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PROFILE-KERNEL LIKELIHOOD INFERENCE WITH DIVERGING
NUMBER OF PARAMETERS1

BY CLIFFORD LAM AND JIANQING FAN

Princeton University

The generalized varying coefficient partially linear model with a grow-
ing number of predictors arises in many contemporary scientific endeavor.
In this paper we set foot on both theoretical and practical sides of profile
likelihood estimation and inference. When the number of parameters grows
with sample size, the existence and asymptotic normality of the profile likeli-
hood estimator are established under some regularity conditions. Profile like-
lihood ratio inference for the growing number of parameters is proposed and
Wilk’s phenomenon is demonstrated. A new algorithm, called the accelerated
profile-kernel algorithm, for computing profile-kernel estimator is proposed
and investigated. Simulation studies show that the resulting estimates are as
efficient as the fully iterative profile-kernel estimates. For moderate sample
sizes, our proposed procedure saves much computational time over the fully
iterative profile-kernel one and gives stabler estimates. A set of real data is
analyzed using our proposed algorithm.

1. Introduction. Semiparametric models with large number of predictors
arise frequently in many contemporary statistical studies. Large data set and high-
dimensionality characterize many contemporary scientific endeavors [5, 7]. Sta-
tistical models with many predictors are frequently employed to enhance the ex-
planatory and predictive powers. At the same time, semiparametric modeling is
frequently incorporated to balance between modeling biases and “curse of dimen-
sionality.” Profile likelihood techniques [21] are frequently applied to this kind of
semiparametric model. When the number of predictors is large, it is more realistic
to regard it growing with the sample size. Yet, few results are available for semi-
parametric profile inferences when the number of parameters diverges with sample
size. This paper focuses on profile likelihood inferences with diverging number of
parameters in the context of the generalized varying coefficient partially linear
model (GVCPLM).

GVCPLM is an extension of the generalized linear model [19] and the general-
ized varying-coefficient model [4, 11]. It allows some coefficient functions to vary
with certain covariates U , such as age [8], toxic exposure level or time variable in a
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longitudinal data or survival analysis [20]. Therefore, general interactions, not just
the linear interaction as in parametric models, between the variable U and these
covariates are explored nonparametrically.

If Y is a response variable and (U,X,Z) is the associated covariates, then by
letting μ(u,x, z) = E{Y |(U,X,Z) = (u,x, z)}, the GVCPLM takes the form

g{μ(u,x, z)} = xT α(u) + zT β,(1.1)

where g(·) is a known link function, β a vector of unknown regression coefficients
and α(·) a vector of unknown regression functions. One of the advantages over the
varying coefficient model is that GVCPLM allows more efficient estimation when
some coefficient functions are not really varying with U , after adjustment of other
genuine varying effects. It also allows a more interpretable model, where primary
interest is focused on the parametric component.

1.1. A motivating example. We use a real data example to demonstrate the
need for GVCPLM. The Fifth National Bank of Springfield faced a gender dis-
crimination suit in which female employees received substantially smaller salaries
than male employees. This example is based on a real case with data dated 1995.
Only the bank’s name is changed. See Example 11.3 of [2]. Among 208 employ-
ees, eight variables are collected. They include employee’s salary; age; year hired;
number of years of working experience at another bank; gender; PC Job, a dummy
variable with value 1 if the employee’s job is computer related; educational level,
a categorical variable with categories 1 (finished school), 2 (finished some college
courses), 3 (obtained a bachelor’s degree), 4 (took some graduate courses), 5 (ob-
tained a graduate degree); job grade, a categorical variable indicating the current
job level, the possible levels being 1–6 (6 the highest).

Fan and Peng [8] has conducted such a salary analysis using an additive model
with quadratic spline and does not find significant evidence of gender difference.
However, salary is directly related to the job grade. With the adjustment for the
job grade, the salary discrimination can not easily be seen. An important question
then arises if female employees have lower probability getting promoted. In ana-
lyzing such probability, a common tool will be the logistic regression, a class of
the generalized linear model (e.g., see [19]).

To this end, we create a binary response variable HighGrade4, indicating if Job
Grade is greater than 4. The associated covariates are Female (1 for female em-
ployee and 0 otherwise), Age, TotalYrsExp (total years of working experience),
PCJob, Edu (level of education). Clearly interactions between Age and TotalYr-
sExp have to be considered.

If interactions between different variables are considered, then the number of
predictors will be large compared with the sample size n = 208. This motivates us
to consider the setting pn → ∞ as n → ∞ and to present general theories in Sec-
tion 2, where such a setting will be faced by many modern statistical applications.
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1.2. Goals of the paper. When the number of parameters β is fixed and the
link g is identity, the model (1.1) has been considered by Li et al. [16], Zhang,
Lee and Song [29] and Xia, Zhang and Tong [27] and Ahmad, Leelahanon and
Li [1]. Fan and Huang [6] proposed a profile-kernel inference for such a vary-
ing coefficient partial linear model (VCPLM) and Li and Liang [17] considered
a backfitting-based procedure for model selection in VCPLM. All of these papers
rely critically on the explicit form of the estimation procedures and the techniques
cannot easily be applied to the GVCPLM.

Modern statistical applications often involve estimation of a large number of pa-
rameters. It is of interest to derive asymptotic properties for the profile likelihood
estimators under model (1.1) when the number of parameters diverges. Several
fundamental questions arise naturally. Does the profile likelihood estimator [21]
still possess efficient sampling properties? Does the profile likelihood ratio test for
the parametric component possess Wilks type of phenomenon, namely, whether
the asymptotic null distributions are independent of nuisance functions and pa-
rameters? And, does the usual sandwich formula provide a consistent estimator
of the covariance matrix of the profile likelihood estimator? These questions are
poorly understood and will be thoroughly investigated in Section 2. Pioneering
work on statistical inference with diverging number of parameters include [8, 13,
22] and [9].

Another goal of this paper is to provide an efficient algorithm for computing
profile likelihood estimates under the model (1.1). To this end, we propose a new
algorithm, called the accelerated profile-kernel algorithm, based on an important
modification of the Newton–Raphson iterations. Computational difficulties [18] of
the profile-kernel approach are significantly reduced, while nice sampling prop-
erties of such an approach over the backfitting algorithm (e.g., [12]) are retained.
This will be convincingly demonstrated in Section 4, where the Poisson and Logis-
tic specifications are considered for simulations. A new difference-based estimate
for the parametric component is proposed as an initial estimate of our proposed
profile-kernel procedure. Our method expands significantly the idea used in [28]
and [6] for the partial linear model.

2. Properties of profile likelihood inference. Let (Yni;Xi ,Zni,Ui), where
1 ≤ i ≤ n, be a random sample where Yni is a scalar response variable, Ui , Xi ∈
R

q and Zni ∈ R
pn are vectors of explanatory variables. We consider model (1.1)

with βn and Zn having dimensions pn → ∞ as n → ∞. Like the distributions in
the exponential family, we assume that the conditional variance depends on the
conditional mean so that Var(Y |U,X,Zn) = V (μ(u,X,Zn)) for a given function
V (our result is applicable even when V is multiplied by an unknown scale). Then,
the conditional quasi-likelihood function is given by

Q(μ,y) =
∫ y

μ

s − y

V (s)
ds.
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As in [24], we denote by αβn
(u) the “least favorable curve” of the nonparametric

function α(u), which is defined as the one that maximizes

E0
{
Q

(
g−1(ηT X + βn

T Zn), Yn

)|U = u
}

(2.1)

with respect to η, where E0 is the expectation taken under the true parame-
ters α0(u) and βn0. As will be discussed in Section 2.1, through the use of
least favorable curve, no undersmoothing of the nonparametric component is re-
quired to achieve asymptotic normality when pn is diverging with n. Note that
αβn0

(u) = α0(u). Under some mild conditions, it satisfies

∂

∂η
E0

{
Q

(
g−1(ηT X + βn

T Zn), Yn

)|U = u
}|η=αβn

(u) = 0.(2.2)

The profile-likelihood function for βn is then

Qn(βn) =
n∑

i=1

Q
{
g−1(

αβn
(Ui)

T Xi + βT
n Zni

)
, Yni

}
,(2.3)

if the least-favorable curve αβn
(·) is known.

