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Abstract. Technological innovations have revolutionized the process of scientific research and
knowledge discovery. The availability of massive data and challenges from frontiers of research
and development have reshaped statistical thinking, data analysis and theoretical studies. The
challenges of high-dimensionality arise in diverse fields of sciences and the humanities, ranging
from computational biology and health studies to financial engineering and risk management. In
all of these fields, variable selection and feature extraction are crucial for knowledge discovery.
We first give a comprehensive overview of statistical challenges with high dimensionality in these
diverse disciplines. We then approach the problem of variable selection and feature extraction
using a unified framework: penalized likelihood methods. Issues relevant to the choice of penalty
functions are addressed. We demonstrate that for a host of statistical problems, as long as the
dimensionality is not excessively large, we can estimate the model parameters as well as if the
best model is known in advance. The persistence property in risk minimization is also addressed.
The applicability of such a theory and method to diverse statistical problems is demonstrated.
Other related problems with high-dimensionality are also discussed.
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1. Introduction

Technological innovations have had deep impact on society and on scientific research.
They allow us to collect massive amount of data with relatively low cost. Observations
with curves, images or movies, along with many other variables, are frequently seen
in contemporary scientific research and technological development. For example, in
biomedical studies, huge numbers of magnetic resonance images (MRI) and func-
tional MRI data are collected for each subject with hundreds of subjects involved.
Satellite imagery has been used in natural resource discovery and agriculture, col-
lecting thousands of high resolution images. Examples of these kinds are plentiful in
computational biology, climatology, geology, neurology, health science, economics,

∗Fan’s research was supported partially by NSF grant DMS-0354223, DMS-0532370 and NIH R01-
GM072611. Li’s research was supported by NSF grant DMS-0348869 and National Institute on DrugAbuse grant
P50 DA10075. The authors would like to thank Professors Peter Hall and Michael Korosok for their constructive
comments and John Dziak for his assistance. The article was presented by Jianqing Fan.

Proceedings of the International Congress
of Mathematicians, Madrid, Spain, 2006
© 2006 European Mathematical Society



596 Jianqing Fan and Runze Li

and finance among others. Frontiers of science, engineering and the humanities dif-
fer in the problems of their concerns, but nevertheless share one common theme:
massive and high-throughput data have been collected and new knowledge needs to
be discovered using these data. These massive collections of data along with many
new scientific problems create golden opportunities and significant challenges for the
development of mathematical sciences.

The availability of massive data along with new scientific problems have reshaped
statistical thinking and data analysis. Dimensionality reduction and feature extraction
play pivotal roles in all high-dimensional mathematical problems. The intensive
computation inherent in these problems has altered the course of methodological
development. At the same time, high-dimensionality has significantly challenged
traditional statistical theory. Many new insights need to be unveiled and many new
phenomena need to be discovered. There is little doubt that the high dimensional data
analysis will be the most important research topic in statistics in the 21st century [19].

Variable selection and feature extraction are fundamental to knowledge discov-
ery from massive data. Many variable selection criteria have been proposed in the
literature. Parsimonious models are always desirable as they provide simple and in-
terpretable relations among scientific variables in addition to reducing forecasting
errors. Traditional variable selection such as Cp, AIC and BIC involves a combina-
torial optimization problem, which is NP-hard, with computational time increasing
exponentially with the dimensionality. The expensive computational cost makes tra-
ditional procedures infeasible for high-dimensional data analysis. Clearly, innovative
variable selection procedures are needed to cope with high-dimensionality.

Computational challenges from high-dimensional statistical endeavors forge cross-
fertilizations among applied and computational mathematics, machine learning, and
statistics. For example, Donoho and Elad [20] and Donoho and Huo [21] show that the
NP-hard best subset regression can be solved by a penalized L1 least-squares prob-
lem, which can be handled by a linear programming, when the solution is sufficiently
sparse. Wavelets are widely used in statistics function estimation and signal process-
ing [1], [14], [17], [23], [24], [64], [65], [71]. Algebraic statistics, the term coined by
Pistone, Riccomagno, Wynn [73], uses polynomial algebra and combinatorial algo-
rithms to solve computational problems in experimental design and discrete probabil-
ity [73], conditional inferences based on Markovian chains [16], parametric inference
for biological sequence analysis [72], and phylogenetic tree reconstruction [78].

In high-dimensional data mining, it is helpful to distinguish two types of statistical
endeavors. In many machine learning problems such as tumor classifications based
on microarray or proteomics data and asset allocations in finance, the interests often
center around the classification errors, or returns and risks of selected portfolios
rather than the accuracy of estimated parameters. On the other hand, in many other
statistical problems, concise relationship among dependent and independent variables
are needed. For example, in health studies, we need not only to identify risk factors,
but also to assess accurately their risk contributions. These are needed for prognosis
and understanding the relative importance of risk factors. Consistency results are
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inadequate for assessing the uncertainty in parameter estimation. The distributions
of selected and estimated parameters are needed. Yet, despite extensive studies in
classical model selection techniques, no satisfactory solutions have yet been produced.

In this article, we address the issues of variable selection and feature extraction
using a unified framework: penalized likelihood methods. This framework is appli-
cable to both machine learning and statistical inference problems. In addition, it is
applied to both exact and approximate statistical modeling. We outline, in Section 2,
some high-dimensional problems from computational biology, biomedical studies,
financial engineering, and machine learning, and then provide a unified framework
to address the issues of feature selection in Sections 3 and 4. In Sections 5 and 6, the
framework is then applied to provide solutions to some problems outlined in Section 2.

2. Challenges from sciences and humanities

We now outline a few problems from various frontiers of research to illustrate the
challenges of high-dimensionality. Some solutions to these problems will be provided
in Section 6.

2.1. Computational biology. Bioinformatic tools have been widely applied to ge-
nomics, proteomics, gene networks, structure prediction, disease diagnosis and drug
design. The breakthroughs in biomedical imaging technology allow scientists to
monitor large amounts of diverse information on genetic variation, gene and pro-
tein functions, interactions in regulatory processes and biochemical pathways. Such
technology has also been widely used for studying neuron activities and networks.
Genomic sequence analysis permits us to understand the homologies among differ-
ent species and infer their biological structures and functionalities. Analysis of the
network structure of protein can predict the protein biological function. These quanti-
tative biological problems raise many new statistical and computational problems. Let
us focus specifically on the analysis of microarray data to illustrate some challenges
with dimensionality.

DNA microarrays have been widely used in simultaneously monitoring mRNA
expressions of thousands of genes in many areas of biomedical research. There are
two popularly-used techniques: c-DNA microarrays [5] and Affymetrix GeneChip
arrays [61]. The former measures the abundance of mRNA expressions by mixing
mRNAs of treatment and control cells or tissues, hybridizing with cDNA on the chip.
The latter uses combined intensity information from 11-20 probes interrogating a part
of the DNA sequence of a gene, measuring separately mRNA expressions of treatment
and control cells or tissues. Let us focus further on the cDNA microarray data.

