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We are very grateful to the Editors, Maria Angeles Gil and Leandro Pardo,
for organizing this stimulating discussion. We would like to take this opportunity
to thank all discussants for their insightful and constructive comments regarding
our paper, opening new avenues for the GLR tests. They have made valuable
contributions to the understanding of various testing problems.

As stressed in our paper, we reviewed nonparametric inference using the GLR
tests, laid down some interesting topics, and stressed the importance of the struc-
tured alternatives to maintain reasonable power, but we touched only the surface
of this exciting field. We are very happy that the discussants responded part of
our topics, offered some complementary views and new insights, and raised some
interesting problems for further study.

The evolving statistical theory and practice in science and technology leads
us to a vast discipline with many challenging statistical problems. The GLR test
methods have been developed only for limited models based on limited smoothing
platforms. We appreciate all efforts of discussnats that widen the scope of our
paper.

Before going to technical aspects, let us response to the fundamental question
raised by Professors Lafferty and Wasserman: Does hypothesis testing answer the
right question? This depends certainly on the context. In the statistical learning
or empirical model building that Professors Lafferty and Wasserman alluded to,
we are sympathetic with their views. However, in many scientific endeavors, we
have hypotheses in mind and we do need to answer the question if the model is
supported by the data. For example, in the examples mentioned in section 1.1,
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one may ask if the stock price dynamics follow the geometric Brown motion, if
the dynamics contain jumps, if the Black-Formula or other asset pricing formulas
are consistent with the market data. These structured modeling problems need
nonparametric alternative hypotheses. They are the foundation of modern asset
pricing theory and practice.

1 The Wilks phenomenon

The Wilks phenomenon exists in many situations. It is a nice property shared
by many likelihood ratio tests and others. However, as pointed out by Professor
Bickel, it does not exist in certain situations when the nuisance parameter η is not
estimated efficiently. This is an important point for studying Wilks’ phenomenon
in other situations. We appreciate his general intuition on the Wilks phenomenon
and his heuristic calculation for parametric models. We would also like to see more
work on the Wilks phenomenon for nonparametric function space such as those
mentioned at the end of Section 5.

We appreciate Professor Mammen’s remark that the Wilks phenomenon is a
great advantage of the GLR tests. We agree with him that this nice property is
also shared by non- likelihood-ratio tests, such as the Wald tests or other discrep-
ancy measures based tests. This is particularly the case for the simple univariate
nonparametric regression problem. However, the issue is not as simple for more
general problems. Even for testing problem (1.8) in the article, it is not clear if the
discrepancy based tests would have the Wilks phenomenon, as the biases of esti-
mating additive components m1(·) and m2(·) can depend on other components. As
we admitted in the article, we do not expect the GLR tests to be a universal infer-
ence tool for all models. We indeed embrace other specific tests tailored for specific
problems of interest. Since the idea of GLR tests is motivated from the likelihood
principle, the GLR tests have wide applications and nice interpretations.

2 Power issues of GLR tests

The GLR tests achieve minimax power rates for detecting various smoothness
alternatives, but this is at the price of losing power in a particular direction, as
pointed out by Professor Bickel, that omnibus tests like the GLR test have smaller
power in any particular direction. This is because the power of any goodness of fit
test is poor against a local sequence of (contiguous) alternatives (Lehmann and
Romano 2005, page 616).

By Lemma 14.3.1 and Theorem 14.6.1 of Lehmann and Romano (2005), any
goodness-of-fit test has a preferred set of alternatives for which its power is locally
high. This is also demonstrated heuristically in our response to the question raised
by Professor Horowitz at the end of this section. Professor Mammen stressed the
importance for determining a specific type of alternatives that a given test is
appropriate to. However, it is difficult in general to determine such alternatives
for a particular test. Naturally one seeks to design tests with high powers against
a given finite dimensional set. The Neyman smooth tests, which can be regarded
as the GLR tests, were constructed in this way.
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Bickel, Ritov and Stoker (2006) gave an innovative framework for construct-
ing tests with power at the root-n rate against selected important subclasses of
alternatives. As elaborated at the end of this section, this kind of tests need also
to pay prices somewhere. For example, they can have smaller power for detect-
ing local deviations such as those in (2.4) below, as demonstrated in Fan (1996).
On possibility is to combine, via Bonforroni’s adjustment or randomization (at
least theoretically), the GLR tests that are powerful in detecting the local de-
viations with more traditional nonparametric tests such as those constructed by
Bickel, Ritov and Stoker (2006) that are powerful for global deviations to yield
more omnibus tests. As far as rate of convergence is concerned, it will be root-n
for each given direction, inheriting from the nonparametric tests in Bickel, Ritov
and Stoker (2006), and enjoy rate optimality for detecting more broader class of
function spaces, inheriting from the GLR test.

