maximization problem: For each given ` 6∈ {j, j1, · · · , jk−1}, we compute the qMLE

θ̃
(k)

j for θ
(k)
j ≡ (αjj , αjj1 , · · · , αj`, βj)τ with the constraints αji = 0, for i 6∈ {j, j1, · · · , jk−1, `}.

We then choose an ` 6∈ {j, j1, · · · , jk−1} to minimize lj(θ̃
(k)

j ), and denote by lj(k) the minimum

value and the index of the selected variable jk. Put

BICj(k) = lj(k) + (k + 2) log(n− ν).

We choose rj which minimizes BICj(k) over 0 ≤ k ≤ d. Note that k = 0 corresponds to the

standard GARCH(1,1) for Ztj .

2.3.4 LADE

It is well documented that qMLE θ̃j suffers from complicated asymptotic distributions and slow

convergence rates if εtj is heavy-tailed in the sense that E(|εtj |4) = ∞ (Hall and Yao 2003, and

section 7.3 of Straumann 2005). On the other hand, a least absolute deviation estimator based on

a log-transformation is always asymptotically normal with the standard root-n convergence rate

provided E(ε2
tj) < ∞; see Peng and Yao (2003).

To construct the LADE with the constraint Var(Ztj) = 1, we write εtj = v0etj in the first

equation in (2.10), where the median of e2
tj is equal to 1 and v0 = 1/STD(etj). With σtj(θj)2

expressed in (2.11), parameters θj and v0 are (jointly) identifiable. Now

log Z2
tj − log{σtj(θj)2} − log v2

0 = log(e2
tj).

Since the median of log(e2
tj) is 0, the true values of the parameters minimize

E
∣∣ log Z2

tj − log{σtj(θj)2} − log v2
0

∣∣.

Therefore we may estimate the parameters by minimizing

n∑

t=ν+1

| log Z2
tj − log{σtj(θj)2} − log v2

0

∣∣, (2.13)

where σtj(θj)2 is given in (2.11), with the part of aji = 0 for the non-causal component in the

variance. So far θj and v0 are treated as free parameters. The estimators obtained are root-n

consistent.
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To make an explicit use of the condition that Var(εtj) = 1, we may estimate parameters θj as

follows. With the initial estimate θ̂
(0)

j , let v̂0 be the reciprocal of the sample standard deviation

of the residuals {ε̃tj}, where ε̃tj = Ztj/{σtj(θ
(0)
j )}. With the given v̂0 and θ̂

(0)

j , we can minimize

n∑

t=ν+1

wt

[
log Z2

tj − log{σtj(θj)2} − log v̂2
0

]2
,

where wt = | log Z2
tj − log{σtj(θ̂

(0)

j )2}− log v̂2
0

∣∣−1. We may update v̂0 and iterate further until the

estimated θj converges. Note that we have used a weighted L2 loss function to approximate the

L1 loss to expedite the computation.

2.4 Inference based on bootstrapping

A natural question for the proposed approach is whether the CUCs Zt1, · · · , Ztd exist or not,

although the minimizer {âj} of (2.5) always exists. To address this issue statistically, we may

construct a test for the null hypothesis

H0 : Xt = AZt and Zt = diag(σt1, · · · , σtd)εt, (2.14)

where AτA = Id, εt = (εt1, · · · , εtd)τ , {εt1}, · · · , {εtd} are d independent series, and each of them

is a sequence of i.i.d. r.v.s with mean 0 and variance 1. Note that the null hypothesis above is

a sufficient but not necessary condition for the existence of CUCs. The independence condition

is required to construct a bootstrap estimation of null distribution. Also note that Zt1, · · · , Ztd

may not be independent with each other.

When Zti and Ztj are not conditionally uncorrelated, the left hand side of (2.4) is equal to

positive constant instead of 0. Therefore, large values of Ψn(Â) indicate that the CUCs do not

exist. We adopt a bootstrap method below to assess how large is large enough to reject H0.

If the null hypothesis H0 could not be rejected, we may also construct confidence sets for the

coefficients aj (i.e. the columns of A) of the CUCs, and the parameters θj based on the same

bootstrap scheme. Formally confidence sets for θj could also be constructed based on asymptotic

distributions of, for example, the LADE θ̂j , which may be derived in the similar manner of Peng

and Yao (2003). However such an approach is based on the assumption that the CUCs are known

(i.e. the vectors aj are known), and, therefore, fails to take into account of the errors due to the

estimation for aj .
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Let Â = (â1, · · · , âd) be the estimator derived from minimizing (2.5). Let Ztj = âτ
j Xt and θ̂j

be an estimator for θj .

The bootstrap sampling scheme consists of the three steps below.

(i) For j = 1, · · · , d, draw ε∗tj , for −∞ < t ≤ n, by sampling randomly with re-

placement from the standardized residuals {ε̂ν+1,j , · · · , ε̂nj} which are obtained from

standardizing the raw residuals

Ztj/σtj(θ̂j), t = ν + 1, · · · , n.

