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Variable Screening in High-dimensional

Feature Space

Jianqing Fan∗

Abstract

Variable selection in high-dimensional space characterizes many contemporary prob-
lems in scientific discovery and decision making. Fan and Lv [8] introduced the
concept of sure screening to reduce the dimensionality. This article first reviews
the part of their ideas and results and then extends them to the likelihood based
models. The techniques are then applied to disease classifications in computational
biology and portfolio selection in finance.
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1 Introduction

Exponential increases in computing power and falling costs have had a profound
impact on the development of mathematical science. Modern technologies allow
scientists to collect data in unprecedent size and complexity. Examples include
microarrays, proteomics, brain images, videos, functional data, longitudinal data,
high-frequency financial data, warehouse sales, among others. Quantitative meth-
ods have been widely employed in different scientific and engineering disciplines,
which empower knowledge discovery and policy making. The field of statistics
and applied mathematics have experienced extraordinary growth in the last two
decades. Many data-analytic techniques have been developed and many new phe-
nomena have been unveiled. They have become indispensable tools in contempo-
rary scientific research, technological invention, knowledge discovery, and policy
making.

The frontiers of scientific research have also posed many challenges to the
development of mathematical science. Many new techniques are needed in order
to confront the complex problems from various scientific disciplines. Many new
theories have to be developed to understand the properties of procedures in use,
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to introduce new and more powerful techniques that push all theory, methods and
applications forward.

Many high-dimensional statistical learning problems can be abstracted as
follows. We have one or more output variables Y and their associated features
or covariates X1, · · · , Xp. We would like to model the relation between Y and
X1, · · · , Xp based on a sample of size n. Unlike traditional statistics, the dimen-
sionality p is large and is thought mathematically as a function n, diverging to
infinite. The dimensionality can even be much larger than sample size. For ex-
ample, in disease classification using microarray gene expression data (Tibshirani
et al.[19], Fan and Ren [10]), the number of arrays is usually in the order of tens
while the number of gene expression profiles is in the order of tens of thousands;
in the study of protein-protein interactions, the number of features can be in the
order of millions, but sample size can be in the order of thousands. In portfo-
lio allocation in finance, the number of investable stocks can be in the order of
thousands, though the number of trading days that are most informative is in the
order of hundreds. Although this problem does not have a response variable, we
will reduce it to the familiar statistical multiple regression problem.

In the high dimensional statistical endeavor, two important issues emerge:
Computational speed and statistical accuracy. For example, in selecting stocks
among 2000 investible ones in the emerging market, there are 22000 possible sub-
sets. Selection decisions depend on the returns of these 2000 stocks and their
associated risks as well as their correlation matrix, involving millions of param-
eters. Since each parameters are estimated with some errors, accumulation of
these millions of estimation errors can have adverse effects on the performance of
selected portfolios.

In high-dimensional scientific discovery, it is very reasonable to assume that
the relevant features lie in low-dimensional manifolds. One way to avoid the afore-
mentioned “curse-of-dimensionality” is to introduce the sure screening strategy, as
initiated in Fan and Lv [8]. The basic idea is to apply a fast but crude method to
screen variables that have weak correlation with the response variable, and then
to show that the screened variables are indeed irrelevant, with probability tending
to one. After that, applying relatively low-dimensional techniques to select further
the features and to estimate relevant parameters. This reduces simultaneously the
dimensionality and ensures the estimation accuracy.

2 Sure independent screening

This sections give a review of the techniques and results from Fan and Lv [8]. This
enables us to develop further the Sure Independent Screening (SIS) and iterative
SIS (ISIS) for more general statistical models.

Let y = (Y1, · · · , Yn)
T

be an n-vector of responses and x1, · · · ,xn be their
associated covariate vectors so that the data collected from the ith individual
is (xT

i , Yi)
T , which are assumed as an i.i.d. realization from the population

(X1, · · · , Xp, Y )T . In the theoretical study of high-dimensional problem, it is
helpful to think that p grows with sample size n so that we will write p as pn
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whenever the stress of dependence on n is needed in the theoretical study. It is
also helpful to differentiate two cases: pn = O(nξ) and log pn = O(nξ) for some
ξ > 0. Whenever such distinctions are needed, the former case is referred to as
“high-dimensional” and the latter as “ultra high-dimensional”.

