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Nonconcave Penalized Likelihood
With NP-Dimensionality

Jianqing Fan and Jinchi Lv

Abstract—Penalized likelihood methods are fundamental to
ultrahigh dimensional variable selection. How high dimension-
ality such methods can handle remains largely unknown. In this
paper, we show that in the context of generalized linear models,
such methods possess model selection consistency with oracle
properties even for dimensionality of nonpolynomial (NP) order
of sample size, for a class of penalized likelihood approaches
using folded-concave penalty functions, which were introduced to
ameliorate the bias problems of convex penalty functions. This
fills a long-standing gap in the literature where the dimensionality
is allowed to grow slowly with the sample size. Our results are also
applicable to penalized likelihood with the ��-penalty, which is
a convex function at the boundary of the class of folded-concave
penalty functions under consideration. The coordinate opti-
mization is implemented for finding the solution paths, whose
performance is evaluated by a few simulation examples and the
real data analysis.

Index Terms—Coordinate optimization, folded-concave penalty,
high dimensionality, Lasso, nonconcave penalized likelihood, or-
acle property, SCAD, variable selection, weak oracle property.

I. INTRODUCTION

T HE analysis of data sets with the number of variables
comparable to or much larger than the sample size fre-

quently arises nowadays in many fields ranging from genomics
and health sciences to economics and machine learning. The
data that we collect is usually of the type ,
where the ’s are independent observations of the response
variable given its covariates, or explanatory variables,

. Generalized linear models (GLMs) provide a
flexible parametric approach to estimating the covariate effects
(McCullagh and Nelder, 1989). In this paper we consider the
variable selection problem of nonpolynomial (NP) dimension-
ality in the context of GLMs. By NP-dimensionality we mean
that for some . See Fan and Lv (2010)
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for an overview of recent developments in high dimensional
variable selection.

We denote by the design matrix with
, and

the -dimensional response vector. Throughout the paper we
consider deterministic design matrix. With a canonical link, the
conditional distribution of given belongs to the canonical
exponential family, having the following density function with
respect to some fixed measure

(1)
where is an unknown -dimensional vector
of regression coefficients, is a family of dis-
tributions in the regular exponential family with dispersion pa-
rameter , and . As is common
in GLM, the function is implicitly assumed to be twice con-
tinuously differentiable with always positive. In the sparse
modeling, we assume that majority of the true regression coeffi-
cients are exactly zero. Without loss of
generality, assume that with each component
of nonzero and . Hereafter we refer to the support

as the true underlying sparse model of
the indices. Variable selection aims at locating those predictors

with nonzero and giving an efficient estimate of .
In view of (1), the log-likelihood of the

sample is given, up to an affine transformation, by

(2)

where for . We
consider the following penalized likelihood

(3)

where is a penalty function and is a regularization
parameter.

In a pioneering paper, Fan and Li (2001) build the theoret-
ical foundation of nonconcave penalized likelihood for vari-
able selection. The penalty functions that they used are not any
nonconvex functions, but really the folded-concave functions.
For this reason, we will call them more precisely folded-con-
cave penalties. The paper also introduces the oracle property for

model selection. An estimator is said to have
the oracle property (Fan and Li, 2001) if it enjoys the model
selection consistency in the sense of with probability
tending to 1 as , and it attains an information bound
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mimicking that of the oracle estimator, where is a subvector
of formed by its first components and the oracle knew the
true model ahead of time. Fan and Li
(2001) study the oracle properties of nonconcave penalized like-
lihood estimators in the finite-dimensional setting. Their results
were extended later by Fan and Peng (2004) to the setting of

or in a general likelihood framework.
How large can the dimensionality be, compared with

the sample size , such that the oracle property continues to
hold in penalized likelihood estimation? What role does the
penalty function play? In this paper, we provide an answer to
these long-standing questions for a class of penalized likeli-
hood methods using folded-concave penalties in the context
of GLMs with NP-dimensionality. We also characterize the
nonasymptotic weak oracle property and the global optimality
of the nonconcave penalized maximum likelihood estimator.
Our theory applies to the -penalty as well, but its conditions
are far more stringent than those for other members of the class.
These constitute the main theoretical contributions of the paper.