We are grateful to Professor Horowitz’s point that the GLR tests can also be
applied to the following regression model in econometrics:

Yi = g(Xi) + Ui, (2.1)

where g(·) is an unknown function and the unobserved Ui may have E(Ui|Xi) 6=
0. However, given the observed instrumental variable (IV) Wi, the conditional
expectation E(Ui|Wi) = 0. He linked further the problem with the inverse problem
such as deconvolution problem in classical statistical literature (Carroll and Hall,
1988; Zhang, 1990; Fan, 1991).

Consider the test problem raised by Professor Horowitz

H0 : g(x) = G(x, θ)

for a known function G and finite-dimensional parameters θ. Professor Horowitz
pointed out that the test statistic τn in Hororwitz (2006) is consistent uniformly
over a set of alternative hypotheses whose distance from the null hypothesis is
O(n−1/2), while the GLR tests would have rate O(n−4/9). The class of alternatives
that Horowitz (2006) considered is of form

Gn(x, θ) = G(x, θ0) + n−1/2∆(x). (2.2)

This is the global deviation from the null hypothesis, which has a smaller class
of alternatives than those targeted by the GLR test. Consider, for example, the
alternative of form

Gn(x, θ) = G(x, θ0) + an∆(x/a1/2
n ), an → 0. (2.3)

which has a local deviation around G(x, θ0). The difference has a bounded second
derivative, but unlike (2.2), the second derivative of the difference in (2.3) may not
go to zero. Our heuristic calculation shows that τn defined in Horowitz (2006) can
detect alternatives with rate an = O(n−1/4), slower than that of the GLR. In other
words, τn targets at a smaller class of alternatives, having specific deviations of
form (2.2) and is not omnibus among the class of functions having bounded second
derivatives.

The heuristic goes as follows. From the definition of S(z) given in Horowitz’s
discussion, the signal

Ean∆(X/a1/2
n )fXW (z, W ) = ca3/2

n (1 + o(1)),
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for some c > 0, which is an order smaller than that for the alternative of form
(2.2):

Gn(x, θ) = G(x, θ0) + bn∆(x), bn → 0, (2.4)

when an = bn. In the latter case, the signal is of order O(bn) using the same
calculation. Now, the stochastic term of τn is of order OP (bnn−1/2 + n−1) (cross-
product and square term) for the alternative (2.4). Equating the signal with the
noise b2n = O(bnn−1/2 + n−1), we obtain that bn = O(n−1/2), the same as that
obtained by Horowitz (2006). Now, employing the same calculation for the alter-

native models (2.3), we have a3
n = O(ann−1/2 + n−1), yielding a

−1/4
n . In other

words, τn can not detect the alternative of form (2.3) faster than O(n−1/4). Hence,
its minimax rate for detecting the alternatives with a bounded second derivative is
no faster than O(n−1/4). This argument applies to most of classical test statistics,
targeting the alternative of form (2.2).

An excellent point raised by Professor Horowitz is to design a GLR test with
the Wilks phenomenon and rate n−1/2 for alternative of form (2.4). This is beyond
the scope of our investigation.

3 Bandwidth Selection

We appreciate the contribution of Professor Müller on the choice of bandwidth for
GLR tests, an alternative to the multiple-scale test (3.5) of the original article.
The resulting test uses an average of the normalized GLR statistic (as opposed
to not the maxima version) over a range of different bandwidths. As pointed out
by Professor Müller that average test statistic may gain power over a large range
of alternative hypotheses and be less sensitive to the nature of the alternatives.
This is an interesting idea and further study is needed in order to understand the
properties of such an averaging test and to compare it with the multiple-scale test.