Consider the high or untra high dimensional regression model

Y = β1X1 + · · · + βpXp + ε = xT β + ε, (2.1)

where ε is a random noise and β = (β1, · · · , βp)
T is a p-vector of parameters and

x = (X1, · · · , Xp)
T . Putting the above model in the matrix form for the sample,

we have
y = Xβ + ε, (2.2)

where ε = (ε1, · · · , εn)
T

and X = (x1, · · · ,xn)
T
, an n × p design matrix.

2.1 SIS and thresholded ridge regression

Let M∗ = {1 6 i 6 p : βi 6= 0} be the true sparse model with nonsparsity number
s = |M∗|. The other p− s variables can also be correlated with the response vari-

able via their links to the predictors contained in the model. Let ω = (ω1, · · · , ωp)
T

be a p-vector obtained by the componentwise regression, that is,

ω = XTy, (2.3)

where, with slight abuse of notation, the n× p data matrix X is first standardized
columnwise.

For any given γ ∈ (0, 1), define a submodel

Mγ = {1 6 i 6 p : |ωi| is among the first [γn] largest of all} . (2.4)

In other words, we select [γn] variables that have the largest magnitude of cor-
relation with the response variable, without even consulting the contributions of
other covariates to the regression. It turns out that such a simple procedure does
have the sure screening property in the following sense:

P (M∗ ⊂ Mγ) → 1 as n → ∞ (2.5)

for some given γ. More precisely, we have

Theorem 1. Suppose that

(a) p > n and log p = O(nξ) for some ξ > 0
(b) ε ∼ N (0, σ2) for some σ > 0 and Σ−1/2x has a spherically symmetric

distribution satisfying the concentration property, where Σ is the covariance

matrix of x;

(c) var (Y ) < ∞ and for some κ > 0 and c > 0,

min
i∈M∗

|βi| >
c

nκ
and min

i∈M∗

|cov(β−1
i Y, Xi)| > c;
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(d) there exist some τ > 0 and c∗ > 0 such that

λmax (Σ) 6 c∗nτ .

If 2κ+ τ < 1, then there exists some θ < 1− 2κ− τ such that when γ ∼ cn−θ with

c > 0, we have for some C > 0,

P (M∗ ⊂ Mγ) = 1 − O(exp(−Cn1−2κ/ log n)).

The theorem implies that the non-sparsity number s 6 [γn]. It demonstrates
that SIS can reduce dimension dimensionality p from exponentially growing down
to a relatively large scale d = [γn] = O(n1−θ) < n for some θ > 0 and the reduced
model Mγ still contains all the variables in the true model with an overwhelming
probability. In particular, we can choose the submodel size d = n − 1 or n/ log n,
to be conservative. Although SIS is proposed to reduce dimensionality from p to
d that is below sample size n, nothing stops us from applying it with final model
size d > n. It is obvious that larger d means larger probability to include the true
model M∗ in the final model Mγ .

When there are more predictors than observations, the noise in estimation
can be very large, causing by over fitting and noise accumulation. To reduce the
noise, regularization is frequently used. Let ωλ = (ωλ

1 , · · · , ωλ
p )T be a p-vector

obtained by the ridge regression:

ωλ =
(
XTX + λIp

)−1

XTy, (2.6)

where λ > 0 is a regularization parameter. Then, one can also screen variables
based on the magnitude of ωλ

i in the same manner as (2.4). Note that

λωλ → ω as λ → ∞ (2.7)

and the ordering in (2.4) does not depend on the scaling factor λ. We conclude
that the componentwise regression ω corresponds to the ridge regression with
λ = ∞, the most regularized estimator in the family. Fan and Lv [8] made further
connections between the SIS and iterative thresholded ridge regression screener
and established its sampling property. That provides rationale why SIS works.