Numerous efforts have lately been devoted to studying the
properties of variable selection with ultrahigh dimensionality
and significant progress has been made. Meinshausen and
Bühlmann (2006), Zhao and Yu (2006), and Zhang and Huang
(2008) investigate the issue of model selection consistency for
LASSO under different setups when the number of variables is
of a greater order than the sample size. Candes and Tao (2007)
introduce the Dantzig selector to handle the NP-dimensional
variable selection problem, which was shown to behave simi-
larly to Lasso by Bickel et al. (2009). Zhang (2010) is among
the first to study the nonconvex penalized least-squares esti-
mator with NP-dimensionality and demonstrates its advantages
over LASSO. He also developed the PLUS algorithm to find the
solution path that has the desired sampling properties. Fan and
Lv (2008) and Huang et al. (2008) introduce the independence
screening procedure to reduce the dimensionality in the context
of least-squares. The former establishes the sure screening
property with NP-dimensionality and the latter also studies the
bridge regression, a folded-concave penalty approach. Hall and
Miller (2009) introduce feature ranking using a generalized cor-
relation, and Hall et al. (2009) propose independence screening
using tilting methods and empirical likelihood. Fan and Fan
(2008) investigate the impact of dimensionality on ultrahigh
dimensional classification and establish an oracle property
for features annealed independence rules. Lv and Fan (2009)
make important connections between model selection and
sparse recovery using folded-concave penalties and establish
a nonasymptotic weak oracle property for the penalized least
squares estimator with NP-dimensionality. There are also a
number of important papers on establishing the oracle inequal-
ities for penalized empirical risk minimization. For example,
Bunea et al. (2007) establish sparsity oracle inequalities for the
Lasso under quadratic loss in the context of least-squares; van
de Geer (2008) obtains a nonasymptotic oracle inequality for
the empirical risk minimizer with the -penalty in the context
of GLMs; Koltchinskii (2008) proves oracle inequalities for
penalized least squares with entropy penalization.

The rest of the paper is organized as follows. In Section II,
we discuss the choice of penalty functions and characterize the

nonconcave penalized likelihood estimator and its global opti-
mality. We study the nonasymptotic weak oracle properties and
oracle properties of nonconcave penalized likelihood estimator
in Sections III and IV, respectively. Section V introduces a co-
ordinate optimization algorithm, the iterative coordinate ascent
(ICA) algorithm, to solve regularization problems with concave
penalties. In Section VI, we present three numerical examples
using both simulated and real data sets. We provide some discus-
sions of our results and their implications in Section VII. Proofs
are presented in Section VIII. Technical details are relegated to
the Appendix.

II. NONCONCAVE PENALIZED LIKELIHOOD ESTIMATION

In this section, we discuss the choice of penalty functions in
regularization methods and characterize the nonconcave penal-
ized likelihood estimator as well as its global optimality.

A. Penalty Function

For any penalty function , let . For
simplicity, we will drop its dependence on and write as

when there is no confusion. Many penalty functions have
been proposed in the literature for regularization. For example,
the best subset selection amounts to using the penalty. The
ridge regression uses the penalty. The penalty
for bridges these two cases (Frank and Friedman,
1993). Breiman (1995) introduces the non-negative garrote for
shrinkage estimation and variable selection. Lasso (Tibshirani,
1996) uses the -penalized least squares. The SCAD penalty
(Fan, 1997; Fan and Li, 2001) is the function whose derivative
is given by

(4)

where often is used, and MCP (Zhang, 2010) is defined
through . Clearly the SCAD penalty takes
off at the origin as the penalty and then levels off, and MCP
translates the flat part of the derivative of SCAD to the origin.
A family of folded concave penalties that bridge the and
penalties were studied by Lv and Fan (2009).

