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We propose several statistics to test the Markov hypothesis for β-mixing
stationary processes sampled at discrete time intervals. Our tests are based on
the Chapman–Kolmogorov equation. We establish the asymptotic null dis-
tributions of the proposed test statistics, showing that Wilks’s phenomenon
holds. We compute the power of the test and provide simulations to investi-
gate the finite sample performance of the test statistics when the null model
is a diffusion process, with alternatives consisting of models with a stochastic
mean reversion level, stochastic volatility and jumps.

1. Introduction. Among stochastic processes, those that satisfy the Markov
property represent an important special case. The Markov property restricts the
effective size of the filtration that governs the dynamics of the process. In a nut-
shell, only the current value of X is relevant to determine its future evolution. This
restriction simplifies model-building, forecasting and time series inference. Can it
be tested on the basis of discrete observations? It is not practical to approach the
testing problem in the form of a restriction on the filtration, the size of any alter-
native filtration being essentially unrestricted. Furthermore, the continuous-time
filtration is not observable on the basis of discrete observations, especially if we
do not have high-frequency data, and asymptotically the sampling interval remains
fixed.

Instead, we propose to test the Markov property at the level of the discrete-
frequency transition densities of the process. Given a time-homogeneous stochas-
tic process X = {Xt }t≥0 on R

m, with the standard probability space (�; F ;P)

and filtration Ft ⊂ F , we consider families of conditional probability func-
tions P(·|x,�) of Xt+� given Xt = x: for each Borel measurable function ψ ,
E[ψ(Xt+�)|Ft ] = ∫

ψ(y)P (dy|Xt,�).
If X is time-homogeneous Markovian, then its transition densities satisfy the

Chapman–Kolmogorov equation

P(·|x,� + τ) =
∫
S
P (·|y,�)P (dy|x, τ )(1)
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for all � > 0 and τ > 0 and x in the support S of X. Suppose that we collect n

observations on X on [0, T ] sampled every � units of time. We will assume that �

is fixed; asymptotics are therefore with T → ∞. High-frequency asymptotics, by
contrast, assume that � → 0, and T can be fixed or T diverges. This asymptotic
setup could have been considered, but it is not necessary here as we are able to
test the hypothesis on the basis of discrete data at a fixed interval with no require-
ment for high-frequency data; high-frequency asymptotics would, of course, also
generate different asymptotic properties for the tests we propose.

If we set τ = � in (1), then we can estimate the transition densities at the desired
frequencies on the basis of these discrete observations. On the left-hand side of the
equation, the transition density at interval 2� can be estimated simply by retaining
every other observation in the same data sample. To avoid unnecessary restrictions
on the data-generating process, we will employ nonparametric estimators of the
transition densities. Given these, equation (1) then becomes a testable implication
of the Markov property for X.

Conversely, Kolmogorov’s construction (see, e.g., [28], Chapter III, Theo-
rem 1.5) allows one to parameterize Markov processes using transition functions.
Namely, given a transition function P and a probability measure π on R

m serving
as the initial distribution, there exists a unique probability measure such that the
coordinate process X is Markovian with respect to σ(Xu,u ≤ t), has transition
function P and X0 has π as its distribution. When π is the invariant probability
measure of P , the process is a stationary Markov process. Therefore, given an
initial distribution, a Markov process X is determined by its transition densities.

Transition densities play a crucial role in many contexts. In mathematical fi-
nance, arbitrage considerations in finance make many pricing problems linear; as
a result, they depend upon the computation of conditional expectations for which
knowledge of the transition function is essential. Also, inference strategies relying
on maximum-likelihood or Bayesian methods require the transition density of the
process. Specification testing procedures for stochastic processes also make use
of the transition densities (see, e.g., [1, 3, 7, 8, 18] and [24]). All these models,
estimation methods and tests assume that the process is Markovian.

Stochastic volatility models are a very broad class of non-Markovian models,
due to the latency of the volatility state variable. They have been popular in finan-
cial asset pricing and modeling (see, e.g., [17]). Parameters in stochastic volatility
models are much harder to estimate and the associated pricing formulas are also
different from those based on Markovian diffusion models and depend on the as-
sumptions made on the correlation structure between the innovations to prices and
volatility (as in, e.g., [23]). Other examples include models for the term struc-
ture of interest rates, which may be Markovian or not (see, e.g., [22]), and, in
fact, one popular approach in mathematical finance consists of restricting term
structure models to be Markovian (see, e.g., [6]). In other words, many financial
econometrics models are based on the Markovian assumption and this fundamental
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assumption needs to be tested before they can be applied. In all these cases, test-
ing whether the underlying process is Markovian is essential in helping to decide
which family of models to use and whether a diffusion model is adequate.

We will propose test statistics for this purpose. Asymptotic null distributions
of test statistics are established and we show that Wilks’s phenomenon holds for
several of those test statistics. The power functions of the tests are also computed
for contiguous alternatives. We find that the proposed tests can detect alternatives
with an optimal rate in the context of nonparametric testing procedures.

The remainder of the paper is organized as follows. In Section 2, we briefly
describe the nonparametric estimation of the transition functions of the process. In
Section 3, we propose several test statistics for checking the Markov hypothesis. In
Section 4, we establish their asymptotic null distributions and compute their power.
Simulation results are reported in Section 5. Technical conditions and proofs of the
mathematical results are given in Section 6.

2. Nonparametric estimation of the transition density and distribution
functions. To estimate nonparametrically the transition density of observed
process X, we use the locally linear method suggested by [14]. The process X

is sampled at regular time points {i�, i = 1, . . . , n + 2}. We make the dependence
on the transition function and related quantities on � implicit by redefining

Xi = Xi�, i = 1, . . . , n + 2,

which is assumed to be a stationary and β-mixing process.
For ease of exposition, we describe the estimation of the transition density and

distribution when m = 1, that is, X is a process on the line. We also define Yi =
Yi� = X(i+1)� and Zi = Zi� = X(i+2)�. Let b1 and b2 denote two bandwidths
and K and W two kernel functions. Observe that as b2 → 0

E[Kb2(Zi − z)|Yi = y] ≈ p(z|y,�),(2)

where Kb2(z) = K(z/b2)/b2 and p(z|y,�) is the transition density of X(i+1)�

given Xi�. The left-hand side of (2) is the regression function of the random vari-
able Kb2(Zi − z) given Yi = y. Hence, locally linear fit can be used to estimate
this regression function. For each given x, one minimizes

n∑
i=1

{Kb2(Zi − z) − α − β(Yi − y)}2Wb1(Yi − y)(3)

with respect to the the local parameters α and β , where Wb1(z) = W(z/b1)/b1.
The resulting estimate of the conditional density is simply α̂. The estimator can be
explicitly expressed as

p̂(z|y,�) = n−1
n∑

i=1

Wn(Yi − y, y;b1)Kb2(Zi − z),(4)
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where Wn is the effective kernel induced by the local linear fit. Explicitly, it is
given by

Wn(z, y;b1) = Wb1(z)
sn,2(y) − b−1

1 zsn,1(y)

sn,0(y)sn,2(y) − s2
n,1(y)

,

where

sn,j (y) = 1

n

n∑
i=1

(
Yi − y

b1

)j

Wb1(Yi − y).

Note that the effective kernel Wn depends on the sampling data points and the
location y. This is the key to the design adaptation and location adaptation property
of the locally linear fit.

From (4), a possible estimate of the transition distribution P(z|y,�) = P(Zi <

z|Yi = y,�) is given by

P̂ (z|y,�) =
∫ z

−∞
p̂(t |y,�)dt = 1

n

n∑
i=1

Wn(Yi − y, y;b1)K̄

(
Zi − z

b2

)
,

where K̄(u) = ∫ ∞
u K(t) dt . Let b2 → 0, then

P̂ (z|y,�) = 1

n

n∑
i=1

Wn(Yi − y, y;b1)I (Zi < z),(5)

where we drop the term in which Zi = z would contribute the value K̄(0). This
does not affect the asymptotic property of P̂ . Actually, (5) is really the locally
linear estimator of the regression function

P(z|y,�) = E[I (Zi < z)|Yi = y].
3. Nonparametric tests for the Markov hypothesis in discretely sampled

continuous-time models. The tests we propose are based on the fact that, for X

to be Markovian, its transition function must satisfy the Chapman–Kolmogorov
equation in the form for densities equivalent to (1),

p(z|x,2�) = r(z|x,2�),(6)

where

r(z|x,2�) ≡
∫
y∈S

p(z|y,�)p(y|x,�)dy(7)

for all (x, z) ∈ S2.
Under time-homogeneity of the process X, the Markov hypothesis can then be

tested in the form H0 against H1, where{
H0 :p(z|x,2�) − r(z|x,2�) = 0 for all (x, z) ∈ S2,
H1 :p(z|x,2�) − r(z|x,2�) 
= 0 for some (x, z) ∈ S2.

(8)
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This test corresponds to a nonparametric null hypothesis versus a nonparametric
alternative hypothesis.