2.2 Model selection in high-dimensional space

After screening variables, we can now apply more refined techniques to further
select the variables and estimate regression coefficients. Due to the sure screening
property, the variables for further analysis should be in the set Mγ of size n−1 or
n/ logn. For simplicity of notation, we still use X1, · · · , Xd to denote the selected
variables.

We now briefly review several well-developed techniques for high-dimensional
model selection. These include LASSO and SCAD in Fan and Li [7]) and Fan and
Peng [9], adaptive LASSO in Zou [21], elastic net Zou and Hastie [20], and the
Dantzig selector in Candes and Tao [2]. They can be combined with our sure
screening method to select the variables further and to estimate the non-vanishing
parameters.
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2.2.1 Non-convex penalized least-squares

The penalized least squares can be written as

ℓ (β) =
1

2n

n∑

i=1

(
Yi − xT

i β
)2

+
d∑

j=1

pλj
(|βj |), (2.8)

where β = (β1, · · · , βd)
T ∈ Rd and pλj

(·) is a penalty function indexed by a regu-
larization parameter λj . By minimizing (2.8), we hope to achieve simultaneously
selecting the model and estimating the parameters (the variables with estimated
coefficients zero are not selected).

Antoniadis and Fan [1] and Fan and Li [7] showed that the the singularity
of pλ(·) at the origin is needed in order to select simultaneously the variables
and estimate parameters. An example of this is LASSO of Tibshirani [18] with
pλ(β) = λ|β|. Recent invention of the creative LARS algorithm (Efron, et al.[4])

makes it possible to compute the LASSO β̂λ for all λ with O(np) operations.

It is observed and shown in Fan and Li [7] and Zou [21] that LASSO has biases
in estimating non-vanishing parameters. Antoniadis and Fan [1] and Fan and Li
[7] advocated to use the non-convex penalized least-squares to reduce the bias. In
particular, they proposed using the smoothly clipped absolute deviation (SCAD)
penalty function pλ(·), which is a non-decreasing quadratic spline on [0,∞), linear
on (0, λ) and constant on [aλ,∞) for some a > 2:

p′λ(|β|) = λ

{
I (|β| 6 λ) +

(aλ − |β|)
+

(a − 1)λ
I (|β| > λ)

}
. (2.9)

The MCP of Zhang [22]

p′λ(|β|) = (aλ − |β|)+/a, (2.10)

removes the linear part of the SCAD and minimizes the maximum of the concavity.
The elastic net in Zou and Hastie [20] uses pλ(|β|) = λ1|β| + λ2β

2.

An algorithm for optimizing penalized likelihood, called local quadratic ap-
proximation, was proposed in Fan and Li [7] and studied in Hunter and Li [13].
Recently, Zou and Li [24] proposed the local linear approximation to take the
advantage of the innovative LARS algorithm by Efron et al.developed in 2004.
To see this, assume that β0 = (β1,0, · · · , βd,0)

T is the current value of the esti-
mate. If some components are zero, delete the variables from the model. For those
components with non-vanishing coefficients, by approximating

pλj
(|βj |) ≈ pλj

(|βj,0|) +
∂

∂βj
pλj

(|βj,0|)sgn(βj,0)((|βj | − |βj,0|), (2.11)

the updated estimate is to minimize

1

2n

n∑

i=1

(
Yi − xT

i β
)2

+
d∑

j=1

wj |βj |, (2.12)
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where wj = ∂
∂βj

pλj
(|βj,0|)sgn(βj,0) > 0 (The condition that pλ(·) is nondecreasing

over [0,∞) was imposed by Fan and Li [7]). The estimator that minimizes (2.12) is
called the adaptive LASSO by Zou [21], although the construction of the adaptive
LASSO of Zou [21] is different from ours here. In this sense, the penalty function
pλ dictates the scheme on how the weights wj vary according to the current value
βj,0 in each iteration. The weights are usually larger when |βj,0| is closer to zero;
see for example (2.11) and (2.12).