Hereafter we consider penalty functions that satisfy the
following condition:

Condition 1: is increasing and concave in ,
and has a continuous derivative with . In
addition, is increasing in and is
independent of .

The above class of penalty functions has been considered by
Lv and Fan (2009). Clearly the penalty is a convex function
that falls at the boundary of the class of penalty functions satis-
fying Condition 1. Fan and Li (2001) advocate penalty functions
that give estimators with three desired properties: unbiasedness,
sparsity and continuity, and provide insights into them (see also
Antoniadis and Fan, 2001). SCAD satisfies Condition 1 and the
above three properties simultaneously. The penalty and MCP
also satisfy Condition 1, but does not enjoy the unbiased-
ness due to its constant rate of penalty and MCP violates the
continuity property. However, our results are applicable to the

-penalized and MCP regression. Condition 1 is needed for
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establishing the oracle properties of nonconcave penalized like-
lihood estimator.

B. Nonconcave Penalized Likelihood Estimator

It is generally difficult to study the global maximizer of
the penalized likelihood analytically without concavity. As
is common in the literature, we study the behavior of local
maximizers.

We introduce some notation to simplify our presentation. For
any , define

and

(5)

It is known that the -dimensional response vector following
the distribution in (1) has mean vector and covariance ma-
trix , where . Let , and

, , where de-
notes the sign function. We denote by the norm of a
vector or matrix for . Following Lv and Fan (2009)
and Zhang (2010), define the local concavity of the penalty at

with as

(6)
By the concavity of in Condition 1, we have .
It is easy to show by the mean-value theorem that

provided that the second derivative of
is continuous. For the SCAD penalty, unless some
component of takes values in . In the latter case,

.
Throughout the paper, we use and to repre-

sent the smallest and largest eigenvalues of a symmetric matrix,
respectively.

The following theorem gives a sufficient condition on the
strict local maximizer of the penalized likelihood in (3).

Theorem 1 (Characterization of PMLE): Assume that sat-
isfies Condition 1. Then is a strict local maximizer of
the nonconcave penalized likelihood defined by (3) if

(7)

(8)

(9)

where and respectively denote the submatrices of
formed by columns in and its complement, ,

is a subvector of formed by all nonzero components, and
. On the other hand, if is a local

maximizer of , then it must satisfy (7) – (9) with strict
inequalities replaced by nonstrict inequalities.

There is only a tiny gap (nonstrict versus strict inequalities)
between the necessary condition for local maximizer and suffi-
cient condition for strict local maximizer. Conditions (7) and (9)
ensure that is a strict local maximizer of (3) when constrained
on the -dimensional subspace of ,
where denotes the subvector of formed by components in
the complement of . Condition (8) makes sure that the

sparse vector is indeed a strict local maximizer of (3) on the
whole space .

When is the penalty, the penalized likelihood function
in (3) is concave in . Then the classical convex op-

timization theory applies to show that is
a global maximizer if and only if there exists a subgradient

such that

(10)

that is, it satisfies the Karush-Kuhn-Tucker (KKT) condi-
tions, where the subdifferential of the penalty is given
by
for and . Thus, condition
(10) reduces to (7) and (8) with strict inequality replaced by
nonstrict inequality. Since for the -penalty,
condition (9) holds provided that is nonsingular.
However, to ensure that is the strict maximizer we need the
strict inequality in (8).

C. Global Optimality

A natural question is when the nonconcave penalized max-
imum likelihood estimator (NCPMLE) is a global maximizer
of the penalized likelihood . We characterize such a prop-
erty from two perspectives.

1) Global Optimality: Assume that the design matrix
has a full column rank . This implies that . Since

is always positive, it is easy to show that the Hessian matrix of
is always positive definite, which entails that the log-

likelihood function is strictly concave in . Thus, there
exists a unique maximizer of . Let

be a sublevel set of for some and

be the maximum concavity of the penalty function . For the
penalty, SCAD and MCP, we have , , and
, respectively. The following proposition gives a sufficient

condition on the global optimality of NCPMLE.