(ii) For j = 1, · · · , d, draw Z∗tj = σ∗tjε
∗
tj , for −∞ < t ≤ n, where

(σ∗tj)
2 = 1− β̂j −

d∑

i=1

α̂ji +
d∑

i=1

α̂ji(Z∗t−1,i)
2 + β̂j(σ∗t−1,j)

2.

(iii) Let X∗
t = Â(Z∗t1, · · · , Z∗td)

τ for t = 1, · · · , n.

A test for the existence of the CUCs: Let Ψ∗
n(A) be defined as in (2.5) with {Xt} replaced by

{X∗
t }, and the bootstrap estimator A∗ = (a∗1, · · · ,a∗d) be computed in the same manner as Â with

Ψn replaced by Ψ∗
n. Note that the bootstrap sample {X∗

t } is drawn from the model with âτ
j X

∗
t as

its genuine CUCs. Hence the conditional distribution of Ψ∗
n(A∗) (given the original sample {Xt})

may be taken as an approximation for the distribution of Ψn(Â) under H0. Thus we reject H0 if

Ψn(Â) is greater than the [Bα]-th largest value of Ψ∗
n(A∗) in a replication of the above bootstrap

resampling for B times, where α ∈ (0, 1) is the size of the test and B is a large integer.

Confidence sets for A: A bootstrap approximation for an (1− α) confidence set of the transfor-

mation matrix A can be constructed as

{A ∣∣ D(A; Â) ≤ cα,AτA = Id}, (2.15)

where cα is the [Bα]-th largest value of D(A∗; Â) in a replication of the bootstrap resampling

for B times. Note that when A is in the confidence set, so is B if the columns of B form a

permutation of the (reflected) columns of A; see (2.6).

Interval estimators for the components of θ̂j : A bootstrap confidence interval for any component,

say, βj of θj may be obtained as follows. Repeat the above bootstrap sampling B times for some

large integer B, resulting in bootstrap estimates β∗j1, · · · , β∗jB. An approximate (1−α) confidence
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interval for βj is (β∗j(b1), β∗j(b2)), where β∗j(i) denotes the i-th smallest value among β∗j1, · · · , β∗jB,

and b1 = [Bα/2] and b2 = [B(1− α/2)].

We have adopted the standard bootstrap procedure above. On the other hand, the wild

bootstrap method has proved to be effective for the inference for mean functions in the presence

of heteroscedastic noise (Wu 1986, Mammen 1993, and Hafner and Herwartz 2000). It is an

interesting open question how to adapt the wild bootstrap idea for the inference on conditional

second moments.

3 Simulation

We conduct a Monte Carlo experiment to illustrate the proposed CUC approach. In particular

we check the accuracy of the estimation for the transformation matrix A in (2.2).

We consider a CUC extended GARCH(1,1) model with d = 3:

Xt = AZt, Zt|Ft−1 ∼ N(0, diag{σ2
t,1, σ

2
t,2, σ

2
t,3}), (3.1)

where σ2
t,i = γi + βiσ

2
t−1,i + αi1Z

2
t−1,1 + αi2Z

2
t−1,2 + αi3Z

2
t−1,3, i = 1, 2, 3, and

A i γi βi αi1 αi2 αi3

0 0.500 0.866 1 0.02 0.90 0.04 0 0.04

0 0.866 -0.500 2 0.10 0.80 0 0.10 0

-1 0 0 3 0.28 0.60 0 0 0.12

It is easy to see that AτA = I3 and γi = 1 − αi1 − αi2 − αi3 − βi. Thus the variances of

the CUCs are 1. Since α11 + α12 + α13 + β1 = 0.98, the volatility for the first CUC is highly

persistent. On the contrary, the volatility persistence in the third component is less pronounced,

as α31 + α32 + α33 + β3 = 0.72 only.

For each of 800 samples with size n = 500 or 1000 generated from the above model, we

estimated A by minimizing Ψn(A) defined in (2.5). Note that as far as the estimation of A is

concerned, two orthogonal matrices are treated as identical if the D-distance between them is 0; see

(2.6). The coefficients αij , βi and γi were estimated using quasi-MLE based on Gaussian likelihood.

The estimates are summarized in Table 1 and Figure 1. Estimation errors for α12, α21, α23, α31

and α32 are all very close to 0 and are not reported here to save space.
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Table 1: Summary statistics of the estimation errors in simulation

n D(Â,A) β̂1 α̂11 α̂13 β̂2 α̂22 β̂3 α̂33

mean 0.130 0.842 0.035 0.041 0.761 0.076 0.616 0.084

median 0.128 0.884 0.030 0.036 0.803 0.072 0.668 0.076

500 STD 0.080 0.147 0.030 0.029 0.175 0.045 0.257 0.058

bias - -0.058 -0.005 0.001 -0.039 -0.024 0.016 -0.036

RMSE - 0.158 0.031 0.029 0.180 0.052 0.258 0.068

mean 0.114 0.869 0.037 0.037 0.782 0.077 0.616 0.089

median 0.102 0.885 0.036 0.035 0.804 0.076 0.641 0.087

1000 STD 0.077 0.078 0.019 0.019 0.119 0.033 0.214 0.043

bias - -0.031 -0.003 -0.003 -0.018 -0.023 0.016 -0.032

RMSE - 0.084 0.020 0.019 0.120 0.041 0.215 0.054

Both the means and the standard deviations of D(Â,A) are small. This indicates that the

estimation for A seems to be reasonably accurate. The coefficients in each CUC models were

also estimated accurately. The estimators are almost unbiased, as the biases are negligible in

comparisons with the corresponding variances. The errors in estimation decrease as the sample

size increases from 500 to 1000, roughly by a factor of
√

2.