The first statistical challenge is to remove systematic biases due to experiment
variations such as intensity effect in the scanning process, block effect, dye effect,
batch effect, amount of mRNA, DNA concentration on arrays, among others. This
is collectively referred to as normalization in the literature. Normalization is critical
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for multiple array comparisons. Statistical models are needed for estimation of these
systematic biases in presence of high-dimensional nuisance parameters from treatment
effects on genes. See, for example, lowess normalization in [26], [83], semiparametric
model-based normalization by [36], [37], [50], and robust normalization in [63]. The
number of significantly expressed genes is relatively small. Hence, model selection
techniques can be used to exploit the sparsity. In Section 6.1, we briefly introduce
semiparametric modeling techniques to issues of normalization of cDNA microarray.

Once systematic biases have been removed, the statistical challenge becomes
selecting statistically significant genes based on a relatively small sample size of arrays
(e.g. n = 4, 6, 8). Various testing procedures have been proposed in the literature.
See, for example, [30], [37], [50], [83], [84]. In carrying out simultaneous testing
of orders of hundreds or thousands of genes, classical methods of controlling the
probability of making one falsely discovered gene are no longer relevant. Therefore
various innovative methods have been proposed to control the false discovery rates.
See, for example, [2], [22], [25], [27], [44], [57], [77]. The fundamental assumption
in these developments is that the null distribution of test statistics can be determined
accurately. This assumption is usually not granted in practice and new probabilistic
challenge is to answer the questions how many simultaneous hypotheses can be tested
before the accuracy of approximations of null distributions becomes poor. Large
deviation theory [45], [46], [53] is expected to play a critical role in this endeavor.
Some progress has been made using maximal inequalities [55].

Tumor classification and clustering based on microarray and proteomics data are
another important class of challenging problems in computational biology. Here,
hundreds or thousands of gene expressions are potential predictors, and the challenge
is to select important genes for effective disease classification and clustering. See, for
example, [79], [82], [88] for an overview and references therein.

Similar problems include time-course microarray experiments used to determine
the expression pathways over time [79], [80] and genetic networks used for under-
standing interactions in regulatory processes and biochemical pathways [58]. Chal-
lenges of selecting significant genes over time and classifying patterns of gene expres-
sions remain. In addition, understanding genetic network problems requires estimat-
ing a huge covariance matrix with some sparsity structure. We introduce a modified
Cholesky decomposition technique for estimating large scale covariance matrices in
Section 6.1.

2.2. Health studies. Many health studies are longitudinal: each subject is followed
over a period of time and many covariates and responses of each subject are col-
lected at different time points. Framingham Heart Study (FHS), initiated in 1948,
is one of the most famous classic longitudinal studies. Documentation of its first
50 years can be found at the website of National Heart, Lung and Blood Institute
(http://www.nhlbi.nih.gov/about/framingham/). One can learn more details about this
study from the website of American Heart Association. In brief, the FHS follows a
representative sample of 5,209 adult residents and their offspring aged 28–62 years in
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Framingham, Massachusetts. These subjects have been tracked using (a) standardized
biennial cardiovascular examination, (b) daily surveillance of hospital admissions, (c)
death information and (d) information from physicians and other sources outside the
clinic.

In 1971 the study enrolled a second-generation group to participate in similar
examinations. It consisted of 5,124 of the original participants’ adult children and
their spouses. This second study is called the Framingham Offspring Study.

The main goal of this study is to identify major risk factors associated with heart
disease, stroke and other diseases, and to learn the circumstances under which cardio-
vascular diseases arise, evolve and end fatally in the general population. The findings
in this studies created a revolution in preventive medicine, and forever changed the
way the medical community and general public view on the genesis of disease. In this
study, there are more than 25,000 samples, each consisting of more than 100 variables.
Because of the nature of this longitudinal study, some participant cannot be followed
up due to their migrations. Thus, the collected data contain many missing values.
During the study, cardiovascular diseases may develop for some participants, while
other participants may never experience with cardiovascular diseases. This implies
that some data are censored because the event of particular interest never occurred.
Furthermore, data between individuals may not be independent because data for indi-
viduals in a family are clustered and likely positively correlated. Missing, censoring
and clustering are common features in health studies. These three issues make data
structure complicated and identification of important risk factors more challenging.
In Section 6.2, we present a penalized partial likelihood approach to selecting signifi-
cant risk factors for censored and clustering data. The penalized likelihood approach
has been used to analyze a data subset of Frammingham study in [9].

High-dimensionality is frequently seen in many other biomedical studies. For
example, ecological momentary assessment data have been collected for smoking
cessation studies. In such a study, each of a few hundreds participants is provided a
hand-held computer, which is designed to randomly prompt the participants five to
eight times per day over a period of about 50 days and to provide 50 questions at
each prompt. Therefore, the data consist of a few hundreds of subjects and each of
them may have more than ten thousand observed values [60]. Such data are termed
intensive longitudinal data. Classical longitudinal methods are inadequate for such
data. Walls and Schafer [86] presents more examples of intensive longitudinal data
and some useful models to analyze this kind of data.

2.3. Financial engineering and risk management. Technological revolution and
trade globalization have introduced a new era of financial markets. Over the last
three decades, an enormous number of new financial products have been created to
meet customers’ demands. For example, to reduce the impact of the fluctuations
of currency exchange rates on corporate finances, a multinational corporation may
decide to buy options on the future of exchange rates; to reduce the risk of price
fluctuations of a commodity (e.g. lumbers, corns, soybeans), a farmer may enter
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into a future contract of the commodity; to reduce the risk of weather exposures,
amusement parks and energy companies may decide to purchase financial derivatives
based on the weather. Since the first options exchange opened in Chicago in 1973, the
derivative markets have experienced extraordinary growth. Professionals in finance
now routinely use sophisticated statistical techniques and modern computing power in
portfolio management, securities regulation, proprietary trading, financial consulting,
and risk management. For an overview, see [29] and references therein.

Complex financial markets [51] make portfolio allocation, asset pricing and risk
management very challenging. For example, the price of a stock depends not only on
its past values, but also its bond and derivative prices. In addition, it depends on prices
of related companies and their derivatives, and on overall market conditions. Hence,
the number of variables that influence asset prices can be huge and the statistical
challenge is to select important factors that capture the market risks. Thanks to
technological innovations, high-frequency financial data are now available for an array
of different financial instruments over a long time period. The amount of financial
data available to financial engineers is indeed astronomical.

Let us focus on a specific problem to illustrate the challenge of dimensionality. To
optimize the performance of a portfolio [10], [12] or to manage the risk of a portfolio
[70], we need to estimate the covariance matrix of the returns of assets in the portfolio.
Suppose that we have 200 stocks to be selected for asset allocation. There are 20,200
parameters in the covariance matrix. This is a high-dimensional statistical problem
and estimating it accurately poses challenges.

Covariance matrices pervade every facet of financial econometrics, from asset
allocation, asset pricing, and risk management, to derivative pricing and proprietary
trading. As mentioned earlier, they are also critical for studying genetic networks [58],
as well as other statistical applications such as climatology [54]. In Section 6.1, a
modified Cholesky decomposition is used to estimate huge covariance matrices using
penalized least squares approach proposed in Section 2. We will introduce a factor
model for covariance estimation in Section 6.3.