Proposition 1 (Global Optimality): Assume that has rank
and satisfies

(11)

Then the NCPMLE is a global maximizer of the penalized
likelihood if .

Note that for penalized least-squares, (11) reduces to

(12)

This condition holds for sufficiently large in SCAD and MCP,
when the correlation between covariates is not too strong. The
latter holds for design matrices constructed by using spline
bases to approximate a nonparametric function. According
to Proposition 1, under (12), the penalized least-squares with
folded-concave penalty is a global minimum.

The proposition below gives a condition under which the
penalty term in (3) does not change the global maximizer. It
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will be used to derive the condition under which the PMLE is
the same as the oracle estimator in Proposition 3(b). Here for
simplicity we consider the SCAD penalty given by (4), and
the technical arguments are applicable to other folded-concave
penalties as well.

Proposition 2 (Robustness): Assume that has rank
with and there exists some such that

for some . Then
the SCAD penalized likelihood estimator is the global maxi-
mizer and equals if and ,

where .
2) Restricted Global Optimality: When , it is hard

to show the global optimality of a local maximizer. However,
we can study the global optimality of the NCPMLE on the
union of coordinate subspaces. A subspace of is called co-
ordinate subspace if it is spanned by a subset of the natural basis

, where each is the -vector with th component
1 and 0 elsewhere. Here each corresponds to the th predictor

. We will investigate the global optimality of on the union
of all -dimensional coordinate subspaces of in Proposi-

tion 3(a).
Of particular interest is to derive the conditions under which

the PMLE is also an oracle estimator, in addition to possessing
the above restricted global optimal estimator on . To this
end, we introduce an identifiability condition on the true model

. The true model is called -identifiable for some
if

(13)

where
. In other words, is the best subset of size

, with a margin at least . The following proposition is an easy
consequence of Propositions 1 and 2.

Proposition 3 (Global Optimality on ):
a) If the conditions of Proposition 1 are satisfied for each

submatrix of , then the NCPMLE is a global
maximizer of on .

b) Assume that the conditions of Proposition 2 are satis-
fied for the submatrix of formed by columns
in , the true model is -identifiable for some

, and . Then the
SCAD penalized likelihood estimator is the global max-
imizer on and equals to the oracle maximum likelihood
estimator .

On the event that the PMLE estimator is the same as the oracle
estimator, it possesses of course the oracle property.

III. NONASYMPTOTIC WEAK ORACLE PROPERTIES

In this section, we study a nonasymptotic property of the non-
concave penalized likelihood estimator , called the weak or-
acle property introduced by Lv and Fan (2009) in the setting
of penalized least squares. The weak oracle property means
sparsity in the sense of with probability tending to 1
as , and consistency under the loss, where

and is a subvector of formed by components in
. This property is weaker than the oracle

property introduced by Fan and Li (2001).

A. Regularity Conditions

As mentioned before, we condition on the design matrix
and use the penalty in the class satisfying Condition 1. Let

and respectively be the submatrices of the design
matrix formed by columns in and
its complement, and . To simplify the presentation,
we assume without loss of generality that each covariate has
been standardized so that . If the covariates have
not been standardized, the results still hold with assumed
to be in the order of . Let

(14)

be half of the minimum signal. We make the following assump-
tions on the design matrix and the distribution of the response.

Let be a diverging sequence of positive numbers that de-
pends on the nonsparsity size and hence depends on . Recall
that is the nonvanishing components of the true parameter

.
Condition 2: The design matrix satisfies

(15)

(16)

(17)

where the norm of a matrix is the maximum of the norm
of each row, , ,

, the derivative is taken componentwise, and
denotes the Hadamard (componentwise) product.
Here and below, is associated with regularization param-

eter satisfying (18) unless specified otherwise. For the clas-
sical Gaussian linear regression model, we have and

. In this case, since we will assume that , condi-
tion (15) usually holds with . In fact, Wainwright (2009)
shows that if the rows of are
i.i.d. Gaussian vectors with . In
general, since

we can take if . More
generally, (15) can be bounded as

and the above remark for the multiple regression model applies
to the submatrix , which consists of rows of the samples
with for some .