Both p(y|x,�) and p(z|x,2�) can be estimated from data sampled at in-
terval �, thanks to time homogeneity. In fact, the successive pairs of observed
data {(Xi, Yi)}n+1

i=1 form a sample from the distribution with conditional den-
sity p(y|x,�) from which the estimator p̂(y|x,�) can be constructed, and then
r̃(z|x,2�) as indicated in equation (7) can be computed. Meanwhile, the succes-
sive pairs (X1,Z1), (X2,Z2), . . . , form a sample from the distribution with con-
ditional density p(z|x,2�) which can be used to form the direct estimator by
drawing a parallel to (4)

p̂(z|x,2�) = 1

n

n∑
i=1

Wn(Xi − x, x;h1)Kh2(Zi − z),

where h1 and h2 are two bandwidths, localizing, respectively, the x- and z-domain.
In other words, the test compares a direct estimator of the 2�-interval condi-

tional density, p̂(z|x,2�), to an indirect estimator of the 2�-interval conditional
density, r̃(z|x,2�), obtained by (7). If the process is actually Markovian, then the
two estimates should be close (for some distance measure) in a sense made precise
by the use of the statistical distributions of these estimators.

If, instead of 2� transitions, we test the replicability of j� transitions, where j

is an integer greater than or equal to 2, there is no need to explore all the possible
combinations of these j� transitions in terms of shorter ones (1, j − 1), (1, j −
2), . . .: verifying equation (6), for one combination is sufficient as can be seen by
a recursion argument. In the event of a rejection of H0 in (8), there is no need to
consider transitions of order j . In general, a vector of “transition equalities” can be
tested in a single pass in a method of moments framework with as many moment
conditions as transition intervals.

We propose two classes of tests for the hypothesis problem (8) based on non-
parametric estimation of the transition densities and distributions. To be more spe-
cific, since

r(z|x,2�) = E[p(z|Yi,�)|Xi = x],(9)

the function r(z|x,2�) can also be estimated by regressing nonparametrically
p̂(z|Yi,�) on Xi . This avoids integration in (7) and makes implementation and
theoretical studies easier. Employing the local linear smoother for (9), we obtain
the following estimator:

r̂(z|x,2�) = n−1
n∑

i=1

Wn(Xi − x, x,h3)p̂(z|Yi,�),

where h3 is a bandwidth in this smoothing problem. Under H0 in (8), the logarithm
of the likelihood function is estimated as


(H0) =
n∑

i=1

log r̂(Zi |Xi,2�),



3134 Y. AÏT-SAHALIA, J. FAN AND J. JIANG

after ignoring the initial stationary density π(X1). This likelihood can be compared
with


(H1) =
n∑

i=1

log p̂(Zi |Xi,2�),

which leads to the generalized likelihood ratio (GLR) test statistic (see [16])

n∑
i=1

log{r̂(Zi |Xi,2�)/p̂(Zi |Xi,2�)}.

Since the nonparametric regression functions cannot be estimated well when
(Xi,Zi) is in the boundary region, the above GLR test statistic is reduced to

T0 =
n∑

i=1

log{r̂(Zi |Xi,2�)/p̂(Zi |Xi,2�)}w∗(Xi,Zi),

where w∗ is a weight function selected to reduce the influences of the unreliable es-
timates in the sparse region. Admittedly, 
(H1) is not the estimated log-likelihood
under H1 in (8), but is used to create a discrepancy measure. To see this, note that
under H0, p̂ and r̂ are approximately the same. By Taylor’s expansion, we have

T0 ≈
n∑

i=1

p̂(Zi |Xi,2�) − r̂(Zi |Xi,2�)

p̂(Zi |Xi,2�)
w∗(Xi,Zi)

+ 1

2

n∑
i=1

{
p̂(Zi |Xi,2�) − r̂(Zi |Xi,2�)

p̂(Zi |Xi,2�)

}2

w∗(Xi,Zi).

To avoid unnecessary technicalities, we ignore the first term and consider the sec-
ond term

T ∗
1 =

n∑
i=1

{
p̂(Zi |Xi,2�) − r̂(Zi |Xi,2�)

p̂(Zi |Xi,2�)

}2

w∗(Xi,Zi),(10)

which is the χ2-type of test statistics. A natural alternative statistic to T ∗
1 is

T1 =
n∑

i=1

{p̂(Zi |Xi,2�) − r̂(Zi |Xi,2�)}2w(Xi,Zi).(11)

The resulting test statistics T ∗
1 and T1 are discrepancy measures between p̂ and r̂

in the L2-distance. Discrepancy-measure based test statistics receive attention and
achieve success in the literature. Other discrepancy norms such as the L∞-distance
can also be investigated in the current setting. See the seminal work by [4, 5]
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and [21]. They are not qualitatively different as shown in the classical goodness
of fit tests.

Since the testing problem (8) is equivalent to the following testing problem:{
H0 :P(z|x,2�) − R(z|x,2�) = 0 for all (x, z) ∈ S2,
H1 :P(z|x,2�) − R(z|x,2�) 
= 0 for some (x, z) ∈ S2,

(12)

with, in light of (9),

R(z|x,2�) =
∫ z

−∞
r(t |x,2�)dt = E{P(z|Y,�)|X = x},

then transition distribution-based tests can be formulated too. Let P̂ (z|x,2�) be
the direct estimator for the 2�-transition distribution

P̂ (z|x,2�) = 1

n

n∑
i=1

Wn(Xi − x, x;h1)I (Zi < z).(13)

Regressing the transition distribution P(z|Xj,�) on Xj−1 yields R̂(z|x,2�):

R̂(z|x,2�) = n−1
n∑

i=1

Wn(Xi − x, x;h3)P̂ (z|Yi,�),(14)

where P̂ (z|y,�) = n−1 ∑n
i=1 Wn(Yi − y, y;b1)I (Zi < z). Similarly to (11), for

the testing problem (12), the transition distribution-based test will be

T2 =
n∑

i=1

{P̂ (Zi |Xi,2�) − R̂(Zi |Xi,2�)}2ω(Xi),(15)

where the weight function ω(·) is chosen to depend on only x-variable, because
P̂ (z|x,2�) is a nonparametric estimator of the conditional distribution function,
and we need only to weight down the contribution from the sparse regions in the
x-coordinate.

Note that the test statistic T2 involves only one-dimensional smoothing. Hence,
it is expected to be more stable than T1, and the null distribution of T2 can be
better approximated by the asymptotic null distribution. This will be justified by
the theorems in the next section.

The choice between the transition density and distribution-based tests reflects
different degrees of smoothness of alternatives that we wish to test. In a simpler
problem of the traditional goodness-of-fit tests, this has been thoroughly studied
in [10]. Essentially, the transition density-based tests are more powerful in de-
tecting local deviations whereas the transition distribution-based tests are more
powerful for detecting global deviations.
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4. Asymptotic properties.

4.1. Assumptions. We assume the following conditions. These conditions are
frequently imposed for nonparametric studies for dependent data.

ASSUMPTION (A1). The observed time series {Xi}n+2
i=1 is strictly stationary

with time-homogenous j�-transition density p(Xi+j |Xi, j�).

ASSUMPTION (A2). The kernel functions W and K are symmetric and
bounded densities with bounded supports, and satisfy the Lipschitz condition.

ASSUMPTION (A3). The weight function w(x, z) has a continuous second-
order derivative with a compact support �∗.

ASSUMPTION (A4). The stationary process {Xi} is β-mixing with the expo-
nential decay rate β(n) = O(e−λn) for some λ > 0.

ASSUMPTION (A5). The functions p(y|x;�) and p(z|x;2�) have continu-
ous second-order partial derivatives with respect to (x, y) and (x, z) on the set �∗.
The invariant density π(x) of {Xi} has a continuous second-order derivative for
x ∈ �∗

x , a project of the set �∗ onto the x-axis. Moreover, π(x) > 0, p(y|x,�) > 0
and p(z|x,2�) > 0 for all (x, y) ∈ �∗ and (x, z) ∈ �∗.

ASSUMPTION (A6). The joint density p1
(x1, x
) of (X1,X
) for 
 > 1
is bounded by a constant independent of 
. Put g1
(x1, x
) = p1
(x1, x
) −
π(x1)π(x
). The function g1
 satisfies the Lipschitz condition: for all (x′, y′) and
(x, y) in �∗,

|g1
(x, y) − g1
(x
′, y′)| ≤ C

√
(x − x′)2 + (y − y′)2.

ASSUMPTION (A7). The bandwidths his and bi are of the same order and
satisfy nh3

1/ logn → ∞ and nh5
1 → 0.

ASSUMPTION (A8). The bandwidth h1 converges to zero in such a way that
nh

9/2
1 → 0 and nh

3/2
1 → ∞.

4.2. Asymptotic null distributions. To introduce our asymptotic results, we
need the following notation. For any integrable function f (x), let ‖f ‖2 =∫

f 2(x) dx and

s(z|x,2�) =
∫

p2(z|y,�)p(y|x,�)dy = E[p2(z|Y1,�)|X1 = x].
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Note that the sampled observations {Xn+2−i}n+1
i=0 are a reverse Markov process

under the null model. We also use p∗(x|z,2�) to denote the 2�-transition density
of the reverse process, and let

s∗(x|z,2�) =
∫

p∗2(y|z,�)p∗(x|y,�)dy.

Denote by

�11 =
∫

w(x, z)p2(z|x,2�)dx dz,

�12 =
∫

w(x, z)p3(z|x,2�)dx dz,

�13 =
∫

w(x, z)s(z|x,2�)p(z|x,2�)dx dz,

�14 =
∫

w(x, z)r2(z|x,2�)p(z|x,2�)dx dz,

�15 =
∫

w(x, z)s∗(x|z,2�)p∗(x|z,2�)[π(z)/π(x)]2 dx dz,

�2 =
∫

w2(x, z)p4(z|x,2�)dx dz.