We are grateful to the comment by Professor Cao on the choice of bandwidth
to maximize the bootstrap estimated power of a test. This is a useful alternative
to our approach. Our discretization method is only a quick-and-dirty method to
implement (3.21), relying on the continuity of λn(h) as a function of h. Nothing
stops us from using a more refined grid.

4 Bias correction

We agree with Professor Mammen on the importance of bias correction. Our
method is not to simply smooth on ‘parametric residuals’, though it indeed is
for simple problems such as additive regression models. More generally, our idea
is to re-parameterize the original problem so that the null hypothesis becomes
testing if the functions of interest are zero. The advantage of this approach is that
nonparametric estimates are usually unbiased under the new null hypothesis. The
biases come from the estimation of parameters in the original problem, which usu-
ally admit the parametric rate. Hence the biases in the re-parameterized problem
are significantly reduced to the parametric rate. One advantage of this method is
that it is generally applicable when the original null hypothesis is parametric.
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We appreciate Professor Efromovich’s compliment on our bias correction idea
and comment on more details on this topic. The best way to illustrate this via an
example. Consider the additive model (4.33) with D = 2 and we wish to test

H0 : m1(x) = exp(−θ1x), m2(x) = θ2 + θ3x + θ4x
2. (4.1)

The normal-quasi likelihood function is

Q(m, σ) = −n log σ − 1

2σ2

n∑

i=1

{Yi − α−m1(Xi1)−m2(Xi2)}2.

The GLR statistic would have biases even under the null hypothesis since the
nonparametric estimate such as the local linear estimate in RSS1 has bias of order
O(h2) even under H0.

The bias correction is to reparametrize the problem. Let θ̂ be the estimate
under the null hypothesis. Set

m∗
1(x) = m1(x)− exp(−θ̂1x), m∗

2(x) = m2(x)− (θ̂2 + θ̂3x + θ̂4x
2).

and translate the problem (4.1) as

H0 : m∗
1(x) = 0, m∗

2(x) = 0. (4.2)

With the reparametrization, the likelihood becomes

Q∗(m∗, σ) = −n log σ − 1

2σ2

n∑

i=1

{Y ∗i − α−m∗
1(Xi1)−m∗

2(Xi2)}2,

where Y ∗i = Yi− exp(−θ̂1Xi1)− (θ̂2 + θ̂3Xi2 + θ̂4X
2
i2). Let m̂∗

1 and m̂∗
2 be the non-

parametric fit. Then, these nonparametric estimates have biases O(n−1/2h2) under
(4.1), since all parameters are estimated with rate O(n−1/2). Applying GLR test
to (4.2), we have

σ̂2
0 = n−1

n∑

i=1

{Y ∗i − Ȳ ∗}2

and

σ̂2 = n−1
n∑

i=1

{Y ∗i − Ȳ ∗ − m̂∗
1(Xi1)− m̂∗

2(Xi2)}2.

Hence, the bias-corrected GLR test statistics is n log σ̂0/σ̂. Note that σ̂ differs
from the one direct application of the GLR. It has smaller bias under the null
hypothesis (4.1), as noted above.
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5 GLR tests with estimating the disturbance distribution

Professors Cao, Efromovich, and Hall raised interesting topics on addressing the
GLR tests. They would like to see that the error distribution is also infinite dimen-
sional. We appreciate their offering nice ideas to this interesting problem, which
are to first estimate the disturbance distribution under the null and alternative
models and then to use the estimated disturbance distributions to define the like-
lihood ratio statistic, so that the true likelihood ratio can be estimated. Now let
us call the resulting test the estimated likelihood ratio test. Further work along this
direction is certainly worthy to develop. We are grateful to Professor Hall’s further
comments and reference on how to make this work with the stress of oversmooth-
ing on the estimation of the error density. This reminisces Slutsky’s theorem in
construction of confidence intervals, and at the same time, makes the the distri-
bution of disturbance as close to the parametric one as we can. It remains very
interesting to investigate the power gain when the error distribution differs from
normal, say.

