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In the analysis of microarray data, and in some other contemporary statistical problems, it is not uncommon to apply hypothesis tests in a
highly simultaneous way. The number, N say, of tests used can be much larger than the sample sizes, n, to which the tests are applied, yet
we wish to calibrate the tests so that the overall level of the simultaneous test is accurate. Often the sampling distribution is quite different
for each test, so there may not be an opportunity to combine data across samples. In this setting, how large can N be, as a function of n,
before level accuracy becomes poor? Here we answer this question in cases where the statistic under test is of Student’s t type. We show
that if either the normal or Student t distribution is used for calibration, then the level of the simultaneous test is accurate provided that
logN increases at a strictly slower rate than n1/3 as n diverges. On the other hand, if bootstrap methods are used for calibration, then we
may choose logN almost as large as n1/2 and still achieve asymptotic-level accuracy. The implications of these results are explored both
theoretically and numerically.
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1. INTRODUCTION

Modern technology allows us to collect a large amount of
data in one scan of images. This is exemplified in genomic stud-
ies using microarrays, tiling arrays, and proteomic techniques.
In the analysis of microarray data, and in some other contempo-
rary statistical problems, we often wish to make statistical infer-
ence simultaneously for all important parameters. The number
of parameters, N , is frequently much larger than the sample
size, n. Indeed, the sample size is typically small; for example,
n = 8, 20, and 50 are considered typical, moderately large, and
large for microarray data. In other situations such as the analy-
sis of single nucleotide polymorphisms (SNPs), the sample size
n can be several hundred, whereas the number of SNPs, N , can
be in the order of 105. The question arises naturally as to how
large N can be before the accuracy of simultaneous statistical
inference becomes poor.

Important results in this direction have been obtained by van
der Laan and Bryan (2001), who showed that the population
mean and variance parameters can be consistently estimated
when logN = o(n) if the observed data are bounded. Bickel
and Levina (2004) gave similar results in a high-dimensional
classification problem; Fan, Peng, and Huang (2005b) and
Huang, Wang, and Zhang (2005) studied semiparametric infer-
ence where N → ∞; and Hu and He (2007) proposed an en-
hanced quantile normalization based on high-dimensional sin-
gular value decomposition to reduce information loss in gene
expression profiles.
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Korosok and Ma (2007) treated the problem of uniform, si-
multaneous estimation of a large number of marginal distribu-
tions, showing that if logN = o(n), and if certain other condi-
tions hold, then max1≤i≤N ‖F̂i −Fi‖∞ → 0, where F̂i is an es-
timator of the ith marginal distribution Fi . As a corollary, they
proved that a p value, P̂i , of F̂i converges uniformly in i to its
counterpart Pi for Fi , provided that logN = o(n1/2) namely,

max
1≤i≤N

‖P̂i − Pi‖∞ → 0. (1)

These results are important advances in the literature of simul-
taneous testing, where p values are popularly assumed to be
known. Examples in the latter setting have been given by Ben-
jamini and Yekutieli (2001), Sarkar (2002, 2006), Dudoit, Shaf-
fer, and Boldrick (2003), Donoho and Jin (2004), Efron (2004),
Genovese and Wasserman (2004), Storey, Taylor, and Sieg-
mund (2004), Lehmann and Romano (2005), and Lehmann,
Romano, and Shaffer (2005), where many new ideas have been
introduced to control different aspects of simultaneous hypoth-
esis testing and false discovery rate (FDR).

In many practical settings, the assumption that p values are
calculated without error is unrealistic, but it is unclear how good
the approximation must be for simultaneous inference to be fea-
sible. Simple consistency, as evidenced by (1), is not enough;
the level of accuracy required must increase with N . More pre-
cisely, letting αN be the significant level, which tends to 0 as
N → ∞, the required accuracy is then

max
1≤i≤N

‖P̂i − Pi‖∞ = o(αN). (2)

In this article we provide a concise solution to this problem.
For example, we show that in the case of simultaneous t tests,
calibrated by reference to the normal or Student t distribution,
a necessary and sufficient condition for overall level accuracy
to be asymptotically correct is (a) logN = o(n1/3). This is true
even if the sampling distribution is highly skewed or heavy-
tailed. On the other hand, if bootstrap methods are used for
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estimating p values, then the asymptotic level of the simul-
taneous test is accurate as long as (b) logN = o(n1/2). These
results make clear the advantages offered by bootstrap calibra-
tion. We explore them both numerically and theoretically. Re-
sult (a) needs only bounded third moments of the sampling dis-
tribution, although our proof of (b) requires more restrictions.