For a kernel function K(·), let K∗(·) = K ∗K(·) and Kh(·) = h−1K(·/h). Denote
by V (x, z) the conditional variance function of P(z|Y,�), given X = x. Then it is
easy to see that

�13 − �14 =
∫

w(x, z)V (x, z)p(z|x,2�)dx dz

= E{V (X,Z)w(X,Z)|X = x}.
Throughout the paper, we use the notation Tn

a∼ χ2
an

for a diverging sequence of
constants an to represent that

(Tn − an)/
√

2an
D−→ N (0,1).

THEOREM 1. Assume Conditions (A1)–(A7) hold. If {Xi} is Markovian,

(T1 − μ1)/σ1
D−→ N (0,1),

where

μ1 = �11‖W‖2‖K‖2/(h1h2) − �12‖W‖2h−1
1

+ (�13 − �14)‖W‖2/h3 + �15‖K‖2/b2,

and σ 2
1 = 2�2‖W ∗W‖2‖K ∗K‖2/(h1h2). Furthermore, r1T1

a∼ χ2
an

, where an =
r1μ1 and r1 = 2μ1/σ

2
1 .
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The test statistic T ∗
1 , as far as its null distribution is concerned, can be regarded

as a special case of T1, with the weight function w(x, z) = p−2(z|x,2�)w∗(x, z).
Correspondingly, let �∗

1j denote �1j with w(x, z) replaced by p−2(z|x,2�) ×
w∗(x, z) and �∗

2 defined similarly. Then, we have

COROLLARY 1. Under the conditions in Theorem 1 with w replaced by w∗,
r∗

1 T ∗
1

a∼ χ2
a∗
n
, where

r∗
1 = �∗

11‖W‖2‖K‖2

�∗
2‖W ∗ W‖2‖K ∗ K‖2

(
1 + o(1)

)
,

a∗
n = �∗

11
2‖W‖4‖K‖4

�∗
2‖W ∗ W‖2‖K ∗ K‖2

1

h1h2

(
1 + o(1)

)
.

The r∗
1 is asymptotically a constant depending on only the kernels and the

weight function. The degree of freedom a∗
n is independent of nuisance parameters.

This reflects that the Wilks phenomenon continues to hold in the current situation.

THEOREM 2. Under Conditions (A1)–(A6) and (A8), if {Xi} is Markovian,

(T2 − μ2)/σ2
D−→ N (0,1),

where

μ2 = 1

6h1
‖W‖2

∫
ω(x){1 + 6h1h

−1
3 E[V (X�,Z�)|X� = x]}dx,

and σ 2
2 = ‖W ∗W‖2‖ω‖2/(45h1). Furthermore, r2T2

a∼ χ2
bn

, where bn = r2μ2 and

r2 = 2μ2/σ
2
2 .

Comparing Theorems 1 and 2, it is seen that asymptotic variance of T1 is an
order of magnitude larger than that of T2. Therefore, the null distribution of T2 can
be more stably approximated than that of T1. On the other hand, the degrees of
freedom in T1 are larger than in T2, and the transition density-based tests are more
omnibus, capable of testing a wider class of alternative hypothesis.

4.3. Power under contiguous alternative models. To assess the power of the
tests, we consider the following contiguous alternative sequence for T1:

H1n :p(z|x,2�) − r(z|x,2�) = gn(x, z),(16)

where gn satisfies E[g2
n(X,Z)] = O(δ2

n) and var[g2
n(X,Z)] ≤ M(E[g2

n(X,Z)])2

for a constant M > 0 and a sequence δn going to zero as n → ∞. Then the power
of the test statistic T1 can be approximated using the following theorem.
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THEOREM 3. Under Conditions (A1)–(A7), if nh1h2δ
2
n = O(1), then under

the alternative hypothesis H1n,

(T1 − μ1 − d1n)/σ1n
D−→ N (0,1),

where d1n = nE{g2
n(X,Z)w(X,Z)}(1 + o(1)), and σ1n =

√
σ 2

1 + 4σ 2
1A with

σ 2
1A = nE[g2

n(X,Z)w2(X,Z){p(Z|X,2�) − p2(Z|X,2�)}2].

Using Theorem 1, one can construct an approximate level-α test based on T1.
Let cα be the critical value such that

P {(T1 − μ1)/σ1 ≥ cα|H0} ≤ α.

Then we have the following result, which demonstrates that the test statistic T1 can
detect alternatives at rate δn = O(n−2/5).

THEOREM 4. Under Conditions (A1)–(A6), T1 can detect alternatives with
rate δn = O(n−2/5) when h1 = c1n

−1/5 and h2 = c2n
−1/5 for some constants c1

and c2. Specifically, if δn = dn−2/5 for a constant d , then:

(i) lim sup
d→0

lim sup
n→∞

P {(T1 − μ1)/σ1 ≥ cα|H1n} ≤ α;

(ii) lim inf
d→∞ lim inf

n→∞ P {(T1 − μ1)/σ1 ≥ cα|H1n} = 1.

Similarly to (16), we consider the following alternative sequence to study of the
power of the test statistic T2:

H2n :P(z|x,2�) − R(z|x,2�) = Gn(x, z),

where Gn(x, z) satisfies E[G2
n(X,Z)] = O(ρ2

n) and var(G2
n(X,Z)) ≤ M ×

(E[G2
n(X,Z)])2 for a constant M > 0 and a sequence ρn tending to zero. Then

using the following theorem one can calculate the power of the test statistic T2.

THEOREM 5. Under Conditions (A1)–(A6) and (A8), if nh1h3ρ
2
n = O(1),

then under the alternative hypothesis H2n,

(T2 − μ2 − d2n)/σ2n
D−→ N (0,1),

where d2n = nE[G2
n(X,Z)ω(X)] + O(nh2

1ρn + ρnh
−1
1 ), σ 2

2n = σ 2
2 + 4σ 2

2A and

σ 2
2A = nE

[∫
Gn(X,Z)ω(X)I (Z < z)P (dz|X,2�)

]2

− nE

[∫
Gn(X,Z)ω(X)P (z|X,2�)P (dz|X,2�)

]2
.
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In a manner parallel to Theorem 4, the following theorem demonstrates the
optimality of the test.

THEOREM 6. Under Conditions (A1)–(A6), T2 can detect alternatives with
rate ρn = O(n−4/9) when h1 = c∗n−2/9 for some constant c∗.

From Theorem 6, T2 can detect alternatives at rate O(n−4/9). Using an argument
similar to [11], we can also establish the minimax rate, O(n−4/9), of the test. Note
that the rate is optimal according to [26, 27] and [29]. Compared with Theorem 4,
it is seen that T2 is more powerful than T1 for testing the Markov hypothesis. This
is due to the fact that the alternative under consideration for T2 is global, namely,
the density under the alternative is basically globally shifted away from the null
hypothesis. On the other hand, T1 and T ∗

1 are more powerful than T2 for detecting
local features of the alternative hypothesis. We will now explore these features in
simulations.

5. Simulations. An important application of our test methods is to verify the
Markov property in the context where the null model is a diffusion process, since
it is often assumed in modern financial theory and practice that the observation
process comes from an underlying diffusion. Hence, we consider simulations for
the diffusion models.

To use the test statistics, one needs to find their null distributions. Theoretically
the asymptotic null distributions may be used to determine the p-values of the test
statistics. However, in practical applications the asymptotic distributions do not
necessarily give accurate approximations, since the local sample size nh1h2 may
not be large enough. This phenomenon is shared by virtually all nonparametric
kinds of tests where some form of functional estimation is used.

We will mainly focus on the finite sample performance of the test statistic T ∗
1 ,

since it possesses the Wilks property which facilitates bandwidth selection and
determination of the null distribution using a bootstrap method. Since the asymp-
totic null distribution of T ∗

1 is independent of nuisance parameters/functions under
the null hypothesis, for a finite sample it does not sensitively depend on the nui-
sance parameters/functions. Therefore, the null distribution can be approximated
by bootstraps, by fixing nuisance parameters/functions at their reasonable esti-
mates, as in [12] in a different context.

In general, different bootstrap approximations to the null distributions are
needed for different null models, partially due to the large family of null mod-
els with the Markov property. We will illustrate this method for the Ornstein–
Uhlenbeck model, which in financial mathematics is used for instance as the [30]
model for interest rates. For other parametric models, our approach can similarly
be applied.

The Ornstein–Uhlenbeck model employed as the null hypothesis is

dXt = κ(α − Xt) dt + σ dWt,(17)
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where Wt is a Brownian motion, and the parameters are set as κ = 0.2, α = 0.085,

σ = 0.08, which are realistic for interest rates over long periods. We simulated
the model 1000 times. In each simulation, we draw a sample with sample size
n = 2400 and weekly sampling interval � = 1/52 using for this purpose a higher
frequency Euler approximation, or an exact discretization. The bandwidth selec-
tion for the test statistic T ∗

1 is performed using the simple empirical rule pro-
posed by [25]. Alternative methods include the cross-validation approaches of [15]
and [20], but their computation is intensive especially when repeated many times
in Monte Carlo.