2.4. Machine learning and data mining. Machine learning and data mining extend
traditional statistical techniques to handle problems with much higher dimensionality.
The size of data can also be astronomical: from grocery sales and financial market
trading to biomedical images and natural resource surveys. For an introduction,
see the books [47], [48]. Variable selections and feature extraction are vital for
such high-dimensional statistical explorations. Because of the size and complexity
of the problems, the associated mathematical theory also differs from the traditional
approach. The dimensionality of variables is comparable with the sample size and can
even be much higher than the sample size. Selecting reliable predictors to minimize
risks of prediction is fundamental to machine learning and data mining. On the other
hand, as the interest mainly lies in risk minimization, unlike traditional statistics, the
model parameters are only of secondary interest. As a result, crude consistency results
suffice for understanding the performance of learning theory. This eases considerably
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the mathematical challenges of high-dimensionality. For example, in the supervised
(classification) or unsupervised (clustering) learning, we do not need to know the
distributions of estimated coefficients in the underlying model. We only need to know
the variables and their estimated parameters in the model. This differs from high-
dimensional statistical problems in health sciences and biomedical studies, where
statistical inferences are needed in presence of high-dimensionality. In Sections 4.2
and 6.4, we will address further the challenges in machine learning.

3. Penalized least squares

With the above background, we now consider the variable selection in the least-
squares setting to gain further insights. The idea will be extended to the likelihood or
pseudo-likelihood setting in the next section. We demonstrate how to directly apply
the penalized least squares approach for function estimation or approximation using
wavelets or spline basis, based on noisy data in Section 5. The penalized least squares
method will be further extended to penalized empirical risk minimization for machine
learning in Section 6.4.

Let {xi , yi}, i = 1, . . . , n, be a random sample from the linear regression model

y = xT β + ε, (3.1)

where ε is a random error with mean 0 and finite variance σ 2, and β = (β1, . . . , βd)T

is the vector of regression coefficients. Here, we assume that all important predictors,
and their interactions or functions are already in the model so that the full model (3.1)
is correct.

Many variable selection criteria or procedures are closely related to minimize the
following penalized least squares (PLS)

1

2n

n∑
i=1

(yi − xT
i β)2 +

d∑
j=1

pλj
(|βj |), (3.2)

where d is the dimension of x, and pλj
( · ) is a penalty function, controlling model

complexity. The dependence of the penalty function on j allows us to incorporate
prior information. For instance, we may wish to keep certain important predictors in
the model and choose not to penalize their coefficients.

The form of pλj
( · ) determines the general behavior of the estimator. With the

entropy or L0-penalty, namely, pλj
(|βj |) = 1

2λ2I (|βj | �= 0), the PLS (3.2) becomes

1

2n

n∑
i=1

(yi − xT
i β)2 + 1

2
λ2|M|, (3.3)

where |M| = ∑
j I (|βj | �= 0), the size of the candidate model. Among models with

m variables, the selected model is the one with the minimum residual sum of squares
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(RRS), denoted by RSSm. A classical statistical method is to choose m by maximizing
the adjusted R2, given by

Radj,m = 1 − n − 1

n − m

RSSm

RSS1
,

or equivalently by minimizing RSSm/(n−m), where RSS1 is the total sum of squares
based on the null model (using the intercept only). Using log(1 + x) ≈ x for small
x, it follows that

log{RSSm/(n − m)} ≈ (log σ 2 − 1) + σ−2
{

1

n
RSSm + 1

n
mσ 2

}
. (3.4)

Therefore, maximization of Radj,m is asymptotically equivalent to minimizing the
PLS (3.3) with λ = σ/

√
n. Similarly, generalized cross-validation (GCV) given by

GCV(m) = RSSm/{n(1 − m/n)2}
is asymptotically equivalent to the PLS (3.3) with λ = √

2σ/
√

n and so is the cross-
validation (CV) criterion.

Many popular variable selection criteria can be shown asymptotically equivalent
to the PLS (3.3) with appropriate values of λ, though these criteria were motivated
from different principles. See [69] and references therein. For instance, RIC [38]
corresponds to λ = √

2 log(d)(σ/
√

n). Since the entropy penalty function is discon-
tinuous, minimizing the entropy-penalized least-squares requires exhaustive search,
which is not feasible for high-dimensional problem. In addition, the sampling distri-
butions of resulting estimates are hard to derive.

Many researchers have been working on minimizing the PLS (3.2) with Lp-penalty
for some p > 0. It is well known that the L2-penalty results in a ridge regression esti-
mator, which regularizes and stabilizes the estimator but introduces biases. However,
it does not shrink any coefficients directly to zero.

The Lp-penalty with 0 < p < 2 yields bridge regression [39], intermediating
the best-subset (L0-penalty) and the ridge regression (L2-penalty). The non-negative
garrote [8] shares the same spirit as that of bridge regression. With the L1-penalty
specifically, the PLS estimator is called LASSO in [81]. In a seminal paper, Donoho
and Elad [20] show that penalized L0-solution can be found by using penalized L1-
method for sparse problem. When p ≤ 1, the PLS automatically performs variable
selection by removing predictors with very small estimated coefficients.

Antoniadis and Fan [1] discussed how to choose a penalty function for wavelets
regression. Fan and Li [33] advocated penalty functions with three properties:

a. Sparsity: The resulting estimator should automatically set small estimated
coefficients to zero to accomplish variable selection.

b. Unbiasedness: The resulting estimator should have low bias, especially when
the true coefficient βj is large.
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c. Continuity: The resulting estimator should be continuous to reduce instability
in model prediction.

To gain further insights, let us assume that the design matrix X = (x1, . . . , xn)
T for

model (3.1) is orthogonal and satisfies that 1
n
XT X = Id . Let z = (XT X)−1XT y be

the least squares estimate of β. Then (3.2) becomes

1

2n
‖y − Xz‖ + 1

2
‖z − β‖2 +

d∑
j=1

pλj
(|βj |).

Thus the PLS reduces to a componentwise minimization problem:

min
βj

{
1

2
(zj − βj )

2 + pλj
(|βj |)

}
, for j = 1, . . . , d,

where zj is the j -th component of z. Suppress the subscript j and let

Q(β) = 1

2
(z − β)2 + pλ(|β|). (3.5)

Then the first order derivative of Q(β) is given by

Q′(β) = β − z + p′
λ(|β|)sgn(β) = sgn(β){|β| + p′

λ(|β|)} − z.

Antoniadis and Fan [1] and Fan and Li [33] derived that the PLS estimator possesses
the following properties:

(a) sparsity if minβ{|β| + p′
λ(|β|)} > 0;

(b) unbiasedness p′
λ(|β|) = 0 for large |β|;

(c) continuity if and only if argminβ{|β| + p′
λ(|β|)} = 0.

The Lp-penalty with 0 ≤ p < 1 does not satisfy the continuity condition, the L1
penalty does not satisfy the unbiasedness condition, and Lp with p > 1 does not
satisfy the sparsity condition. Therefore, none of the Lp-penalties satisfies the above
three conditions simultaneously, and L1-penalty is the such penalty that is both convex
and produces sparse solutions. Of course, the class of penalty functions satisfying the
aforementioned three conditions are infinitely many. Fan and Li [33] suggested the
use of the smoothly clipped absolute deviation (SCAD) penalty defined as

pλ(|β|) =

⎧⎪⎨
⎪⎩

λ|β|, if 0 ≤ |β| < λ;
−(|β|2 − 2aλ|β| + λ2)/{2(a − 1)}, if λ ≤ |β| < aλ;
(a + 1)λ2/2, if |β| ≥ aλ.