The least-favorable curve defined by (2.1) can be estimated by its sample ver-
sion through a local polynomial regression approximation. For U in a neighbor-
hood of u, approximate the j th component of αβn

(·) as

αj (U) ≈ αj (u) + ∂αj (u)

∂u
(U − u) + · · · + ∂pαj (u)

∂up
(U − u)p/p!

≡ a0j + a1j (U − u) + · · · + apj (U − u)p/p!.
Denoting ar = (ar1, . . . , arq)

T for r = 0, . . . , p, for each given βn, we then maxi-
mize the local likelihood

n∑
i=1

Q

{
g−1

( p∑
r=0

ar
T Xi (Ui − u)r/r! + βT

n Zni

)
, Yni

}
Kh(Ui − u)(2.4)

with respect to a0, . . . ,ap, where K(·) is a kernel function and Kh(t) = K(t/h)/h

is a re-scaling of K with bandwidth h. Thus, we get estimate α̂βn
(u) = â0(u).

Plugging our estimates into the profile-kernel likelihood function (2.3), we have

Q̂n(βn) =
n∑

i=1

Q
{
g−1(

α̂βn
(Ui)

T Xi + βT
n Zni

)
, Yni

}
,(2.5)

maximizing Q̂n(βn) with respect to βn to get β̂n. With β̂n, the varying coefficient
functions are estimated as α̂

β̂n
(u).

One property of the profile quasi-likelihood is that the first- and second-order
Bartlett’s identities continue to hold. In particular, with the definition given by
(2.3), then for any βn, we have

Eβn

(
∂Qn

∂βn

)
= 0, Eβn

(
∂Qn

∂βn

∂Qn

∂βT
n

)
= −Eβn

(
∂2Qn

∂βn ∂βT
n

)
.(2.6)
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See [24] for more details. These properties give rise to the asymptotic efficiency
of the profile likelihood estimator.

2.1. Consistency and asymptotic normality of β̂n. We need Regularity Condi-
tions (A)–(G) in Section 5 for the following results.

THEOREM 1 (Existence of profile likelihood estimator). Assume that Con-
ditions (A)–(G) are satisfied. If p4

n/n → 0 as n → ∞ and h = O(n−a) with
(4(p + 1))−1 < a < 1/2, then there is a local maximizer β̂n ∈ �n of Q̂n(βn) such
that ‖β̂n − βn0‖ = OP (

√
pn/n).

Note that the optimal bandwidth h = O(n−1/(2p+3)) is included in Theorem 1.
Hence,

√
n/pn-consistency is achieved without the need of undersmoothing of the

nonparametric component.
Define In(βn) = n−1Eβn

( ∂Qn

∂βn

∂Qn

∂βT
n

), which is an extension of the Fisher matrix.

Since the dimensionality grows with sample size, we need to consider the arbitrary
linear combination of the profile kernel estimator β̂n as stated in the following
theorem.

THEOREM 2 (Asymptotic normality). Under Conditions (A)–(G), if p5
n/n =

o(1) and h = O(n−a) for 3/(10(p + 1)) < a < 2/5, then the consistent estimator
β̂n in Theorem 1 satisfies

√
nAnI

1/2
n (βn0)(β̂n − βn0)

D−→ N(0,G),

where An is an l ×pn matrix such that AnA
T
n → G, and G is an l × l nonnegative

symmetric matrix.

A remarkable technical achievement of our result is that it does not require
undersmoothing of the nonparametric component, as in Theorem 1, thanks to the
profile likelihood approach. The key lies in a special orthogonality property of
the least favorable curve [see equation (2.2) and Lemma 2]. Asymptotic normality
without undersmoothing is also proved in [26] for both backfitting and profiling
methods.

Theorem 2 shows that profile likelihood produces a semi-parametric efficient
estimate even when the number of parameters diverges. To see this more explicitly,
let pn = r be a constant. Then, by taking An = Ir , we obtain

√
n(β̂n − βn0)

D−→ N(0, I−1(βn0)).

The asymptotic variance of β̂n achieves the efficient lower bound given, for exam-
ple, in [24].
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2.2. Profile likelihood ratio test. After estimation of parameters, it is of inter-
est to test the statistical significance of certain variables in the parametric compo-
nent. Consider the problem of testing linear hypotheses:

H0 :Anβn0 = 0 ←→ H1 :Anβn0 �= 0,

where An is an l × pn matrix and AnA
T
n = Il for a fixed l. Note that both the null

and the alternative hypotheses are semi-parametric, with nuisance functions α(·).
The generalized likelihood ratio test (GLRT) is defined by

Tn = 2
{

sup
�n

Q̂n(βn) − sup
�n;Anβn=0

Q̂n(βn)

}
.

The following theorem shows that, even when the number of parameters diverges
with sample size, Tn still follows a chi-square distribution asymptotically, with-
out reference to any nuisance parameters and functions. This reveals the Wilk’s
phenomenon, as termed in [10].

THEOREM 3. Assuming Conditions (A)–(G), under H0, we have

Tn
D−→ χ2

l ,

provided that p5
n/n = o(1) and h = O(n−a) for 3/(10(p + 1)) < a < 2/5.

2.3. Consistency of the sandwich covariance formula. The estimated covari-
ance matrix for β̂n can be obtained by the sandwich formula

�̂n = n2{∇2Q̂n(β̂n)}−1ĉov{∇Q̂n(β̂n)}{∇2Q̂n(β̂n)}−1,

where the middle matrix has (j, k) entry given by

(ĉov{∇Q̂n(β̂n)})jk =
{

1

n

n∑
i=1

∂Q̂ni(β̂n)

∂βnj

∂Q̂ni(β̂n)

∂βnk

}

−
{

1

n

n∑
i=1

∂Q̂ni(β̂n)

∂βnj

1

n

n∑
i=1

∂Q̂ni(β̂n)

∂βnk

}
.

With the notation �n = I−1
n (βn0), we have the following consistency result for the

sandwich formula.

THEOREM 4. Assuming Conditions (A)–(G), if p4
n/n = o(1) and h = O(n−a)

with (4(p + 1))−1 < a < 1/2, we have

An�̂nA
T
n − An�nA

T
n

P−→ 0 as n → ∞
for any l × pn matrix An such that AnA

T
n = G.

This result provides a simple way to construct confidence intervals for βn. Sim-
ulation results show that this formula indeed provides a good estimate of the co-
variance of β̂n for a variety of practical sample sizes.
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3. Computation of the estimates. Finding β̂n to maximize the profile like-
lihood (2.5) poses some interesting challenges, as the function α̂βn

(u) in (2.5)
depends on βn implicitly (except the least-square case). The full profile-kernel
estimate is to directly employ the Newton–Raphson iterations

β(k+1)
n = β(k)

n − {∇2Q̂n

(
β(k)

n

)}−1∇Q̂n

(
β(k)

n

)
,(3.1)

starting from the initial value β(0). We will call the estimate β(k)
n and α̂

β
(k)
n

(u) the
k-step estimate [3, 23].

The first two derivatives of ∇Q̂n(βn) are given by

∇Q̂n(βn) =
n∑

i=1

q1i (βn)
(
Zni + α̂′

βn
(Ui)Xi

)
,

∇2Q̂n(βn) =
n∑

i=1

q2i (βn)
(
Zni + α̂′

βn
(Ui)Xi

)(
Zni + α̂′

βn
(Ui)Xi

)T(3.2)

+
n∑

i=1

{
q1i (βn)

q∑
r=1

∂2α̂
(r)
βn

(Ui)

∂βn ∂βT
n

Xir

}
,

where ql(x, y) = ∂l

∂xl Q(g−1(x), y), qki(βn) = qk(m̂ni(βn), Yni) (k = 1,2) with

m̂ni(βn) = α̂βn
(Ui)

T Xi + ZT
niβn. In the above formulae, α̂′

βn
(u) = ∂α̂βn

(u)

∂βn
is a

pn by q matrix and α
(r)
βn

(u) is the rth component of αβn
(u).