Given a sample from the model, we fit the model using the least squares method
and obtain the residuals of the fit, and then generate bootstrap samples using the
residual-based bootstrap method. For each simulation, we obtained three bootstrap
samples (this is merely for the reduction of computation cost; using more samples
will not fundamentally alter the results) and computed the test statistic T ∗

1 using
the same bandwidths as the original sample in the simulation. Pooling together
the bootstrap samples from each simulation, we obtained 3000 bootstrap statistics.
Their sampling distributions, computed via the kernel density estimate, is taken
as the distribution of the bootstrap method. By using the kernel density estimation
method, the distribution of the realized values of the test statistic T ∗

1 in simulations
is obtained as the true distribution (except for the Monte Carlo errors).

Figure 1 displays the estimated densities for T ∗
1 . Not surprisingly, the boot-

strapped distributions get much closer to the true ones as the sample sizes increase.
In our experience, the bootstrap approximations start to become adequate for sam-
ple sizes starting at about 2400.

FIG. 1. Estimated densities. Left panel: n = 1200; right panel: n = 2400. Solid—true, dotted—the
bootstrap approximation.
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To investigate the power of the test statistics, we employ various sequences of
alternatives indexed by a parameter θ = 0, 0.2, 0.4, 0.6, 0.8, 1.0. One of the
main ways for an otherwise Markovian model to become non-Markovian is to
restrict too much its state space. For instance, consider a bivariate diffusion model.
Taken jointly, the two components are Markovian, but taken in isolation a single
component may not be:

1. Alternative model with missing state variable in the drift: we first consider the
situation where the null model (17) is missing a state variable, in this case X

mean-revers to the stochastic level θαt + (1 − θ)α under the alternative

H1θ :dXt = κ
(
θαt + (1 − θ)α − Xt

)
dt + σ dWt,

where αt is the random process

dαt = κ1(a − αt) dt + σ1 dBt ,

with Bt a the Brownian motion independent of Wt , κ1 = κ/s, a = sα, and σ1 =
σ/2, with s = 100 and 10. When θ 
= 0, the alternatives are non-Markovian.
The results in the first part of Table 1 show that the test statistic rejects the null
hypothesis when the observations are drawn under H1θ .

2. Alternative model with missing state variable in volatility: next, we consider
alternative models where volatility is stochastic,

H2θ :dXt = κ(α − Xt) dt + (
(1 − θ)σ + θσt

)
dWt,

where σt = √
Yt is a random process following the [9] model

dYt = κ2(b − Yt ) dt + σ2Y
1/2
t dB2t ,

where B2t is a standard Brownian motion independent of Wt , κ2 = κ/s, b = sα

and σ2 = σ/2, with s = 1000, 100 and 10. When θ 
= 0, the alternatives are also
non-Markovian.

3. Alternative model with missing state variable in jumps: finally, we consider a
model with compound Poisson jumps

H3θ :dXt = κ(α − Xt) dt + σ dWt + Jt dNt(θ),

TABLE 1
Power of the test against H1θ

Parameter θ

s Level α 0.0 0.2 0.4 0.6 0.8 1.0

100 0.01 0.011 1 1 1 1 1
0.05 0.055 1 1 1 1 1

10 0.01 0.011 0.010 0.070 0.228 0.580 0.846
0.05 0.055 0.019 0.123 0.549 0.901 0.989
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where Nt(θ) is a Poisson process with stochastic intensity θ and jump size 1,
while Jt is a the jump size. We will consider two types of jump sizes:
(i) Jt is independent of Ft and follows N(0, σ 2

1 ) with σ1 = σ/2, which makes
H3θ Markovian;

(ii) Jt follows the CIR model

dJt = κ(a − Jt ) dt + σ1J
1/2
t dB3t ,

where B3t is a standard Brownian motion independent of Wt , K = 0.2,
a = 0.085 and σ1 = 0.08/2. Then Jt is not independent of Ft . This leads
to alternatives H3θ which are not Markovian for θ 
= 0.

The alternative models considered here are β-mixing. For example, in the first
alternative H1θ , the joint process (Xt , αt ) is an affine process and it is β-mixing.
Hence, Xt is β-mixing. A similar argument applies to two other alternatives. In
fact, for the first alternative H1θ , the time series (Xi�,αi�) can be written as a bi-
variate autoregressive model. Hence, it is β-mixing with the choice of parameters.
Note that for all of the above alternatives, when θ is small, the null and alternative
models are nearly impossible to differentiate. In the limit where θ = 0, the null
and the alternative are identical. Therefore, it can be expected that, when θ = 0,
the power of test should be close to the significance level; and as θ deviates more
from 0, the power should increase. Also we can expect that our tests will be able
to detect only the type (ii) jumps but not the type (i) jump, since for the type (i)
jump the alternatives are Markovian.

The simulated powers are reported in Tables 1–3. The null distribution of the
normalized test statistics does not depend sensitively on choice of bandwidth,
whereas the power depends on the choice of bandwidth and the alternative under
consideration. As expected, our test is fairly powerful for detecting non-Markovian
alternatives Hkθ (k = 1,2,3), at least in situations where the alternative is suffi-
ciently far from the null. For H3θ , the test has, as it should, no power to identify
the type (i) alternatives but is powerful for discriminating against the type (ii) al-
ternatives. This illustrates well the sensitivity and specificity of our tests.

TABLE 2
Power of the test against H2θ

Parameter θ

s Level α 0.0 0.2 0.4 0.6 0.8 1.0

1000 0.01 0.013 0.402 0.660 0.762 0.813 0.817
0.05 0.067 0.557 0.768 0.845 0.878 0.905

100 0.01 0.013 0.028 0.183 0.372 0.492 0.573
0.05 0.067 0.098 0.340 0.527 0.627 0.697

10 0.01 0.013 0.007 0.020 0.017 0.032 0.088
0.05 0.067 0.037 0.052 0.070 0.122 0.218
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TABLE 3
Power of the test against H3θ

Parameter θ

Jump type Level α 0.0 0.2 0.4 0.6 0.8 1.0

(i) 0.01 0.010 0.009 0.023 0.003 0.016 0.009
0.05 0.059 0.048 0.054 0.054 0.058 0.056

(ii) 0.01 0.010 0.514 0.774 0.888 0.940 0.951
0.05 0.059 0.533 0.796 0.894 0.946 0.961

6. Technical proofs.

6.1. Technical lemmas. We now introduce some technical lemmas, the proofs
of which can be found in the supplemental material of this paper. To save space,
some notation in the lemmas will appear later in the course of proofs of the main
theorems.

LEMMA 1. Suppose that W is symmetric and continuous with a bounded sup-
port. If h → 0 and nh → ∞, then

Wn(z, x;h) =
{

1

μ0(W)π(x)
− z

h

hπ ′(x)

π2(x)μ0(W)
+ Op(ρn(h))

}
Wh(z)

+ Op(ρn(h))
z

h
Wh(z),

uniformly for x ∈ �∗, where Op(ρn(h)) does not depend on z, where μ0(W) =∫
W(u)du.

LEMMA 2. Under Conditions (A1)–(A6):

(i) for k = 0,1,

sup
(y,z)∈�∗

∣∣∣∣∣n−1
n∑

i=1

b−k
1 (Yi − y)kWb1(Yi − y)εi(z)

∣∣∣∣∣ = O
{√

(logn)/(nb1b2)
};

(ii) for k = 0,1,

sup
(x,z)∈�∗

∣∣∣∣∣1

n

n∑
j=1

h−k
3 (Xj − x)kWh3(Xj − x)ej (z)

∣∣∣∣∣ = Op

{√
log(n)/(nh3)

};
(iii) sup(x,z)∈�∗ | 1

n

∑n
j=1 q∗(x,Zj )εj+1(z)| = Op{√log(n)/(nb2)};

(iv) sup(x,z)∈�∗ | 1
n

∑n
j=1 Wh1(Xj − x)ε∗

j (z)| = Op{√(logn)/(nh1h2)}.
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LEMMA 3. Under Conditions (A1)–(A6), we have

ξn(x, y) ≡ 1

n

n∑
i=1

rn1(x,Yi)εi(z) = Op

(√
n−1b1 logn

)
,

uniformly for (x, z) ∈ �∗, where rn1 is defined right after (32).

LEMMA 4. Suppose Conditions (A1)–(A5) hold. Then

ηn(x, z) ≡ n−1
n∑

i=1

r∗
n(x,Yi)εi(z) = O

{√[(b4
1 + h4

3) logn]/(nb2)
}
,

uniformly for (x, y) ∈ �∗, where r∗
n(·, ·) is defined in (34).

LEMMA 5. Under Conditions (A1)–(A6):

(i)
∑

1≤i<j≤n[ψ̃(i, j) − ψ̃(i) − ψ̃(j) + ψ̃(0)] = op(h−1
1 );

(ii) (n − 1)
∑n

i=1[ψ̃(i) − ψ̃(0)] = op(h−1
1 ).

LEMMA 6. Assume Conditions (A1)–(A5) hold. Then we have:

(i) under Condition (A6),
1
2n(n − 1)ψ̃(0) = �11‖W‖2‖K‖2/(h1h2) − �12‖W‖2/h1

+ �13‖W‖2/h3 − �14‖W‖2/h3

+ �15‖K‖2/b2 + O(n−2);
(ii) under Condition (A7),

1

2
n(n − 1)φ̃(0)

= 1

6h1
‖W‖2

∫
ω(x){1 + 6h1h

−1
3 E[V (X�,Z�)|X� = x]}dx + O(1).