They further suggested using a = 3.7. This function has similar feature to the penalty
function λ|β|/(1 + |β|) advocated in [71]. Figure 1 depicts the SCAD, L0.5-penalty,
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Figure 1. Penalty functions (left panel) and PLS estimators (right panel).

L1-penalty, and hard thresholding penalty (to be introduced) functions. These four
penalty functions are singular at the origin, a necessary condition for sparsity in
variable selection. Furthermore, the SCAD, hard-thresholding and L0.5 penalties are
nonconvex over (0, +∞) in order to reduce the estimation bias.

Minimizing the PLS (3.5) with the entropy penalty or hard-thresholding penalty
pλ(β) = λ2 − (λ − |β|)2+ (which is smoother) yields the hard-thresholding rule [23]
β̂H = zI (|z| > λ). With the L1-penalty, the PLS estimator is β̂S = sgn(z)(|z|−λ)+,
the soft-thresholding rule [3], [23]. The L2-penalty results in the ridge regression
β̂R = (1 + λ)−1z and the SCAD penalty gives the solution

β̂SCAD =

⎧⎪⎨
⎪⎩

sgn(z)(|z| − λ)+, when |z| ≤ 2λ;
{(a − 1)z − sgn(z)aλ}/(a − 2), when 2λ < |z| ≤ aλ;
z, when |z| > aλ.

These functions are also shown in Figure 1. The SCAD is an improvement over the
L0-penalty in two aspects: saving computational cost and resulting in a continuous
solution to avoid unnecessary modeling variation. Furthermore, the SCAD improves
bridge regression by reducing modeling variation in model prediction. Although
similar in spirit to the L1-penalty, the SCAD also improves the L1-penalty by avoid-
ing excessive estimation bias since the solution of the L1-penalty could shrink all
regression coefficients by a constant, e.g., the soft thresholding rule.
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4. Penalized likelihood

PLS can easily be extended to handle a variety of response variables, including binary
response, counts, and continuous response. A popular family of this kind is called
generalized linear models. Our approach can also be applied to the case where the
likelihood is a quasi-likelihood or other discrepancy functions. This will be demon-
strated in Section 6.2 for analysis of survival data, and in Section 6.4 for machine
learning.

Suppose that conditioning on xi , yi has a density f {g(xT
i β), yi}, where g is a

known inverse link function. Define a penalized likelihood as

Q(β) = 1

n

n∑
i=1

log f {g(xT
i β), yi} −

d∑
j=1

pλj
(|βj |). (4.1)

Maximizing the penalized likelihood results in a penalized likelihood estimator. For
certain penalties, such as the SCAD, the selected model based on the nonconcave
penalized likelihood satisfies βj = 0 for certain βj ’s. Therefore, parameter estimation
is performed at the same time as the model selection.

Example (Logistics Regression). Suppose that given xi , yi follows a Bernoulli dis-
tribution with success probability P {yi = 1|xi} = p(xi ). Take g(u) = exp(u)/(1 +
exp(u)), i.e. p(x) = exp(xT β)/{1 + exp(xT β)}. Then (4.1) becomes

1

n

n∑
i=1

[yi(x
T
i β) − log{1 + exp(xT

i β)}] −
d∑

j=1

pλj
(|βj |).

Thus, variable selection for logistics regression can be achieved by maximizing the
above penalized likelihood.

Example (Poisson Log-linear Regression). Suppose that given xi , yi follows a Pois-
son distribution with mean λ(xi ). Take g( · ) to be the log-link, i.e. λ(x) = exp(xT β).
Then (4.1) can be written as

1

n

n∑
i=1

{yi(x
T
i β) − exp(xT

i β)} −
d∑

j=1

pλj
(|βj |)

after dropping a constant. Thus, maximizing the above penalized likelihood with
certain penalty functions yields a sparse solution for β.

4.1. Oracle properties. Maximizing a penalized likelihood selects variables and
estimates parameters simultaneously. This allows us to establish the sampling prop-
erties of the resulting estimators. Under certain regularity conditions, Fan and Li [33]
demonstrated how the rates of convergence for the penalized likelihood estimators
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depend on the regularization parameter λn and established the oracle properties of the
penalized likelihood estimators.

In the context of variable selection for high-dimensional modeling, it is natural
to allow the number of introduced variables to grow with the sample sizes. Fan and
Peng [35] have studied the asymptotic properties of the penalized likelihood estimator
for situations in which the number of parameters, denoted by dn, tends to ∞ as the
sample size n increases. Denote βn0 to be the true value of β. To emphasize the
dependence of λj on n, we use notation λn,j for λj in this subsection. Define

an = max{p′
λn,j

(|βn0j |) : βn0j �= 0} and bn = max{|p′′
λn,j

(|βn0j |)| : βn0j �= 0}.
(4.2)

Fan and Peng [35] showed that if both an and bn tend to 0 as n → ∞, then under
certain regularity conditions, there exists a local maximizer β̂ of Q(β) such that

‖β̂ − βn0‖ = OP {√dn(n
−1/2 + an)}. (4.3)

It is clear from (4.3) that by choosing a proper λn,j such that an = O(n−1/2), there
exists a root-(n/dn) consistent penalized likelihood estimator. For example, for the
SCAD, the penalized likelihood estimator is root-(n/dn) consistent if all λn,j ’s tend
to 0.

Without loss of generality assume that, unknown to us, the first sn components
of βn0, denoted by βn01, are nonzero and do not vanish and the remaining dn − sn
coefficients, denoted by βn02, are 0. Denote by

� = diag
{
p′′

λn,1
(|βn01|), . . . , p′′

λn,sn
(|βn0sn |)

}
and

b = (
p′

λn,1
(|βn01|)sgn(βn01), . . . , p

′
λn,sn

(|βn0sn |)sgn(βn0sn)
)T

.

Theorem 1. Assume that as n → ∞, min1≤j≤sn |βn0j |/λn,j → ∞ and that the
penalty function pλj

(|βj |) satisfies

lim inf
n→∞ lim inf

βj→0+ p′
λn,j

(βj )/λn,j > 0. (4.4)

If λn,j → 0,
√

n/dnλn,j → ∞ and d5
n/n → 0 as n → ∞, then with probability

tending to 1, the root n/dn consistent local maximizers β̂ = (β̂T
n1, β̂

T
n2)

T must satisfy:

(i) Sparsity: β̂n2 = 0;
(ii) Asymptotic normality: for any q ×sn matrix An such that AnA

T
n → G, a q ×q

positive definite symmetric matrix,

√
nAnI

−1/2
1 {I 1 + �}{β̂n1 − βn10 + (I 1 + �)−1b

} D−→ N(0, G)

where I 1 = I 1(βn10, 0), the Fisher information knowing βn20 = 0.
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The theorem implies that any finite set of elements of β̂n1 are jointly asymptotically
normal. For the SCAD, if all λj,n → 0, an = 0. Hence, when

√
n/dnλn,j → ∞,

its corresponding penalized likelihood estimators possess the oracle property, i.e.,
perform as well as the maximum likelihood estimates for estimating βn1 knowing
βn2 = 0. That is, with probability approaching to 1,

β̂n2 = 0, and
√

nAnI
1/2
1 (β̂n1 − βn10) → N(0, G).