Take the case of the familywise error rate (FWER) as an ex-
ample. If the overall error rate is controlled at p, then kn hy-
potheses with the smallest p values are rejected, where

kn = max
{
i :P(i) ≤ p/N, i = 1, . . . ,N

}
, (3)

Pi denotes the significance level of the ith test, and {P(i)} are
the ordered values of {Pi}. The approach of Benjamini and
Hochberg (1995) to controlling false discovery rate (FDR) at
p is to select S0 = {i :Pi ≤ P(kn)}, where

kn = max
{
i :P(i) ≤ ip/N, i = 1, . . . ,N

}
. (4)

If the distributions from which the Pi ’s are computed need to
be estimated, then, in view of (3) or (4), the error of the es-
timators P̂i should equal o(N−1) to correctly sort {Pi}, and
the approximation (1) requires significant refinement. Indeed,
it corresponds to (2) with αN = p/N . This is a very stringent
requirement (αN = 10−5, if p = .1 and N = 104), and accuracy
is difficult to achieve for many practical situations.

Sometimes standard statistical arguments provide attractive
ways of selecting significant genes. For example, in their analy-
sis of gene expression data, Fan, Tam, Vande Woude, and Ren
(2004) took αN = .001 and found the significant set of genes,

S = {i :Pi ≤ αN, i = 1, . . . ,N}, (5)

for N = 15,000 simultaneous tests. Here αN is an order of
magnitude larger than N−1, and the approximation errors when
estimating p values need be o(αN) only when computing
(5), rather than o(N−1) in the FWER problem. The approxi-
mate equivalence between the set S in (5) and S0 with p̂ =
NαN/#(S) has been given by Fan, Chen, Chan, Tam, and Ren
(2005a) and an earlier draft of this article. Thus our results have
implications for controlling FDRs when p values are approxi-
mated.

Results such as these, addressing the case of independent
tests, also have implications under the strong assumption of
positive regression dependency (see Benjamini and Yekuteli
2001, p. 1170, for a discussion). The results are also pertinent
to many other dependent tests regardless of the sign of depen-
dence; for example, Clarke and Hall (2007) have shown that if
test statistics can be modeled by linear and related processes,
and also in cases where the statistics are computed from linear-
process data (including tests based on the Student t statistic
calculated from such data), then both FDR and FWER are
asymptotically identical to their counterparts in the case of in-
dependence.

The key requirement here is that the distributions of individ-
ual test statistics have very light tails; the tails of t statistics, for
moderately large group sizes, are adequate. In such instances,
high-level exceedences occur only because the independent dis-
turbances that produce the dependent process are propitiously
aligned. In light-tailed cases, it is very unlikely that a particular
disturbance will be so large as to carry several nearby values of
the test statistic over the critical point, and when the index, i,

of the test statistic is altered (to, e.g., an adjacent value), the
alignment changes so much that a chance-level exceedence is
very unlikely to be repeated. Cases with sufficiently light tails
include those in which tests are based on Student t statistics
with logN = o(n), and the underlying distributions have three
finite moments. Hall and Wang (2007) showed that in this set-
ting there exists a strong approximation in which the pattern
of exceedences over a high level is identical, with probability
converging to 1 as N → ∞, to what would occur if the test
statistics were truly independent.

Therefore, the stochastic process of false discoveries, which
in general is a cluster-type process, is first-order equivalent to its
counterpart in the case of independence, that is, to a homoge-
neous Poisson process. In other, heavy-tailed cases, modeling
the extent of dependence is attractive (see, e.g., Efron 2007),
but there too one would want to start with accurate marginal
p values. We address that topic here.

Practical implications of our work include the following:

a. When calibrating multiple hypothesis tests using the Stu-
dent t statistic, for example with a view to controlling FWER,
impressive level accuracy can be obtained through a Student t

approximation. Only a mild moment condition is needed.
b. Nevertheless, accuracy is noticeably improved by using

the bootstrap.
c. These results also apply in the case of generalized

FWER.
d. Owing to the limitation on the number of simultaneous

hypotheses that can be accurately tested for a given n and αN ,
other methods of prescreening are needed when there are ex-
cessively many hypotheses to be tested.