LEMMA 7. Assume that Conditions (A1)–(A5) hold. Then we have:

(i) under Condition (A6),

σ−1
1n

∑
1≤i<j≤n

ψ∗(i, j)
D−→ N (0,1),

where σ 2
1n = 2�2‖W ∗ W‖2‖K ∗ K‖2/(n2h1h2);

(ii) under Condition (A7),

σ−1
2n

∑
1≤i<j≤n

φ∗(i, j)
D−→ N (0,1),

where σ 2
2n = ‖W ∗ W‖2‖w‖2/(45n2h1).
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6.2. Preliminaries. Since the test statistics T1 and T ∗
1 compare the difference

between p̂(z|x,2�) and r̂(z|x,2�), we derive an asymptotic expression for this
difference under H0 before giving the proofs of theorems. In addition, in order to
streamline our arguments, we will introduce some technical lemmas and put them
behind the proofs of theorems. The arguments employed here use techniques from
the U -statistic and nonparametric smoothing.

First let us introduce some notation. Let ρn(h) = h2 + √
logn/(nh), μ0(W) =∫

W(x)dx and μ2(W) = ∫
x2W(x)dx. Denote by m(y, z) = E{Kb2(Zj −z)|Yj =

y}, m∗(x, z) = E{Kh2(Zj − z)|Xj = x}, m1(y, z) = ∂m(y, z)/∂y and m∗
1(x, z) =

∂m∗(x, z)/∂x.
Using an elementary property of the local linear smoother (see, e.g., [13]), we

obtain that

p̂(z|x,2�) − p(z|x,2�) = A∗
n(x, z) + B∗

n(x, z) + C∗
n(x, z),(18)

where ε∗
j (z) = Kh2(Zj − z) − m∗(Xj , z),

A∗
n(x, z) = 1

n

n∑
j=1

Wn(Xj − x, x;h1)ε
∗
j (z),

B∗
n(x, z) = 1

n

n∑
j=1

Wn(Xj − x, x;h1)

(19)
× {m∗(Xj , z) − m∗(x, z) − m∗

1(x, z)(Xj − x)},
C∗

n(x, z) = m∗(x, z) − p(z|x,2�).

By a second-order Taylor expansion,

B∗
n(x, z) = 1

n

n∑
j=1

Wn(Xj − x, x;h1)
h2

1

2
m∗

2(x̃j , z)

(
Xj − x

h1

)2

,

where m∗
2(x̃, z) = ∂2m∗(x,z)

∂2x
|x=x̃j

, and x̃j lies between Xj and x. By [14], it is easy
to show that

B∗
n(x, z) = Op(h2

1) and C∗
n(x, z) = Op(h2

2),(20)

uniformly for (x, z) ∈ �∗. By the definition of r̂ , we have

r̂(z|x,2�) − r(z|x,2�) = Ln1(x, z) + L∗
n1(x, z),(21)

where

Ln1(x, z) = 1

n

n∑
j=1

Wn(Xj − x, x;h3){p̂(z|Yj ,�) − p(z|Yj ,�)},

L∗
n1(x, z) = 1

n

n∑
j=1

Wn(Xj − x, x;h3){p(z|Yj ,�) − r(z|x,2�)}.
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Subtracting (21) from (18), we obtain that, under H0 :p(z|x,2�) = r(z|x,2�),

p̂(z|x,2�) − r̂(z|x,2�) = A∗
n(x, z) + B∗

n(x, z) + C∗
n(x, z)

(22)
− Ln1(x, z) − Ln2(x, z) − Ln3(x, z),

where

Ln2(x, z) = n−1
n∑

j=1

Wn(Xj − x, x;h3){p(z|Yj ,�) − r(z|Xj,2�)},

Ln3(x, z) = n−1
n∑

j=1

Wn(Xj − x, x;h3){r(z|Xj,2�) − r(z|x,2�)}.

By the continuity of ∂2r(z|x,2�)/∂x2, it is easy to show that

Ln3(x, z) = Op(h2
3) uniformly for (x, z) ∈ �∗.(23)

Therefore, by (20), (22) and (23),

p̂(z|x,2�) − r̂(z|x,2�)
(24)

= [A∗
n(x, z) − Ln2(x, z)] − Ln1(x, z) + Op

( 3∑
i=1

h2
i

)
.

Let ej (z) = p(z|Yj ,�) − r(z|Xj,2�). Then it can be rewritten that

Ln2(x, z) = 1

n

n∑
j=1

Wn(Xj − x, x;h3)ej (z).(25)

Note that r(z|Xj,2�) = E{p(z|Yj ,�)|Xj }. It follows that E[ej (z)|Xj ] = 0 and
Var[ej (z)] = O(1) uniformly for z and j = 1, . . . , n. Applying Lemma 1 with
z = Xj − x and h = h3, we obtain that

Wn(Xj − x, x;h3)

=
{

1

μ0π(x)
− Xj − x

h3

h3π
′(x)

π2(x)μ0
+ Op(ρn(h3))

}
Wh3(Xj − x)(26)

+ Op(ρn(h3))
Xj − x

h3
Wh3(Xj − x),

uniformly for x ∈ �∗, where Op(ρn(h3)) does not depend on j . Therefore,

Ln2(x, z) = Ln21(x, z) − Ln22(x, z) + Ln23(x, z) + Ln24(x, z),
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where

Ln21(x, z) = 1

μ0(W)π(x)
n−1

n∑
j=1

Wh3(Xj − x)ej (z),

Ln22(x, z) = h3π
′(x)

μ0(W)π2(x)
n−1

n∑
j=1

Xj − x

h3
Wh3(Xj − x)ej (z),

Ln23(x, z) = Op(ρn(h3))n
−1

n∑
j=1

Wh3(Xj − x)ej (z),

Ln24(x, z) = Op(ρn(h3))n
−1

n∑
j=1

Xj − x

h3
Wh3(Xj − x)ej (z).

By Lemma 2(ii), we have Ln21(x, z) = Op{√(logn)/(nh3)} and

Ln22(x, z) = Op

{
h3

√
(logn)/(nh3)

} = Op

{√
(h3 logn)/n

}
,

uniformly for (x, z) ∈ �∗. Then

Ln23(x, z) = Op

{
ρn(h3)

√
(logn)/(nh3)

} = op

{√
(h3 logn)/n

}
and Ln24(x, z) = op{√(h3 logn)/n}, uniformly for (x, z) ∈ �∗. Then

Ln2(x, z) = 1

μ0(W)π(x)

1

n

n∑
j=1

Wh3(Xj − x)ej (z) + Op

{√
(h3 logn)/n

}
,

uniformly for (x, z) ∈ �∗. Note that from (19) and (25)

A∗
n(x, z) − Ln2(x, z) = 1

n

n∑
j=1

[Wn(Xj − x, x;h1)ε
∗
j (z)(27)

− Wn(Yj − x, x;h3)ej+1(z)] + rn(x, z),(28)

where

rn(x, z) = −1

n
Wn(X1 − x, x;h3)e1(z) + 1

n
Wn(Yn − x, x;h3)en+1(z),

which is of order Op(1/(nh3)) = op{√(h3 logn)/n}, uniformly for (x, z) ∈ �∗.
Let εi(z) = Kb2(Zi − z) − m(Yi, z). Then, similarly to (18), we have

p̂(z|y,�) − p(z|y,�) = An(y, z) + Bn(y, z) + Cn(y, z),(29)

where An(y, z) = n−1 ∑n
i=1 Wn(Yi − y, y;b1)εi(z), Bn(y, z) = Op(b2

1) and
Cn(y, z) = Op(b2

1), uniformly for (y, z) ∈ �∗. It follows from the definition of
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Ln1 that

Ln1(x, z) = n−1
n∑

i=1

Wn(Xj − x, x;h3)An(Yj , z)

(30)

+ n−1
n∑

i=1

Wn(Xj − x, x;h3)[Bn(Yj , z) + Cn(Yj , z)].

Using Lemma 1, we get

An(y, z) = An1(y, z) − An2(y, z) + An3(y, z) + An4(y, z),

where

An1(y, z) = 1

μ0π(y)
n−1

n∑
i=1

Wb1(Yi − y)εi(z),

An2(y, z) = b1π
′(y)

μ0π2(x)
n−1

n∑
i=1

Yi − y

b1
Wb1(Yi − y)εi(z),

An3(y, z) = Op(ρn(b1))n
−1

n∑
i=1

Wb1(Yi − y)εi(z),

An4(y, z) = Op(ρn(b1))n
−1

n∑
i=1

Yi − y

b1
Wb1(Yi − y)εi(z).

Using Lemma 2(i), we obtain that

An3(y, z) = Op(ρn(b1))Op

(√
logn

nb1b2

)
and

An4(y, z) = Op(ρn(b1))Op

(√
logn

nb1b2

)
,

uniformly for (y, z) ∈ �∗. Then

An(y, z) = An1(y, z) − An2(y, z) + Op(ρn(b1))
√

(logn)/(nb1b2),

uniformly for (y, z) ∈ �∗. This, combined with (30) and Condition (A6), yields
that

Ln1(x, z) = Ln11(x, z) − Ln12(x, z) + Ln13(x, z) + Op{(logn)/(nb
3/2
1 )},(31)

where Ln11(x, z) = n−1 ∑n
j=1 Wn(Xj − x, x;h3)An1(Yj , z),

Ln12(x, z) = n−1
n∑

j=1

Wn(Xj − x, x;h3)An2(Yj , z),

Ln13(x, z) = n−1
n∑

j=1

Wn(Xj − x, x;h3)[Bn(Yj , z) + Cn(Yj , z)].
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Note that, by Lemma 2(i), An1(y, z) = Op{√(logn)/(nb1b2)}, uniformly for
(y, z) ∈ �∗. Using Lemma 1, we obtain that

Ln11(x, z) = Mn11(x, z) + Mn12(x, z) + Op{(logn)/(nb
3/2
1 )},(32)

where

Mn11(x, z) = 1

μ2
0π(x)

1

n2

n∑
j=1

n∑
i=1

Wh3(Xj − x)Wb1(Yi − Yj )π
−1(Yj )εi(z),

Mn12(x, z) = h3π
′(x)

μ2
0π

2(x)

1

n2

n∑
j=1

n∑
i=1

Xj − x

h3
Wh3(Xj − x)Wb1(Yi − Yj )

× π−1(Yj )εi(z).

