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ABSTRACT. In the analysis of microarray data, and in some other contemporary
statistical problems, it is not uncommon to apply hypothesis tests in a highly simul-
taneous way. The number, ν say, of tests used can be much larger than the sample
sizes, n, to which the tests are applied, yet we wish to calibrate the tests so that the
overall level of the simultaneous test is accurate. Often the sampling distribution
is quite different for each test, so there may not be an opportunity for combining
data across samples. In this setting, how large can ν be, as a function of n, before
level accuracy becomes poor? In the present paper we answer this question in cases
where the statistic under test is of Student’s t type. We show that if either normal
or Student’s t distribution is used for calibration then the level of the simultaneous
test is accurate provided log ν increases at a strictly slower rate than n1/3 as n

diverges. If log ν and n1/3 diverge at the same rate then asymptotic level accuracy
requires the average value of standardised skewness, taken over all distributions to
which the tests are applied, to converge to zero as n increases. On the other hand, if
bootstrap methods are used for calibration then significantly larger values of ν are
feasible; we may choose log ν almost as large as n1/2 and still achieve asymptotic
level accuracy, regardless of the values of standardised skewness. It seems likely that
similar conclusions hold for statistics more general than the Studentised mean, and
that the upper bound of n1/2, in the case of bootstrap calibration, can be increased.
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1. INTRODUCTION

Modern technology allows us to collect a large amount of data in one scan

of images. This is exemplified in genomic studies using microarrays, tiling arrays

and proteomic techniques. In the analysis of microarray data, and in some other

contemporary statistical problems, we often wish to make statistical inference simul-

taneously for all important parameters. The number of parameters, ν, is frequently

much larger than sample size, n. Indeed, sample size is typically small; e.g. n = 8,

20 or 50 are considered to be typical, moderately large or large, respectively, for

microarray data. The question arises naturally as to how large ν can be before the

accuracy of simultaneous statistical inference becomes poor.

An important study in this direction was initiated by van der Laan and Bryan

(2001). These authors showed that the population mean and variance parameters

can be consistently estimated when (log ν)/n → 0 if observed data are bounded. See

also Bickel and Levina (2004) for a similar result in a high-dimensional classification

problem. In the context of the normalization of microarray data, Fan, Peng and

Huang (2005) and Huang, Wang and Zhang (2005) studied semiparametric prob-

lems in a framework where ν tended to ∞, and discovered new and deep insights

into semiparametric problems. Hu and He (2006) proposed an enhanced quantile

normalization based on the high-dimensional singular value decomposition to re-

duce information loss in gene expression profiles. See also He and Wang (2006) for

recent development and references on estimation and testing problems arising from

analysis of Affymetrix arrays. The high-dimensional statistical inference problems

have been studied in the pioneering work by Huber (1973) and Portnoy (1988).

Recently, Korosok and Ma (2005) significantly widened the spectrum of si-

multaneous inference by first discussing simultaneous convergence of the marginal

empirical distribution F̂n,i, based on measurements on the ith gene, to its theoretical

counterpart, Fi. They demonstrated convincingly that under suitable conditions,

max
1≤i≤ν

‖F̂n,i − Fi‖∞ → 0 ,
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when (log ν)/n → 0. As a corollary, they showed that the approximated P-value p̂i

of a t-type test statistic for testing whether the ith marginal mean is zero, computed

under the normal approximation, converges uniformly to its asymptotic counter-

part pi, i.e.

max
1≤i≤ν

‖p̂i − pi‖∞ → 0 , (1.1)

when log ν = o(n1/2) and the observed data fall into a bounded interval. In ad-

dition, they showed that the uniform approximation holds for median based tests

when log ν = o(n1/3). These results are important advances in the literature of

simultaneous testing, where P-values are popularly assumed to be known. See,

for example, Benjamini and Yekutieli (2001), Dudoit, Shaffer and Boldrick (2003),

Donoho and Jin (2004), Efron (2004), Genovese and Wasserman (2001), Storey,

Taylor and Siegmund (2004), Lehmann and Romano (2005), Lehmann, Romano

and Shaffer (2005) where many new ideas have been introduced to control different

aspects of false discovery rates.

However, the fundamental assumption that the P-values are calculated without

error is unrealistic in practice. The question then arises as to which approximation

methods are more accurate in calculating P-values, and how many of those values

can be approximated simultaneously. The approximation (1.1) is not adequate for

multiple comparison problems.

Take the celebrated Benjamini and Hochberg (1995) method as an example.

It is assumed that we have ν P-values p1, . . . , pν available for testing the marginal

hypotheses. If the false discovery rate (FDR) is controlled at p, then kn hypotheses

with the smallest P-values are rejected, where

kn = max{i : p(i) ≤ ip/ν} (1.2)

and p(i) denotes the ith smallest P-value: p(1) ≤ p(2) ≤ . . . ≤ p(ν). If the P-values

need to be estimated, the accuracy of the estimators should be of order o(1/ν). This

means that we need to approximate the extreme tail probability under the null hy-

potheses. For this purpose, the approximation (1.1) requires significant refinement.
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The requirement above is relaxed by Fan et al. (2004). In the analysis of gene

expression data, Fan et al. (2004) take αν = 0.001 and find the significant set of

genes

S = {j : pj ≤ αν , j = 1, . . . , ν} (1.3)

for ν = 15,000 simultaneous tests. Note that αν is an order of magnitude larger

than ν−1. Hence, the approximation errors allowed for estimating P-values are

less stringent for computing (1.3) than the order ν−1. However, we still need to

approximate the tail probability, namely, αν → 0 and ναν → ∞. Lehmann and

Romano (2005) demonstrate that the probability that the falsely is more than α′1

is no more than α′2 as long as than α′2 as long as α′1α
′
2 = αν . For example, the

probability that the proportion of genes falsely discovered in (1.3) exceeds 10%, is

no more than 1%.