3.1. Methodology. As the first two derivatives of α̂βn
(u) are hard to compute

in (3.2), one can employ the backfitting algorithm, which iterates between (2.4)
and (2.3). This is really the same as the fully iterated algorithm (3.1), but ignores
the functional dependence of α̂βn

(u) in (2.5) on βn; it uses the value of βn in the
previous step of the iteration as a proxy. More precisely, the backfitting algorithm
treats the terms α̂′

βn
(u) and α̂′′

βn
(u) in (3.2) as zero. The maximization is thus much

easier to carry out, but the convergence speed can be reduced. See [12] and [18] for
more descriptions of the two methods and some closed-form solutions proposed
for the partially linear models.

Between these two extreme choices is our modified algorithm, which ignores
the computation of the second derivative of α̂βn

(u) in (3.1), but keeps its first
derivative in the iteration. Namely, the second term in (3.2) is treated as zero.
Since the function q2(·, ·) < 0 by Regularity Condition (D), by ignoring the second
term in (3.2), the modified ∇2Q̂n(βn) in equation (3.2) is still negative-definite.
This ensures the Newton–Raphson update of the profile-kernel procedure can be
carried out smoothly. The intuition behind the modification is that, for a neighbor-
hood around the true parameter βn0, the least favorable curve αβn

(u) should be
approximately linear in βn. It turns out that this algorithm improves significantly
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the computation with achieved accuracy. At the same time, it enhances dramati-
cally the stability of the algorithm. We will term the algorithm as the accelerated
profile-kernel algorithm. A theorem on the computation and property of α̂′

βn
(u)

follows.

THEOREM 5. Under Regularity Conditions (A)–(G), provided
√

pn(h +
cn log1/2(1/h)) = o(1) where cn = (nh)−1/2, for each βn ∈ �n,

α̂′
βn

(u) = −
{

n∑
i=1

q2i (βn)ZniXT
i Kh(Ui − u)

}
·
{

n∑
i=1

q2i (βn)XiXT
i Kh(Ui − u)

}−1

is a consistent estimator of α′
βn

(u) which holds uniformly in u ∈ �.

When the quasi-likelihood becomes a square loss, the accelerated profile-kernel
algorithm is exactly the same as that used to compute the full profile likelihood
estimate, since α̂βn

(·) is linear in βn.

3.2. Difference-based estimation. We generalize the difference-based idea to
obtain an initial estimate β(0)

n . The idea has been used in [28] and [6] to remove
the nonparametric component in the partially linear model.

We first consider the specific case of the GVCPLM:

Y = α(U)T X + βn
T Zn + ε.(3.3)

This is the varying-coefficient partially linear model studied by Zhang, Lee and
Song [29] and Xia, Zhang and Tong [27]. Let {(Ui,XT

i ,ZT
ni, Yi)}ni=1 be a random

sample from the model (3.3), with the data ordered according to the Ui’s. Under
mild conditions, the spacing Ui+j − Ui is OP (1/n), so that

α(Ui+j ) − α(Ui) ≈ γ0 + γ1(Ui+j − Ui), j = 1, . . . , q.(3.4)

Indeed, it can be approximately zero; the linear term is used to reduce the approx-
imation errors.

For given weights wj (its dependence on i is suppressed), define

Y ∗
i =

q+1∑
j=1

wjYi+j−1, Z∗
ni =

q+1∑
j=1

wj Zn(i+j−1), ε∗
i =

q+1∑
j=1

wjεi+j−1.

If we choose the weights to satisfy
∑q+1

j=1 wj Xi+j−1 = 0, then using (3.3) and
(3.4), we have

Y ∗
i ≈ γ0

T Xiw1 + γ1
T

q+1∑
j=1

wjUi+j−1Xi+j−1 + βT
n Z∗

ni + ε∗
i .
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Ignoring the approximation, which is of order OP (n−1), the above is a multiple
regression model with parameters (γ0,γ1,βn). The parameters can be found by a
weighted least square fit to the (n− q) starred data. This yields a root-n consistent
estimate of βn, as the above approximation for the finite q is of order OP (n−1).

To solve
∑q+1

j=1 wj Xi+j−1 = 0, we need to find the rank of the matrix
(Xi , . . . ,Xi+q), denoted by r . Fix q + 1 − r of the wj ’s and the rest can be
determined uniquely by solving the system of linear equations for {wj , j =
1, . . . , q + 1}. For random designs, with probability 1, r = q . Hence, the direc-
tion of the weights {wj , j = 1, . . . , q + 1} is uniquely determined. For example,
in the partial linear model, q = 1 and Xi = 1. Hence, (w1,w2) = c(1,−1) and the
constant c can be taken to have a norm one. This results in the difference-based
estimator in [28] and [6].

To use the differencing idea to obtain an initial estimate of βn for the GVCPLM,
we apply the transformation of the data. If g is the link function, we use g(Yi)

as the transformed data and proceed with the difference-based method as for the
VCPLM. Note that for some models like the logistic regression with logit link and
Poisson log-linear model, we need to make adjustments in transforming the data.
We use g(y) = log(

y+δ
1−y+δ

) for the logistic regression and g(y) = log(y + δ) for
the Poisson regression. Here, the parameter δ is treated as a smoothing parameter
like h, and its choice will be discussed in Section 3.3.

3.3. Choice of bandwidth. The two-dimensional smoothing parameters (δ, h)

mentioned in the previous section can be selected by a K-fold cross-validation,
using the quasi-likelihood as a criterion function. As demonstrated in Section 4,
the practical accuracy can be achieved in several iterations using the acceler-
ated profile-kernel algorithm. Hence, the profile-kernel estimate can be computed
rapidly. As a result, the K-fold cross-validation is not too computationally inten-
sive, as long as K is not too large (e.g., K = 5 or 10).

4. Numerical properties. To evaluate the performance of estimator α̂(·), we
use the square-root of average errors (RASE)

RASE =
{
n−1

grid

ngrid∑
k=1

‖α̂(uk) − α(uk)‖2

}1/2

,

over ngrid = 200 grid points {uk}. The performance of the estimator β̂n is assessed
by the generalized mean square error (GMSE)

GMSE = (β̂n − βn0)
T B(β̂n − βn0),

where B = EZnZT
n .

Throughout our simulation studies, the dimensionality of a parametric compo-
nent is taken as pn = �1.8n1/3� and the nonparametric component as q = 2 in
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TABLE 1
Computation time and accuracy for different computing algorithms

n pn Backfitting Accelerated profile-kernel Full profile-kernel

Median and SDmad (in parentheses) of computing times in seconds
200 10 0.6 (0.0) 0.7 (0.0) 77.2 (0.2)
400 13 0.8 (0.0) 1.4 (0.0) 463.2 (0.9)

Median and SDmad (in parentheses) of GMSE (multiplied by 104)
200 10 10.72 (6.47) 5.45 (2.71) 9.74 (14.67)
400 13 5.63 (4.39) 2.78 (1.19) 5.26 (9.46)

Median RASE relative to the oracle estimate
200 10 0.848 0.970 0.895
400 13 0.856 0.986 0.882

which X1 = 1 and X2 ∼ N(0,1). The rate pn = OP (n1/3) is not the same as pre-
sented in the theorems in Section 2, but we use this to show the capability of han-
dling a higher rate of parameters growth for the accelerated profile-kernel method.
In addition, the covariates (ZT

n ,X2)
T are a (pn + 1)-dimensional normal random

vector with mean zero and covariance matrix (σij ), where σij = 0.5|i−j |. Further-
more, we always take U ∼ U(0,1) independent of the other covariates. Finally, we
use SDmad to denote the robust estimate of standard deviation, which is defined as
the interquartile range divided by 1.349. The number of simulations is 400, except
that in Table 1 (which is 50) due to the intensive computation of the fully iterated
profile-kernel estimate.

Poisson model. We use the log-link for the response Y given (U,X,Zn),
with βn0 = (0.5,0.3,−0.5,1,0.1,−0.25,0, . . . ,0)T , α1(u) = 4 + sin(2πu) and
α2(u) = 2u(1 − u).

Bernoulli model. We use the logit-link for the response Y given (U,X,Zn),
with βn0 = (3,1,−2,0.5,2,−2,0, . . . ,0)T and α1(u) = 2(u3 + 2u2 − 2u) and
α2(u) = 2 cos(2πu).