Let

M∗
n11(x, y) = n−1

n∑
j=1

Wh3(Xj − x)Wb1(y − Yj )π
−1(Yj ),

gn(x, y) = E[M∗
n11(x, y)] and rn1(x, y) = M∗

n11(x, y) − gn(x, y). Then

Mn11(x, z) = 1

μ2
0π(x)

1

n

n∑
i=1

gn(x,Yi)εi(z) + 1

μ2
0π(x)

1

n

n∑
i=1

rn1(x,Yi)εi(z).

By Lemma 3,

Mn11(x, z) = 1

μ2
0π(x)

1

n

n∑
i=1

gn(x,Yi)εi(z) + Op

{√
(b1 logn)/n

}
,(33)

uniformly for (x, z) ∈ �∗. Similarly to Lemma 2(iii), the first term on the right-
hand side of (33) is Op{√(logn)/(nb2)}, uniformly for (x, z) ∈ �∗. Hence,

sup
(x,z)∈�∗

|Mn11(x, z)| = Op

{√
(logn)/(nb2)

}
.

Similarly, we have

sup
(x,z)∈�∗

|Mn12(x, z)| = Op

{
h3

√
(logn)/(nb2)

} = Op

{√
(b1 logn)/n

}
.

By the symmetry of the kernel function and Taylor’s expansion, it can be shown
that

gn(x, y) = E[π−1(Y1)Wb1(y − Y1)Wh3(X1 − x)]
= μ2

0p(y|x,�)π(x)/π(y) + O(b2
1 + h2

3)

≡ μ2
0p

∗(x|y,�) + O(b2
1 + h2

3),
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uniformly for (x, y) ∈ �∗, where p∗(x|y,�) is the one-� transition density of the
reverse series {Xn+2−i}n+1

i=1 , that is, the conditional density of X1 given Y1 = y.
Note that gn is a deterministic function. It follows that

gn(x,Yi) = μ2
0p

∗(x|Yi,�) + r∗
n(x,Yi),(34)

where r∗
n(x,Yi) is σ(Yi)-measurable and is of order O(b2

1 + h2
3) for (x,Yi) ∈ �∗.

This combined with (33) leads to

Ln11(x, z) = 1

n

n∑
i=1

q∗(x,Yi)εi(z) + O(1)

n

n∑
i=1

r∗
n(x,Yi)εi(z)

(35)
+ Op

({logn/(nb
3/2
1 )} + {b1(logn)/n}1/2)

,

where q∗(x, y) = p(y|x,�)/π(y). The first term in (35) is obviously

1

n

n∑
i=1

q∗(x,Zi)εi+1(z) + Op

(
1

nb1

)
.

By Lemma 4, the second term in (35) is Op(
√

(b4
1 + h4

3) log(n)/(nb2)), uniformly
for (x, z) ∈ �∗. Then uniformly for (x, z) ∈ �∗,

Ln11(x, z) = 1

n

n∑
i=1

q∗(x,Zi)εi+1(z) + Op

({logn/(nb
3/2
1 )} + {b1(logn)/n}1/2)

.

In the same argument, Ln12(x, z) is dominated by Ln11(x, z) and is of order

b1Ln11(x, z) = Op

({logn/(nb
3/2
1 )} + {b1 logn/n}1/2)

,

which combined with (31) leads to

Ln1(x, z) = 1

n

n∑
i=1

q∗(x,Zi)εi+1(z) + Ln13(x, z)

(36)
+ Op

({logn/(nb
3/2
1 )} + {b1 logn/n}1/2)

,

uniformly for (x, z) ∈ �∗. This together with (24) and (27) yields the following
asymptotic expression:

p̂(z|x,2�) − r̂(z|x,2�) = Tn1(x, z) + Tn2(x, z) + Tn3(x, z) + Tn4(x, z),(37)

where

Tn1(x, z) = 1

n

n∑
j=1

[Wn(Xj − x, x;h1)ε
∗
j (z)

− Wn(Yj − x, x;h3)ej+1(z) − q∗(x,Zj )εj+1(z)],
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Tn2(x, z) = n−1
n∑

j=1

Wn(Xj − x, x;h3)[Bn(Yj , z) + Cn(Yj , z)],

Tn3(x, z) = B∗
n(x, z) + C∗

n(x, z) + Ln3(x, z),

Tn4(x, z) = Op

({logn/(nh
3/2
1 )} + {b1 logn/n}1/2 + {logn/(nb

3/2
1 )}),

uniformly for (x, z) ∈ �∗.

6.3. Proofs of theorems. We now give the proofs of our main results.

PROOF OF THEOREM 1. (i) Approximate T1 by a U -statistic. Let wi =
w(Xi,Zi). By (37) and the definition of T1, we have

T1 =
n∑

i=1

wi[Tn1(Xi,Zi) + Tn2(Xi,Zi) + Tn3(Xi,Zi) + Tn4(Xi,Zi)]2

=
n∑

i=1

4∑
k=1

wiT
2
nk(Xi,Zi) + 2

n∑
i=1

wiTn1(Xi,Zi)Tn2(Xi,Zi)

+ 2
n∑

i=1

wiTn1(Xi,Zi)Tn3(Xi,Zi) + 2
n∑

i=1

wiTn2(Xi, Yi)Tn3(Xi, Yi)

+ 2
n∑

i=1

wi[Tn1(Xi,Zi) + Tn2(Xi,Zi) + Tn3(Xi,Zi)]Tn4(Xi,Zi)

≡ T11 + T12 + T13 + T14 + T15.

By Lemmas 1 and 2, Tn1(x, z) = Op{√(logn)/(nh1h2)}. Note that Tn2(x, z) =
Op(b2

1), Tn3(x, z) = Op(h2
1), uniformly for (x, z) ∈ �∗. It is straightforward to

verify that T14 = Op(nh4
1) = o(1/h1), T15 = op(1/

√
h1h2). Using the same argu-

ment as for (B.2) in [3], we obtain T12 = op(1/
√

h1h2) and T13 = op(1/
√

h1h2).
Therefore,

T1 =
n∑

i=1

4∑
k=1

wiT
2
nk(Xi,Zi) + op(h−1

1 ).

Note that
n∑

i=1

wiT
2
n2(Xi,Zi) = Op(nh4

1) = op(1/h1),

n∑
i=1

wiT
2
n3(Xi,Zi) = op(1/h1)
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and
n∑

i=1

wiT
2
n4(Xi,Zi) = op(1/h1).

It follows that

T1 =
n∑

i=1

wiT
2
n1(Xi,Zi) + op(h−1

1 )

≡ T̃1 + op(h−1
1 ).

It can be rewritten that

T̃1 =
n∑

i=1

wi[B∗
n1(Xi,Zi) − B∗

n2(Xi,Zi) − Bn3(Xi,Zi)]2,

where B∗
n1(x, z) = 1

n

∑n
j=1 Wn(Xj − x, x;h1)ε

∗
j (z),

B∗
n2(x, z) = 1

n

n∑
j=1

Wn(Yj − x, x;h3)ej+1(z)

and

Bn3(x, z) = 1

n

n∑
j=1

q∗(x,Zj )εj+1(z)

= 1

n

1

π(x)

n∑
j=1

p(Zj |x,�)π(x)π−1(Zj )εj+1(z).

Applying Lemmas 1 and 2 and using Condition (A5), we obtain that

T̃1 =
n∑

i=1

wi{Bn1(Xi,Zi) − Bn2(Xi,Zi) − Bn3(Xi,Zi)}2 + op(h−1
1 ),

where Bn1(x, z) = 1
n

1
π(x)

∑n
j=1 Wh1(Xj − x)ε∗

j (z) and

Bn2(x, z) = 1

n

1

π(x)

n∑
j=1

Wh3(Yj − x)ej+1(z).

Hence,

T1 =
n∑

i=1

wi{Bn1(Xi,Zi) − Bn2(Xi,Zi) − Bn3(Xi,Zi)}2 + op(h−1
1 ).

Let ξ(i, j) = Wh1(Xj −Xi)ε
∗
j (Zi)−Wh3(Yj −Xi)ej+1(Zi)−q(Xi,Zj )εj+1(Zi)

and

ψ(i, j, k) = n−2wiπ
−2(Xi)ξ(i, j)ξ(i, k),
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where q(x, z) = p(z|x,�)π(x)/π(z) = p∗(x|z,�). Then

T1 =
n∑

i,j,k=1

ψ(i, j, k) + op(h−1
1 ).