The number of elements in S, denoted by k′n, equals the number of genes

discovered at the significance level αν . Note that ναν is the upper bound to the

expected number of falsely discovered genes and is approximately the same as the

expected number of falsely discovered genes when most null hypotheses are true.

Hence, the FDR is estimated as p̂ = ναν/k′n, which gives us an idea of the quality

of the selected genes; see Fan et al. (2004). This simple procedure is closely related

to the Benjamini and Hochberg (1995) procedure for controlling the false discovery

rate. More precisely, let k̂n be given by (1.2) when p is taken as the estimated

FDR, p̂, namely,

k̂n = max{i : p(i) ≤ ip̂/ν}. (1.4)

According to Fan et al. (2005), k′n ≤ k̂n, but these quantities are often very close.

See Table 3 in section 5. Note that when k′n = k̂n, both the Benjamini and Hochberg

method and the empirical method of Fan et al. (2004) select exactly the same set of

genes. Namely, the Benjamini and Hochback method with p = p̂ would call results

in S statistically significant genes.

In this paper, we investigate the question of how many hypotheses about the
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mean can be tested simultaneously by using Student’s t-type of statistic, before

the level of aggregated errors becomes poor. We show that if either the normal

distribution or the t-distribution is used for calibration, the level of the simultaneous

test is accurate when log ν = o(n1/3) or when log ν = O(n1/3) and the average of the

standardised skewness, taken over all distributions to which the tests are applied,

converges to zero. On the other hand, if bootstrap methods are used for estimating

P-values, then significantly larger values of ν are allowed. The asymptotic level of

the simultaneous test is accurate as long as log ν = o(n1/2). Thus, the advantages

offered by bootstrap calibration are clear. One interesting aspect of our results

is that, provided a Bonferroni argument is used to bound simultaneous coverage

levels, the dependence structure among ν-dimensional vectors can be arbitrary.

The paper is organized as follows. In section 2, we formulate the accuracy

problem for simultaneous tests. There, we also outline statistical models and test-

ing procedures. Our main results are presented in section 3, where we answer the

question of how many hypotheses can be tested simultaneously. Section 4 outlines

the idea of marginal aggregation when the number of hypotheses is ultra-large. Nu-

merical investigations among various calibration methods are presented in section 5.

Technical proofs of results in section 3 are relegated to section 6.

2. MODEL AND METHODS FOR TESTING

2.1. Basic model and methodology.

The simplest model is that where we observe random variables

Yij = µi + εij , 1 ≤ i < ∞ , 1 ≤ j ≤ n , (2.1)

with the index i denoting the ith gene, j indicating the jth array, and the constant

µi representing the mean effect for the ith gene. We shall assume that:

for each i, εi1, . . . , εin are independent and identically distributed random
variables with zero expected value.

(2.2)
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The discussion and results below are readily extended to the case where n = ni

depends on i, but taking n fixed simplifies our discussion. In practice the number

of values of i, at (2.1), would of course be finite rather than infinite, and we shall

consider only simultaneous tests for a finite number, ν say, of genes. We take the

potential number of genes to be infinite, rather than have a finite value, say m, only

so as to avoid having to state repeatedly that ν ≤ m.

Let Ti = n1/2 Ȳi/Si, where

Ȳi =
1
n

n∑

j=1

Yij , S2
i =

1
n

n∑

j=1

(Yij − Ȳi)2 .

For a given value of i we wish to test the null hypothesis H0i that µi = 0, against

the alternative hypothesis H1i that µi 6= 0, for 1 ≤ i ≤ ν say. We first study this

classical testing problem of controlling the probability of making at least one false

discoveries, which requires calculating P-values of accuracy o(ν−1), the same as that

needed in (1.2). We then extend the results to control relaxed FDR in (1.3), which

is less stringent.

A standard test is to reject H0i if |Ti| > tα. Here, tα denotes the solution of

either of equations

P (|N | > tα) = 1− (1− α)1/ν , P{|T (n− 1)| > tα} = 1− (1− α)1/ν , (2.3)

where N and T (k) have respectively the standard normal distribution and the

Student’s t distribution with k degrees of freedom. We expect that, if tα satisfies

either of the equations at (2.3), and if H0i is true for each i in the range 1 ≤ i ≤ ν,

then the probability that, for at least one of these i’s, the test of H0i against H1i

leads to rejection, is close to the nominal significance level, α. A key question is:

How large can ν be and level accuracy still be good?