Since most of the biases reported in Table 1 are negative (see also Figure 1), the coefficients

in the GARCH models for CUCs were slightly underestimated. Also note that the estimation

errors decrease when the volatility persistence (measured by αi1 + αi2 + αi3 + βi) increases; see

Figure 1(a) with the sample size 1000. Figure 1(b) presents the estimation errors of the GARCH

coefficients with A given. The difference between the estimation errors of the two cases is small.

4 Real data examples

In this section we illustrate the proposed method with two real data examples with, respectively,

d = 4 and d = 10. First we analyze the 2527 daily log returns (in percentages) of the S&P 500

index, the stock prices of Cisco System, Intel Corporation and Sprint (SCIS for short) in the period

from 2 January 1991 to 31 December 2000. This data set was downloaded from Yahoo!Finance.

The close prices adjusted for dividends and splits were used to produce the return series plotted
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in Figure 2. We use the first 2275 observations (i.e. the data up to the end of 1999) for estimating

the parameters in the models, and leave the last 252 data points (i.e. the data in 2000) for

checking the post-sample forecasting performance.

To account for the conditional mean of the return series, a vector AR(2) model, selected

by both M(i) (Tiao and Box, 1981) and AIC, was first fitted to the data. We denote by Yt,

t = 1, 2, · · · , 2273, the residuals resulted from this fitting. In the sequel, we focus on modeling

the conditional covariance matrix process of Yt.

Let S be the sample covariance matrix of Yt, and Xt = S−
1
2 Yt. The estimator Â was obtained

by minimizing Ψn(A). For the sake of comparison, the estimator Ã obtained by maximizing the

likelihood function of the GO-GARCH(1,1) model (van der Weide, 2002) was also computed. We

applied the bootstrap test described in section 2.4, with bootstrap sampling repeated 400 times, to

test for the existence of the CUCs and obtained the P -value 0.34. This indicates that there exists

no significant evidence against the hypothesis that the CUCs exist for this data set. The 95%

bootstrap confidence set for the transformation matrix A is {A |D(A, Â) ≤ 0.153, AτA = I4}.
Since D(I4, Â) = 0.3035, I4 is not contained in the confidence sets. Thus the principal components

cannot be taken as the CUCs. Note also D(Ã, Â) = 0.1616, therefore Ã is not contained in the

confidence set either. This suggests that the MLE based on the GO-GARCH(1,1) model does not

lead to CUCs and, therefore, it would be inappropriate to assume that the conditional covariance

matrix of ÃXt is diagonal, as implied by the GO-GARCH(1,1) approach.

Table 2 lists the estimated extended GARCH(1,1) modes for the estimated CUCs. The models

were selected by the algorithm specified in section 2.3.3. There is a causality-in-variance relation-

ship from the fourth CUC to the second CUC. Also the last two CUCs are highly persistent as

the sum of all the GARCH and ARCH coefficients is close to 1 for both of them. Based on the

fitted volatility σ̂2
ti (i = 1, 2, 3, 4) for the CUCs, the conditional covariance matrix for the original

residuals Yt is of the form:

Ĥt = Ŵdiag{σ̂2
t1, σ̂

2
t2, σ̂

2
t3, σ̂

2
t4}Ŵτ , (4.1)

where Ŵ = S
1
2 Â.

For the comparison purpose, we also computed the estimated volatility processes for Yt

based on the O-GARCH(1,1) model of Alexander (2001), the DCC-GARCH(1,1) model of En-

gle (2002), and the GO-GARCH(1,1) model of van der Weide (2002). We also included the CUC-
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GARCH(1,1) model in our comparison, i.e. we fitted for each CUC a standard GARCH(1,1) model

without incorporating the lagged values from the other CUCs. As we have pointed out above,

the GO-GARCH(1,1) model does not fit this data set well. In fact the estimated conditional cor-

relation process between the S&P500 return and the Intel return based on the GO-GARCH(1,1)

model is negatively correlated with its counterpart based on any other models mentioned above.

Therefore we exclude the GO-GARCH(1,1) in the comparison below.

Figure 3 displays the time plots of the estimated conditional variance processes of the S&P500

return by the O-GARCH(1,1) model, the DCC-GARCH(1,1) model and the CUC-GARCH(1,1)

model. While the estimated processes by the DCC-GARCH(1,1) and the CUC-GARCH(1,1) look

similar, O-GARCH(1,1) certainly leads to a very different volatility profile. Comparing to the

original return series in the Figure 2(a), the two peaks around t = 850 should not be there. It was

caused by the extreme negative returns of the Cisco price in the same period; see Figure 2(b).