Throughout our numerical studies, we use the Epanechnikov kernel K(u) =
0.75(1 − u2)+ and the 5-fold cross-validation to choose a bandwidth h and δ.
With the assistance of the 5-fold cross-validation, we chose δ = 0.1 and h =
0.1,0.08,0.075 and 0.06 respectively for n = 200,400,800 and 1500 for the Pois-
son model. For the Bernoulli model, δ = 0.005 and h = 0.45,0.4,0.25 and 0.18
were chosen respectively for n = 200,400,800 and 1500.

Note that X2 and the Zni’s are not bounded r.v.s as needed in Condition (A)
in Section 5. However, these still satisfy the moment conditions needed in the
proofs, and Condition (A) is imposed merely to simplify these proofs. Condition
(B) is satisfied mainly because the correlations between further Zni’s are weak,
and condition (C) is satisfied because it involves products of standard normal r.v.s
which are bounded in the first two moments.



2242 C. LAM AND J. FAN

4.1. Comparisons of algorithms. We first compare the computing times and
the accuracies among three algorithms: 3-step backfitting, 3-step accelerated
profile-kernel and fully-iterated profile-kernel algorithms. All of them use the
difference-based estimate as the initial estimate. Table 1 summarizes the results
based on the Poisson model with 50 samples.

With the same initial values, the backfitting algorithm is slightly faster than
the accelerated profile-kernel algorithm, which is in turn by far faster than the
full profile-kernel algorithm. Our experience shows that the backfitting algorithm
needs more than 20 iterations to converge without improving too much the GMSE.
In terms of the accuracy of estimating the parametric component, the accelerated
profile-kernel algorithm is about twice as accurate as the backfitting algorithm
and the full profile-kernel one. This demonstrates the advantage of keeping the
curvature of the least-favorable function in the Newton–Raphson algorithm. For
the nonparametric component, we compare RASEs of three algorithms with those
based on the oracle estimator, which uses the true value of βn. The ratios of the
RASEs based on the oracle estimator and those based on the three algorithms are
reported in Table 1. It is clear that the accelerated profile-kernel estimate performs
very well in estimating the nonparametric components, mimicking very well the
oracle estimator. The second best is the backfitting algorithm.

We have also compared the three algorithms using the Bernoulli model. Our
proposed accelerated profile-kernel estimate still performs the best in terms of ac-
curacy, though the improvement is not as dramatic as those for the Poisson model.
We speculate that the poor performance of the full profile-kernel estimate is due to
its unstable implementation that is related to computing the second derivatives of
the least-favorable curve.

We next demonstrate the accuracy of the three-step accelerated profile-kernel
estimate (3S), compared with the fully-iterated accelerated profile-kernel estimate
(AF) (iterating until convergence), and the difference-based estimate (DBE), which
is our initial estimate. Table 2 reports the ratios of GMSE based on 400 simula-
tions. It demonstrates convincingly that, with the DBE as the initial estimate, three
iterations achieve the accuracy that is comparable with the fully iterated algorithm.

TABLE 2
Medians of the percentages of GMSE based on the accelerated profile-kernel estimates

Poisson Bernoulli

n pn AF/DBE AF/3S AF/DBE AF/3S

200 10 8.2 99.9 64.1 101.7
400 13 6.0 100.2 52.7 104.7
800 16 5.0 100.1 50.9 102.6

1500 20 4.2 100.0 46.4 100.5
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TABLE 3
One-step estimate of parametric components with different bandwidths

Poisson Bernoulli

Median and SDmad of Mean and SD of Median and SDmad of
GMSE×105 MSE ×104 for β5 GMSE×10

n pn hCV 1.5hCV 0.66hCV hCV 0.66hCV hCV

200 10 5.9 (3.0) 6.4 (3.3) 993 (112) 995 (105) 8.2 (4.4) 8.4 (5.1)
400 13 3.1 (1.4) 3.0 (1.4) 1004 (67) 1001 (65) 4.8 (2.2) 5.4 (2.5)
800 16 1.7 (0.7) 1.7 (0.6) 999 (47) 999 (46) 2.7 (1.0) 2.7 (1.1)

1500 20 1.1 (0.3) 1.1 (0.4) 1000 (32) 1000 (32) 1.8 (0.7) 1.8 (0.6)

SD and SDmad are shown in parentheses.

In fact, the one-step accelerated profile-kernel estimates improve dramatically (not
shown here) our initial estimate (DBE). On the other hand, the DBE itself is not
accurate enough for GCVPLM.

The effect of bandwidth choice on the estimation of the parametric component
is summarized in Table 3. Denote by hCV the bandwidth chosen by the cross-
validation. We scaled the bandwidth up and down by using a factor of 1.5. For
illustration, we use the one-step accelerated profile-kernel estimate. The results
for the three-step profile-kernel estimate are similar. We evaluate the performance
for all components using GMSE and for the specific component β5 using MSE
(the results for other components are similar). We do not report all the results here
in order to save space. It is clear that the GMSE does not sensitively depend on
the bandwidth, as long as it is reasonably close to hCV. This is consistent with our
asymptotic results.

4.2. Accuracy of profile-likelihood inferences. To test the accuracy of the
sandwich formula for estimating standard errors, the standard deviations of the
estimated coefficients (using the one-step accelerated profile-kernel estimate) are
computed from the 400 simulations using hCV. These can be regarded as the true
standard errors (columns labeled SD). The 400 estimated standard errors are sum-
marized by their median (columns SDm) and its associated SDmad. Table 4 sum-
marizes the results. Clearly, the sandwich formula does a good job, and accuracy
gets better as n increases.

We now study the performance of GLRT in Section 2.2. To this end, we consider
the following null hypothesis:

H0 :β7 = β8 = · · · = βpn = 0.

We examine the power of the test under a sequence of the alternative hypotheses
indexed by a parameter γ as follows:

H1 :β7 = β8 = γ, βj = 0 for j > 8.
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TABLE 4
Standard deviations and estimated standard errors

Poisson, values×1000 Bernoulli, values×10

β̂1 β̂3 β̂2 β̂4

n pn SD SDm SD SDm SD SDm SD SDm

200 10 9.1 8.5 (1.3) 9.9 9.4 (1.3) 3.6 2.9 (0.4) 3.2 2.8 (0.4)
400 13 6.0 5.6 (0.7) 6.5 6.1 (0.7) 2.3 2.1 (0.2) 2.2 2.0 (0.2)
800 16 3.7 3.8 (0.3) 4.1 4.2 (0.4) 1.7 1.6 (0.1) 1.5 1.5 (0.1)

1500 20 2.8 2.7 (0.2) 3.1 3.0 (0.2) 1.2 1.2 (0.1) 1.1 1.1 (0.1)

SDmad are shown in parentheses.

When γ = 0, the alternative hypothesis becomes the null hypothesis.
Under the null hypothesis, the GLRT statistics are computed for each of 400

simulations, using the one-step accelerated profile-kernel estimates. Their distrib-
ution is summarized by a kernel density estimate and can be regarded as the true
null distribution. This is compared with the asymptotic null distribution χ2

pn−6.
Figures 1(a) and (c) show the results when n = 400. The finite sample null density
is seen to be reasonably close to the asymptotic one, except for the Monte Carlo
error.

The power of the GLR test is studied under a sequence of alternative models,
progressively deviating from the null hypothesis, namely, as γ increases. Again,
the one-step accelerated profile-kernel algorithm is employed. The power func-
tions are calculated at three significance levels: 0.1, 0.05 and 0.01, using the as-
ymptotic distribution. They are the proportion of rejection among the 400 simula-
tions and are depicted in Figures 1(b) and (d). The power curves increase rapidly
with γ , which shows the GLR test is powerful. The powers at γ = 0 are approxi-
mately the same as the significance level except the Monte Carlo error. This shows
that the size of the test is reasonably accurate.

4.3. A real data example. This is the analysis of the data in Section 1.1, where
details of data and variables are given.