A closely related idea is the empirical likelihood ratio test in Fan and Zhang
(2004). This method compares the empirical likelihoods (Owen 1990, 2001) under
the null and alternative models. It can avoid the bias caused by estimating the
disturbance distribution if the null model is misspecified. In connection with Pro-
fessor Hall’s comment, it would be very interesting to see if the empirical likelihood
ratio test in Fan and Zhang (2004) implicitly over smoothes the error distribution.

6 Robust GLR tests

We are grateful to Professors Carroll and Maity for providing insightful evidences
about the parametric linear model that the Wilks phenomenon will hold in terms
of actually computing p-values using the bootstrap methods designed for the
GLR tests based on robust M-estimation. We do agree with them that this prop-
erty can be carried over to nonparametric regression models. An ongoing research
project by the second author on using the GLR test based on local M-estimation
for time-varying coefficient models reveals that the bootstrap methods for robust
GLR test share the Wilks phenomenon and is more powerful than the local least-
square based GLR test when the underlying error distribution is deviated from
the normal distribution.

We also appreciate their comments about the validity of the Wilks phenomenon.
Inspecting our definition of the GLR test, the conditional distribution is given up
to finite number of nuisance parameters. In that sense, the likelihood ratio test
defined by Schrader and Hattmansperger (1980) corresponds to GLR with the
error distribution of form exp(−ρ(·/σ)) with a known ρ and σ and the Wilks
phenomenon continues to hold in the example given by Professors Carroll and
Maity.

One interpretation of our last question in Section 5 in the current context is
that if the error distribution is of form exp(−ρ(·/σ)) with a given ρ(·) and σ = 1 for
the varying coefficient model (4.27) [or additive model (4.33)] of the main article,
whether the Wilks phenomenon for the GLR test

n∑

i=1

ρ(Yi −A(Ui, β̂)T Xi)−
n∑

i=1

ρ(Yi − Â(Ui)
T Xi) (6.1)
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holds for testing H0 : A(u) = A(u, β), i.e. whether the asymptotic distribution
of the test statistics depends on β. Similarly, for testing hypothesis (4.29) the
main article, whether the GLR test statistic is asymptotically independent of the
nuisance functions ad+1(·), · · · , ap(·). The same type of questions can be asked in
the case that σ is unknown and for the additive model (4.33). In the former case,
the GLR statistic admits slightly different form (the difference in (6.1) is replaced
by the logarithm of their ratio).

7 Modelling nonparametric sparsity

The contributions by Professors Lafferty and Wasserman address the issue of fit-
ting the SpAM

Yi = α +
D∑

d=1

βdmd(Xdi) + εi,

where ||β||1 =
∑D

d=1 |βd| ≤ L, E(md(Xd)) = 0, E(m2
d(Xd)) = 1, and D = Dn is

increasing with n such that Dn > n. This is a useful model selection technique for
nonparametric additive model. We are happy to know that the Lasso estimation
has good properties even if the model is wrong, and we would like to see this nice
work. We also appreciate the conjecture of Lafferty and Wasserman that cross-
validation followed by hypothesis testing might reduce risk without treating the
model as truth. The problem as formulated by Professors Lafferty and Wasserman
is in the spirit of empirical learning to identify significant variables, rather than
the hypotheses that certain covariates have impact on the response variables. We
believe that the GLR tests can provide a useful testing tool for such a nonpara-
metric endeavor, particularly when the models are used in some disciplines where
not all variables are treated the same.

8 Others

We agree with Professor Efromovich that the main conclusions of the GLR tests
discussed in the paper can be extended to wavelet estimators as well as other
smoothing platforms. We are also happy to see in Professor Müller’s discussion
that the GLR tests can be applied to determining the dimensionality of a function
and even to functional data analysis. All these topics are interesting for further
research.

Professor Cao correctly pointed out that the GLR tests in Section 4 are mostly
derived from homoscedasticity models. Hence, it means to apply to these situa-
tions. For example, λn,1 is not designed for the logistic model. Using the general
version of GLR tests, λn in (3.2), we arrive at the equation (1) of Professor Cao’s
comment. For heteroscedastic models, one can use either the empirical likelihood
method (Fan and Zhang, 2004) or a modification in Fan and Jiang (2005, Section
7.2).
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