Such a misleading phenomenon was resulted from treating the principal components as CUCs in

the O-GARCH(1,1) model. The estimated conditional correlation processes between the S&P500

return and the Intel price return are plotted in Figure 4. The conditional correlation estimated

by the CUC-GARCH(1,1) is more volatile than those estimated by the O-GARCH(1,1) and the

DCC-GARCH(1,1). In particular the CUC-estimated conditional correlation is small in the middle

period before it peaks up twice towards to the end. Those two peaks correspond to the two peaks

in the volatility process of the S&P500 return. Note that the estimated correlations by the DCC

and the CUC are quite different numerically from each other.

Table 2: Extended GARCH Model for CUCs of the SCIS data
j ji σ2

t,j

1 σ2
t,1 = 0.1963 + 0.7603σ2

t−1,1 + 0.0434Z2
t−1,1

2 4 σ2
t,2 = 0.6297 + 0.1148σ2

t−1,2 + 0.1622Z2
t−1,2 + 0.1015Z2

t−1,4

3 σ2
t,3 = 0.0273 + 0.9031σ2

t−1,3 + 0.0697Z2
t−1,3

4 σ2
t,4 = 0.0073 + 0.9421σ2

t−1,4 + 0.0506Z2
t−1,4

We now apply two diagnostic checking statistics to assess the different fitted models. Following

the lead of Tse and Tsui (1999), we use the Box-Pierce statistic to check the cross-product of the

standardized residuals. To this end, let ûti = Yti/σ̂
1/2
t,ii be the standardized residual for the i-th
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component, where σ̂t,ii is the (i, i)-th element of the fitted conditional variance of Yt. Put

Ct,ij =





û2
ti − 1 i = j

ûtiûtj − ρ̂t,ij i 6= j,
(4.2)

where ρ̂t,ij = σ̂t,ij/(σ̂t,iiσ̂t,jj)1/2 is the estimated conditional correlation between Yti and Ytj . If

the model is correctly specified, there is no autocorrelation in {Ct,ij , t ≥ 1} for any fixed i and j.

Define

Q(i, j; M) = n
M∑

k=1

r2
ij,k, (4.3)

where rij,k is the sample autocorrelation of Ct,ij at lag k. It is intuitively clear that large values

of Q(i, j; M) are indicative for the lack of fit for the conditional correlation between the i-th

and the j-th components Yt when i 6= j, and for the lack of fit for the conditional variance of

the i-th component when i = j. We also employ a multivariate portmanteau statistic (section

5.5 of Reinsel, 1997) to test for the autocorrelation in the vectorized cross product of residuals

ξt = vech(êtêτ
t ), where êt = Ĥ−1/2

t Yt. Let ρ̂(`) be the autocovariance matrix of ξt at lag `. The

multivariate portmanteau statistic is defined as

P (k) = n2
k∑

`=1

(n− `)−1tr{ρ̂(`)ρ̂(0)−1ρ̂(−`)ρ̂(0)}. (4.4)

This may be seen as a multivariate extension of McLeod and Li (1983) which applied a univariate

portmanteau test to squared residuals.

Table 3 lists the values of Q(i, j; M), 1 ≤ i < j ≤ 4 and M = 5, for five different models.

Significant levels of Q(i, j;M) were computed according to the χ2
5-distribution; see Tse and Tsui

(1999). Table 4 lists the values P (k) for 1 ≤ k ≤ 5. Although the asymptotic distribution of P (k)

is unavailable to conduct a formal testing, it is intuitively clear that large values of P (k) would

indicate the lack-of-fit of the model concerned.

Tables 3 and 4 indicate that O-GARCH(1,1) provided overall the poorest fit among the five

models concerned according to both Q(i, j; M) and P (k), especially four of its Q-statistics are

significant at the 0.05 level. On the other hand, the tests with Q(1, 2; 5) and Q(1, 3; 5) for both

DCC-GARCH(1,1) and GO-GARCH(1,1) models are significant at least at level 10%, while both

the CUC-GARCH(1,1) and CUC-extended GARCH(1,1) passed all the tests with the statistic

Q(i, j; M). Note that the values of P (k) for the two CUC-based models are smaller than those

for the O-GARCH(1,1) and the DCC-GARCH(1,1) models. Overall both the diagnostic statistics

indicate that the CUC-extended GARCH(1,1) is the best model for this particular data set.
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Table 3: Q(i, j;M) with M = 5 for the SCIS data

i, j O-GARCH DCC GO-GARCH CUC-GARCH CUC-Ex GARCH

1,1 69.37∗∗∗ 5.00 5.23 5.19 5.19

2,2 10.38 9.05 8.91 8.22 8.12

3,3 2.11 4.67 5.88 1.55 1.59

4,4 1.29 1.08 0.97 0.46 0.41

1,2 48.11∗∗∗ 10.91∗ 10.31∗ 8.36 8.31

1,3 54.44∗∗∗ 15.79∗∗∗ 10.67∗ 4.73 4.55

1,4 18.69∗∗ 1.86 1.51 1.40 1.38

2,3 1.05 5.15 7.72 4.34 4.25

2,4 6.99 3.04 3.35 3.11 2.93

3,4 2.15 4.11 2.31 2.83 2.82

Note: The tests significant at level 0.01, 0.05 and 0.1 are marked, respectively, by ***, ** and *.