To examine the nonlinear effect of age and its nonlinear interaction with the
experience, we appeal to the following GVCPLM (interactions between age and
covariates other than TotalYrsExp are considered but found to be insignificant):

log
(

pH

1 − pH

)
= α1(Age) + α2(Age)TotalYrsExp

(4.1)

+ β1Female + β2PCJob +
4∑

i=1

β2+iEdui ,
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FIG. 1. (a) Asymptotic null distribution (solid) and estimated true null distribution (dotted) for the
Poisson model. (b) The power function at significant level α = 0.01,0.05 and 0.1. The captions for
(c) and (d) are the same as those in (a) and (b) except that the Bernoulli model is now used.

where pH is the probability of having a high grade job. Formally, we are testing

H0 :β1 = 0 ←→ H1 :β1 < 0.(4.2)

A 20-fold CV is employed to select the bandwidth h and the parameter δ in
the transformation of the data. This yields hCV = 24.2, δCV = 0.1. Table 5 shows
the results of the fit using the three-step accelerated profile-kernel estimate. The

TABLE 5
Fitted coefficients (sandwich SD) for model (4.1)

Response Female PCJob Edu1 Edu2 Edu3 Edu4

HighGrade4 −1.96 (0.57) −0.02 (.076) −5.14 (0.85) −4.77 (0.98) −2.72 (0.52) −2.85 (0.96)
HighGrade5 −2.22 (0.59) −1.96 (0.61) −5.69 (0.67) −5.95 (0.97) −3.09 (0.72) −1.26 (1.10)



2246 C. LAM AND J. FAN

FIG. 2. (a) Fitted coefficient function α1(·). (b) Fitted coefficient function α2(·). (c) The scatter plot
“TotalYrsExp” against “Age.” (d) Standardized residuals against the variable “Age.”

coefficient for Female is significantly negative. The education also plays an im-
portant role in getting a high grade job. All coefficients are negative, as they are
contrasted with the highest education level. The PCJob does not seem to play any
significant role in getting promotion. Figures 2(a) and (b) depict the estimated co-
efficient functions. They show that as age increases, one has a better chance of
being in a higher job grade, and then the marginal effect of working experience
is large when age is around 30 or less, but starts to fall as one gets older. How-
ever, the second result should be interpreted with caution, as the variables Age
and TotalYrsExp are highly correlated [Figure 2(c)]. The standardized residuals
(y − p̂H)/

√
p̂H(1 − p̂H) against Age is plotted in Figure 2(d). It shows that the

fit seems reasonable. Other diagnostic plots also look reasonable, but they are not
shown here.

We have conducted another fit using a binary variable HighGrade5, which is 0
only when job grade is less than 5. The coefficients are shown in Table 5 and the
Female coefficient is close to the first fit.
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We now employ the generalized likelihood ratio test to the problem (4.2). The
GLR test statistic is 14.47 with one degree of freedom, resulting in a P -value
of 0.0001. We have also conducted the same analysis using HighGrade5 as the
binary response. The GLR test statistic is now 13.76 and the associated P -value is
0.0002. The fitted coefficients are summarized in Table 5. The result provides stark
evidence that even after adjusting for other confounding factors and variables, it is
harder for female employees of the Fifth National Bank to get promoted to a high
grade job.

Not shown in this paper, we have conducted the analysis again after deleting
6 data points corresponding to 5 male executives and 1 female employee having
many years of working experience and high salaries. The test results are still simi-
lar.

5. Technical proofs. In this section the proofs of Theorems 1–4 will be given.
We introduce some notation and regularity conditions for our results. In the fol-
lowing and thereafter, the symbol ⊗ represents the Kronecker product between
matrices, and λmin(A) and λmax(A) denote respectively the minimum and maxi-
mum eigenvalues of a symmetric matrix A. We let Qni(βn) be the ith summand
of (2.3).

Denote the true linear parameter by βn0, with parameter space �n ⊂ R
pn . Let

μk = ∫ ∞
−∞ ukK(u)du and Ap(X) = (μi+j )0≤i,j≤p ⊗ XXT . Set

ρl(t) = (dg−1(t)/dt)l/V (g−1(t)), mni(βn) = αβn
(Ui)

T Xi + βT
n Zni,

α′
βn

(u) = ∂αβn
(u)

∂βn

, α
(r)′′
βn

(u) = ∂2α
(r)
βn

(u)

∂βn ∂βT
n

.

REGULARITY CONDITIONS.

(A) The covariates Zn and X are bounded random variables.
(B) The smallest and the largest eigenvalues of the matrix In(βn0) are

bounded away from zero and infinity for all n. In addition, the expectation
E0[∇T Qn1(βn0)∇Qn1(βn0)]4 = O(p4

n).

(C) Eβn
| ∂l+jQn1(βn)

∂jα ∂βnk1 ···∂βnkl

| and Eβn
| ∂l+jQn1(βn)

∂jα ∂βnk1 ···∂βnkl

|2 are bounded, with l = 1, . . . ,

4 and j = 0,1.
(D) The function q2(x, y) < 0 for x ∈ R and y in the range of the response

variable, and E0{q2(mn1(βn), Yn1)Ap(X1)|U = u} is invertible.
(E) The functions V ′′(·) and g′′′(·) are continuous. The least-favorable curve

αβn
(u) is three times continuously differentiable in βn and u.
(F) The random variable U has a compact support �. The density function

fU(u) of U has a continuous second derivative and is uniformly bounded away
from zero.
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(G) The kernel K is a bounded symmetric density function with bounded sup-
port.

Note the above conditions are assumed to hold uniformly in u ∈ �. Condi-
tion (A) is imposed just for the simplicity of proofs. The boundedness of covariates
is imposed to ensure various products involving ql(·, ·),X and Zn have bounded
first and second moments. Conditions (B) and (C) are uniformity conditions on
higher-order moments of the likelihood functions. They are stronger than those of
the usual asymptotic likelihood theory, but they facilitate technical proofs. Condi-
tion (G) is also imposed for simplicity of technical arguments. All of these condi-
tions can be relaxed at the expense of longer proofs.

Before proving Theorem 1, we need two important lemmas. Lemma 1 concerns
the order approximations to the least-favorable curve αβn

(·), while Lemma 2 holds
the key to showing why undersmoothing is not needed in Theorems 1 and 2. Let
cn = (nh)−1/2 and â0βn

, . . . , âpβn
maximize (2.4).

LEMMA 1. Under Regularity Conditions (A)–(G), for each βn ∈ �n, the fol-
lowing holds uniformly in u ∈ �:

‖â0βn
(u) − αβn

(u)‖ = OP

(
hp+1 + cn log1/2(1/h)

)
.

Likewise, the norm of the kth derivative of the above with respect to any βnj ’s, for
k = 1, . . . ,4, all have the same order uniformly in u ∈ �.

We omit the proof of Lemma 1. Please refer to the technical report [15] for a
proof.

LEMMA 2. Under Regularity Conditions (A)–(G), if ps
n/n → 0 for s > 5/4,

h = O(n−a) with (2s(p + 1))−1 < a < 1 − s−1, then for each βn ∈ �n,

n−1/2‖∇Q̂n(βn) − ∇Qn(βn)‖ = oP (1).

PROOF. Define

K1 = n−1/2
n∑

i=1

q2(mni(βn), Yni)
(
Zni + α′

βn
(Ui)Xi

)(
α̂βn

(Ui) − αβn
(Ui)

)T Xi ,

K2 = n−1/2
n∑

i=1

q1(mni(βn), Yni)
(
α̂′

βn
(Ui) − α′

βn
(Ui)

)T Xi .

Then by Taylor’s expansion, Lemma 1 and Condition (C),

n−1/2(∇Q̂n(βn) − ∇Qn(βn)
) = K1 + K2 + smaller order terms.

Define, for � as in Condition (F),

S = {f ∈ C2(�) :‖f ‖∞ ≤ 1},
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equipped with a metric ρ(f1, f2) = ‖f1 − f2‖∞, where ‖f ‖∞ = supu∈� |f (u)|.
We also let, for r = 1, . . . , q and l = 1, . . . , pn,

Arl(y, u,X,Zn) = q2
(
XT αβn

(u) + ZT
n βn, y

)
Xr

(
Znl + XT ∂αβn

(u)

∂βnl

)
,

Br(y,u,X,Zn) = q1
(
XT αβn

(u) + ZT
n βn, y

)
Xr.