For the L1-penalty, an = maxj λj,n. Hence, the root-n/dn consistency requires
that λn,j = O(

√
dn/n). On the other hand, the oracle property in Theorem 2 requires

that
√

n/dnλn,j → ∞. These two conditions for LASSO cannot be satisfied simul-
taneously. It has indeed been shown that the oracle property does not hold for the
L1-penalty even in the finite parameter setting [90].

4.2. Risk minimization and persistence. In machine learning such as tumor classi-
fications, the primary interest centers on the misclassification errors or more generally
expected losses, not the accuracy of estimated parameters. This kind of properties is
called persistence in [42], [43].

Consider predicting the response Y using a class of model g(xT β) with a loss
function �{g(XT β), Y ). Then the risk is

Ln(β) = E�{g(XT β), Y },
where n is used to stress the dependence of dimensionality d on n. The minimum risk
is obtained at β∗

n = argminβLn(β). In the likelihood context, � = − log f . Suppose

that there is an estimator β̂n based on a sample of size n. This can be done by the
penalized empirical risk minimization similarly to (4.1):

n−1
n∑

i=1

�{g(xT
i β), yi} +

d∑
j=1

pλj
(|βj |), (4.5)

based on a set of training data {(xi , yi), i = 1, . . . , n}. The persistence requires

Ln(β̂n) − Ln(β
∗
n)

P−→ 0, (4.6)

but not necessarily the consistency of β̂n to β∗
n. This is in general a much weaker

mathematical requirement. Greenshtein and Ritov [43] show that if the non-sparsity
rate sn = O{(n/ log n)1/2} and dn = nα for some α > 1, LASSO (penalized L1 least-
squares) is persistent under the quadratic loss. Greenshtein [42] extends the results to
the case where sn = O{n/ log n} and more general loss functions. Meinshausen [66]
considers a case with finite non-sparsity sn but with log dn = nξ , with ξ ∈ (0, 1). It is
shown there that for the quadratic loss, LASSO is persistent, but the rate to persistency
is slower than a relaxed LASSO. This again shows the bias problems in LASSO.
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4.3. Issues in practical implementation. In this section, we address practical im-
plementation issues related to the PLS and penalized likelihood.

Local quadratic approximation (LQA). The Lp, (0 < p < 1), and SCAD penalty
functions are singular at the origin, and they do not have continuous second order
derivatives. Therefore, maximizing the nonconcave penalized likelihood is challeng-
ing. Fan and Li [33] propose locally approximating them by a quadratic function as
follows. Suppose that we are given an initial value β0 that is close to the optimizer of
Q(β). For example, take initial value to be the maximum likelihood estimate (without
penalty). Under some regularity conditions, the initial value is a consistent estimate
for β, and therefore it is close to the true value. Thus, we can locally approximate the
penalty function by a quadratic function as

pλn(|βj |) ≈ pλn(|β0
j |) + 1

2
{p′

λn
(|β0

j |)/|β0
j |}(β2

j − β02
j ), for βj ≈ β0

j . (4.7)

To avoid numerical instability, we set β̂j = 0 if β0
j is very close to 0. This corresponds

to deleting xj from the final model. With the aid of the LQA, the optimization
of penalized least-squares, penalized likelihood or penalized partial likelihood (see
Section 6.2) can be carried out by using the Newton–Raphson algorithm. It is worth
noting that the LQA should be updated at each step during the course of iteration
of the algorithm. We refer to the modified Newton–Raphson algorithm as the LQA
algorithm.

The convergence property of the LQA algorithm was studied in [52], whose authors
first showed that the LQA plays the same role as the E-step in the EM algorithm [18].
Therefore the behavior of the LQA algorithm is similar to the EM algorithm. Unlike
the original EM algorithm, in which a full iteration for maximization is carried out after
every E-step, we update the LQA at each step during the iteration course. This speeds
up the convergence of the algorithm. The convergence rate of the LQA algorithm is
quadratic which is the same as that of the modified EM algorithm [56].

When the algorithm converges, the estimator satisfies the condition

∂�(β̂)/∂βj + np′
λj

(|β̂j |)sgn(β̂j ) = 0,

the penalized likelihood equation, for non-zero elements of β̂.

Standard error formula. Following conventional techniques in the likelihood set-
ting, we can estimate the standard error of the resulting estimator by using the sand-
wich formula. Specifically, the corresponding sandwich formula can be used as an
estimator for the covariance of the estimator β̂1, the non-vanishing component of β̂.
That is,

ĉov(β̂1) = {∇2�(β̂1) − n�λ(β̂1)}−1ĉov{∇�(β̂1)}{∇2�(β̂1) − n�λ(β̂1)}−1, (4.8)

where ĉov{∇�(β̂1)} is the usual empirically estimated covariance matrix and

�λ(β̂1) = diag{p′
λ1

(|β̂1|)/|β̂1|, . . . , p′
λsn

(|β̂sn |)/|β̂sn |}
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and sn the dimension of β̂1. Fan and Peng [35] demonstrated the consistency of the
sandwich formula:

Theorem 2. Under the conditions of Theorem 1, we have

Anĉov(β̂1)A
T
n − An�nA

T
n

P−→ 0 as n → ∞
for any matrix An such that AnA

T
n = G, where �n = (I 1 + �)−1I−1

1 (I 1 + �)−1.

Selection of regularization parameters. To implement the methods described in
previous sections, it is desirable to have an automatic method for selecting the thresh-
olding parameter λ in pλ( · ) based on data. Here, we estimate λ via minimizing an
approximate generalized cross-validation (GCV) statistic in [11]. By some straight-
forward calculation, the effective number of parameters for Q(β) in the last step of
the Newton–Raphson algorithm iteration is

e(λ) ≡ e(λ1, . . . , λd) = tr[{∇2�(β̂) − n�λ(β̂)}−1∇2�(β̂)].
Therefore the generalized cross-validation statistic is defined by

GCV(λ) = −�(β̂)/[n{1 − e(λ)/n}2]
and λ̂ = argminλ{GCV(λ)} is selected.

To find an optimal λ, we need to minimize the GCV over a dn-dimensional space.
This is an unduly onerous task. Intuitively, it is expected that the magnitude of λj

should be proportional to the standard error of the maximum likelihood estimate of βj .
Thus, we set λ = λse(β̂MLE) in practice, where se(β̂MLE) denotes the standard error
of the MLE. Therefore, we minimize the GCV score over the one-dimensional space,
which will save a great deal of computational cost. The behavior of such a method
has been investigated recently.

5. Applications to function estimation

Let us begin with one-dimensional function estimation. Suppose that we have noisy
data at possibly irregular design points {x1, . . . , xn}:

yi = m(xi) + εi,

where m is an unknown regression and εi’s are iid random error following N(0, σ 2).
Local modeling techniques [31] have been widely used to estimate m( · ). Here we
focus on global function approximation methods.