Table 4: P (k) for the SCIS data

k O-GARCH DCC GO-GARCH CUC-GARCH CUC-Ex GARCH

1 182.76 117.32 99.83 96.69 96.75

2 307.64 210.99 190.85 186.95 184.49

3 439.22 325.91 302.53 302.87 295.92

4 523.74 412.77 392.74 395.79 387.39

5 634.51 507.46 486.91 494.16 489.16

To make a post-sample comparison among these models, we need to construct proxies for

unobserved conditional covariance matrices using the daily returns. Let Ĥt+p|t = (σ̂ij,t+p|t) be

the p-days ahead forecast of the covariance matrix at t. Following the lead of Pelletier (2006)

and Fan et al. (2007), we gauge the quality of forecasting based on the Adaptive Mean Absolute

Deviations:

AMAD(p) =
1

d2n∗
∑

t

d∑

i,j=1

∣∣σ̂ij,t+p|t −
1

2v + 1

v∑

`=−v

Yi,t+p+`Yj,t+p+`

∣∣, (4.5)

where v is a nonnegative integer, the sum over t is over the n∗ post-sample points. When v = 0,

AMAD reduces to the MAD used in Pelletier (2006) and the proxy for the covariance matrix at
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time t + p is just the cross product of the return vector at that day; When v > 0, the adjacent

2v + 1 days returns are used to average out the stochastic error in the proxy.

We use the last 252 observations in the SCIS data to compute the AMADs. Based on the

p-step ahead forecast of the univariate GARCH model (see, e.g. pp.94 in Tsay 2002) for each

component and the transformation matrix, Ĥt+p|t can be constructed in a straightforward way

for O-GARCH, GO-GARCH and CUC-GARCH model. Forecast for DCC model follows the

procedure of Pelletier (2006). The length of the samples used for parameter estimation are 500

and 1000, respectively, and the estimates are updated every five days, and no causal component

is considered for the CUCs. Table 5 lists the results for p = 1 and 5.

Table 5: AMAD for the SCIS data
p O-GARCH DCC GO-GARCH CUC-GARCH

v = 0

T = 500 1 7.3095 7.2187 7.9227 7.2104

5 7.2869 7.2383 7.7048 7.1909

T = 1000 1 7.2094 7.1636 7.8361 7.0859

5 7.1781 7.1646 7.6988 7.1436

v = 1

T = 500 1 4.5650 4.5897 4.8360 4.6894

5 4.9543 4.9634 5.4663 4.8978

T = 1000 1 4.5856 4.5921 4.7972 4.6747

5 4.9158 4.9343 5.7790 4.9142

The AMAD of the CUC-GARCH model is always the smallest when v = 0. When v = 1,

this is still true for the five-day ahead forecast, but for the case of one-day ahead forecast, the

AMADs of O-GARCH and DCC are both smaller than those of the CUC-GARCH model. On

the other hand, the GO-GARCH model provides the worst forecasts for this data set. Overall the

CUC-GARCH model outperforms the other three models in this forecasting comparison.

Our second example concerns the daily log-return of the exchange rates of the 10 European

currencies to US dollar in 2 January 1990 – 31 December 1998, immediately before the introduction

of the Euros. The currencies concerned are from Austria, Belgium, Finland, France, Germany,
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Ireland, Italy, Netherlands, Portugal and Spain. For this data set, n = 2263 and d = 10. The

diagnostic checks similar to those in the first example were carried out. To save space, we only

list in Table 6 the multivariate portmanteau statistics for the different models. It is not surprising

that P (k) of the extended CUC-GARCH model is the smallest one in each row and the values

of P (k) for the CUC-GARCH model are smaller than those of the O-GARCH, DCC, and GO-

GARCH model as k > 3. Note that the DCC model may be too simple to catch the dynamical

structure of a 10-dimensional volatility process. The extension to incorporate more flexibility into

the DCC structure would present an interesting line for further development.

Table 6: P (k) for the Exchange Rates Data

k O-GARCH DCC GO-GARCH CUC-GARCH CUC-Ex GARCH

1 6783 10271 6352 7297 6316

2 11224 16792 10918 11562 9871

3 15736 23530 15043 15288 12706

4 20538 30701 19871 19448 16205

5 23655 37077 23313 22839 19022

10 41631 62943 41770 41197 35928

Again the comparison based on post-sample forecasting was also in favour of the CUC ap-

proach. In fact we reserve the whole year data in 1998 (with 252 observations) for checking the

post-sample forecasting performance. Both one-day ahead and five-day ahead forecasts are made

based on the fitted models using 500 observations in the immediate past. Table 7 lists the AMAD-

values (see (4.5)) for the forecasts based on the four different models. Except one case with v = 1

and p = 1, the CUC-GARCH model provides the best forecasts among the models concerned.

Based on Tables 6 & 7, we would conclude that the CUC provides an alternative parsimonious

representation for the dynamics of conditional covariance processes which is more accommodating

than, for example, the simple DCC model when the dimension of the underlying process is large.