The oracle property was established in Fan and Li [7] when p is finite and in
Fan and Peng [9] when pn = o(n1/5). Zou [21] shows that the adaptive LASSO
possesses the oracle property, too. See also further theoretical studies by Zhang
and Huang [23] and Zhang [22].

2.2.2 Dantzig selector

The Dantzig selector β̂DS, proposed in Candes and Tao [2], is the solution to the
following ℓ1-regularization problem:

min
ζ∈Rd

‖ζ‖
1

s.t.
∥∥∥XT r

∥∥∥
∞

6 λd, (2.13)

where λd > 0 is a tuning parameter, r = y − Xζ is an n-vector of the residuals.
They pointed out that the above convex optimization problem can easily be recast
as a linear program:

min
u

d∑

i=1

ui s.t. − u 6 ζ 6 u and − λd1 6 XT (y − Xζ) 6 λd1,

where u = (u1, · · · , ud)
T

and ζ ∈ Rd, and 1 is a d-vector of ones.
In the seminal paper by Candes and Tao [2], they showed that with the

choice of λd =
√

2(log d)/nσ, if the design matrix satisfies the uniform uncertainty
condition (see also Zhang, 2007), then

∥∥∥β̂DS − β

∥∥∥
2

= Op

(
(log d)sσ2/n

)
,

recalling that s is the number of nonvanishing components of β. In other words,
it mimicks the oracle performance within a factor of log d.

When the dimensionality is ultra high, i.e., pn = exp(O(nξ)) for some ξ > 0,
then a direct application of the Dantzig selector to the orignal problem results in
a loss of a factor log pn = O(nξ) which could be too large to be acceptable. On the
other hand, with the dimensionality first reduced by SIS the loss is now merely of
a factor log d, which is less than log n.

2.3 Iterative SIS

SIS utilizes only the marginal information about the covariates, and can fail when
the technical conditions in Theorem 2.1 fail. Fan and Lv [8] noted the three
potential issues associated with SIS:
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(a) an important predictor that is marginally uncorrelated but jointly correlated
with the response can not be picked by SIS [the second condition in (c) in
Theorem 2.1 rules this out];

(b) some unimportant predictors that are highly correlated with the important
predictors can have higher priority to be selected by SIS than other impor-
tant predictors that are relatively weakly related to the response (the first
condition in (c) in Theorem 2.1 and other conditions rules this out);

(c) the issue of collinearity between predictors adds difficulty to the problem of
variable selection [The assumption (d) in Theorem 2.1 prevents this from
happening].

They addressed the issue by the following iterative SIS (ISIS), which uses more
fully the joint information of the covariates and maintains computational expedi-
ence.

The ISIS works as follows. In the first step, we apply the SIS to screen the
variables down to n/ log n (say) and then employ LASSO or SCAD to further
select a subset of k1 variabes A1 = {Xi1 , · · · , Xik1

}. Then we have an n-vector
of the residuals from regressing the response Y over Xi1 , · · · , Xik1

. In the next
step, we treat those residuals as the new responses and apply the same method as
in the previous step to the remaining p − k1 variables, which results in a subset
of k2 variables A2 = {Xj1 , · · · , Xjk2

}. We can keep on doing this until we get ℓ

disjoint subsets A1, · · · ,Aℓ whose union A = ∪ℓ
i=1Ai has a size d, which is less

than n. In practical implementation, we can choose, for example, the largest l
such that |A| < n. This achieves the variable screening. Finally, one can apply
a penalized least-squares in Section 2.2 to further select variables and to estimate
non-vanishing coefficients.

