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We congratulate Koenker and Xiao on their interesting and important contri-

bution to the quantile autoregression (QAR). The paper provides a comprehensive

overview on the QAR model, from probabilistic aspects, to model identification, sta-

tistical inferences, and empirical applications. The attempt to integrate the quan-

tile regression and the QAR process is intriguing. It demonstrates surprisingly that

nonparametric coefficient functions can be estimated at root-n rate for the QAR pro-

cesses. The authors then put forward some useful tools for testing significance of

lag-variables and asymmetric dynamics of the time series. We appreciate the oppor-

tunity to comment several aspects of this article.

1 Connections with varying coefficient models

QAR is closely related to the functional-coefficient autoregressive (FCAR) model. In

the time series context, Cai et al. (2000b) proposed the following FCAR model for

capturing the nonlinearity of a time series:

Yt = α0(Ut) + α1(Ut)Yt−1 + · · ·+ αp(Ut)Yt−p + εt, (1)

where Ut is a thresholding variable and {εt} is a sequence of independent innova-

tions. In particular, when Ut = Yt−d for some lag d, the model is called a functional

autoregressive model (FAR) by Chen and Tsay (1993). Varying coefficient models

have been widely used in many aspects of statistical modeling. See, for example,
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Hastie and Tibshirani (1993), Carroll et al. (1998), Cai et al. (2001) for applications

to generalized linear models, Brumback and Rice (1998), Fan and Zhang (2000), and

Chiang et al. (2001) for analysis of functional data, Lin and Ying (2001) and Fan and

Li (2004) for analysis of longitudinal data, Tian et al. (2005) and Fan et al. (2006)

for applications to the Cox hazards regression model, and Fan et al. (2003), Hong

and Lee (2003), Mercurio and Spokoiny (2004) for applications to financial modeling.

These are just a few examples that testify the flexibility, popularity and explanatory

power of the varying coefficient models. In the same vein, it reflects the importance

of the QAR model.

What makes QAR differ from the FCAR model or more generally the varying

coefficient model is that the variable Ut is unobservable and εt = 0. This makes

estimating techniques completely different. For example, in the varying-coefficient

model, the coefficient functions in (1) are estimated via localizing on Ut (which are

observable), while in the QAR model, the coefficient functions are estimated via

quantile regression techniques. As a result, two completely different sets of rates of

convergence are obtained. The former model admits a nonparametric rate, while the

latter reveals the parametric one.

Despite their differences in statistical inferences, QAR is a subfamily of models

of FCAR as far as the probabilistic aspects are concerned. Hence, the stochastic

properties established in FCAR are applicable directly to QAR. Chen and Tsay (1993)

have given sufficient conditions for the solution to (1) to admit a stationary and

ergodic solution. With some modifications of their proof, it can be shown that if

αj(·) is bounded by cj for all j and all roots of the characteristic function

λp − c1λ
p−1 − · · · − cp = 0

are inside the unit circle, then there exists a stationary solution that is geometrically

ergodic.

2 Identifiability of the model

An important observation made by Koenker and Xiao is that if given Yt−p, · · · , Yt−1,

the function

βt(u) = θ0(u) + θ1(u)Yt−1 + · · ·+ θp(u)Yt−p (2)
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is strictly increasing in u, then βt(τ) is the conditional τ -quantile of Yt given Yt−p, · · · , Yt−1.

Since the conditional τ -quantile is identifiable under some mild conditions, the iden-

tifiability condition becomes that with probability 1, the QAR model generates at

least (p + 1) linearly independent vectors of form Yt = (1, Yt−1, · · · , Yt−p)T . In other

words, letting

T = {t : βt(u) is strictly increasing in u}, (3)

there are at least (p + 1) distinct time points ti ∈ T such that Yti are linearly inde-

pendent for each realization. A natural and open question is what kind of population

would generate, with probability one, the samples that satisfy the above condition.