The left hand side of (16) is the multiple regression co-
efficients of each unimportant variable in on , using
the weighted least squares with weights . The order
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is mainly technical and can be relaxed, whereas
the condition is genuine. When the
penalty is used, the upper bound in (16) is more restric-
tive, requiring uniformly less than 1. This condition is the
same as the strong irrepresentable condition of Zhao and Yu
(2006) for the consistency of the LASSO estimator, namely

. It is a drawback of the
penalty. In constrast, when a folded-concave penalty is used,
the upper bound on the right hand side of (16) can grow to
at rate .

Condition (16) controls the uniform growth rate of the
-norm of these multiple regression coefficients, a notion of

weak correlation between and . If each element of the
multiple regression coefficients is of order , then the
norm is of order . Hence, we can handle the nonsparse
dimensionality , by (16), as long as the first term in
(16) dominates, which occurs for SCAD type of penalty with

. Of course, the actual dimensionality can be higher
or lower, depending on the correlation between and , but
for finite nonsparse dimensionality , (16) is usually
satisfied.

For the Gaussian linear regression model, condition (17)
holds automatically.

We now choose the regularization parameter and intro-
duce Condition 3. We will assume that half of the minimum
signal for some . Take satis-
fying

and (18)

where and is associated with the
nonsparsity size .

Condition 3: Assume that and
.

In addition, assume that satisfies (18) and
, where and

, and that
if the responses are

unbounded.
The condition is needed to ensure condition

(9). The condition always holds when and is satisfied
for the SCAD type of penalty when .

In view of (7) and (8), to study the nonconcave penalized like-
lihood estimator we need to analyze the deviation of the -di-
mensional random vector from its mean , where

denotes the -dimensional random re-
sponse vector in the GLM (1). The following proposition, whose
proof is given in Section VIII.E, characterizes such deviation
for the case of bounded responses and the case of unbounded
responses satisfying a moment condition, respectively.

Proposition 4 (Deviation): Let be the
-dimensional independent random response vector and

. Then
a) If are bounded in for some ,

then for any

(19)

b) If are unbounded and there exist some
such that

(20)

with , then for any

(21)

In light of (1), it is known that for the exponential family, the
moment-generating function of is given by

where is in the domain of . Thus, the moment
condition (20) is reasonable. It is easy to show that condition
(20) holds for the Gaussian linear regression model and for the
Poisson regression model with bounded mean responses. Sim-
ilar probability bounds also hold for sub-Gaussian errors.

We now express the results in Proposition 4 in a unified form.
For the case of bounded responses, we define
for , where . For the case of un-
bounded responses satisfying the moment condition (20), we
define , where . Then the
exponential bounds in (19) and (21) can be expressed as

(22)

where if the responses are bounded and
if the responses are unbounded.

B. Weak Oracle Properties

Theorem 2 (Weak Oracle Property): Assume that Conditions
1 – 3 and the probability bound (22) are satisfied, , and

. Then there exists a nonconcave penalized
likelihood estimator such that for sufficiently large , with
probability at least ,

satisfies:
a) (Sparsity). ;
b) ( loss). ,

where and are respectively the subvectors of and
formed by components in .

Under the given regularity conditions, the dimensionality is
allowed to grow up to exponentially fast with the sample size .
The growth rate of is controlled by . It also enters
the nonasymptotic probability bound. This probability tends to
1 under our technical assumptions. From the proof of Theorem
2, we see that with asymptotic probability one, the estima-
tion loss of the nonconcave penalized likelihood estimator is
bounded from above by three terms (see (45)), where the second
term is associated with

the penalty function . For the penalty, the ratio
is equal to one, and for other concave penalties,

it can be (much) smaller than one. This is in line with the
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fact shown by Fan and Li (2001) that concave penalties can
reduce the biases of estimates. Under the specific setting of
penalized least squares, the above weak oracle property is
slightly different from that of Lv and Fan (2009).