Fan and Lv [8] showed that the ISIS improves significantly the performance
of SIS in the difficult cases mentioned at the beginning of this subsection. This
can be understood as follows. Fitting the residuals from the previous step on
{X1, · · · , Xp} \ A1 significantly weakens the priority of those unimportant vari-
ables that are highly correlated with the response through their associations with
Xi1 , · · · , Xik1

. This is due to the fact that the residuals and the variables Xi1 , · · · ,
Xik1

are uncorrelated. This helps solving (b). It also makes those important pre-
dictors that are missed in the previous step possible to survive, which addresses
(a). In fact, after variables in A1 entering into the model, those that are marginally
weakly correlated with Y purely due to the presence of variables in A1 should now
be correlated with the residuals.

3 Variable screening for generalized likelihood

models

In classification, the class label can be 0 or 1. Fan and Lv [8] pointed that SIS
is equivalent to using a version of two-sample t test to select features and Fan
and Fan [5] showed the sure screening property indeed holds. However, the issues
outlined in Section 2.3 also exist for classification problem.
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For classification problem, it is more elegant to cast the problem as a logistic
regression problem. Then the conditional log-likelihood can be written as

ℓ(β) =

n∑

i=1

[Yi log pi(β) + (1 − Yi) log{1 − pi(β)}], (3.1)

where pi(β) is usually modeled through a link function such as the logit-link

log
pi(β)

1 − pi(β)
= xT

i β.

When the feature vector is large, maximizing (3.1) is nearly impossible: the solu-
tion might not exist in addition to computation cost.

In statistical learning, various loss functions have been introduced for classi-
fications. See Hastie, Tibshirani and Friedman [12]. The likelihood function (3.1)
is replaced by the negative pseudo-likelihood function (translating into loss):

Q(β) =

n∑

i=1

L(Yi,x
T
i β). (3.2)

For example, if the class-label is written as {−1, 1}, the hinge loss L(Yi,x
T
i β) =

(1 − Yix
T
i β)+, corresponding to the support-vector machine classifier; and L(Yi,

xT
i β) = exp(−Yix

T
i β) corresponding to the AdaBoost.

On the other hand, the framework (3.2) accommodates other likelihood or
quasi-likelihood based models. If the conditional distribution of Yi given the co-
variates xi is Poisson distribution with rate λi(β), then

L(Yi, x
T
i β) = −Yi log λi(β) + λi(β) + log(Yi!),

and λi(β) is related to the covariates through modeling

log λi(β) = xT
i β.

Suppose that we wish to select features based on the pseudo-likelihood model
as in (3.2). One can extend directly SIS by minimizing

Q(βj) =

n∑

i=1

L(Yi, Xijβj)

for each component, resulting an estimate ωj, where Xij is the jth component
of xi. We can then apply the screening procedure as in (2.4). With the selected
variables in M, one can then apply the non-concave penalized likelihood to further
select the variables and to estimate non-vanishing coefficients as in Fan and Li [7].
In other words, we minimize

n∑

i=1

L(Yi,x
T
i,MβM) +

∑

j∈M

pλ(|βj |), (3.3)
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where xi,M is a sub-vector of xi with elements in M.
The question then arises how to generalize ISIS to the pseudo-likelihood to

enhance the performance of SIS in variable screening. The challenge is to define
an appropriate ‘residual’. They are several versions of residuals in the statistical
literature such as those in the generalized linear models. It is unclear whether it
works for the variable screening purpose.

A possible extension of ISIS to the pseudo-likelihood based problem is as
follows. After obtaining the first k1 variables with index A1 = {i1, · · · , ik1

} from

fitting (3.3) with estimated coefficients β̂A1
, instead of defining the residuals, we

minimize marginally

Q1(βj) =
n∑

i=1

L(Yi,x
T
i,A1

β̂A1
+ Xijβj) (3.4)

for j ∈ Ac
1, where xi,A1

is a sub-vector of xi with elements in A1. This is again a
univariate optimization problem and can easily be computed.

Note that for the least-squares case,

L(Yi,x
T
i,A1

β̂A1
+ Xijβj) = (ri − Xijβj)

2,

where ri = Yi −xT
i,A1

βA1
is the residual from the submodel A1. Hence, the above

method is an extension of the least-squares procedure without explicit definition
of the residuals. It is in the same spirit as the AdaBoost algorithm of Freund and
Schapire [11].