The methodologies that we consider are confined to the Stu-
dent t statistic, because recent, remarkably general results that
require only low-order moment assumptions are available in
that case. Indeed, this distinguishes the Student t context from
simpler but less practically relevant settings in which even nec-
essary conditions for results are very onerous (see Shao 1999;
Wang 2005 for discussion). However, although it will take time
for theoretical research to catch up to the advance of statisti-
cal methodologies for analyzing microarray data, it seems very
likely that analogs of the detailed properties given in this arti-
cle also hold for other resampling methods based on pivoted, or
self-normalized, statistics.

In general, the resampling of microarray data can proceed
in any of several different ways. It can use permuted, pooled
data; it can involve resampling within each group and basing
inference on the bootstrap distribution of the resulting pivoted
statistic; or it can use a combination of both data pooling and
residual resampling, after testing for the equality of between-
group distributions. We study the second of these three ap-
proaches in this work; although the first and third, under mild
regularity conditions, require theory to which we do not have
access at present, it seems likely that conclusions b and c
given two paragraphs earlier apply there as well. Extended ver-
sions of the second approach, in which the data within a group
were something other than independent and identically distrib-
uted, would require a model-based approach but again gener-
ally would be amenable to treatment using the arguments that
we give here.
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In a sequence of articles, Finner and Roters (1998, 1999,
2000, 2001, 2002) developed theoretical properties of n simul-
taneous hypothesis tests as n increases. But their work differs
from ours in a major respect, through their assumption that the
exact significance level can be tuned to a known value in the
continuum. In such cases, there is no theoretical limit to how
large nN can be. In comparison, in the setting of the genetic
problems that motivates our work, level inaccuracies limit the
effective size of N . We delineate this limitation using both the-
oretical and numerical arguments.

The article is organized as follows. In Section 2 we formu-
late the accuracy problem for simultaneous tests and also out-
line statistical models and testing procedures. We present our
main results in Section 3, where we answer the question of
how many hypotheses can be tested simultaneously without the
overall significance level being seriously in error. The theoret-
ical definition of the latter property is that the overall signifi-
cance level should converge to the nominal one as the number
of tests increases if the samples on which the tests are based
are independent, and that the limiting level should not exceed
the nominal one if the independence condition is violated and a
Bonferroni bound is used.

We present numerical investigations among various calibra-
tion methods in Section 4. Technical proofs of the results given
in Section 3 are relegated to Section 5.

2. MODEL AND METHODS FOR TESTING

2.1 Basic Model and Methodology

The simplest model is that in which we observe random vari-
ables

Yij = μi + εij , 1 ≤ i < ∞,1 ≤ j ≤ n, (6)

with the index i denoting the ith gene, j indicating the j th ar-
ray, and the constant μi representing the mean effect for the ith
gene. We assume the following:

For each i, εi1, . . . , εin are independent and identically
(7)

distributed random variables with 0 expected value.

The results given herein are readily extended to the case
where n = ni depends on i, but taking n fixed simplifies our
discussion.

Let Ti = n1/2Ȳi/Si , where

Ȳi = 1

n

n∑

j=1

Yij and S2
i = 1

n

n∑

j=1

(Yij − Ȳi )
2.

For a given value of i, we wish to test the null hypothesis H0i

that μi = 0 against the alternative hypothesis H1i that μi �= 0,
for 1 ≤ i ≤ N , say. We first study this standard testing prob-
lem of controlling the probability of making at least one false
discovery, which requires calculating p values with accuracy
o(N−1), the same as that needed in (3). We then extend our re-
sults to control the relaxed FDR in (5), which is less stringent.

A standard test is to reject H0i if |Ti | > tα . Here tα denotes
the solution of equation

P(|Z| > tα) = 1 − (1 − α)1/N or
(8)

P
{|T (n − 1)| > tα

} = 1 − (1 − α)1/N ,

where Z and T (k) have the standard normal distribution and
Student t distribution with k degrees of freedom. Note that (8)
serves only to give a definition of tα that is commonly used in
practice; it does not amount to an assumption about the sam-
pling distribution of the data. Indeed, αN = 1 − (1 − α)1/N and
α are a one-to-one map. The core of the argument in this arti-
cle is that the accuracy of the distributional approximations im-
plicit in (8) are based on a delicate relationship between n and
N , which is central to the question of how many simultaneous
tests are possible.