2.2. Significance levels for simultaneous tests.

If H0i is true then the significance level of the test restricted to gene i, is given

by

pi = P0i(|Ti| > tα) , (2.4)
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where P0i denotes probability calculated under H0i. The question arises as to how

large ν can be so that

max
1≤i≤ν

pi = o(1) and
ν∑

i=1

pi = β + o(1) , (2.5)

for some 0 < β < ∞. This implies that the significance level of the simultaneous

test, described in section 2.1, is

α(ν) ≡ P
(
H0i rejected for at least one i in the range 1 ≤ i ≤ ν

)
(2.6)

≤
ν∑

i=1

pi = β + o(1) . (2.7)

If, in addition to (2.2), we assume that

the sets of variables {εij , 1 ≤ j ≤ n} are independent for different i, (2.8)

then

α(ν) = 1−
ν∏

i=1

(1− pi) = 1− exp
(
−

ν∑

i=1

pi

)
+ O

( ν∑

i=1

p2
i

)
. (2.9)

Consequently, (2.5) and (2.9) imply the following property:

if (2.8) holds then α(ν) = 1− e−β + o(1), (2.10)

where α(ν) is as defined at (2.6). The “o(1)” terms in (2.7) and (2.10) are quantities

which converge to zero as ν →∞.

In practice we would take β = − log(1−α), if we were prepared to assume (2.8)

and wished to construct a simultaneous test with level close to α; and take β = α,

if we were using Bonferroni’s bound to construct a conservative simultaneous test

with the same approximate level.

2.3. Methods for calibration.

For calibration against normal or Student’s t distributions we take the critical

point tα to be the solution of the respective equations (2.3). A variety of meth-

ods, including explicit Edgeworth correction, can also be used to effect calibration.
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Results of Hall (1990) indicate that the bootstrap has advantages over Edgeworth

correction in the present setting, where large deviations are involved, so we shall

consider the bootstrap.

Let Y †
i1, . . . , Y

†
in denote a bootstrap resample drawn by sampling randomly, with

replacement, from Yi = {Yi1, . . . , Yin}. Put Y ∗
ij = Y †

ij − Ȳi and T ∗i = n1/2Ȳ ∗
i /S∗i ,

where Ȳ ∗
i = n−1

∑
j Y ∗

ij and (S∗i )2 = n−1
∑

j (Y ∗
ij− Ȳ ∗

i )2. Write zα for the conven-

tional normal critical point for ν simultaneous tests. That is, zα solves the equation

P (|N | > zα) = 1 − (1 − α)1/ν . (We could also use the Student’s t point.) Define

a = f̂i(α) to be the solution of the equation

P (|T ∗i | > za | Yi) = 1− (1− α)1/ν .

Equivalently, f̂i(α) is the bootstrap estimator of the ideal, but unavailable, nominal

significance level we would employ in place of α if our aim was to use normal

calibration to achieve a test with level exactly equal to α.

Our bootstrap critical point is t̂iα = zf̂i(α). That is, t̂iα plays the role that tα

did in sections 2.1 and 2.2; we reject H0i if and only if |Ti| > t̂iα. Since the critical

point is now a random variable, and depends on data in the ith “row” Yi, although

not on data from other rows, then the earlier calculations should be revisited. In

particular, the definition of pi at (2.4) should be replaced by

pi = P0i(|Ti| > t̂iα) . (2.11)

With this new definition, (2.10) continues to be a consequence of (2.5).

2.4. Accuracy of approximations for controlling FDR.

The requirement (2.5) aims at controlling the probability of making at least

one falsely discovered genes. For gene screening, it is more appropriate to control

the proportion of falsely discovered genes. This is much less stringent than (2.5).

Expressions (2.3) and (2.5) require basically the approximation errors

pi = αν{1 + o(1)}, αν = β/ν + o(ν−1). (2.12)
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The required accuracy of order o(1/ν) reflects that needed in the Benjamini-Hochberg

method (1.2).

For controlling FDR using (1.3), however, the mathematical requirement is

more relaxed than for controlling the cumulative approximation error (2.5). If we

take αν = 1.5ν−2/3, say, then the expected number of falsely discovered genes is

bounded by 1.5ν1/3, or 13, 18, 27, 34, 37 for ν = 600, 1800, 6,000, 12,000, 15,000,

respectively. In this case, (1.3) requires maximum approximation error of order

max
1≤i≤ν

|pi − αν | = o(αν) ,

with αν = 1.5ν−2/3. This is a much less stringent requirement than (2.12) and will

be covered by our theoretical results in section 3.

3. THEORETICAL RESULTS

3.1. Asymptotic results.

In Theorem 3.1 and Corollary 3.1 below we shall show that normal and Stu-

dent’s t calibration give asymptotically correct calibration, in the sense that (2.5)

and hence (2.10) hold for a knowable value of β (not depending on the unknown

distributions of εi1), in a general sense (in particular, for skew distributions), if and

only if log ν = o(n1/3). Furthermore, if log ν is asymptotic to a constant multiple

of n1/3 then (2.5) and (2.10) are valid if and only if the limiting average value of

absolute skewnesses of the first ν distributions of εi1 equals zero.

On the other hand, if we use bootstrap calibration, and even if all the error

distributions are skew, the asymptotically correct level for a simultaneous test is

achieved with log ν as large as o(n1/2). See Theorem 3.3. This result shows one of

the advantages of bootstrap calibration, compared with calibration using Student’s

t and normal distributions: Bootstrap calibration allows us to apply a larger number

of simultaneous tests before level-accuracy problems arise.

Define κi3 to be the third cumulant, or equivalently the skewness, of the dis-

tribution of ε′i = εi1/(Eε2i1)
1/2.
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Theorem 3.1. Assume that

max
1≤i≤ν

E|ε′i|3 = O(1) (3.1)

as ν →∞, and suppose too that ν = ν(n) →∞ in such a manner that (log ν)/n1/3

→ γ, where 0 ≤ γ < ∞. Define tα by either of the formulae at (2.3), and pi by (2.4).