5 Conclusional remark

It is extremely effective for analysing multivariate time series to find an appropriate linear trans-

formation such that the components of the transformed series exhibits certain “un-relatedness”.
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Table 7: AMAD for the exchange rates data

p O-GARCH DCC GO-GARCH CUC-GARCH

1 0.3097 0.3098 0.4074 0.2978

v = 0 2 0.3112 0.3109 0.4034 0.2987

3 0.3089 0.3083 0.3885 0.2958

T = 500 4 0.3097 0.3089 0.3502 0.2974

5 0.3097 0.3087 0.3752 0.2991

1 0.2061 0.2038 0.2475 0.2088

v = 1 2 0.2127 0.2115 0.3439 0.2108

3 0.2117 0.2102 0.3193 0.2087

T = 500 4 0.2138 0.2121 0.3145 0.2086

5 0.2150 0.2133 0.3043 0.2094

There are at least three types of “un-relatedness”. For modeling conditional covariance processes,

the conditional uncorrelatedness is the correct measure which serves the purpose adequately, while

the unconditional uncorrelatedness required in the orthogonal GARCH model (Alexander, 2001)

is too weak and the independence in the independent component analysis is too strong.

Modeling multivariate volatility processes is a practically important and methodologically

challenging problem. The CUC-based method proposed in this paper attempts to catch sophisti-

cating conditional heteroscedasticity while maintaining a parsimonious representation for matrix

processes. One natural question arises: do the CUCs so-defined exist? Empirical experiments

with various real data sets indicate the P -value of the bootstrap test described in section 2.4

tends to decrease as d increases. However with small or moderately large d the hypothesis of the

existence of CUCs have been rarely rejected in our empirical experiments.

In the event that the CUCs do not exist, we argue that it is very natural to find the linear

transformation such that the resulting components are the least conditionally correlated, especially

if we take the viewpoint that any statistical model is merely an approximation to the reality. In

this sense, our CUC estimation leads to the least conditionally correlated directions (LCCD) and

we build up an (approximate) volatility model by assuming the conditional correlations among

those LCCD are 0. The LCCD are the directions which minimize Ψ(·) defined in (2.8); also see
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(2.9). Theorem 1 indicates that the columns of Â are the consistent estimators for the LCCD.

Note that both Theorems 1 and 2 still apply when the CUCs do not exist (i.e. Ψ(A0) 6= 0); see

condition A3 in the Appendix. Even if the CUCs do not exist, a CUC-GARCH(1,1) model, for

example, still provides a more relevant fitting than O-GARCH(1,1) and GO-GARCH(1,1) models.

Finally we point out that for any multivariate time series Xt, there always exists an Ft−1-

measurable orthogonal matrix At−1 for which the components in Aτ
t−1Xt are conditionally un-

correlated. The CUC requires a further constraint At−1 ≡ A. It is reasonable to assume that

At−1 varies smoothly in t (see also (1.3)). Therefore we may assume that the CUCs exist for a

short time period in which At−1 ≈ A. This further extends the scope of the applicability of our

method.
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Appendix — Conditions and proof of Theorem 1

We first introduce two concepts: the mixing which measures the decaying speed of the auto-

dependence for a time series over an increasing time span, and the Vapnik-C̆ervonenkis (or VC)

index which measures the complexity of a collection of sets.

Let F j
i be the σ-algebra generated by {Xt, i ≤ t ≤ j}. The β-mixing coefficients are defined

as

β(n) = E

{
sup

B∈F∞n
|P (B)− P (B|F0

−∞)|
}

.

(See §2.6.1 of Fan and Yao, 2003.)

For an arbitrary set of n points {x1, · · · , xn}, there are 2n possible subsets. Say that B picks

out a certain subset from {x1, · · · , xn} if this can be formed as a set of the form B ∩{x1, · · · , xn}
for a set B in B. The collection B shatters {x1, · · · , xn} if each of its 2n subsets can be picked

out by B. The VC-index of B refers to the smallest n for which no set of size n is shattered by
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B. A collection of sets B is called a VC-class if its VC-index is finite. The collections of sets of

rectangles, balls and their unions are VC-classes. See Chapter 2.6 of van der Vaart and Wellner

(1996) for further discussion on VC-classes.

Under the regularity conditions listed below, the estimator Â is consistent; see Theorem 1 in

section 2.2.2.

(A1) The collection B consists of countable subsets in Rd, and is a VC-class. Further-

more
∑

B⊂B w(B) < ∞.

(A2) The process {Xt} is strictly stationary with E||Xt||2 < ∞, where ||·|| denotes the

Euclidean norm. Furthermore, the β-mixing coefficients {Xt} satisfy β(n) = O(n−b)

for some b > 0.

(A3) There exists a d×d orthogonal matrix A0 which minimizes Ψ(·) defined in (2.8).

Furthermore the minimum value of Ψ is obtained at an orthogonal matrix A if and

only if D(A,A0) = 0.

(A4). E‖Xt‖2p < ∞ for some p > 2 and b > p/(p− 2), where b is given in (A2).

(A5) Ψ(A0)−Ψ(A) ≤ −aD(A,A0) for any orthogonal matrix A such that D(A,A0)

is smaller than a small but fixed constant, where a > 0 is a constant.