The value of can be taken as large as for concave
penalties. In this case, the dimensionality that the penalized
least-squares can handle is as high as when

, which is usually smaller than that for the case of
. The large value of puts more stringent condi-

tion on the design matrix. To see this, Condition 3 entails that
, and hence, (15) becomes tighter.

In the classical setting of , the consistency rate of
under the norm becomes , which is

slightly slower than . This is because it is derived
by using the loss of in Theorem 2b). The use of the
norm is due to the technical difficulty of proving the existence
of a solution to the nonlinear (7).

C. Sampling Properties of -Based PMLE

When the -penalty is applied, the penalized likelihood
in (3) is concave. The local maximizer in Theorems 1

and 2 becomes the global maximizer. Due to its popularity, we
now examine the implications of Theorem 2 in the context of
penalized least-squares and penalized likelihood.

For the penalized least-squares, Condition 2 becomes

(23)

(24)

Condition (17) holds automatically and Condition (18) becomes

and (25)

As a corollary of Theorem 2, we have
Corollary 1 (Penalized Estimator): Under Condi-

tions 2 and 3 and probability bound (22), if
and , then the penalized likelihood
estimator has model selection consistency with rate

.
For the penalized least-squares, Corollary 1 continues to hold

without normality assumption, as long as probability bound (22)
holds. In this case, the result is stronger than that of Zhao and
Yu (2006) and Lv and Fan (2009).

IV. ORACLE PROPERTIES

In this section we study the oracle property (Fan and Li, 2001)
of the nonconcave penalized likelihood estimator . We assume
that the nonsparsity size and the dimensionality satisfies

for some , which is related to
the notation in Section III. We impose the following regularity
conditions.

Condition 4: The design matrix satisfies

(26)

(27)

(28)

where , is some positive
constant, and .

Condition 5: Assume that
, ,

and , where , and in
addition that if the
responses are unbounded.

Condition 4 is generally stronger than Condition 2. In fact,
by in Condition 5, the first condition in (16) holds
automatically for SCAD type of penalties, since
when is large enough. Thus, Condition 5 is less restrictive for
SCAD-like penalties, since for sufficiently large .

However, for the penalty,
is incompatible with . This suggests that the

penalized likelihood estimator generally cannot achieve the
consistency rate of established in Theorem 3 and
does not have the oracle property established in Theorem 4,
when the dimensionality is diverging with the sample size .
In fact, this problem was observed by Fan and Li (2001) and
proved by Zou (2006) even for finite . It still persists with
growing dimensionality.

We now state the existence of the NCPMLE and its rate of
convergence. It improves the rate results given by Theorem 2.

Theorem 3 (Existence of Nonconcave Penalized Likelihood
Estimator): Assume that Conditions 1, 4 and 5 and the prob-
ability bound (22) hold. Then there exists a strict local maxi-

mizer of the penalized likelihood such
that with probability tending to 1 as and

, where is a subvector of
formed by components in .

Theorem 3 can be thought of as answering the question that
given the dimensionality, how strong the minimum signal
should be in order for the penalized likelihood estimator to have
some nice properties, through Conditions 4 and 5. On the other
hand, Theorem 2 can be thought of as answering the question
that given the strength of the minimum signal , how high
dimensionality the penalized likelihood methods can handle,
through Conditions 2 and 3. While the details are different, these
conditions are related.

To establish the asymptotic normality, we need additional
condition, which is related to the Lyapunov condition.

Condition 6: Assume that ,
, and

as , where denotes the -dimen-
sional random response vector, ,

, and .

Theorem 4 (Oracle Property): Under the conditions of The-
orem 3, if Condition 6 holds and , then with proba-
bility tending to 1 as , the nonconcave penalized likeli-

hood estimator in Theorem 3 must satisfy:
a) (Sparsity). ;
b) (Asymptotic normality)
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where is a matrix such that , is a
symmetric positive definite matrix, and is a subvector of
formed by components in .

From the proof of Theorem 4, we see that for the
Gaussian linear regression model, the additional restriction of

can be relaxed, since the term in (28) vanishes in
this case.