Then (2.5) holds with

β = β(ν) ≡ − log(1− α)
ν

ν∑

i=1

cosh
(

1
3 γ3κi3

)
, (3.2)

where cosh(x) = (ex + e−x)/2.

The value of β(ν), defined at (3.2), is bounded by | log(1 − α)| cosh(γ3 B),

uniformly in ν, where B = supi |κi3|.

Corollary 3.2. Assume the conditions of Theorem 3.1. If γ = 0, i.e. if log ν =

o(n1/3), then (2.5) and (2.10) hold with β = − log(1 − α); and if γ > 0 then (2.5)

holds with β = − log(1 − α) if and only if ν−1
∑

i≤ν |κi3| → 0, i.e. if and only if

the limit of the average absolute values of the skewnesses of the distributions of

ε11, . . . , εν1 equals zero.

Theorem 3.3. Strengthen (3.1) to the assumption that for a constant C > 0,

P (|ε′i| ≤ C) = 1, and suppose too that ν = ν(n) → ∞ in such a manner that

log ν = o(n1/2). Define t̂iα = tf̂i(α), as in section 2.4, and define pi by (2.11). Then

(2.5) holds with β = − log(1− α).

3.2. Applications to controlling FDR.

Our proofs in section 6 show that, under the conditions of Theorem 3.1,

P0i(|Ti| > tiα) = β/ν + o(ν−1)

with β = − log(1−α), uniformly in i under the null hypotheses, when log ν = o(n1/3)

or log ν = O(n1/3) with the additional assumption that the skewness satisfies the
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condition of Corollary 3.2. In addition, under the conditions of Theorem 3.3,

P0i(|Ti| > t̂iα) = β/ν + o(ν−1)

uniformly in i under the null hypotheses when log ν = o(n1/2). These improve a

uniform convergence result given by Kosorok and Ma (2005), at the expense of more

restrictions on ν.

When the P-values in (1.2) need to be estimated, the estimation errors should

be of order o(ν−1), where ν diverges with n. On the other hand, when P-values

in (1.3) are estimated, the precision can be of order o(αν), where αν = bν/ν with

bν →∞. In this case, the large deviation results in Theorems 3.1 and 3.3 continue

to be applicable.

Note that the tail probability of the standard normal distribution P (|N | ≥ xn)

is of order exp(−x2
n/2)/xn. Suppose that the large deviation result holds up to

the point xn, which is of order o(n1/3) for Student’s t calibration and o(n1/4) for

bootstrap calibration (see section 6). Setting it equal to αν yields

log ν − log bν = x2
n/2 + log xn. (3.3)

This puts a limit on the number of simultaneous tests that can be performed with a

good approximation of P-values. A larger bν allows a larger value of ν. For example,

if we take bν = 1.5/ν1/3 as in section 2.4, then

log ν = 3x2
n/4 + 1.5 log xn + log 1.5,

which is much larger than that in the case where bν = 1 is used in (1.2) or (2.5). To

put this into perspective, let ν1 and ν2 be the numbers of simultaneous hypotheses

allowed with bν = 1 and bν = 1.5ν1/3, respectively. Namely, they solve (3.3)

respectively with bν = 1 and bν = 1.5ν1/3. Then, ν2 = 1.5ν
3/2
1 . For example, if

ν1 = 500 then ν2 = 16,771.
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For bootstrap calibration, when xn = o(n1/4), by the proof of Theorem 3.2 we

have

max
1≤i≤ν

|P0i(|Ti| > t̂iα)/P (|N | > xn)− 1| = o(1),

where α = P (|N | > xn). Substituting xn = o(n1/4) into (3.3), ν = exp{o(n1/2)}.
The larger bν implies a larger constant factor in o(n1/2) or x2

n, as illustrated in the

last paragraph. On the other hand, for Student’s t calibration, ν = exp{o(n1/3)}.

4. MARGINAL AGGREGATION

4.1. Methods of Aggregation.

We have demonstrated that with bootstrap calibration, Student’s t-statistics

can test simultaneously a number of hypotheses of order exp{o(n1/2)}. Although

this value may be conservative, it may still not be large enough for some applications

to microarray and tiling arrays where the number of simultaneous tests can be

even larger. Similarly, whether looking up a t-table and normal table depends

very much on mathematical assumptions. For example, suppose an observed value

of a t statistic is 6.7. Its corresponding two-tail P-value, for n = 6 arrays, is

0.112% when looking up t-tables with five degrees of freedom, and 2.084 × 10−11

when consulting normal tables. If, as mentioned in the introduction, ν = 15,000,

then using criterion (1.3) with α = 0.1%, the null hypothesis with the observed

t-statistic 6.7 will not be rejected. The P-value calculation depends here heavily

on mathematical assumptions, and is not robust to the error distribution. On the

other hand, when n = 8 the situation eases dramatically; the P-value is now 0.0277%

under the t-distribution with degrees of freedom 7, for an observed t-statistic value

of 6.7.

To overcome the afforementioned problems, Reiner, Yekutieli and Benjamini

(2003) and Fan et al. (2004) introduce marginal aggregation methods. The basic

assumption is that the null distributions of test statistics Ti are the same, denoted

by F . With this assumption, we can use the empirical distribution of {Ti, i =
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1, . . . , ν}, i.e.