2.2 Significance Levels for Simultaneous Tests

If H0i is true, then the significance level of the test restricted
to gene i is given by

pi = P0i (|Ti | > tα), (9)

where P0i denotes probability calculated under H0i . For the
approach (3), which is nearly the same as the Benjamini–
Hochberg method, we ask how fast N can diverge to infinity
without upsetting the condition

max
1≤i≤N

pi = o(1) and
N∑

i=1

pi = β + o(1), (10)

for some 0 < β < ∞. The importance of (10) is that it implies
that the significance level of the simultaneous test, described in
Section 2.1, is

α(N) ≡ P
(
H0i rejected for at least one i

in the range 1 ≤ i ≤ N
)

(11)

≤
N∑

i=1

pi = β + o(1). (12)

Therefore (10) guarantees asymptotic conservatism of level as
N → ∞. If, in addition to (7), we assume that

the sets of variables {εij , 1 ≤ j ≤ n} are
(13)

independent for different i,

then (10) guarantees asymptotic exactness of level [provided
that we take β = − log(1 − α)] as N → ∞. Assuming (7)
and (10),

if (13) holds, then α(N) = 1 − e−β + o(1), (14)

where α(N) is as defined in (11). Result (14) also holds, with
the identity α(N) = 1 − e−β + o(1) replaced by α(N) ≤ 1 −
e−β +o(1), if (13) is replaced by the positive regression depen-
dency assumption (Benjamini and Yekuteli 2001, p. 1170).

2.3 Generalized Familywise Error Rate

The foregoing results can be generalized by extending the
definition at (11) to

αk(N) ≡ P
(
H0i rejected for at least k values of i

in the range 1 ≤ i ≤ N
)

≤ 1

k

N∑

i=1

pi = k−1β + o(1), (15)
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where (15) follows from (10). We also have, under (7) and (10),
the following analog of (14):

if (13) holds, then αk(N) = 1 −
k∑

j=1

βj

j ! e−β + o(1). (16)

Under the positive regression dependency assumption, the
equality in (16) would be replaced by ≤.

2.4 Methods for Calibration

For calibration against the normal or Student t distributions,
we take the critical point tα to be the solution of the respective
equations (8). Here we consider bootstrap calibration; Edge-
worth correction (see, e.g., Hall 1990) also could be used.

Let Y
†
i1, . . . , Y

†
in denote a bootstrap resample drawn by sam-

pling randomly, with replacement, from Yi = {Yi1, . . . , Yin}.
Put Y ∗

ij = Y
†
ij − Ȳi and T ∗

i = n1/2Ȳ ∗
i /S∗

i , where Ȳ ∗
i = n−1 ×

∑
j Y ∗

ij and (S∗
i )2 = n−1 ∑

j (Y
∗
ij − Ȳ ∗

i )2. Write zα for the con-
ventional normal critical point for N simultaneous tests; that is,
zα solves P(|Z| > zα) = 1 − (1 − α)1/N . (We also could use
the Student t point.) Define ξ = f̂i (α) to be the solution of

P(|T ∗
i | > zξ |Yi ) = 1 − (1 − α)1/N .

Our bootstrap critical point is t̂iα = z
f̂i (α)

; we reject H0i if and
only if |Ti | > t̂iα . Here the definition of pi at (9) should be
replaced by

pi = P0i (|Ti | > t̂iα). (17)

With this new definition, (14), (15), and (16) continue to be
consequences of (10).

3. THEORETICAL RESULTS

3.1 Asymptotic Results

Define κi3 to be the third cumulant or, equivalently, the skew-
ness of the distribution of ε′

i = εi1/(Eε2
i1)

1/2. The novelty of
Theorem 1 is that it gives a particularly concise account of the
relationship between the validity of (10) for some value of β

and the rates of growth of n and N . Corollary 1 converts this
relationship into a necessary and sufficient condition [specifi-
cally, logN = o(n1/3)] for (10) to hold for the particular value
β = − log(1 − α). This result is of direct interest for multiple
hypothesis testing. Theorem 2 shows that if we use bootstrap
calibration rather than calibration through the normal approxi-
mation or Student t distribution, then the earlier condition can
be weakened to logN = o(n1/2). The practical ramifications of
these results are explored in Section 3.2. They give direct access
to practically important information about how large N can be
for a given value of n, before the accuracy of the simultaneous
test is seriously degraded.