Let ωj be the maximizer of (3.4). We can then apply (2.4) to screen variables
among p− k1 variables in Ac

1, resulting in a subset M2. Now, apply the penalized
likelihood

n∑

i=1

L(Yi,x
T
i,A1

β̂A1
+ xT

i,M2
βM2

) +
∑

j∈M2

pλ(|βj |) (3.5)

to estimate βM2
, resulting in the estimate β̂M2

. Let A2 be the subset of M2 with

non-vanishing elements of β̂M2
. This recruits variables A∗

2 = A1 ∪ A2.
Further recruitment can be accomplished by the following regression problem

that is similar to (3.4):

Q2(βj) =

n∑

i=1

L(Yi,x
T
i,A∗

2

β̂A∗

2

+ Xijβj) (3.6)

for j ∈ A∗
2
c to select the variables in A∗

2
c, resulting in M3 and then further screen

variables via the penalized likelihood

n∑

i=1

L(Yi,x
T
i,A∗

2

β̂A∗

2

+ xT
i,M3

βM3
) +

∑

j∈M3

pλ(|βj |). (3.7)

Iterating the procedure in this matter results in the selected variables A in the
same manner as ISIS.
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With the selected variables in A, with model size smaller than n, we can
apply the penalized likelihood

n∑

i=1

L(Yi,x
T
i,AβA) +

∑

j∈A

pλ(|βj |) (3.8)

to select the final model and to estimate the coefficients. This is clearly a feasible
extension of ISIS of Fan and Lv [8].

4 Portfolio selection and multiple regression

This section shows how the portfolio selection problem can be reduced to a multiple
regression problem. To simplify the notation, we only consider the population
version with understanding that the sample version can easily be extended.

Suppose that we have p assets with returns X1, · · · , Xp at period t, in which
the dependence of the return on t is dropped. Let X be the vector of the returns.
A portfolio with weights w, satisfying wT1 = 1 (total allocation is 100%), have
the risk

var(wTX) = wTΣw. (4.1)

The global minimum portfolio is to find w that minimizes (2.1).
Suppose that the riskless interest rate is r0 and instead of investing all money

in the risky assets X, we invest (1−wT1) on the riskless asset, and w on the risky
assets X (so that the total investment is 100%). The expected return of such a
portfolio, consisting of (p + 1) assets, is (1 − wT1)r0 + wT µ, with the risk given
by (4.1), where µ = EX. The portfolio allocation problem of Markowitz [15] is to
maximize the expected utility function

(1 − wT1)r0 + wT µ −
λ

2
wT Σw, (4.2)

for a given λ > 0. The problem is equivalent to minimizing (4.1) with the con-
straint

(1 − wT 1)r0 + wT µ = c, (4.3)

for some constant c > 0, namely to construct a portfolio of assets that minimizes
the risk with the expected return c,

In practice, instead of targeting the expected return c in (4.3), many mutual
funds or exchange-traded funds(ETF) set the target percentages on each sector or
each region, such as 25% in energy, 15% in banking, and so on. This translates
into the constraints

Bw = c (4.4)

for a given matrix B and vector c. Clearly, Markowitz’s problem (4.2) is a specific
problem (4.4).

It is not difficult to find the optimal allocation vectors for all aforementioned
optimization problems. For example, the global minimum portfolio, minimizing
(4.1) subject to the constraint wT1 = 1, is given by

w∗ = Σ−11/1TΣ−11 (4.5)



Variable Screening in High-dimensional Feature Space 745

with minimum risk (1T Σ−11)−1. However, in practical implementation, one needs
to estimate Σ based on a sample of size n. For p = 2000, as mentioned in the
introduction, there are over two millions of estimated parameters, yielding esti-
mated vector ŵ

∗ = Σ̂−11/1T Σ̂−11. However, the risk of the portfolio ŵ
∗
Σŵ

∗

might be very different the optimal risk (1TΣ−11)−1, due to the accumulation
of estimation errors. Indeed, Fan, Fan and Lv [6] showed that the convergence
rate is extremely slow. This means that the number of selected assets can not
be too large. This is a desirable property in practice, as the costs for research,
monitoring, and transactions of 2000 stocks are expensive.