(ii) Derive the asymptotics using the asymptotic theory for the U-statistic. Let

B11 = ∑
i<j<k

{ψ(i, j, k) + ψ(i, k, j) + ψ(j, i, k)

+ ψ(j, k, i) + ψ(k, i, j) + ψ(k, j, i)},
B12 = ∑

i 
=j

[ψ(i, j, j) + ψ(j, i, j) + ψ(j, j, i)]

and

B13 =
n∑

i=1

ψ(i, i, i).

Then

T1 = B11 + B12 + B13 + op(h−1
1 ).(38)

Let ψ∗(i, j, k) = ψ(i, j, k) + ψ(i, k, j) + ψ(j, i, k) + ψ(j, k, i) + ψ(k, i, j) +
ψ(k, j, i). Then ψ∗(i, j, k) is symmetrical about (i, j, k), and hence B11 =∑

i<j<k ψ∗(i, j, k). Using Hoeffding’s decomposition, we obtain that

B11 = ∑
i<j<k

�(i, j, k) + (n − 2)
∑

1≤i<j≤n

ψ∗(i, j),(39)

where

�(i, j, k) = ψ∗(i, j, k) − ψ∗(i, j) − ψ∗(i, k) − ψ∗(j, k),

ψ∗(i, j) = ∫
ψ∗(i, j, k) dF (xk, yk, zk) and F is the distribution of (Xk,Yk,Zk).

Applying the lemma with δ = 1/3 in [19], we can show that E{∑i<j<k �(i, j,

k)}2 = o(h−2
1 ). Therefore, the first term on the right-hand side of (39) is op(h−1

1 ),
so that

B11 = (n − 2)
∑

1≤i<j≤n

ψ∗(i, j) + op(h−1
1 ).(40)

By the Markovian property of {Xi}, E[ψ∗(i, j)] = 0. Hence, up to a ignorable
term of order op(h−1

1 ), B11 is a U -statistic with mean zero. Define ψ̃(i, j) =
ψ(i, i, j) + ψ(i, j, i) + ψ(j, i, i) + ψ(j, j, i) + ψ(j, i, j) + ψ(i, j, j), ψ̃(i) =∫

ψ̃(i, j) dF (xj , yj , zj ) and ψ̃(0) = E[ψ̃(i)]. Then we have

B12 = ∑
1≤i<j≤n

ψ̃(i, j).
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Since ψ̃(i, j) is a symmetrical kernel, using the Hoeffding decomposition, we ob-
tain that

B12 = ∑
1≤i<j≤n

[ψ̃(i, j) − ψ̃(i) − ψ̃(j) + ψ̃(0)]
(41)

+ (n − 1)

n∑
i=1

[ψ̃(i) − ψ̃(0)] + 1

2
n(n − 1)ψ̃(0).

By Lemma 5,

B12 = 1
2n(n − 1)ψ̃(0) + op(h−1

1 ).(42)

Note that B13 ≥ 0. By straightforward calculation on the mean of B13, it can be
shown that

B13 = Op

(
n/(n2h2

1h
2
2)

) = op(h−1
1 ).(43)

Therefore, a combination of (38) and (40)–(43) leads to

T1 = 1

2
n(n − 1)ψ̃(0) + (n − 2)

∑
1≤i<j≤n

ψ∗(i, j) + op(h−1
1 ).(44)

By Lemma 6(i),
1
2n(n − 1)ψ̃(0) = μ1 + op(h−1

1 ).

Applying Lemma 7(i), we obtain that

(n − 2)
∑
i<j

ψ∗(i, j)/σ1
D−→ N (0,1),

where σ 2
1 = 2�2‖W ∗W‖2‖K ∗K‖2/(h1h2). Therefore, the result of this theorem

holds. �

PROOF OF THEOREM 2. The proof is similar to that of Theorem 1.
(i) Asymptotic expression for P̂ (z|x,2�) − R̂(z|x,2�). By the definitions in

(13) and (14),

P̂ (z|x,2�) − P(z|x,2�) = 1

n

n∑
i=1

Wn(Xi − x, x;h1)

(45)
× [I (Zi < z) − P(z|x,2�)],

R̂(z|x,2�) − R(z|x,2�) = Sn1(x, z) + Sn2(x, z),(46)

where Sn1(x, z) = n−1 ∑n
i=1 Wn(Xi − x, x;h3)[P̂ (z|Yi,�) − P(z|Yi,�)] and

Sn2(x, z) = n−1
n∑

i=1

Wn(Xi − x, x;h3)[P(z|Yi,�) − R(z|x,2�)].(47)
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Let ui(z,�) = I (Zi < z) − P(z|Yi,�). Then E[ui(z,�)] = 0. By (5),

P̂ (z|y,�) − P(z|y,�) = n−1
n∑

i=1

Wn(Yi − y, y;b1)[I (Zi < z) − P(z|y,�)].

This can be rewritten as

P̂ (z|y,�) − P(z|y,�) = Pn1(y, z) + Pn2(y, z),(48)

where

Pn1(y, z) = n−1
n∑

i=1

Wn(Yi − y, y;b1)ui(z,�),

Pn2(y, z) = n−1
n∑

i=1

Wn(Yi − y, y;b1)[P(z|Yi,�) − P(z|y,�)].

By Lemma 1 and the symmetry of the kernel function W(·), and by using Taylor’s
expansion, it is easy to show that

Pn2(y, z) = (∂2/∂y2)P (z|y,�)b2
1 + op(b2

1) = Op(b2
1),(49)

uniformly for (y, z) ∈ �∗. Hence,

P̂ (z|y,�) − P(z|y,�) = Pn1(y, z) + Op(b2
1),(50)

uniformly for (y, z) ∈ �∗. Then

Sn1(x, z) = n−1
n∑

i=1

Wn(Xi − x, x;h3)Pn1(Yi, z) + Op(b2
1),(51)

uniformly for (x, z) ∈ �∗. Using the same arguments as those for Ln11(x, z) be-
tween (32) and (37), we obtain that

Sn1(x, z) = 1

n

n∑
i=1

q∗(x,Yi)ui(z,�)

+ Op

({logn/(nb
3/2
1 )} + {b1(logn)/n}1/2)

(52)

= 1

n

n∑
i=1

q∗(x,Zi)ui+1(z,�)

+ Op

(
logn

nb
3/2
1

+ {b1(logn)/n}1/2
)
.

Rewrite Sn2(x, z) as

Sn2(x, z) = Sn21(x, z) + Sn22(x, z),
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where

Sn21(x, z) = n−1
n∑

i=1

Wn(Xi − x, x;h3)[P(z|Yi,�) − R(z|Xi,2�)],

Sn22(x, z) = n−1
n∑

i=1

Wn(Xi − x, x;h3)[R(z|Xi,2�) − R(z|x,2�)].

By the continuity of ∂2R(z|x,2�)/∂x2 and the same argument as that for
(49), Sn22(x, z) = Op(h2

3), uniformly for (x, z) ∈ �∗. Let e∗
i (z) = P(z|Yi,�) −

R(z|Xi,2�). Then E[e∗
i (z)|Xi] = 0, and

Sn2(x, z) = n−1
n∑

i=1

Wn(Xi − x, x;h3)e
∗
i (z) + Op(h2

3)

(53)

= n−1
n∑

i=1

Wn(Yi − x, x;h3)e
∗
i+1(z) + Op(h2

3).

By (45) and (46), under H0, we have

P̂ (z|x,2�) − R̂(z|x,2�) = −Sn1(x, z) − Sn2(x, z) + Sn3(x, z),(54)

where, with u∗
j (z,2�) = I (Zj < z) − P(z|Xj,2�),

Sn3(x, z) = 1

n

n∑
i=1

Wn(Xi − x, x;h1)[I (Zi < z) − P(z|x,2�)]

= 1

n

n∑
i=1

Wn(Xi − x, x;h1)u
∗
i (z,2�)

+ 1

n

n∑
i=1

Wn(Xi − x, x;h1)[P(z|Xi,2�) − P(z|x,2�)].

Similarly to (49), the second term above is of order Op(h2
1),

Sn3(x, z) = 1

n

n∑
i=1

Wn(Xi − x, x;h1)u
∗
i (z,2�) + Op(h2

1),(55)

uniformly for (x, z) ∈ �∗. A combination of (52)–(55) yields that

P̂ (z|x,2�) − R̂(z|x,2�) = T ∗
n1(x, z) + T ∗

n2(x, z) + T ∗
n3(x, z),(56)

where

T ∗
n1(x, z) = 1

n

n∑
j=1

[Wn(Xj − x, x;h1)u
∗
j (z,2�)

− Wn(Yj − x, x;h3)e
∗
j+1(z) − q∗(x,Zj )uj+1(z,�)],

T ∗
n2(x, z) = Op(b2

1 + h2
1 + h2

3),
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uniformly for (x, z) ∈ �∗, and

T ∗
n3(x, z) = Op

({logn/(nb
3/2
1 )} + {b1(logn)/n}1/2)

,

uniformly for (x, z) ∈ �∗.
(ii) Asymptotic normality of T2. Similar to (44), we have

T2 = 1

2
n(n − 1)φ̃(0) + (n − 2)

∑
1≤i<j≤n

φ∗(i, j) + op(h−1),(57)

where φ̃(0) and φ∗(i, j) are defined the same as ψ̃(0) and ψ∗(i, j), respectively,
but with ψ replaced by

φ(i, j, k) = n2wiπ
−2(Xi)η(i, j)η(i, k),

where

η(i, j) = Wh1(Xj − Xi)u
∗
j (Zi,2�) − Wh3(Yj − Xi)e

∗
j+1(Zi)

− q(Xi,Zj )uj+1(Zi,�).