Theorem 1. Assume that

max
1≤i≤N

E|ε′
i |3 = O(1) (18)

as N → ∞, and suppose also that N = N(n) → ∞ in such a
manner that (logN)/n1/3 → γ , where 0 ≤ γ < ∞. Define tα

by either of the formulas at (8), and pi by (9). Then (10) holds
with

β = β(N) ≡ − log(1 − α)

N

N∑

i=1

cosh

(
1

3
γ 3κi3

)
, (19)

where cosh(x) = (ex + e−x)/2.

Note that β(N), defined at (19), is bounded by | log(1−α)|×
cosh(γ 3B) uniformly in N , where B = supi |κi3|.

Corollary 1. Assume the conditions of Theorem 1. If γ = 0
[i.e., if logN = o(n1/3)], then (10) holds with β = − log(1 −
α), and if γ > 0, then (10) holds with β = − log(1 − α) if and
only if N−1 ∑

i≤N |κi3| → 0, that is, if and only if the limit of
the average absolute values of the skewnesses of the distribu-
tions of ε11, . . . , εN1 equals 0.

Because Corollary 1 implies (10), it also entails (12) and
(14)–(16).

Theorem 2. Strengthen (18) to the assumption that for a
constant C > 0, P(|ε′

i | ≤ C) = 1, and suppose also that N =
N(n) → ∞ in such a manner that logN = o(n1/2). Define
t̂iα = z

f̂i (α)
, as in Section 2.4, and define pi by (17). Then (10)

holds with β = − log(1 − α).

The key conditions connecting n and N—logN = o(n1/3)

in Theorem 1 and logN = o(n1/2) in Theorem 2—permit N

to be exponentially larger than n (in particular, for N to be of
larger order than any polynomial in n) before asymptotic level
inaccuracies occur. This striking result is a consequence of the
fact that a normal approximation to the distribution of a mean
actually improves, in relative terms, as one moves further out
into the tails.

3.2 Applications to Controlling Error Rate

Define tα and t̂iα by (8) and as in Section 2.4. In the
proof of Theorem 1 it is shown that, with β = − log(1 − α)

and using conventional calibration, P0i (|Ti | > tα) = βN−1 +
o(N−1), uniformly in i under the null hypotheses, provided
logN = o(n1/3); and that when using bootstrap calibration,
P0i (|Ti | > t̂iα) = βN−1 + o(N−1), again uniformly in i, if
logN = o(n1/2). These results substantially improve a uniform
convergence property of Korosok and Ma (2007), at the expense
of more restrictions on N .

When the p values in (3) need to be estimated, the estimation
errors should be of order o(N−1), where N diverges with n. On
the other hand, when p values in (5) are estimated, the precision
can be of order o(αN), where for definiteness we take αN =
CN−a with C > 0 and a ∈ (0,1]. In the latter case, the results
in Theorems 1 and 2 continue to apply; there is no relaxation,
despite the potential simplicity of the problem.

To appreciate why this is so, note that the tail probabil-
ity of the standard normal distribution satisfies P(|Z| ≥ x) ∼
exp(−x2/2)/(

√
2πx). Suppose that the large deviation result

holds up to the point x = xn, which should be of order o(n1/6)

for the Student t calibration and o(n1/4) for bootstrap cali-
bration. Setting P(|Z| ≥ x) equal to αN yields log(1/αN) =
1
2x2

n + logxn + · · ·, that is,

a logN = 1
2x2

n + logxn + log(
√

2πC) + smaller order terms.
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Regardless of the values of C > 0 and a ∈ (0,1], this rela-
tion implies that the condition xn = o(n1/6) is equivalent to
logN = o(n1/3) and xn = o(n1/4) entails logN = o(n1/2), al-
though taking a close to 0 will numerically improve approxi-
mations in both theory and practice.

4. NUMERICAL PROPERTIES

4.1 Simulation Study

Here we construct models that reflect aspects of gene expres-
sion data. Toward this end, we divide genes into three groups.
Within each group, the genes share one unobserved common
factor with different factor loadings. In addition, there is an
unobserved common factor among all of the genes across the
three groups. For simplicity of presentation, we assume that
N is a multiple of three. We denote by Zij a sequence of in-
dependent N(0,1) random variables and by χij a sequence of
independent random variables of the same distribution as that
of (χ2

m − m)/
√

2m. Note that χij has mean 0, variance 1, and
skewness

√
8/m. In our simulation study, we set m = 6.