F̂ν(x) = ν−1
ν∑

i=1

I(Ti ≤ x) , (4.1)

as an estimator of F . This turns the “curse-of-dimensionality” into a “blessing-

of-dimensionality”. In this case, even if n is finite, the distribution of F can still

be consistently estimated when ν → ∞ and only a small fraction of alternative

hypotheses are true.

Reiner, Yekutieli and Benjamini (2003) and Fan et al. (2004) carry this idea

one step further. They aggregate the estimated distributions for each Ti, based on

a resampling technique (more precisely, a permutation method). For example, we

can use the average of bootstrap estimators,

F̂ ∗ν (x) = ν−1
ν∑

i=1

P (T ′i < x | Yi) , (4.2)

as an estimator of F (x). In implementation, we draw B bootstrap samples and

compute B bootstrap statistics for each marginal distribution, resulting in

{T ∗ij , i = 1, . . . , ν, j = 1, . . . , B} . (4.3)

The aggregated estimator F̂ ∗ν (x) can be approximated by the empirical distribution

for the pseudo-data in (4.3).

Fan et al. (2005) propose a sieve idea for reducing the possible bias of F̂ and

F̂ ∗. The basic idea is to pre-screen the sets of hypotheses that might be statistically

significant, resulting in a subset, I, which is not statistically significant (this can

be done by using the normal approximation with a relaxed P-value), and then

restricting the aggregations in (4.1) or (4.2) to subset I. Note that, under model

(2.1), for the bootstrap t-statistic, E{P (T ∗i < x | Yi)} does not depend on the

unknown value µi and there is no need for the sieve method when the bootstrap

method is used. The asymptotic theory of this kind of aggregated bootstrap is

poorly understood. We shall investigate its large sample properties in the next

section, in the context of approximating tail probabilities.
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4.2. Asymptotic theory.

The asymptotic theory requires the assumption that the variables {Ti} are

only very weakly dependent. In particular, we assume that {Ti} are pairwise nearly

tail-independent. This assumption holds under condition (2.8). In the following

statement, xn denotes the left-tail critical value.

Theorem 4.1. Let ν1 be the number of nonzero µi, i.e. the number of elements in

{i : H1i is true}. Then,

F̂ν(xn) = F (xn) + OP

[
(ν1/ν) +

√
F (xn)/ν

{
1 + anν + an ν1 F (xn)−1/2

}1/2
]

,

provided that |rij | ≤ an, with rij denoting the correlation coefficient between I(Ti <

xn) and I(Tj < xn).

A similar result holds for the upper tail. Note that the term O(ν1/ν) reflects

the bias of the estimate. It can be reduced by using the sieve idea of Fan et

al. (2005). Further discussion on this topic is beyond the scope of our paper. When

we estimate the P-value at order F (xn) = bν/ν with bν → ∞ and bn/ν → 0,

the approximation error in Theorem 4.1 is of order oP {F (xn)}, if ν1 = o(bν) and

νan = o(bν). This approximation is accurate enough for applications using criterion

(1.3) for controlling FDR or selecting significant hypotheses.

We now describe the asymptotic result for the aggregated bootstrap distribu-

tion. To reduce technicalities we assume that (2.8) holds and {εij} for different i

are identically distributed up to a scale transform. Then, we have:

Theorem 4.2. Under the assumptions above,

F̂ ∗ν (xn) = Fn(xn) + OP

{√
Fn(xn)/ν

}
,

where Fn(x) = E{P (T ∗i < x | Yi)}.

As mentioned before, Fn(x) does not depend on unknown parameters µi. It

admits large deviation expansions similar to (6.4). Thus, it has approximately the
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same accuracy as the marginal bootstrap method. However, it is generally a biased

estimator of the null distribution F (x).

5. NUMERICAL PROPERTIES

We have presented five methods for computing P-values: the normal, t and

bootstrap calibrations and the two marginal aggregation methods (4.1) and (4.2).

Our theoretical results indicate that the bootstrap calibration method enables us

to simultaneously test the number of hypotheses up to at least exp{o(n1/2)}, bet-

ter than the simple normal and t calibrations. Under the marginal-distribution

assumption that the null distributions are identical and the true alternative hy-

potheses are sparse, the empirical method (4.1) allows us to test even larger values

of ν. The “aggregated bootstrap” method (4.2) has a performance similar to that

of the bootstrap calibration method.

In our simulation study we attempt to construct the models that reflect some

aspects of gene expression data. To this end, we divide genes into three groups.

Within each group, genes share one unobserved common factor with different fac-

tor loadings. In addition, there is an unobserved common factor among all the

genes across the three groups. For simplicity of presentation, we assume that ν is

a multiple of three. We denote by {Zij} a sequence of independent N(0, 1) random

variables, and {χij} a sequence of independent random variables of the same dis-

tribution as that of (χ2
m − m)/

√
2m. Note that χij has mean 0, variance 1 and

skewness
√

8/m. In our simulation study we set m = 6.

With given factor loading coefficients {ai} and {bi}, the error εij in (2.1) is

defined as

εij =
Zij + ai1χj1 + ai2χj2 + ai3χj3 + biχj4

(1 + a2
i1 + a2

i2 + a2
i3 + b2

i )1/2
, i = 1, . . . , ν , j = 1, . . . , n ,

where aij = 0 except that ai1 = ai for i = 1, . . . , ν/3, ai2 = ai for i = ν/3 +

1, . . . , 2ν/3, and ai3 = ai with i = (2ν/3) + 1, . . . , ν. Note that Eεij = 0 and

var(εij) = 1, and that the within-group correlation is in general stronger than the
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between-group correlation, since the former shares one extra common factor. We

consider two specific choices of factor loadings:

Case I: The factor loadings are taken to be aj = 0.25 and bj = 0.1 for all j.