Wavelet transforms are a device for representing functions in a way that is local in
both time and frequency domains [13], [14], [64], [65]. During the last decade, they
have received a great deal of attention in applied mathematics, image analysis, signal
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compression, and many other fields of engineering. Daubechies [17] and Meyer [68]
are good introductory references to this subject. Wavelet-based methods have many
exciting statistical properties [23]. Earlier papers on wavelets assume the regular
design points, i.e, xi = i

n
(usually n = 2k for some integer k) so that fast computation

algorithms can be implemented. See [24] and references therein. For an overview of
wavelets in statistics, see [87].

Antoniadis and Fan [1] discussed how to apply wavelet methods for function
estimation with irregular design points using penalized least squares. Without loss
of generality, assume that m(x) is defined on [0, 1]. By moving nondyadic points to
dyadic points, we assume xi = ni/2J for some ni and some fine resolution J that is
determined by users. To make this approximation errors negligible, we take J large
enough such that 2J ≥ n. Let W be a given wavelet transform at all dyadic points
{i/2J :, i = 1, . . . , 2J − 1}. Let N = 2J and ai be the ni-th column of W , an N ×N

matrix, and β = Wm be the wavelet transform of the function m at dyadic points.
Then it is easy to see that m(xi) = aT

i β. This yields an overparameterized linear
model

yi = aT
i β + εi, (5.1)

which aims at reducing modeling biases. However, one cannot find a reasonable
estimate of β by using the ordinary least squares method since N ≥ n. Directly
applying penalized least squares, we have

1

2n

n∑
i=1

(yi − aT
i β)2 +

N∑
j=1

pλj
(|βj |). (5.2)

If the sampling points are equally spaced and n = 2J , the corresponding design matrix
of linear model (5.1) becomes a square orthogonal matrix. From the discussion in
Section 3, minimizing the PLS (5.2) with the entropy penalty or the hard-thresholding
penalty results in a hard-thresholding rule. With the L1 penalty, the PLS estimator
is the soft-thresholding rule. Assume that pλ( · ) is nonnegative, nondecreasing, and
differentiable over (0, ∞) and that function−β−p′

λ(β) is strictly unimodal on (0, ∞),
p′

λ( · ) is nonincreasing and p′
λ(0+) > 0. ThenAntoniadis and Fan [1] showed that the

resulting penalized least-squares estimator that minimizes (5.2) is adaptively minimax
within a factor of logarithmic order as follows. Define the Besov space ball Br

p,q(C)

to be
Br

p,q(C) = {
m ∈ Lp : ∑

j (2
j (r+1/2−1/p)‖θj ·‖p)q < C

}
,

where θj · is the vector of wavelet coefficients of function m at the resolution level j .
Here r indicates the degree of smoothness of the regression functions m.

Theorem 3. Suppose that the regression function m( · ) is in a Besov ball with r +
1/2 − 1/p > 0. Then the maximum risk of the PLS estimator m̂( · ) over Br

p,q(C) is

of rate O(n−2r/(2r+1) log(n)) when the universal thresholding
√

2 log(n)/n is used.
It also achieves the rate of convergence O{n−2r/(2r+1) log(n)} when the minimax
thresholding pn/

√
n is used, where pn is given in [1].
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We next consider multivariate regression function estimation. Suppose that {xi , yi}
is a random sample from the regression model

y = m(x) + ε,

where, without loss of generality, it is assumed that x ∈ [0, 1]d . Radial basis and
neural-network are also popular for approximating multi-dimensional functions. In
the literature of spline smoothing, it is typically assumed that the mean function m(x)

has a low-dimensional structure. For example,

m(x) = μ0 +
∑
j

mj (xj ) +
∑
k<l

mkl(xk, xl).

For given knots, a set of spline basis functions can be constructed. The two most
popular spline bases are the truncated power spline basis 1, x, x2, x3, (x − tj )

3+, (j =
1, . . . , J ), where tj ’s are knots, and the B-spline basis (see [6] for definition). The
B-spline basis is numerically more stable since the multiple correlation among the
basis functions is smaller, but the power truncated spline basis has the advantage that
deleting a basis function is the same as deleting a knot.

For a given set of 1-dimensional spline bases, we can further construct a multi-
variate spline basis using tensor products. Let {B1, . . . , BJ } be a set of spline basis
functions on [0, 1]d . Approximate the regression function m(x) by a linear combina-
tion of the basis functions,

∑
βjBj (x), say. To avoid a large approximation bias, we

take a large J . This yields an overparameterized linear model, and the fitted curve
of the least squares estimate is typically undersmooth. Smoothing spline suggested
penalizing the roughness of the resulting estimate. This is equivalent to the penalized
least squares with a quadratic penalty. In a series of work by Stone and his collab-
orators (see [76]), they advocate using regression splines and modifying traditional
variable selection approaches to select useful spline subbases. Ruppert et al. [75]
advocated penalized splines in statistical modeling, in which power truncated splines
are used with the L2 penalty. Another kind of penalized splines method proposed
by [28] shares the same spirit of [75].

6. Some solutions to the challenges

In this section, we provide some solutions to problems raised in Section 2.

6.1. Computational biology. As discussed in Section 2.1, the first statistical chal-
lenge in computational biology is how to remove systematic biases due to experiment
variations. Thus, let us first discuss the issue of normalization of cDNA-microarrays.
Let Yg be the log-ratio of the intensity of gene g of the treatment sample over that
of the control sample. Denote by Xg the average of the log-intensities of gene g at
the treatment and control samples. Set rg and cg be the row and column of the block
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where the cDNA of gene g resides. Fan et al. [37] use the following model to estimate
the intensity and block effect:

Yg = αg + βrg + γcg + f (Xg) + εg, g = 1, . . . , N (6.1)

where αg is the treatment effect on gene g, βrg and γcg are block effects that are
decomposed into the column and row effect, f (Xg) represents the intensity effect
and N is the total number of genes. Based on J arrays, an aim of microarray data
analysis is to find genes g with αg statistically significantly different from 0. However,
before carrying multiple array comparisons, the block and treatment effects should
first be estimated and removed. For this normalization purpose, parameters αg are
nuisance and high-dimensional (recall N is in the order of tens of thousands). On the
other hand, the number of significantly expressed genes is relatively small, yielding
the sparsity structure of αg .

Model (6.1) is not identifiable. Fan et al. [37] use within-array replicates to infer
about the block and treatment effects. Suppose that we have I replications for G

genes, which could be a small fraction of N . For example, in [37], only 111 genes
were repeated at random blocks (G = 111, I = 2), whereas in [63], all genes were
repeated three times, i.e. I = 3 and N = 3G, though both have about N ≈ 20, 000
genes printed on an array. Using I replicated data on G genes, model (6.1) becomes

Ygi = αg + βrgi
+ γcgi

+ f (Xgi) + εgi, g = 1, . . . , G, i = 1, . . . , I. (6.2)

With estimated coefficients β̂ and γ̂ and the function f̂ , model (6.1) implies that the
normalized data are Y ∗

g = Yg − β̂rg − γ̂cg − f̂ (Xg) even for non-repeated genes.
Model (6.2) can be used to remove the intensity effect array by array, though the

number of nuisance parameters is very large, a fraction of total sample size in (6.2).
To improve the efficiency of estimation, Fan et al. [36] aggregate the information from
other microarrays (total J arrays):

Ygij = αg + βrgi ,j + γcgi ,j + fj (Xgij ) + εgi, j = 1, . . . , J, (6.3)

where the subscript j denotes the array effect.
The parameters in (6.2) can be estimated by the profile least-squares method using

the Gauss–Seidel type of algorithm. See [36] for details. To state the results, let us
write model (6.2) as

Ygi = αg + ZT
giβ + f (Xgi) + εgi, (6.4)

by appropriately introducing the dummy variable Z. Fan et al. [36] obtained the
following results.