With given factor loading coefficients ai and bi , the error εij

in (6) is defined as

εij = Zij + ai1χj1 + αi2χj2 + ai3χj3 + biχj4

(1 + a2
i1 + a2

i2 + a2
i3 + b2

i )
1/2

,

i = 1, . . . ,N, j = 1, . . . , n,

where aij = 0 except that ai1 = ai for i = 1, . . . , 1
3N , ai2 = ai

for i = 1
3N + 1, . . . , 2

3N , and ai3 = ai with i = 2
3N + 1, . . . ,N .

Note that Eεij = 0 and var(εij ) = 1, and that the within-group
correlation is in general stronger than the between-group corre-
lation, because the former shares one extra common factor. We
consider two specific choices of factor loadings: case I, where
the factor loadings are taken to be aj = .25 and bj = .1 for all
j (thus the εij ’s have the same marginal distribution, although
they are correlated), and case II, for which the factor loadings ai

and bi are generated independently from U(0, .4) and U(0, .2).
The “true” gene expression levels μi are taken from a realiza-

tion of the mixture of a point mass at 0 and a double-exponential
distribution: cδ0 + 1

2 (1−c) exp(−|x|), where c ∈ (0,1) is a con-
stant. With the noise and the expression level given earlier, Yij

generated from (6) represents, for each fixed j , the observed
log-ratios between the two-channel outputs of a c-DNA mi-
croarray. Note that |μj | ≥ log 2 means that the true expression
ratio exceeds 2. The probability, or the empirical fraction, of
this event equals 1

2 (1 − c).
For each αN , we compute the p value according to the nor-

mal approximation, t-approximation, and bootstrap method.
Because the marginal null distributions of Ti are the same for
i = 1, . . . ,N , we also can average N bootstrap distributions
to estimate the null distribution. We call the resulting distrib-
ution the “aggregated bootstrap” and include it in our numer-
ical studies (see the previous version of the paper for its as-
ymptotic property). For each method and each simulation, N

estimated p values P̂j are obtained. Let N1 denote the num-
ber of p values that are no larger than αN ; see (5). Then N1/N

is the empirical fraction of null hypotheses that are rejected.
When c = 1, N1/(NαN) − 1 reflects the accuracy with which
we approximate p values. Its root mean square error (RMSE),

Table 1. RMSEs of N/(να) − 1

n = 6 n = 20 n = 50

α .02 .01 .005 .02 .01 .005 .02 .01 .005

Normal 3.425 5.604 9.083 .833 1.221 1.768 .388 .528 .696
t .459 .494 .512 .258 .329 .391 .242 .284 .313
Bootstrap .546 .644 .657 .201 .282 .296 .224 .250 .244
A-bootstrap .842 .946 .990 .202 .297 .352 .228 .249 .262

NOTE: In model (20), ai ≡ .25 and bi ≡ .1.

{E(N1/(NαN) − 1)2}1/2, will be reported, where the expecta-
tions are approximated by averages across simulations.

We take N = 600 (small), N = 1,800 (moderate), and N =
6,000 (typical) for microarray applications (after preprocess-
ing, which filters out many low-quality measurements on cer-
tain genes) and αN = 1.5N−2/3, resulting in αN = .02, .01,
and .005. The sample size n is taken to be 6 (typical number
of microarrays), 20 (moderate), and 50 (large); the case where
n = 6 is of interest because it is beyond the scope of theory dis-
cussed in earlier sections. The number of replications in simu-
lations is 600,000/N . For the bootstrap calibration method and
the aggregated bootstrap, we replicate bootstrap samples 2,000,
4,000, and 9,000 times for αN = .02, .01, and .005.

Tables 1 and 2 report the accuracy of estimated p values
when c = 1. It can be seen that the normal approximations are
too inaccurate to be useful. Therefore, we exclude the normal
method in the discussion that follows. For n = 20 and 50, the
bootstrap method provides better approximations than the Stu-
dent t method. This indicates that the bootstrap can test more
hypotheses simultaneously, which is in accordance with our as-
ymptotic theory. Overall the bootstrap method is also slightly
better then the aggregated bootstrap, although the two meth-
ods are effectively comparable. However, with the small sample
size, n = 6, the Student t method is relatively the best, although
the approximations are poor in general. This is understandable,
because the noise distribution is not normal. With such a small
sample size, the two bootstrap-based methods, particularly the
aggregated bootstrap method, suffer more from random fluctu-
ation in the original samples.