By Lemma 1, for any positive sequences (δn) with δn → 0 as n → ∞, we have
P0(λr ∈ S) → 1 and P0(γrl ∈ S) → 1, where

λr = δn

(
hp+1 + cn log1/2(1/h)

)−1(
α̂

(r)
βn

− α
(r)
βn

)
,

γrl = δn

(
hp+1 + cn log1/2(1/h)

)−1
(∂α̂

(r)
βn

∂βnl

− ∂α
(r)
βn

∂βnl

)
,

r = 1, . . . , q and l = 1, . . . , pn. Hence, for sufficiently large n, we have λr, γrl ∈ S.
The following three points allow us to utilize [14] to prove our lemma:

I. For any v ∈ S, we will view the map v �→ Arl(y, u,X,Zn)v(u) as an element
of C(S), the space of continuous functions on S equipped with the sup norm.
For v1, v2 ∈ S, we have

|Arl(y, u,X,Zn)v1(u) − Arl(y, u,X,Zn)v2(u)|
= |Arl(y, u,X,Zn)(v1 − v2)(u)| ≤ |Arl(y, u,X,Zn)|‖v1 − v2‖.

A similar result holds for Br(y,u,X,Zn).
II. Note that equation (2.2) is true for all βn, and by differentiating w.r.t. βn, we

get the following formulas:

E0
(
q1(mn(βn), Yn)X|U = u

) = 0,

E0
(
q2(mn(βn), Yn)X

(
Zn + α′

βn
(U)X

)T |U = u
) = 0.

Thus, we can easily see that

E0(Arl(Y,U,X,Zn)) = 0

for each r = 1, . . . , q and l = 1, . . . , pn. Also, we have

E0(Arl(Y,U,X,Zn)
2) < ∞,

by Regularity Conditions (A) and (C). For Br(Y,U,X,Zn), results hold simi-
larly.

III. Let H(·, S) denote the metric entropy of the set S w.r.t. the metric ρ. Then

H(ε,S) ≤ C0ε
−1

for some constant C0. Hence,
∫ 1

0 H 1/2(ε, S) dε < ∞.
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Conditions of Theorem 1 in [14] can be derived from the three notes above, so
that we have

n−1/2
n∑

i=1

Arl(Yi,Ui,Xi ,Zni)(·),

where Arl(Yi,Ui,Xi ,Zni)(·), i = 1, . . . , n, being i.i.d. replicates of the function
Arl(Y,U,X,Zn)(·) in C(S), converges weakly to a Gaussian measure on C(S).
Hence, since λr, γrl ∈ S,

n−1/2
n∑

i=1

Arl(Yi,Ui,Xi ,Zni)(λr) = OP (1),

which implies that

n−1/2
n∑

i=1

Arl(Yi,Ui,Xi ,Zni)
(
α̂

(r)
βn

− α
(r)
βn

) = OP

(
δ−1
n

(
hp+1 + cn log1/2(1/h)

))
.

Similarly, applying Theorem 1 of [14] again, we have

n−1/2
n∑

i=1

Br(Yi,Ui,Xi ,Zni)

(∂α̂
(r)
βn

∂βnl

− ∂α
(r)
βn

∂βnl

)
= OP

(
δ−1
n

(
hp+1 + cn log1/2(1/h)

))
.

Then the column vector K1, which is pn-dimensional has the lth component equal

q∑
r=1

{
n−1/2

n∑
i=1

Arl(Yi,Ui,Xi ,Zni)
(
α̂

(r)
βn

− α
(r)
βn

)}

= OP

(
δ−1
n

(
hp+1 + cn log1/2(1/h)

))
,

using the result just proved. Hence, we have shown

‖K1‖ = OP

(√
pnδ

−1
n

(
hp+1 + cn log1/2(1/h)

)) = oP (1),

since δn can be made arbitrarily slow in converging to 0. Similarly, we have
‖K2‖ = oP (1) as well. The conclusion of the lemma follows. �

LEMMA 3. Assuming Regularity Conditions (A)–(G), we have for each βn ∈
�n,

n−1‖∇2Q̂n(βn) − ∇2Qn(βn)‖ = OP

(
pn

(
hp+1 + cn log1/2(1/h)

))
.
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LEMMA 4. Under Regularity Conditions (A)–(G) and p4
n/n = o(1),

‖n−1∇2Qn(βn0) + In(βn0)‖ = oP (p−1
n ),

‖n−1∇2Q̂n(βn0) + In(βn0)‖ = oP (p−1
n ) + OP

(
pn

(
hp+1 + cn log1/2(1/h)

))
.

We omit the proofs of the lemmas. Please refer to the technical report [15] for a
proof.

PROOF OF THEOREM 1. Let γn = √
pn/n. Our aim is to show that, for a given

ε > 0,

P

{
sup

‖v‖=C

Q̂n(βn0 + γnv) < Q̂n(βn0)

}
≥ 1 − ε,(5.1)

so that this implies, with probability tending to 1, there is a local maximum β̂n in
the ball {βn0 + γnv :‖v‖ ≤ C} such that ‖β̂n − βn0‖ = OP (γn).

Define the terms Î1 = γn∇T Q̂n(βn0)v, Î2 = γ 2
n

2 vT ∇2Q̂n(βn0)v and

Î3 = γ 3
n

6 ∇T (vT ∇2Q̂n(β
∗
n)v)v. By Taylor’s expansion,

Q̂n(βn0 + γnv) − Q̂n(βn0) = Î1 + Î2 + Î3,

where β∗
n lies between βn0 and βn0 + γnv.

We further split Î1 = D1 + D2, where

D1 =
n∑

i=1

q1(m̂ni(βn0), Yni)
(
Zni + α′

βn0
(Ui)Xi

)T vγn,

D2 =
n∑

i=1

q1(m̂ni(βn0), Yni)XT
i

(
α̂′

βn0
(Ui) − α′

βn0
(Ui)

)T vγn,

with m̂ni(βn) = α̂βn
(Ui)

T Xi + βT
n Zni . By Condition (A) and Lemma 1, D2 has

order smaller than D1. Using Taylor’s expansion, we have

D1 = γnvT

(
n∑

i=1

∂Qni(βn0)

∂βn

+ √
nK1

)
+ smaller order terms,

where K1 is as defined in Lemma 2 so that within the lemma’s proof we have
‖K1‖ = oP (1). Using equation (2.6), we have, by the mean–variance decomposi-
tion, ∥∥∥∥∥vT

n∑
i=1

∂Qni(βn0)

∂βn

∥∥∥∥∥ = OP

(√
nvT In(βn0)v

) = OP

(√
n
)‖v‖,

where the last inequality follows from Condition (B). Hence,

|Î1| = OP

(√
nγn

)‖v‖.
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Next, consider Î2 = I2 + (Î2 − I2), where

I2 = 1

2
vT ∇2Qn(βn0)vγ 2

n

= −n

2
vT In(βn0)vγ 2

n + n

2
vT {n−1∇2Qn(βn0) + In(βn0)}vγ 2

n

= −n

2
vT In(βn0)vγ 2

n + oP (nγ 2
n )‖v‖2,

with the last line following from Lemma 4. Using Lemma 3,

‖Î2 − I2‖ = oP (nγ 2
n ‖v‖2).

On the other hand, by Condition (B), we have

|nγ 2
n vT In(βn0)v| ≥ O(nγ 2

n λmin(In(βn0))‖v‖2) = O(nγ 2
n ‖v‖2).

Hence, Î2 − I2 has a smaller order than I2.
Finally, consider Î3. We suppress the dependence of αβn

(Ui) and its derivatives
on Ui , and denote q1i = q1(mni(βn0), Yni). Using Taylor’s expansions, expanding
Q̂n(β

∗
n) at βn0 and then Q̂n(βn0) at αβn0

, we can arrive at

Q̂n(β
∗
n) = Qn(βn0) +

n∑
i=1

{q1iXT
i (α̂βn0

− αβn0
)

+ q1i (Zni + α̂′
βn0

Xi)
T (β∗

n − βn0)}
(
1 + oP (1)

)
.

Substituting Q̂n(β
∗
n) into Î3 with the right-hand side above, by Condition (C) and

Lemma 1, we have

Î3 = 1

6

pn∑
i,j,k=1

∂3Qn(βn0)

∂βni ∂βnj ∂βnk

vivj vkγ
3
n + smaller order terms.

Hence,

|Î3| = OP

(
np3/2

n γ 3
n ‖v‖3) = OP

(√
p4

n/n‖v‖)
nγ 2

n ‖v‖2 = oP (1)nγ 2
n ‖v‖2.