Theorem 4. Under some regularity conditions, as n = IG → ∞, the profile least-
squares estimator of model (6.4) has

√
n(β̂ − β)

D−→ N

(
0,

I

I − 1
σ 2�−1

)
,
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where � = E{Var(Z|X)} and σ 2 = Var(ε). In addition, f̂ (x)−f (x) = OP (n−2/5).

Theorem 5. Under some regularity conditions, as n = IG → ∞, when X and Z

are independent, the profile least-squares estimator based on (6.3) possesses

√
n(β̂j − βj )

D−→ N

(
0,

I (J − 1) + 1

J (I − 1)
σ 2�−1

)
.

The above theorems show that the block effect can be estimated at rate OP (n−1/2)

and intensity effect f can be estimated at rate OP (n−2/5). This rate can be improved
to OP (n−1/2 +N−2/5) when data in (6.1) are all used. The techniques have also been
adapted for the normalization of Affymetrix arrays [30]. Once the arrays have been
normalized, the problem becomes selecting significantly expressed genes using the
normalized data

Y ∗
gj = αg + εgj , g = 1, . . . , N, j = 1, . . . , J, (6.5)

where Y ∗
gj is the normalized expression of gene g in array j . This is again a high-

dimensional statistical inference problem. The issues of computing P-values and false
discovery are given in Section 2.1.

Estimation of high-dimensional covariance matrices is critical in studying genetic
networks. PLS and penalized likelihood can be used to estimate large scale covariance
matrices effectively and parsimoniously [49], [59]. Let w = (W1, . . . , Wd)T be a
d-dimensional random vector with mean zero and covariance �. Using the modified
Cholesky decomposition, we have L�LT = D, where L is a lower triangular matrix
having ones on its diagonal and typical element −φtj in the (t, j)th position for
1 ≤ j < t ≤ d, and D = diag{σ 2

1 , . . . , σ 2
d )T is a diagonal matrix. Denote e =

Lw = (e1, . . . , ed)T . Since D is diagonal, e1, . . . , ed are uncorrelated. Thus, for
2 ≤ t ≤ d

Wt =
t−1∑
j=1

φtjWj + et . (6.6)

That is, the Wt is an autoregressive (AR) series, which gives an interpretation for
elements of L and D, and allows us to use PLS for covariance selection. We first
estimate σ 2

t using the mean squared errors of model (6.6). Suppose that wi , i =
1, . . . , n, is a random sample from w. For t = 2, . . . , d , covariance selection can be
achieved by minimizing the following PLS functions:

1

2n

n∑
i=1

(
Wit −

t−1∑
j=1

φtjWij

)2 +
t−1∑
j=1

pλt,j
(|φtj |). (6.7)

This reduces the non-sparse elements in the lower triangle matrix L. With esti-
mated L, the diagonal elements can be estimated by the sample variance of the com-
ponents in L̂wi . The approach can easily be adapted to estimate the sparse precision
matrix �−1. See [67] for a similar approach and a thorough study.
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6.2. Health studies. Survival data analysis has been a very active research topic be-
cause survival data are frequently collected from reliability analysis, medical studies,
and credit risks. In practice, many covariates are often available as potential risk fac-
tors. Selecting significant variables plays a crucial role in model building for survival
data but is challenging due to the complicated data structure. Fan and Li [34] derived
the nonconcave penalized partial likelihood for Cox’s model and Cox’s frailty model,
the most commonly used semiparametric models in survival analysis. Cai et al. [9]
proposed a penalized pseudo partial likelihood for marginal Cox’s model with mul-
tivariate survival data and applied the proposed methodology for a subset data in the
Framingham study, introduced in Section 2.2.

Let T , C and x be respectively the survival time, the censoring time and their
associated covariates. Correspondingly, let Z = min{T , C} be the observed time
and δ = I (T ≤ C) be the censoring indicator. It is assumed that T and C are
conditionally independent given x, that the censoring mechanism is noninformative,
and that the observed data {(xi , Zi, δi) : i = 1, . . . , n} is an independently and
identically distributed random sample from a certain population (x, Z, δ). The Cox
model assumes the conditional hazard function of T given x

h(t |x) = h0(t) exp(xT β), (6.8)

where h0(t) is an unspecified baseline hazard function. Let t0
1 < · · · < t0

N denote the
ordered observed failure times. Let (j) provide the label for the item failing at t0

j so
that the covariates associated with the N failures are x(1), . . . , x(N). Let Rj denote
the risk set right before the time t0

j : Rj = {i : Zi ≥ t0
j }. Fan and Li [34] proposed

the penalized partial likelihood

Q(β) =
N∑

j=1

[
xT

(j)β − log
{ ∑

i∈Rj

exp(xT
i β)

}]
− n

d∑
j=1

pλj
(|βj |). (6.9)

The penalized likelihood estimate of β is to maximize (6.9) with respect to β.
For finite parameter settings, Fan and Li [34] showed that under certain regularity

conditions, if both an and bn tend to 0, then there exists a local maximizer β̂ of the
penalized partial likelihood function in (6.9) such that ‖β̂ − β0‖ = OP (n−1/2 + an).
They further demonstrated the following oracle property.

Theorem 6. Assume that the penalty function pλn(|β|) satisfies condition (4.4).
If λn,j → 0,

√
nλn,j → ∞ and an = O(n−1/2), then under some mild regular-

ity conditions, with probability tending to 1, the root n consistent local maximizer
β̂ = (β̂T

1 , β̂T
2 )T of Q(β) defined in (6.9) must satisfy

β̂2 = 0, and
√

n(I1 + �)
{
β̂1 − β10 + (I1 + �)−1b

} D−→ N
{
0, I1(β10)

}
,

where I1 is the first s × s submatrix of the Fisher information matrix I (β0) of the
partial likelihood.
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Cai et al. [9] investigated the sampling properties of penalized partial likelihood
estimate with a diverging number of predictors and clustered survival data. They
showed that the oracle property is still valid for penalized partial likelihood estimation
for the Cox marginal models with multivariate survival data.

6.3. Financial engineering and risk management. There are many outstanding
challenges of dimensionality in diverse fields of financial engineering and risk man-
agement. To be concise, we focus only on the issue of covariance matrix estimation
using a factor model.