4.2 Real Data Example

The data discussed here were analyzed by Fan et al. (2004),
where the biological aim was to examine the impact of the stim-
ulation by MIF, a growth factor, on the expressions of genes in
neuroblastoma cells. Six arrays of cDNA microarray data were
collected, consisting of relative expression profiles of 19,968
genes in the MIF-stimulated neuroblastoma cells (treatment)

Table 2. RMSEs of N/(να) − 1

n = 6 n = 20 n = 50

α .02 .01 .005 .02 .01 .005 .02 .01 .005

Normal 3.351 5.596 9.014 .770 1.189 1.707 .339 .526 .526
t .406 .485 .456 .307 .273 .347 .182 .299 .299
Bootstrap .564 .637 .677 .202 .262 .322 .162 .284 .284
A-bootstrap .851 .941 .985 .201 .289 .379 .165 .278 .278

NOTE: In model (20), ai ∼ U(0, .4) and bi ∼ U(0, .2).
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Table 3. Numbers of genes that are significant at the level α

α Normal t Bootstrap A-bootstrap

.200 3,205(42.26) 2,564(33.81) 1,788(23.58) 1,565(20.64)

.100 2,072(27.32) 1,233(16.26) 563(7.42) 299(3.94)

.050 1,328(17.51) 504(6.65) 143(1.89) 31(.41)

.010 499(6.58) 48(.63) 11(.15) 1(.01)

.005 336(4.43) 17(.22) 5(.07) 0(0)

.001 139(1.83) 2(.03) 0(0) 0(0)

NOTE: The figures in parentheses are the percentages of significant genes. The total num-
ber of genes is 7,583. The bootstrap sampling was repeated 20,000 times.

and those without stimulation (control). After preprocessing
that filtered out low-quality expression profiles, 15,266 genes
remained. Within-array normalization, discussed by Fan et al.
(2004), was applied to remove the intensity effect and block
effect. Among the 15,266 gene expression profiles, for simplic-
ity of illustration, we focused only on the 7,583 genes that do
not have any missing values. In our notation, N = 7,583 and
n = 6. Table 3 summarizes the results at different levels of sig-
nificance.

Different methods for estimating p values yield very differ-
ent results. In particular, the distribution of p values computed
by looking up the normal table is stochastically much larger
than that based on the t table, which in turn is stochastically
much larger than that based on the bootstrap method. The re-
sults are very different. As noted earlier, the normal approxi-
mation is usually very poor and grossly inflates the number of
significant genes. The t approximation and the bootstrap ap-
proximation appear more reasonable.

5. PROOFS OF RESULTS IN SECTION 3

For the sake of brevity, we derive only Theorems 1 and 2. Let
C1 > 0. Given a random variable X with E(X) = 0, consider
the condition

E(X) = 0, E(X2) = 1, E(X4) ≤ C1. (20)

The following result follows from theorem 1.2 of Wang
(2005), after transforming the distribution of T to that of
(
∑

i Xi)/(
∑

i X
2
i ).

Theorem 3. Let X,X1,X2, . . . denote independent and iden-
tically distributed random variables such that (20) holds. Write
T = T (n) for the Student t statistic computed from the sample
X1, . . . ,Xn, with (for the sake of definiteness) divisor n rather
than n − 1 used for the variance. Put π3 = − 1

3κ3, where κ3 de-
notes the skewness of the distribution of X/(varX)1/2. Then

P(T > x)

1 − �(x)
= exp

(
π3x

3n−1/2)
{

1 + θ
(1 + x)2

n1/2

}
, (21)

where θ = θ(x,n) satisfies |θ(n, x)| ≤ C2 uniformly in 0 ≤ x ≤
C3n

−1/4 and n ≥ 1, and C2,C3 > 0 depend only on C1.

Theorem 1 in the case of normal calibration follows directly
from Theorem 3 The case of Student t calibration can be treated
similarly.