Remark 1. Let H be the set consisting of all d × d orthogonal matrices. Then H may be

partitioned into the equivalent classes defined by the distance D in (2.6) as follows: the D-

distance between any two elements within an equivalent class is 0, and the D-distance between

any two elements from different classes is greater than 0. Let HD be the quotient space H/D

consisting of those equivalent classes in H, i.e. we treat A and B as the same element in HD if

and only if D(A,B) = 0. Condition (A3) ensures A0 is the unique minimizer of Ψ(A) on HD.

We introduce some notation. Let

Cn,k(B) = (n− k)−1
n∑

t=k+1

XtXτ
t I(Xt−k ∈ B), Ck(B) = E{XtXτ

t I(Xt−k ∈ B)}.

The lemma below shows that both Ψ(·) and Ψn(·) are Lipschitz continuous onHD with D-distance.

Lemma 1. For any U,V ∈ HD, it holds that

|Ψ(U)−Ψ(V)| ≤ c trE(XtXT
t ) {D(U,V)}1/2,
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and

|Ψn(U)−Ψn(V)| ≤ c tr(n−1
n∑

i=1

XtXT
t ) {D(U,V)}1/2

almost surely, where c > 0 is a constant and tr(A) is the trace of a matrix A.

Proof. We only prove the lemma for Ψ(·). The result for Ψn(·) may be shown in the same

manner. Let U = (u1, · · · ,ud)τ , V = (v1, · · · ,vd)τ , uijk(B) = E{uτ
i Ck(B)uj} and vijk(B) =

E{vτ
i Ck(B)vj}. We assume that the orders and the directions of ui and vj are arranged such

that uτ
i vi ∈ [0, 1] for all i, and

D(U,V) = 1− 1
d

d∑

i=1

uτ
i vi =

1
d

d∑

i=1

(1− uτ
i vi). (6.1)

See (2.6). Put the spectral decomposition for Ck(B) as

Ck(B) =
d∑

`=1

µ`(B, k)γ`γ
τ
` ,

where µ1(B, k) ≥ · · · ≥ µd(B, k) ≥ 0 are the eigenvalues of Ck(B), and γ1, · · · , γd are their

corresponding (orthonormal) eigenvectors. It is easy to see that µ`(B, k) ≤ µ` for all k and B,

where µ1 ≥ · · · ≥ µd are the eigenvalues of the matrix E{XtXτ}. Consequently, by noticing that

|γτ
` uj | ≤ 1 and |vτ

i γ`| ≤ 1, we have

|uijk(B)− vijk(B)| ≤
d∑

`=1

µ`|uτ
i γ`γ

τ
` uj − vτ

i γ`γ
τ
` vj |

≤
d∑

`=1

µ`{|uτ
i γ`γ

τ
` uj − vτ

i γ`γ
τ
` uj |+ |vτ

i γ`γ
τ
` uj − vτ

i γ`γ
τ
` vj |}

≤
d∑

`=1

µ`{|(ui − vi)τγ`|+ |γτ
` (uj − vj)|}

By using the Cauchy-Schwartz’s inequality, the above inequality is furthered bounded by

d∑

`=1

µ`{||ui − vi||+ ||uj − vj ||}

=
√

2{(1− uτ
i vi)1/2 + (1− uτ

j vj)1/2}
d∑

`=1

µ`. (6.2)

Note that for x 6= 0, it holds that

|x + y| − |x| = y sgn(x) + 2(x + y){I(−y < x < 0)− I(0 < x < −y)}. (6.3)
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Hence,

Ψ(U) =
∑

1≤i<j≤d

∑

B∈B
w(B)

k0∑

k=1

[|vijk(B)|+ |vijk(B) + {uijk(B)− vijk(B)}| − |vijk(B)|]

=
∑

1≤i<j≤d

∑

B∈B
w(B)

k0∑

k=1

[|vijk(B)|+ {uijk(B)− vijk(B)}sgn{vijk(B)}

+ 2uijk(B){I(B1)− I(B2)}
]
, (6.4)

where

B1 = {vijk(B)− uijk(B) < vijk(B) < 0}, B2 = {0 < vijk(B) < vijk(B)− uijk(B)}.

On the set B1 ∪B2,

|uijk(B)| ≤ |uijk(B)− vijk(B)|+ |vijk(B)| ≤ 2|uijk(B)− vijk(B)|.

This, combining with (6.2) and (6.4), implies that

|Ψ(U)−Ψ(V)|

≤ k0

∑

1≤i<j≤d

∑

B∈B
w(B)

[√
2{(1− uτ

i vi)1/2 + (1− uτ
j vj)1/2}

d∑

`=1

µ` + 2|uijk(B)|I1(B1)
]

≤ 5
√

2k0

∑

B∈B
w(B)

∑

1≤i<j≤d

{(1− uτ
i vi)1/2 + (1− uτ

j vj)1/2}
d∑

`=1

µ`

≤ 10
√

2k0d
∑

B∈B
w(B)

d∑

`=1

µ`

d∑

i=1

(1− uτ
i vi)1/2. (6.5)

Now the lemma follows from (6.5) and the inequality

d∑

i=1

(1− uτ
i vi)1/2 ≤ d1/2

{ d∑

i=1

(1− uτ
i vi)

}1/2
,

see also (6.1). This completes the proof.