Comparing, we find the order of −nγ 2
n vT In(βn0)v dominates all other terms by

allowing ‖v‖ = C to be large enough. This proves (5.1). �

PROOF OF THEOREM 2. Note that by Theorem 1, ‖β̂n−βn0‖ = OP (
√

pn/n).
Since ∇Q̂n(β̂n) = 0, by Taylor’s expansion,

∇Q̂n(βn0) + ∇2Q̂n(βn0)(β̂n − βn0) + C = 0,(5.2)
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where β∗
n lies between βn0 β̂n and C = 1

2(β̂n −βn0)
T ∇2(∇Q̂n(β

∗
n))(β̂n −βn0)),

which is understood as a vector of quadratic components.
Using a similar argument to approximating Î3 in Theorem 1, by Lemma 1 and

noting ‖β∗
n − βn0‖ = oP (1), we have ‖∇2 ∂Q̂n(β∗

n)

∂βnj
‖2 = OP (n2p2

n). Hence,

‖n−1C‖2 ≤ n−2‖β̂n − βn0‖4
pn∑

j=1

∥∥∥∥∇2 ∂Q̂n(β
∗
n)

∂βnj

∥∥∥∥2

(5.3)
= OP (p5

n/n2) = oP (n−1).

At the same time, by Lemma 4 and the Cauchy–Schwarz inequality,

‖n−1∇2Q̂n(βn0)(β̂n − βn0) + In(βn0)(β̂n − βn0)‖
= oP ((npn)

−1/2) + OP

(√
p3

n/n
(
hp+1 + cn log1/2(1/h)

))
(5.4)

= oP (n−1/2).

Combining (5.2), (5.3) and (5.4), we have

In(βn0)(β̂n − βn0) = n−1∇Q̂n(βn0) + oP (n−1/2)
(5.5)

= n−1∇Qn(βn0) + oP (n−1/2),

where the last line follows from Lemma 2. Consequently, using equation (5.5), we
get

√
nAnI

1/2
n (βn0)(β̂n − βn0)

= n−1/2AnI
−1/2
n (βn0)∇Qn(βn0) + oP (AnI

−1/2
n (βn0))(5.6)

= n−1/2AnI
−1/2
n (βn0)∇Qn(βn0) + oP (1),

since ‖AnI
−1/2
n (βn0)‖ = O(1) by conditions of Theorem 2.

We now check the Lindeberg–Feller Central Limit Theorem (see, e.g., [25])
for the last term in (5.6). Let Bni = n−1/2AnI

−1/2
n (βn0)∇Qni(βn0), i = 1, . . . , n.

Given ε > 0,

n∑
i=1

E0‖Bni‖21{‖Bni‖ > ε} ≤ n

√
E0‖Bn1‖4 · P(‖Bn1‖ > ε).

Using Chebyshev’s inequality,

P(‖Bn1‖ > ε) ≤ n−1ε−2E‖AnI
−1/2
n (βn0)∇Qn1(βn0)‖2

(5.7)
= n−1ε−2 tr(G) = O(n−1),
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where tr(A) is the trace of square matrix A. Similarly, we can show that, using
Condition (B),

E0‖Bn1‖4 ≤ √
ln−2λ2

min(AnA
T
n )λ2

max(In(βn0))

×
√

E0(∇Qn1(βn0)
T ∇Qn1(βn0))

4(5.8)

= O(p2
n/n2).

Therefore, (5.7) and (5.8) together imply
n∑

i=1

E0‖Bni‖21{‖Bni‖ > ε} = O
(√

p2
n/n

) = o(1).

Also,
n∑

i=1

Var0(Bni) = Var0(AnI
−1/2
n (βn0)∇Qn1(βn0))

= AnA
T
n → G.

Therefore, Bni satisfies the conditions of the Lindeberg–Feller Central Limit The-
orem. Consequently, using (5.6), it follows that

√
nAnI

1/2
n (βn0)(β̂n − βn0)

D−→ N(0,G),

and this completes the proof. �

Referring back to Section 2.2, let Bn be a (pn − l) × pn matrix satisfying
BnB

T
n = Ipn−l and AnB

T
n = 0. Since Anβn = 0 under H0, rows of An are per-

pendicular to βn and the orthogonal complement of rows of An is spanned by
rows of Bn since AnB

T
n = 0. Hence,

βn = BT
n γ

under H0, where γ is a (pn − l) × 1 vector. Then, under H0, the profile likelihood
estimator is also the local maximizer γ̂ n of the problem

Q̂n(B
T
n γ̂ n) = max

γ n

Qn(B
T
n γ n).

LEMMA 5. Assuming the conditions in Theorem 3 and under the null hypoth-
esis H0 as in the theorem,

BT
n (γ̂ n − γ n0) = 1

n
BT

n {BnIn(βn0)B
T
n }−1BT

n ∇Qn(βn0) + oP (n−1/2).

We omit the proof of the lemma. Please refer to the technical report [15] for a
proof.

PROOF OF THEOREM 3. By Taylor’s expansion, expanding Q̂n(B
T
n γ̂ n) at β̂n

and noting that we have ∇T Q̂n(β̂n) = 0, then Q̂n(β̂n) − Q̂n(B
T
n γ̂ n) = T1 + T2,
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where

T1 = −1
2(β̂n − BT

n γ̂ n)
T ∇2Q̂n(β̂n)(β̂n − BT

n γ̂ n),

T2 = 1
6∇T {(β̂n − BT

n γ̂ n)
T ∇2Q̂n(β

∗
n)(β̂n − BT

n γ̂ n)}(β̂n − BT
n γ̂ n).

Denote by �n = In(βn0) and �n = 1
n
∇Qn(βn0). Using equation (5.5) and noting

that �n has eigenvalues uniformly bounded away from 0 and infinity by Condi-
tion (B), we have β̂n−βn0 = �−1

n �n+oP (n−1/2). Combining this with Lemma 5,
under the null hypothesis H0,

β̂n − BT
n γ̂ n = �−1/2

n {Ipn − �1/2
n BT

n (Bn�nB
T
n )−1Bn�

1/2
n }�−1/2

n �n

(5.9)
+ oP (n−1/2).

Since Sn = Ipn −�
1/2
n BT

n (Bn�nB
T
n )−1Bn�

1/2
n is a pn ×pn idempotent matrix

with rank l, it follows by mean–variance decomposition of the term ‖β̂n −BT
n γ̂ n‖2

and Condition (B) that ‖β̂n − BT
n γ̂ n‖ = OP (n−1/2). Hence, using a similar argu-

ment as in the approximation of order for |Î3| in Theorem 1, we have

|T2| = OP (np3/2
n ) · ‖β̂n − BT

n γ̂ n‖3 = oP (1).

Hence, Q̂n(β̂n) − Q̂(BT
n γ̂ n) = T2 + oP (1).

By Lemma 4 and an approximation to n−1‖∇2Q̂n(β̂n) − ∇2Q̂n(βn0)‖ =
oP (p

−1/2
n ) (the proof is similar to that for Lemma 6 with the proof of order for

|Î3| in Theorem 1, and is omitted), we have∥∥1
2(β̂n − BT

n γ̂ n)
T {∇2Q̂n(β̂n) + nIn(βn0)}(β̂n − BT

n γ̂ n)
∥∥

= OP (l/n) · n{
oP (p−1/2

n ) + OP

(
pn

(
hp+1 + cn log1/2(1/h)

))} = op(1).

Therefore,

Q̂n(β̂n) − Q̂n(B
T
n γ̂ n) = n

2
(β̂n − BT

n γ̂ n)
T In(βn0)(β̂n − BT

n γ̂ n) + oP (1).

By (5.9), we have Q̂n(β̂n)− Q̂n(B
T
n γ̂ n) = n

2�T
n �

−1/2
n Sn�

−1/2
n �n +oP (1). Since

Sn is idempotent, it can be written as Sn = DT
n Dn, where Dn is an l × pn

matrix satisfying DnD
T
n = Il . By Theorem 2, we have already shown that√

nDn�
−1/2
n �n

D−→ N(0, Il). Hence,

2{Q̂n(β̂n) − Q̂n(B
T
n γ̂ n)} = n(Dn�

−1/2
n �n)

T (Dn�
−1/2
n �n)

D−→ χ2
l . �

LEMMA 6. Assuming Conditions (A)–(G) and p4
n/n = o(1), we have

n−1‖∇2Qn(β̂n) − ∇2Qn(βn0)‖ = oP (1).
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We omit the proof of the lemma. Please refer to the technical report [15] for a
proof.