For both statistical and practical reasons, one wishes to find sparse allocation
that minimizes the portfolio variance (4.1).

4.1 Global minimum portfolio

To make connections with the least-squares problem, let µj = EXj and X∗
j =

Xj − X1 − (µj − µ1). Set Y = X1 − µ1. Then, using w1 = 1 − w2 − · · · − wp, we
have

var(wT X) = E
(
Y − w2X

∗
2 − · · · − wpX

∗
p

)2
. (4.6)

Thus, the global minimum portfolio becomes the least-squares problems with re-
spect to the parameters w2, · · · , wp. The sparse global minimum portfolio can be
obtained by the penalized least-squares

E
(
Y − w2X

∗
2 − · · · − wpX

∗
p

)2
+ λ

p∑

j=2

pλ(|wj |). (4.7)

The penalty function can be LASSO pλ(|wj |) = λ|wj | (Tibshirani [18]),
SCAD (2.9) (Fan and Li [7]), elastic net pλ(|wj |) = λ1|wj | + λ2|wj |2 (Zou and
Hastie [20]), and MCP (2.10) (Zhang [22]). In particular, let wj(λ) be the solu-
tion to the penalized L1 problem. It is clear that λ = ∞ results in the solution
wj(λ) = 0 for all j, and λ = 0 corresponds to chooses all p − 1 assets. Using
the LARS algorithm of Efron et al [4], we are able to obtain all solutions wj(λ),
including w1(λ) = 1 − w2(λ) − · · · − wp(λ) associated with X1, the risk σ2(λ) of
the allocated portfolio, and the number of selected assets N(λ). Similar paths can
be obtained for other penalty functions.

In practice, one can choose X1 to be the asset with the minimum risk. It can
also be a tradable portfolio such as the index or exchange-traded fund (ETF) as
long as it is liquidly traded.

For optimal portfolio with constraints (4.3), we can proceed the same way as
above except that the constraints need to be observed. New algorithm needs to
be developed to take care of the constraints.

4.2 Factor models

The Capital Assess Pricing Model (CAPM, Sharpe [17]; Lintner, [14]) imposes the
following structure on the excess return (over the riskless interest rate):

Xi = βif + εi,
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where f is the excess return of the market portfolio and βi is the market “β”, and
εi is the idiosyncratic noise, independent of f . Then,

var(wTX) = (wT β)2var(f) + ‖w‖2
σ, (4.8)

where ‖w‖2
σ =

∑p
j=1

σ2
j w2

j with σ2
j = var(εj). To find the sparse solution of the

global minimum portifolio, one can apply the penalized least-squares approach,
which minimizes

(wT β)2var(f) + ‖w‖2
σ +

p∑

j=1

pλ(|wj |), (4.9)

subject to the constraint (4.3). If pλ(|wj |) = λ|wj |, the above problem is very
similar to the elastic net in Zou and Hastie [20].

A further extension of the CAPM model is the multi-factor model (Ross,
1976; Chamberlian and Rothchild, 1982), which admits

X = Bf + ε,

where f is a vector of k factors that influence the returns, B is a p × k factor
loading matrix, and ε is the vector of idiosyncratic noises. Let Ω = var(f) and

B∗ = BΩ1/2. Then,

var(wTX) = (wTB∗B∗Tw)2 + ‖w‖2
σ. (4.10)

Write B∗ = (b∗
1, · · · ,b∗

k). Then, (4.10) can be expressed as

var(wTX) =
k∑

j=1

(bT
j w)2 + ‖w‖2

σ. (4.11)

The sparse solution can also be found via penalized least-squares problem.
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