Thus, εij ’s have the same marginal distribution, although they are correlated.

Case II: The factor loadings {ai} and {bi} are generated independently from,

respectively, U(0, 0.4) and U(0, 0.2).

The “true gene expression” levels µi are taken from a realization of the mixture

of a point mass at 0 and a double-exponential distribution:

c δ0 + 1
2 (1− c) exp(−|x|) ,

where c ∈ (0, 1) is a constant. With the noise and the expression level given above,

{Yij} generated from (2.1) represents, for each fixed j, the observed log-ratios be-

tween the two-channel outputs of a c-DNA microarray. Note that |µj | ≥ log 2 means

that the true expression ratio exceeds 2. The probability (or the empirical fraction)

of this event equals 1
2 (1− c).

For each given αν , we compute the P-value according to the normal approxima-

tion, t-approximation, the bootstrap method and the aggregated bootstrap (4.2).

This results in ν estimated P-values {p̂j} for each method and each simulation.

Let N denote the number of P-values that are no larger than αν ; see (1.3). Then,

N/ν is the empirical fraction of the null hypotheses that are rejected. When c = 0,

N/(ναν) − 1 reflects the accuracy of approximating the P-values, and its the root

mean square error (RMSE), {E(N/(ναν) − 1)2}1/2, will be reported, where the

expectations are approximated by the averages across simulations. We exclude

the marginal aggregation method (4.1), since ir out simulations it always gave

N/ν = αν .

We take ν = 600 (small), ν = 1, 800 (moderate) and ν = 6, 000 (typical)

for microarray applications (after preprocessing, which filters out many low quality

measurements on certain genes) and αν = 1.5ν−2/3, resulting in αν = 0.02, 0.01 and
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0.005, respectively. The sample size n is taken to be 6 (typical number of microar-

rays), 20 (moderate) and 50 (large), and the number of replications in simulations

is 600,000/ν. For the bootstrap calibration method and the aggregated method

(4.2), we replicate bootstrap samples 2,000, 4,000 and 9,000 times, respectively, for

αν = 0.02, 0.01 and 0.005.

Tables 1 and 2 report the accuracy of estimated P-values when c = 0. In

reading these tables, keep in mind the computation involved in simulating esti-

mated tail probabilities for the bootstrap method. For example, using the boot-

strap method, we need to compute 600,000×9,000 = 5.4×109 t-statistics of sample

size n, yet in computing RMSE {E(N/(ναν) − 1)2}1/2 at ν = 6,000, we merely

calculate the expectation {E(N/30 − 1)2}1/2 (ναν = 30) over 100 simulations.

Tables 1 and 2 are about here

First of all, the normal approximations are too inaccurate to be useful. There-

fore we shall exclude the normal method in the discussion below. For n = 20 and

50, the bootstrap method provides better approximations than Student’s t-method.

This indicates that the bootstrap can test more hypotheses simultaneously, which

is in accord with our asymptotic theory on the accuracy of approximations of P-

values. Overall the bootstrap method is also slightly better the aggregated boot-

strap (4.2), although the two methods are effectively comparable. However with the

small sample size n = 6, Student’s t-method is relatively the best, although the ap-

proximations are poor in general. This is understandable, as the noise distribution

is not normal. With such a small sample size, the two bootstrap based methods,

in particular the aggregated bootstrap method (4.2), suffer more from the random

fluctuation in the original samples.

To examine the FDR, we repeat the above experiment but with c = 0.5. Since

the normal approximation is too inaccurate, we compare only the three other meth-

ods, i.e. those based on the t-distribution, the bootstrap and bootstrap aggregation.

We set the control level at p = 0.25 in (1.2). The number of falsely discovered genes
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is given by

N =
n∑

i=1

I(pi ≤ p(kn), µi = 0) .

The boxplots of the FDR, N/kn, are presented in Fig. 1 with ai = 0.25 and bi = 0.1,

and in Fig. 2 with ai independently drawn from U(0, 0.4) and bi independently

drawn from U(0, 0.2), where kn is defined as in (1.2).

With sample size n = 20 and 50, the actual FDR is far below the control level

p = 0.25. This is also true for n = 6 with both t and bootstrap methods. This may

be explained as follows. According to Benjamini and Hochberg (1995), the expected

value of FDR is bounded from above by ν0p/ν, where ν0 is the number of true null

hypotheses. In our setting, ν0/ν ≈ 0.5 (as c = 0.5). Hence, the expected FDR

should be bounded by 12.5%. This is indeed the case for the bootstrap calibration

methods when n = 20 and 50. It is also worthwhile noting that with n = 20 and 50

the FDRs obtained from the bootstrap and aggregated bootstrap tend to be smaller

than those obtained from the t-distribution. Also the random fluctuation is severe

when sample size is n = 6. This may explain why the FDR based on aggregated

bootstrap (4.2) is highly volatile.