Proof of Theorem 1. Since Cn,k(B)−Ck(B) is a real symmetric matrix, it holds for any unit

vectors a and b that

|aτ{Cn,k(B)−Ck(B)}b| ≤ ||Cn,k(B)−Ck(B)||,

where ||Cn,k(B)−Ck(B)|| denotes the sum of the absolute values of the eigenvalues of Cn,k(B)−
Ck(B). This may be obtained by using the spectral decomposition of Cn,k(B)−Ck(B). Conse-
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quently it holds uniformly for any orthogonal matrix A that

|Ψn(A)−Ψ(A)| ≤ c
∑

1≤i<j≤d

sup
1≤k≤k0,B∈B

|aτ
i {Cn,k(B)−Ck(B)}aj |

≤ c
d(d− 1)

2
sup

1≤k≤k0,B∈B
‖Cn,k(B)−Ck(B)‖, (6.6)

where c > 0 is a constant. Note the (i, j)-th element of Cn,k(B)−Ck(B) is

1
n− k

n∑

t=k+1

XtiXtjI(Xt−k ∈ B)−E{XtiXtjI(Xt−k ∈ B)},

where Xti denotes the i-th element of Xt. Since E|XtiXtj | < ∞ and B is a VC-class, the covering

number for the set of functions {XtiXtjI(Xt−k ∈ B), B ∈ B} has a polynomial rate of growth for

any underlying probability measure (Theorem 2.6.4, van der Vaart and Wellner 1996). Hence, it

is a Glivenko-Cantelli class. It follows now from Theorem 3.4 of Yu (1994) that

sup
B∈B

∣∣∣ 1
n− k

n∑

t=k+1

XtiXtjI(Xt−k ∈ B)− E{XtiXtjI(Xt−k ∈ B)}
∣∣∣ P−→ 0,

Consequently,

sup
B∈B

|λmax(B, k)| P−→ 0, sup
B∈B

|λmin(B, k)| P−→ 0,

where λmax(B, k) and λmin(B, k) denote, respectively, the maximum and the minimum eigenvalues

of Cn,k(B)−Ck(B). Thus

sup
B∈B

‖Cn,k(B)−Ck(B)‖ P−→ 0,

for k = 1, · · · , k0. Now it follows from (6.6) that

sup
A∈H

|Ψn(A)−Ψ(A)| P−→ 0.

Combining this with Lemma 1 above and the continuity of the argmax mapping (Theorem 3.2.2

and Corollary 3.2.3, van der Vaart and Wellner, 1996), it holds that D(Â,A0)
P−→ 0. This

completes the proof of the first part of Theorem 1.

Under the additional condition E|XtiXtj |2p < ∞ and the mixing condition given in Condition

(A4), Theorem 1 of Arcones and Yu (1994) implies that the set of functions {XtiXtjI(Xt−k ∈
B), B ∈ B} is a Donsker class, and hence the process {∆n,k(B), B ∈ B} indexed by B ∈ B
converges weakly to a Gaussian process, where ∆n,k(B) =

√
n{Cn,k(B) − Ck(B)}. It follows
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from (6.3) that

Ψn(A) =
∑

1≤i<j≤d

∑

B∈B
w(B)

k0∑

k=1

[|aT
i Ck(B)aj |+ n−1/2sgn{aτ

i Ck(B)aj}aτ
i ∆n,k(B)aj

+ aτ
i Cn,k(B)aj{I(B3)− I(B4)}

]

= Ψ(A) + OP (n−1/2), (6.7)

where

B3 = {n−1/2aτ
i ∆n,k(B)aj < aτ

i Ck(B)aj < 0}, B4 = {0 < aτ
i Ck(B)aj < n−1/2aτ

i ∆n,k(B)aj}.

The last equality in (6.7) follows from the fact that on B3 ∪B4,

|aτ
i Cn,k(B)aj | ≤ |aτ

i Ck(B)aj |+ n−1/2|aτ
i ∆n,k(B)aj | ≤ 2n−1/2|aτ

i ∆n,k(B)aj |.

It follows from (6.7) and condition (A5) that

Ψn(A0)−Ψn(A) = Ψ(A0)−Ψ(A) + OP (n−1/2) ≤ −aD(A0,A) + OP (n−1/2). (6.8)

Now by substituting A by Â, the left hand side of (6.8) must be non-negative by the definition

of Â. The right hand side of (6.8) would be negative unless

D(A0, Â) = OP (n−1/2).

This completes the proof.
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(a)  With estimated A; n=1000 
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(b)  With true A; n=1000 

Figure 1: Boxplots of the estimation errors for CUC-GARCH(1,1) model (3.1) with A = Â
estimated (upper panel) and the true A (lower panel). The sample size is n = 1000.
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(d) Sprint 

Figure 2: Plots of daily log returns of (a) S&P 500 index, (b) Cisco Systems , (c) Intel Corporation
and (d) Sprint in 2 January 1991 – 31 December 1999.
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Figure 3: The estimated volatility processes for the S&P500 return.
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Figure 4: The estimated conditional correlation processes between the S&P500 return and the
Intel return.
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