By Lemma 6(ii), we have

1
2n(n − 1)φ̃(0) = μ2 + op(h−1

1 ).(58)

By Lemma 7(ii), we have

(n − 2)
∑
i<j

φ∗(i, j)/σ2
D−→ N (0,1).(59)

A combination of (57)–(59) completes the proof of the theorem. �

PROOF OF THEOREM 3. Under H1n, p(z|x,2�) = r(z|x,2�) + gn(x, z).

Similarly to (22), we have under H1n

p̂(z|x,2�) − r̂(z|x,2�) = Qn(x, z) + gn(x, z),

where

Qn(x, z) = A∗
n(x, z) + B∗

n(x, z) + C∗
n(x, z) − Ln1(x, z) − Ln2(x, z) − Ln3(x, z).

Then

T1 =
n∑

i=1

Q2
n(Xi,Zi)wi +

n∑
i=1

g2
n(Xi,Zi)wi

(60)

+ 2
n∑

i=1

gn(Xi,Zi)Qn(Xi,Zi)wi.
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Since δ2
n = O( 1

nh1h2
), it can be shown that

n∑
i=1

g2
n(Xi,Zi)wi = nE[g2

n(X,Z)w(X,Z)] + op

(
1/

√
h1h2

)
.(61)

By (20) and (23), B∗
n(x, z) = Op(h2

1), C∗
n(x, z) = Op(h2

2) and Ln3(x, z) =
Op(h2

3), uniformly for (x, z) ∈ �∗. It follows from the Hölder inequality that

2
n∑

i=1

wign(Xi,Zi)[B∗
n(Xi,Zi) + C∗

n(Xi,Zi) − Ln3(Xi,Zi)]
(62)

= Op

(
nδn(h

2
1 + h2

2 + h2
3)

)
.

A combination of (60)–(62) yields that

T1 =
n∑

i=1

Q2
n(Xi,Zi)wi + nE[g2

n(X,Z)w(X,Z)]

+ 2
n∑

i=1

gn(Xi,Zi)wi[A∗
n(Xi,Zi) − Ln2(Xi,Zi) − Ln1(Xi,Zi)]

(63)
+ {

op

(
1/

√
h1h2

) + Op

(
nδn(h

2
1 + h2

2 + h2
3)

)}
≡ T11 + T12 + T13 + op

(
1/

√
h1h2

)
.

T11 can be dealt with in the same way as in the proof of Theorem 1. It is asymptoti-
cally normal with mean μ1 and variance σ 2

1 given in Theorem 1. By the definition,
T12 = d1n. We now study the third term T13. By (27) and (36), T13 admits the
following decomposition:

1

2
T13 =

n∑
i=1

gn(Xi,Zi)wi[A∗
n(Xi,Zi) − Ln2(Xi,Zi) − Ln1(Xi,Zi)]

=
n∑

i=1

gn(Xi,Zi)wi

1

n

n∑
j=1

{Wn(Xj − Xi,Xi;h1)ε
∗
j (Zi)

− Wn(Yj − Xi;Xi;h3)ej+1(Zi)

− q∗(Xi,Zj )εj+1(Zi)}
+ op

(
1/

√
h1h2

) + O
(
nδn(b

2
1 + b2

2)
) + O(δnh

−1
1 h−1

2 )

= ∑
i 
=j

1

n
gn(Xi,Zi)wiπ

−1(Xi){Wh1(Xj − Xi)ε
∗
j (Zi)

− Wh3(Yj − Xi)ej+1(Zi)

− q∗(Xi,Zj )εj+1(Zi)}
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+ op

(
1/

√
h1h2

) + O
(
nδn(b

2
1 + b2

2)
) + O(δnh

−1
1 h−1

2 )

≡ ∑
i 
=j

ϕ(i, j) + op

(
1/

√
h1h2

) + O
(
nδn(b

2
1 + b2

2)
) + O

(
δn/(h1h2)

)
.

The first term above is a U -statistic with the typical element ϕ(i, j). Let ϕ∗(i, j) =
ϕ(i, j) + ϕ(j, i). Then ϕ∗(i, j) is a symmetric kernel and

T13 = ∑
1≤i<j≤n

ϕ∗(i, j) + O
(
δn/(h1h2)

) + op

(
1/

√
h1h2

)
.

Put ϕ̃(i) = ∫
ϕ∗(i, j) dFj and ϕ̃(i, j) = ϕ∗(i, j) − ϕ̃(i) − ϕ̃(j). Then by the Ho-

effding decomposition, we have

∑
1≤i<j≤n

ϕ∗(i, j) = ∑
1≤i<j≤n

ϕ̃(i, j) + (n − 1)

n∑
i=1

ϕ̃(i).

It is easy to show that E[h1h2ϕ̃(i, j)]2(1+δ) = O(δ
2(1+δ)
n n−2(1+δ)h1h2). Therefore,

applying the lemma with δ = 1 of [19], we obtain that

E

{ ∑
1≤i<j≤n

ϕ̃(i, j)

}2

= o
(
1/(h1h2)

)
.

Therefore,

T13 = (n − 1)

n∑
i=1

ϕ̃(i) + op

(
1/

√
h1h2

) + O
(
δn/(h1h2)

)
.(64)

By the definition of ϕ̃i , it can be written that

ϕ̃(i) = 2

n
gn(Xi,Zi)w(Xi,Zi)π

−1(Xi)

×
∫

{Wh1(xj − Xi)ε
∗
j (Zi) − Wh3(yj − Xi)ej+1(Zi)

− q∗(Xi, zj )εj+1(Zi)}dFj

≡ ϕ̃1(i) + ϕ̃2(i) + ϕ̃3(i),

where

ϕ̃1(i) = 2

n
gn(Xi,Zi)w(Xi,Zi)π

−1(Xi)

∫
Wh1(xj − Xi)ε

∗
j (Zi) dFj ,

ϕ̃2(i) = −2

n
gn(Xi,Zi)w(Xi,Zi)π

−1(Xi)

∫
Wh3(yj − Xi)ej+1(Zi) dFj

and ϕ̃3(i) = − 2
n
gn(Xi,Zi)w(Xi,Zi)π

−1(Xi)
∫

q∗(Xi, zj )εj+1(Zi) dFj . Then by
the Fubini theorem and by taking iterative expectation, E[ϕ̃(i)] = 0. Using the
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central limit theorem for the β-mixing process, we get

(n − 1)

2σ1A

n∑
i=1

ϕ̃(i)
D−→ N (0,1),

where σ 2
1A = 1

4nE[(n−1)2ϕ̃2(i)]. By directly calculating the integration, it can be
shown that

ϕ̃1(i) = 2

n
gn(Xi,Zi)w(Xi,Zi)[p(Zi |Xi,2�) − p2(Zi |Xi,2�)](1 + o(1)

)
,

ϕ̃2(i) = o(gn(Xi,Zi)/n) and ϕ̃3(i) = o(gn(Xi,Zi)/n). Therefore,

σ 2
1A = nE[g2

n(X1,Z1)w
2(X1,Z1){p(Zi |Xi,2�) − p2(Zi |Xi,2�)}2]

+ o
(
1/(h1h2)

)
.

By straightforward calculation, it can be shown that the covariance between T11
and T13 can be ignored. It follows that the result of the theorem holds. �

PROOF OF THEOREM 4. (i) For any given small η > 0, when d is small
enough, |d1n/σ1n| ≤ η and σ1n = σ1(1 + o(1)). Under H0, with the selected band-
widths,

(T1 − μ1)/σ1 = Op(1).

Therefore, the sequence of critical values cα (depending on n) is bounded in prob-
ability. Similarly, under H1n, with the selected bandwidths,

(T1 − μ1 − d1n)/σ1n = Op(1).(65)

Note that

P {(T1 − μ1)/σ1 > cα|H1n} = P {(T1 − μ1 − d1n)/σ1n > (cασ1 − d1n)/σ1n|H1n}
≤ P {(T1 − μ1 − d1n)/σ1n > cασ1/σ1n − η|H1n}.

It follows from Theorem 3 and Slutsky’s theorem that

lim sup
d→0

lim sup
n→∞

P {(T1 − μ1)/σ1 ≥ cα|H1n} ≤ α.

(ii) For any given M > 0, by taking d sufficiently large, there exists an N , when
n > N , d1n/σ1n ≥ M. Therefore,

P {(T1 − μ1)/σ1 > cα|H1n} ≥ P {(T1 − μ1 − d1n)/σ1n > cασ1/σ1n − M|H1n}.
By (65), we have

lim inf
d→∞ lim inf

n→∞ P {(T1 − μ1)/σ1 > cα|H1n} = 1. �

PROOF OF THEOREMS 5 AND 6. We put the proofs in the supplemental ma-
terials [2]. �



3162 Y. AÏT-SAHALIA, J. FAN AND J. JIANG

Acknowledgments. The authors thank the Associate Editor and the referees
for constructive comments that substantially improved an earlier version of this
paper.

SUPPLEMENTARY MATERIAL

Supplement: Additional technical details (DOI: 10.1214/09-AOS763SUPP;
.pdf). We provide detailed proofs for Lemmas 1–7 and Theorems 5–6. Modern
nonparametric smoothing techniques and theory of U -statistics are used.
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