Finally we conduct a separate study to compare between k′n defined in (1.3),

and k̂n defined in (1.4). We draw 100 samples from the model used in Fig. 1 above,

with different values of n and ν. Table 3 lists the relative frequencies of k̂n − k′n

taking values 0, 1, 2, . . . in a simulation with 100 replications. As one would expect,

k̂n and k′n differ from each other with very small probabilities, especially when the

sample size n is 20 and 50. In particular, the Benjamini and Hochberg method, with

empirical FDR, rarely discovered more than 2 genes than the traditional method

(1.3).

6. PROOFS OF RESULTS IN SECTIONS 3 AND 4

6.1. Auxiliary result.
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Let C1 > 0. Given a random variable X with E(X) = 0, consider the condition:

E(X) = 0 , E
(
X2

)
= 1 , E

(
X4

) ≤ C1 . (6.1)

The following result follows from Theorem 1.2 of Wang (2005), after transforming

the distribution of T to that of (
∑

i Xi)/(
∑

i X2
i ).

Theorem 6.1. Let X, X1, X2, . . . denote independent and identically distributed

random variables such that (6.1) holds. Write T = T (n) for Student’s t statistic

computed from the sample X1, . . . , Xn, with (for the sake of definiteness) divisor

n rather than n − 1 used for the variance. Put π3 = − 1
3 κ3, where κ3 denotes the

skewness of the distribution of X/(varX)1/2. Then,

P (T > x)
1− Φ(x)

= exp
(
π3 x3 n−1/2

) {
1 + θ

(1 + x)2

n1/2

}
, (6.2)

where θ = θ(x, n) satisfies |θ(n, x)| ≤ C2 uniformly in 0 ≤ x ≤ C3 n−1/4 and n ≥ 1,

and C2, C3 > 0 depend only on C1.

6.2. Proof of Theorem 3.1.

Theorem 3.1 in the case of normal calibration follows directly from Theorem 6.1.

The case of Student’s t calibration can be treated similarly. In either setting, to

conduct the calculations leading to (3.2) note that, if xn ∼ cn1/6 and the random

variable N is distributed as normal N(0, 1), then we have uniformly in i,

P (|Ti| > xn)
P (|N | > xn)

= cosh
(

1
3 κi3 c3

)
+ o(1) .

In the case of normal calibration we choose xn = tα to solve the first equation in

(2.3), implying that P (|N | > tα) ∼ −ν−1 log(1 − α). Hence, tα ∼ (2 log ν)1/2, so

that the condition xn ∼ cn1/6 is equivalent to n−1/3 log ν → 1
2c2.

6.3. Proof of Theorem 3.3.

The basic idea is to show that T ∗ has expansion (6.2) for samples Yi falling in

a set En, the probability of which tends to 1 at an exponential rate. This follows

by checking the conditions in Theorem 6.1 for bootstrap samples for all Yi ∈ En.
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Note that each var(ε′i) = 1. To check that, with probability at least pn ≡
1− exp(−d1 n1/2) for a constant d1 > 0, the conditions of Theorem 6.1 hold for the

bootstrap distribution of the statistic T ∗i , for each 1 ≤ i ≤ ν, it suffices to show

that there exist constants 0 < C4 < C
1/2
5 such that, with probability at least pn,

the following condition holds for 1 ≤ i ≤ ν:

C4 ≤ 1
n

n∑

j=1

(Yij − Ȳi)2 ,
1
n

n∑

j=1

(Yij − Ȳi)4 ≤ C5 . (6.3)

This can be done using Bernstein’s inequality and the assumption that, for each i,

P (|ε′i| ≤ C) = 1, and can also be shown by the uniform convergence result of the

empirical process of Korosok and Ma (2005).

Let En denote the event that (6.3) holds for each 1 ≤ i ≤ ν. When En prevails,

we may apply Theorem 6.1 to the distribution of T ∗i conditional on Yi, obtaining:

P
(
T ∗i > x

∣∣ Yi

)
= {1− Φ(x)} exp

(− 1
3 κ̂i3 n−1/2 x3

) {
1 + θ̂i

(1 + x)2

n1/2

}
, (6.4)

where κ̂i3 is the empirical version of κi3, computed from Yi, and, on an event of

which the probability equals 1 − O{exp(−d2 n1/2)}, |θ̂i| ≤ D1 uniformly in i and

in 0 ≤ x ≤ xn. (Here and below, xn will denote any sequence diverging to infinity

but satisfying xn = o(n1/4), and D1, D2, . . . and d1, d2, . . . will denote constants.)

It follows directly from Theorem 6.1 that

P0i(Ti > x) = {1− Φ(x)} exp
(− 1

3 κi3 n−1/2 x3
){

1 + θ
(1 + x)2

n1/2

}
, (6.5)

where |θi| ≤ D1 uniformly in i and in 0 ≤ x ≤ xn.

Result (6.5), and its analogue for the left-hand tail of the distribution of Ti,

allow us to express tiα, the solution of the equation P0i(|Ti| > tiα) = 1− (1−α)1/ν ,

as a Taylor expansion:

∣∣tiα − zα − c κi3 n−1/2 z2
α

∣∣ ≤ D2

(
n−1 z4

α + n−1/2 zα

)
,

uniformly in i, where c is a constant and zα is the solution of P (|N | > zα) =

1 − (1 − α)1/ν . Note that if zα solves this equation then zα ∼ (2 log ν)1/2, and
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so, since log ν = o(n1/2), then zα = o(n1/4). Therefore, without loss of generality,

0 ≤ zα ≤ xn. Likewise we may assume below that 0 ≤ tiα ≤ xn, and 0 ≤ t̂iα ≤ xn

with probability 1−O{exp(−d2 n1/2)}.