The aforementioned identifiability conditions are hard to check. However, they

are needed for not only connections to the quantile regression, but also the issue

of identifiability. To see this, let us look at specific case where p = 0, in which

Yt = θ0(Ut). Clearly, θ0(·) is the quantile function of Yt only when θ0(·) is monotone

increasing. When this condition is violated, the model is not necessarily identifiable.

For example, Yt = |Ut − 0.5| and Zt = Ut − 0.5I(Ut > 0.5) have identically the same

distribution, but have very different θ0(·).
We would like to note that the QAR(p) model

Yt = θ0(Ut) + θ1(Ut)Yt−1 + · · ·+ θp(Ut)Yt−p ≡ θ(Ut)T Xt

is indifferentiable from the model

Yt = θ(1− Ut)T Xt,

where Xt = (Yt−1, · · · , Yt−p)T . Thus, if θ(τ) is a solution, so is θ(1− τ).

3 Fitting and diagnostics

Koenker and Xiao estimate the coefficient functions θ(τ) with the quantile regression:

min
θ

∑
t

ρτ (Yt −XT
t θ). (4)

This convex optimization usually exists. The resulting estimates θ̂(τ) are consistent

estimate of the parameter

θ∗(τ) = argminθEρτ (Yt −XT
t θ) (5)
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Figure 1: Estimates of θ0(τ) = Φ−1(τ) (left panel) and θ1(τ) = 1.8τ − 1.7 (right panel) in model (7). The

thin curves are the true coefficient functions θ0(τ) and θ1(τ), the dashed curves are the estimates obtained

by using conditional quantile regression (4), the dotted curves are the estimates obtained by using restricted

conditional quantile regression (6) and the thick solid curves are θ∗0(τ) and θ∗1(τ).

under some mild conditions. Without some technical conditions, θ∗(τ) and θ(τ) are

not necessarily the same. This is evidenced by the example given in the last section

in which θ∗(τ) = τ/2 with no ambiguity, while θ(τ) = |τ − 0.5| or τ − 0.5I(τ > 0.5).

The above argument suggests that the results in the main article should replace

θ(τ) by θ∗(τ) unless the conditions under which they are identical are clearly imposed.

If the primary interest is really on θ(τ), then the conditional quantile regression should

be replaced by the restricted conditional quantile regression (RCQR)

min
θ

∑
t

I(t ∈ T )ρτ (Yt −XT
t θ). (6)

This avoids some samples, where the monotonicity condition is violated, that create

inconsistent estimators. However, the set T is unknown and depends on the value at

other quantile τ . This makes some difficulties in the implementation.

One possible way out is to replace T by one of its subsets. For example, if

all θj(·) is monotonically increasing, then we can replace T by the subset that all

components of Xt are non-negative. Another possibility is to use (4) to get an initial

estimate and then to check if the functions {β̂t(τ), t = 1, · · · , T} are strictly increasing

at some percentiles (e.g. τ = 0.05, 0.1, 0.15, · · · , 0.95). Delete the cases where the

monotonicity is violated and use RCQR (6). The process can be iterated.

To illustrate the problem using the conditional quantile regression (4) and to

address the issue of identifiability, we generate 2000 data points from the QAR(1)
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model

Yt = Φ−1(Ut) + (1.8Ut − 1.7)Yt−1. (7)

Hence we have θ0(τ) = Φ−1(τ) and θ1(τ) = 1.8τ −1.7. Fit the data using (4) and (6).

The resulting estimates are depicted in Figure 1. The estimates (dot-dashed curve)

obtained by using RCQR (6) are very close to the true coefficient functions (thin solid

curve), while the conditional quantile method (4) results in the estimates (dashed

curve) that are far away from the true functions. Indeed, the latter estimates are for

the functions θ∗0(τ) and θ∗1(τ) defined by (5), which were computed numerically and

depicted in Figure 1 (thick solid curve). This example shows that even if monotonicity

conditions are not fulfilled at all t, the coefficient functions can still be identifiable

and consistently estimated, but the conditional quantile regression estimate, defined

by maximizing (4), can be inconsistent.
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Figure 2: The influences of the error εt on the estimation of θ0(τ) = Φ−1(τ) (left panel) and the estimation

of θ1(τ) = 0.85 + 0.25τ (right panel) in model (8) for different noise level σ.