To derive Theorem 2, note that each var(ε′
i ) = 1. To check

this, with probability at least pn ≡ 1 − exp(−d1n
1/2) for a con-

stant d1 > 0, the conditions of Theorem 3 hold for the bootstrap

distribution of the statistic T ∗
i , for each 1 ≤ i ≤ N , it suffices

to show that there exist constants 0 < C4 < C
1/2
5 such that,

with probability at least pn, the following condition holds for
1 ≤ i ≤ N :

C4 ≤ 1

n

n∑

j=1

(Yij − Ȳi )
2,

1

n

n∑

j=1

(Yij − Ȳi )
4 ≤ C5. (22)

This can be done using Bernstein’s inequality (e.g., Pollard
1984, p. 193) and the assumption that for each i, P(|ε′

i | ≤ C) =
1. It also can be shown by the uniform convergence result of the
empirical process of Korosok and Ma (2007).

Let En denote the event that (22) holds for each 1 ≤ i ≤ N .
When En prevails, we may apply Theorem 3 to the distribution
of T ∗

i conditional on Yi , obtaining

P(T ∗
i > x|Yi ) = {1 − �(x)} exp

(
−1

3
κ̂i3n

−1/2x3
)

×
{

1 + θ̂i

(1 + x)2

n1/2

}
, (23)

where κ̂i3 is the empirical version of κi3 computed from Yi and,
in the event that the probability equals 1 − O{exp(−d2n

1/2)},
|θ̂i | ≤ D1 uniformly in i and in 0 ≤ x ≤ xn. Here and later, xn

denotes any sequence diverging to infinity but satisfying xn =
o(n1/4), and D1,D2, . . . and d1, d2, . . . denote constants. It fol-
lows directly from Theorem 3 that

P0i (Ti > x) = {1 − �(x)} exp

(
−1

3
κi3n

−1/2x3
)

×
{

1 + θ
(1 + x)2

n1/2

}
, (24)

where |θi | ≤ D1 uniformly in i and in 0 ≤ x ≤ xn.
Result (24), and its analog for the left tail of the distribu-

tion of Ti , allow us to express tiα , the solution of the equation
P0i (|Ti | > tiα) = 1 − (1 − α)1/N , as a Taylor expansion,

∣
∣tiα − zα − cκi3n

−1/2z2
α

∣
∣ ≤ D2

(
n−1z4

α + n−1/2zα

)
,

uniformly in i, where c is a constant and zα is the solution of
P(|Z| > zα) = 1 − (1 −α)1/N . Note that if zα solves this equa-
tion, then zα ∼ (2 logN)1/2, and so, because logN = o(n1/2),
zα = o(n1/4). Therefore, without loss of generality, 0 ≤ zα ≤
xn. Likewise, we may assume that 0 ≤ tiα ≤ xn and 0 ≤ t̂iα ≤ xn

with probability 1 − O{exp(−d2n
1/2)}.

Also, from (23), we can see that in the event that the proba-
bility equals 1 − O{exp(−d2n

1/2)},
∣∣t̂iα − zα − cκ̂i3n

−1/2z2
α

∣∣ ≤ D3
(
n−1z4

α + n−1/2zα

)
.

However, in the event that probability equals that 1 −
O{exp(−d3n

1/2)}, |κ̂i3 − κi3| ≤ D4n
−1/4, and therefore, in the

event with probability equals 1 − O{exp(−d4n
1/2)},

∣∣t̂iα − zα − cκi3n
−1/2z2

α

∣∣ ≤ D5
(
n−1z4

α + n−1/2zα + n−3/4z2
α

)
.

It follows from the foregoing results that P0i (|Ti | > t̂iα) lies
between the respective values of

P0i (|Ti | > tiα ± δ) ∓ D6 exp
(−d4n

1/2), (25)

where

δ = D5
(
n−1z4

α + n−1/2zα + n−3/4z2
α

)
.
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Using (24) and its analog for the left tail to expand the proba-
bility in (25), we can deduce that

P0i (|Ti | > tiα ± δ) = P0i (|Ti | > tiα){1 + o(1)}
uniformly in i. More simply, exp(−d4n

1/2) = o{P0i (|Ti | >

tiα)}, using the fact that zα = o(n1/4) and exp(−D7z
2
α) =

o{P0i (|Ti | > tiα)} for sufficiently large D7 > 0. Thus

P0i (|Ti | > t̂iα) = P0i (|Ti | > tiα){1 + o(1)};
uniformly in i. Theorem 2 follows from this property.

[Received April 2006. Revised July 2007.]
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