Also, from (6.4) we can see that on an event of which the probability equals

1−O{exp(−d2 n1/2)},

∣∣t̂iα − zα − c κ̂i3 n−1/2 z2
α

∣∣ ≤ D3

(
n−1 z4

α + n−1/2 zα

)
.

However, on an event with probability 1−O{exp(−d3 n1/2)}, |κ̂i3−κi3| ≤ D4 n−1/4,

and therefore, on an event with probability 1−O{exp(−d4 n1/2)},

∣∣t̂iα − zα − c κi3 n−1/2 z2
α

∣∣ ≤ D5

(
n−1 z4

α + n−1/2 zα + n−3/4 z2
α

)
.

It follows from the above results that P0i(|Ti| > t̂iα) lies between the respective

values of

P0i(|Ti| > tiα ± δ)∓D6 exp
(− d4 n1/2

)
, (6.6)

where

δ = D5

(
n−1 z4

α + n−1/2 zα + n−3/4 z2
α

)
.

Using (6.5), and its analogue for the left-hand tail, to expand the probability in

(6.6), we deduce that

P0i(|Ti| > tiα ± δ) = P0i(|Ti| > tiα) {1 + o(1)} ,

uniformly in i. More simply, exp(−d4 n1/2) = o{P0i(|Ti| > tiα)}, using the fact that

zα = o(n1/4) and exp(−D7 z2
α) = o{P0i(|Ti| > tiα)} for sufficiently large D7 > 0.

Hence,

P0i(|Ti| > t̂iα) = P0i(|Ti| > tiα) {1 + o(1)} ,

uniformly in i. Theorem 3.3 follows from this property.

6.4. Proofs of Theorems 4.1 and 4.2.
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The proofs of Theorems 4.1 and 4.2 are similar. Since Theorem 4.1 is more

involved, we outline here the proof of that result.

Note that

EF̂ν(xn) = ν−1
ν∑

i=1

P (Ti ≤ xn) = F (xn) + O(ν1/ν) .

Let I be the set of indices I for which H0i is true. Note that if i ∈ I then, by the

assumption of identical null distribution, var{I(Ti ≤ xn)} = F (xn) {1 − F (xn)},
and for i /∈ I, the variance is bounded above by 1/4. Using these results we have:

var{F̂n(xn)} = ν−1 F (xn) + ν−2O

{
ν1 +

∑

i∈I

∑

j∈I
F (xn) |rij |

+
∑

i∈I

∑

j 6∈I
F (xn)1/2 |rij |+ ν2

1

}
.

The second term is bounded by

O
{
F (xn) an + F (xn)1/2 ν1 an ν−1 + ν2

1 ν−2
}

.

The result now follows from a standard mean-variance decomposition.
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Table 1: Root mean squared errors of N/(να)− 1. In model (5.1), ai ≡ 0.25 and bi ≡ 0.1.

n = 6 n = 20 n = 50
α 0.02 0.01 0.005 0.02 0.01 0.005 0.02 0.01 0.005

Normal 3.425 5.604 9.083 0.833 1.221 1.768 0.388 0.528 0.696
t 0.459 0.494 0.512 0.258 0.329 0.391 0.242 0.284 0.313

Bootstrap 0.546 0.644 0.657 0.201 0.282 0.296 0.224 0.250 0.244
(4.2) 0.842 0.946 0.990 0.202 0.297 0.352 0.228 0.249 0.262

Table 2: Root mean squared errors of N/(να)−1. In model (5.1), ai ∼ U(0, 0.4) and bi ∼ U(0, 0.2).

n = 6 n = 20 n = 50
α 0.02 0.01 0.005 0.02 0.01 0.005 0.02 0.01 0.005

Normal 3.351 5.596 9.014 0.770 1.189 1.707 0.339 0.526 0.526
t 0.406 0.485 0.456 0.307 0.273 0.347 0.182 0.299 0.299

Bootstrap 0.564 0.637 0.677 0.202 0.262 0.322 0.162 0.284 0.284
(4.2) 0.851 0.941 0.985 0.201 0.289 0.379 0.165 0.278 0.278

Table 3: Relative frequencies of k̂n − k∗n taking different values.

ν = 600, α = 0.02 ν = 1800, α = 0.01 ν = 6000, α = 0.005
k̂n − k∗n n = 6 n = 20 n = 50 n = 6 n = 20 n = 50 n = 6 n = 20 n = 50

0 0.73 0.85 0.89 0.75 0.85 0.94 0.69 0.91 0.96
1 0.20 0.08 0.09 0.13 0.12 0.06 0.16 0.07 0.03
2 0.02 0.06 0.01 0.07 0.02 0.00 0.07 0.02 0.01
3 0.04 0.01 0.01 0.02 0.01 0.00 0.02 0.00 0.00
≥ 4 0.01 0.00 0.00 0.03 0.00 0.00 0.06 0.00 0.00
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Figure 1: Boxplots of FDR obtained based on t-distribution (t), bootstrap method (bootstrap),
and marginal aggregation (4.2). In model (5.1), ai ≡ 0.25 and bi ≡ 0.1.
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Figure 2: Boxplots of FDR obtained based on t-distribution (t), bootstrap method (bootstrap),
and marginal aggregation (4.2). In model (5.1), ai ∼ U(0, 0.4) and bi ∼ U(0, 0.2).
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