A related question is how robust the fitting techniques are to the model misspec-

ification. For example, if the data generating process is FCAR (1) without observing

Ut, but we still use the conditional quantile regression (4) or its modification (6) to

fit the data, how robust the quantile estimate is? To quantify this, we simulate the

2000 data from the model

Yt = Φ−1(Ut) + (0.85 + 0.25Ut)Yt−1 + εt, (8)

where εt ∼ N(0, σ2). Figure 2 shows the plots for small noise σ = 0, moderate noise

σ = 0.8 and relatively large noise σ = 2. The fitting techniques are very sensitive to
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the noise level. The estimates differ substantially from the true coefficient functions

even for moderate σ = 0.8.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

Normal Quantiles

Φ
−

1
(U

t) 
Q

u
a

n
til

e
s

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Normal Quantiles

Φ
−

1
(U

t) 
Q

u
a

n
til

e
s

(c) (d)

Figure 3: (a) Histogram plot of Ût = β̂−1
t (Yt) for t ∈ T , where β̂t(τ) is estimated by using the conditional

quantile regression (4). (b) Quantile-quantile plot of Φ−1(Ût) versus the standard normal distribution, where

Ût is the same as in (a). (c) and (d): The same as in (a) and (b) except that the estimation method is the

restricted conditional quantile regression (6).

Checking monotonicity of β̂t(τ) is one aspect of model diagnostics. Another aspect

is to check if the distribution of Ût = β̂−1
t (Yt) for t ∈ T is uniform. There are many

approaches to this kind of testing problem such as the Kolmogorov-Smirnov test or the

visual inspection of the estimated density. For example, one can create the normally

transformed data Ẑt = Φ−1(Ût) and then use the normal-reference rule of the kernel

density estimate to see if the transformed residuals {Ẑt} are normally distributed.

Alternatively, one can use the quantile-quantile plot to accomplish a similar task.

For the data generated from (7) used in Figure 1, the histograms of Ût and the
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quantile-quantile plots of Ẑt are presented in Figure 3. From these plots we can see

that the distribution of Ût = β̂−1
t (Yt) for t ∈ T by using the conditional quantile

regression method (4) is not uniform, while Ût obtained by using the RCQR method

(6) is uniformly distributed. These results are also supportive to our previous points.

Note that when the data are generated from model (1) without observing Ut, the

model can still be identifiable when the density fε of innovation εt is known. The

problem is more complicated but similar to a deconvolution problem. The estimation

procedure can be quite complicated. To see this, note that

P (Yt ≤ a|Yt−1, · · · , Yt−p) = P (βt(Ut) + εt ≤ a)

=
∫

β−1
t (a− x)fε(x)dx.

Thus, letting Qt(τ) be the conditional τ -quantile, we have
∫

β−1
t (Qt(τ)− x)fε(x)dx = τ.

Let us denote the solution by Qt(τ) = h(βt(·), τ) for some function h. Then the

coefficient functions can be estimated by minimizing a quantity similar to (6):

min
θ

∫ 1

0

∑
t

I(t ∈ T )ρτ (Yt − h(βt(·), τ))dτ,

where θ(·) and βt(·) are related through (2). This is indeed a complicated optimization

problem. The method of Koener and Xiao is a specific case of this method with εt = 0.

4 Concluding Remarks

Koenker and Xiao have developed a nice scheme for conditional quantile inference

and made insightful connections with the QAR model. However, the issues of iden-

tifiability and possible misspecification of models suggest that extra care should be

made in making this kind of links. In particular, the conditional quantile method

does not always produce a consistent estimate for the random coefficient functions

θ(·) when the monotonicity conditions are not satisfied. Further studies are needed.
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