Let Yi be the excess return of the i-th asset over the risk-free asset. Let f1, . . . , fK

be the factors that influence the returns of the market. For example, in the Fama–
French 3-factor model, f1, f2 and f3 are respectively the excessive returns of the
market portfolio, which is the value-weighted return on all NYSE, AMEX and NAS-
DAQ stocks over the one-month Treasury bill rate, a portfolio constructed based on
the market capitalization, and a portfolio constructed based on the book-to-market
ratio. Of course, constructing factors that influence the market itself is a high-
dimensional model selection problem with massive amount of trading data. The
K-factor model [15], [74] assumes

Yi = bi1f1 + · · · + biKfK + εi, i = 1, . . . , d, (6.10)

where {εi} are idiosyncratic noises, uncorrelated with the factors, and d is the number
of assets under consideration. This an extension of the famous Capital Asset Pricing
Model derived by Sharpe and Lintner (See [10], [12]). Putting it into the matrix form,
we have y = Bf + ε so that

� = Var(Bf ) + Var(ε) = B Var(f )BT + �0, (6.11)

where � = Var(y) and �0 = Var(ε) is assumed to be diagonal.
Suppose that we have observed the returns of d stocks over n periods (e.g., 3 years

daily data). Then, applying the least-squares estimate separately to each stock in
(6.10), we obtain the estimates of coefficients in B and �0. Now, estimating Var(f )

by its sample variance, we obtain a substitution estimator �̂ using (6.11). On the
other hand, we can also use the sample covariance matrix, denoted by �̂sam, as an
estimator.

In the risk management or portfolio allocation, the number of stocks d can be
comparable with the sample size n so it is better modeled as dn. Fan et al. [32]
investigated thoroughly when the estimate �̂ outperforms �̂sam via both asymptotic
and simulation studies. Let us quote some of their results.

Theorem 7. Let λk(�) be the k-th largest eigenvalue of �. Then, under some regu-
larity conditions, we have

max
1≤k≤dn

|λk(�̂) − λk(�)| = oP {(log n d2
n/n)1/2} = max

1≤k≤dn

|λk(�̂sam) − λk(�)|.
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For a selected portfolio weight ξn with 1T ξn = 1, we have∣∣ξT
n �̂ξn − ξT

n �ξn

∣∣ = oP {(log n d4
n/n)1/2} = ∣∣ξT

n �̂samξn − ξT
n �nξn

∣∣.
If, in addition, the all elements in ξn are positive, then the latter rate can be replaced
by oP {(log n d2

n/n)1/2}.
The above result shows that for risk management where the portfolio risk is ξT

n �ξn,
no substantial gain can be realized by using the factor model. Indeed, there is no
substantial gain for estimating the covariance matrix even if the factor model is correct.
These have also convincingly been demonstrated in [32] using simulation studies.
Fan et al. [32] also gives the order dn under which the covariance matrix can be
consistently estimated.

The substantial gain can be realized if �−1 is estimated. Hence, the factor model
can be used to improve the construction of the optimal mean-variance portfolio, which
involves the inverse of the covariance matrix. Let us quote one theorem of [32]. See
other results therein for optimal portfolio allocation.

Theorem 8. Under some regularity conditions, if dn = nα , then for 0 ≤ α < 2,

d−1
n tr(�−1/2�̂�−1/2 − Idn)

2 = OP (n−2β)

with β = min(1/2, 1 − α/2), whereas for α < 1, d−1
n tr(�−1/2�̂sam�−1/2 − Idn)

2 =
OP (dn/n). In addition, under the Frobenius norm

d2
n‖�̂−1 − �−1‖2 = o(d4

n log n/n) = ‖�̂−1
sam − �−1‖2.

6.4. Machine learning and data mining. In machine learning, our goal is to build a
model with the capability of good prediction of future observations. Prediction error
depends on the loss function, which is also referred to as a divergence measure. Many
loss functions are used in the literature. To address the versatility of loss functions,
let us use the device introduced by [7]. For a concave function q( · ), define a q-class
of loss function �( · , · ) to be

�(y, m̂) = q(m̂) − q(y) − q ′(m̂)(m̂ − y) (6.12)

where m̂ ≡ m̂(x), an estimate of the regression function m(x) = E(y|x). Due to the
concavity of q, �( · , · ) is non-negative.

Here are some notable examples of �-loss constructed from the q-function. For
binary classification, y ∈ {−1, 1}. Letting q(m) = 0.5 min{1 − m, 1 + m} yields
the misclassification loss, �1(y, m̂) = I {y �= I (m̂ > 0)}. Furthermore, �2(y, m̂) =
[1 − ysgn(m̂)]+ is the hinge loss if q(m) = 1

4 min{1 − m, 1 + m}. The function

q3(m) = √
1 − m2 results in �3(y, m̂) = exp{−0.5y log{(1 + m̂)/(1 − m̂)}, the

exponential loss function in AdaBoost [40]. Taking q(m) = cm − m2 for some
constant c results in the quadratic loss �4(y, m̂) = (y − m̂)2.
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For a given loss function, we may extend the PLS to a penalized empirical risk
minimization (4.5). The dimensionality d of the feature vectors can be much larger
than n and hence the penalty is needed to select important feature vectors. See, for
example, [4] for an important study in this direction.

We next make a connection between the penalized loss function and the popu-
larly used support vector machines (SVMs), which have been successfully applied
to various classification problems. In binary classification problems, the response y

takes values either 1 or −1, the class labels. A classification rule δ(x) is a mapping
from the feature vector x to {1, −1}. Under the 0–1 loss, the misclassification error
of δ is P {y �= δ(x)}. The smallest classification error is the Bayes error achieved
by argminc∈{1,−1}P(y = c|x). Let {xi , yi}, i = 1, . . . , n be a set of training data,
where xi is a vector with d features, and the output yi ∈ {1, −1} denotes the class
label. The 2-norm SVM is to find a hyperplane xT β, in which xi1 = 1 is an intercept
and β = (β1, β

T
(2))

T , that creates the biggest margin between the training points from
class 1 and −1 [85]:

max
β

1

‖β(2)‖2 subject to yi(β
T xi ) ≥ 1 − ξi, for all i, ξi ≥ 0,

∑
ξi ≤ B, (6.13)

where ξi are slack variables, and B is a pre-specified positive number that controls the
overlap between the two classes. Due to its elegant margin interpretation and highly
competitive performance in practice, the 2-norm SVM has become popular and has
been applied for a number of classification problems. It is known that the linear SVM
has an equivalent hinge loss formulation [48]

β̂ = argminβ

n∑
i=1

[1 − yi(x
T
i β)]+ + λ

d∑
j=2

β2
j .

Lin [62] shows that the SVM directly approximates the Bayes rule without estimating
the conditional class probability because of the unique property of the hinge loss. As
in the ridge regression, the L2-penalty helps control the model complexity to prevent
over-fitting.

Feature selection in the SVM has received increasing attention in the literature of
machine learning. For example, the last issue of volume 3 (2002-2003) of Journal of
Machine Learning Research is a special issue on feature selection and extraction for
SVMs. We may consider a general penalized SVM

β̂ = argminβ

n∑
i=1

[1 − yi(x
T
i β)]+ +

d∑
j=1

pλj
(|βj |).

The 1-norm (or LASSO-like) SVM has been used to accomplish the goal of automatic
feature selection in the SVM ([89]). Friedman et al. [41] shows that the 1-norm SVM
is preferred if the underlying true model is sparse, while the 2-norm SVM performs
better if most of the predictors contribute to the response. With the SCAD penalty,
the penalized SVM may improve the bias properties of the 1-norm SVM.
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