PROOF OF THEOREM 4. Let Ân = −n−1∇2Q̂n(β̂n), B̂n = ĉov{∇Q̂n(β̂n)}
and C = In(βn0). Write

I1 = Â−1
n (B̂n − C)Â−1

n , I2 = Â−1
n (C − Ân)Â

−1
n ,

I3 = Â−1
n (C − Ân)C

−1.

Then, �̂n − �n = I1 + I2 + I3. Our aim is to show that, for all i = 1, . . . , pn,

λi(�̂n − �n) = oP (1),

so that An(�̂n − �n)A
T
n

P−→ 0, where λi(A) is the ith eigenvalue of a symmetric
matrix A. Using the inequalities

λmin(I1) + λmin(I2) + λmin(I3) ≤ λmin(I1 + I2 + I3),

λmax(I1 + I2 + I3) ≤ λmax(I1) + λmax(I2) + λmax(I3),

it suffices to show that λi(Ij ) = oP (1) for j = 1,2,3. From the definition of I1, I2

and I3, it is clear that we only need to show λi(C−Ân) = oP (1) and λi(B̂n−C) =
oP (1). Let K1 = In(βn0)+n−1∇2Qn(βn0), K2 = n−1(∇2Qn(β̂n)−∇2Qn(βn0))

and K3 = n−1(∇2Q̂n(β̂n) − ∇2Qn(β̂n)). Then,

C − Ân = K1 + K2 + K3.

Applying Lemma 4 to K1, Lemma 6 to K2 and Lemma 3 to K3, we have ‖C −
Â‖ = oP (1). Thus, λi(C − Â) = oP (1). Hence, the only thing left to show is
λi(B̂n − C) = oP (1).

To this end, consider the decomposition

B̂n − C = K4 + K5,

where

K4 =
{

1

n

n∑
i=1

∂Q̂ni(β̂n)

∂βnj

∂Q̂ni(β̂n)

∂βnk

}
− In(βn0),

K5 = −
{

1

n

n∑
i=1

∂Q̂ni(β̂n)

∂βnj

}{
1

n

n∑
i=1

∂Q̂ni(β̂n)

∂βnk

}
.

Our goal is to show that K4 and K5 are oP (1), which then implies λi(B̂n − C) =
oP (1). We consider K4 first, which can be further decomposed into K4 = K6 +K7,



HIGH-DIMENSIONAL PROFILE-LIKELIHOOD 2257

where

K6 =
{

1

n

n∑
i=1

∂Q̂ni(β̂n)

∂βnj

∂Q̂ni(β̂n)

∂βnk

− 1

n

n∑
i=1

∂Qni(βn0)

∂βnj

∂Qni(βn0)

∂βnk

}
,

K7 =
{

1

n

n∑
i=1

∂Qni(βn0)

∂βnj

∂Qni(βn0)

∂βnk

}
− In(βn0).

Observe that

K6 =
{

1

n

n∑
i=1

∂Qni(βn0)

∂βnj

{
∂Q̂ni(β̂n)

∂βnk

− ∂Qni(βn0)

∂βnk

}

+ 1

n

n∑
i=1

∂Qni(βn0)

∂βnk

{
∂Q̂ni(β̂n)

∂βnj

− ∂Qni(βn0)

∂βnj

}

+ 1

n

n∑
i=1

{
∂Q̂ni(β̂n)

∂βnk

− ∂Qni(βn0)

∂βnk

}{
∂Q̂ni(β̂n)

∂βnj

− ∂Qni(βn0)

∂βnj

}}
,

and this suggests that an approximation of the order of ∂
∂βnk

(Q̂ni(β̂n)−Qni(βn0))

for each k = 1, . . . , pn and i = 1, . . . , n is rewarding. Define

aik = ∂

∂βnk

(
Q̂ni(β̂n) − Qni(β̂n)

)
and bik = ∂

∂βnk

(
Qni(β̂n) − Qni(βn0)

)
,

then ∂
∂βnk

(Q̂ni(β̂n) − Qni(βn0)) = aik + bik . By Taylor’s expansion, suppressing
dependence of αβn

(Ui) and its derivatives on Ui ,

aik =
{
∂2Qni(β̂n)

∂βnk ∂αT
βn

(α̂
β̂n

− α
β̂n

) + ∂Qni(β̂n)

∂αT
βn

(∂α̂
β̂n

∂βnk

−
∂α

β̂n

∂βnk

)}(
1 + oP (1)

)
.

Using Lemma 1, Condition (C), with an argument similar to the proof of Lemma 3,
we then have

aik = OP

(
hp+1 + cn log1/2(1/h)

)
.

Similarly, Taylor’s expansion gives

bik = ∂2Qni(βn0)

∂βnk ∂βn
T

(β̂n − βn0)
(
1 + oP (1)

)
,

which implies that, by Theorem 1 and Regularity Condition (C),

|bik| = OP

(√
p2

n/n
)
.
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Using the approximations of aik and bik above, by Condition (C),∣∣∣∣∣1

n

n∑
i=1

∂Qni(βn0)

∂βnj

{
∂Q̂ni(β̂n)

∂βnk

− ∂Qni(βn0)

∂βnk

}∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣∣∂Qni(βn0)

∂βnj

∣∣∣∣ · |aik + bik|

= OP

(
hp+1 + cn log1/2(1/h) + n−1/2pn

)
.

This shows that

‖K6‖ = OP

(
pn

(
hp+1 + cn log1/2(1/h)

) + p2
nn

−1/2) = oP (1)

by the conditions of the theorem.
For K7, note that ‖(K7)‖ = OP (p2

n/n) = oP (1), since

E0K7 = n−2(np2
n)E0

{
∂Qni(βn0)

∂βnj

∂Qni(βn0)

∂βnk

− E0

(
∂Qni(βn0)

∂βnj

∂Qni(βn0)

∂βnk

)}2

.

Hence, using K4 = K6 + K7,

‖K4‖ = oP (1) + OP

(
pn

(
hp+1 + cn log1/2(1/h)

) +
√

p4
n/n

) = oP (1).

Finally, consider K5. Defining Aj = n−1 ∑n
i=1(aij +bij )+n−1 ∑n

i=1
∂Qni(βn0)

∂βnj
,

where aij and bij are defined as before, we can then rewrite K5 = {AjAk}. Now

|Aj | ≤ sup
i,j

|aij + bij | +
∣∣∣∣∣1

n

n∑
i=1

∂Qni(βn0)

∂βnj

∣∣∣∣∣
= OP

(
hp+1 + cn log1/2(1/h) + n−1/2pn

) + OP (n−1/2),

where the last line follows from the approximations for aij and bij , and mean–

variance decomposition of the term n−1 ∑n
i=1

∂Qni(βn0)

∂βnj
. Hence,

‖K5‖ = OP

(
pn

(
hp+1 + cn log1/2(1/h) + n−1/2pn

)2) = oP (1),

and this completes the proof. �

PROOF OF THEOREM 5. In expression (2.4), we set p = 0, which effectively
assumes αβn

(Ui) ≈ αβn
(u) for Ui in a neighborhood of u. Then by definition,

â0βn
(u) maximizes (2.4), which leads to

∑n
i=1 q1(XT

i â0βn
(u)+ZT

niβn)XiKh(Ui −
u) = 0. Differentiating this w.r.t. βnj , we have

n∑
i=1

q2
(
XT

i â0βn
(u) + ZT

niβn, Yni

)(
Znij +

(
∂ â0βn

(u)

∂βnj

)T

Xi

)
XiKh(Ui − u) = 0.
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Solving for
∂ â0βn

(u)

∂βn
from the above equation, which is true for j = 1, . . . , pn, we

get the same expression as given in the lemma.

Hence, it remains to show that
∂ â0βn

(u)

∂βn
is a consistent estimator of α′

βn
(u). This

is done by Lemma 1, where∥∥∥∥∂ â0βn
(u)

∂βn

− α′
βn

(u)

∥∥∥∥ = OP

(√
pn

(
h + cn log1/2(1/h)

)) = oP (1),

and the proof completes. �
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