V. IMPLEMENTATION

In this section, we discuss algorithms for maximizing the pe-
nalized likelihood in (3) with concave penalties. Effi-
cient algorithms for maximizing nonconcave penalized likeli-
hood include the LQA proposed by Fan and Li (2001) and LLA
introduced by Zou and Li (2008). The coordinate optimization
algorithm was used by Fu (1998) and Daubechies et al. (2004)
for penalized least-squares with -penalty. This algorithm can
also be applied to optimize the group Lasso (Antoniadis and
Fan, 2001; Yuan and Lin, 2006) as shown in Meier et al. (2008)
and the penalized precision matrix estimation in Friedman et al.
(2007).

In this paper, we introduce a path-following algorithm, called
the iterative coordinate ascent (ICA) algorithm. Coordinate op-
timization type algorithms are especially appealing for large
scale problems with both and large. It successively max-
imizes for regularization parameter in a decreasing
order. ICA uses the Gauss-Seidel method, i.e., maximizing one
coordinate at a time with successive displacements. Specifically,
for each coordinate within each iteration, ICA uses the second
order approximation of at the -vector from the previous
step along that coordinate and maximizes the univariate penal-
ized quadratic approximation. It updates each coordinate if the
maximizer of the corresponding univariate penalized quadratic
approximation makes strictly increase. Therefore, the
ICA algorithm enjoys the ascent property, i.e., the resulting se-
quence of values is increasing for a fixed .

When is quadratic in , e.g., for the Gaussian linear re-
gression model, the second order approximation in ICA is exact
at each step. For any and , we denote by

the second order approximation of at along
the th component, and

(29)

where the subvector of with components in
is identical to that of . Clearly maximizing is a uni-
variate penalized least squares problem, which admits analyt-
ical solution for many commonly used penalty functions. See
the Appendix for formulae for three popular GLMs.

Pick sufficiently large such that the maxi-
mizer of with is , a decreasing sequence of
regularization parameters with , and
the number of iterations .

ICA ALGORITHM.

1. Set and initialize .

2. Initialize , and set and .

3. Successively for , let be the maximizer of

, and update the th component of

as if the updated strictly increases . Set

and ,

where .
4. Repeat Step 3 until convergence or . Set

.
5. Repeat Steps 2–4 until . Return -vectors

.

When we decrease the regularization parameter from to

, using as an initial value for can speed up the
convergence. The set is introduced in Step 3 to reduce the
computational cost. It is optional to add to
the set in this step. In practice, we can set a small tolerance
level for convergence. We can also set a level of sparsity for
early stopping if desired models are only those with size up to
a certain level. When the penalty is used, it is known that
the choice of ensures that is the
global maximizer of (3). In practice, we can use this value as a
proxy for . We give the formulas for three commonly used
GLMs and the univariate SCAD penalized least squares solution
in Sections A.1 and A.2 in the Appendix, respectively.

VI. NUMERICAL EXAMPLES

A. Logistic Regression

In this example, we demonstrate the performance of noncon-
cave penalized likelihood methods in logistic regression. The
data were generated from the logistic regression model (1). We
set and chose the true regression coeffi-
cients vector by setting .
The number of simulations was 100. For each simulated data
set, the rows of were sampled as i.i.d. copies from
with , and the response vector was
generated independently from the Bernoulli distribution with
conditional success probability vector , where

. We compared Lasso ( penalty), SCAD and MCP
with the oracle estimator, all of which were implemented by the
ICA algorithm to produce the solution paths. The regularization
parameter was selected by BIC and the semi-Bayesian infor-
mation criterion (SIC) with index introduced in Lv and
Liu (2011).

Six performance measures were used to compare the
methods. The first measure is the prediction error (PE) defined
as , where is the estimated coefficients
vector by a method and is an independent test point.
The second and third measures are the loss and

loss . The fourth measure is the deviance of the
fitted model. The fifth measure, #S, is the number of selected
variables in the final model by a method in a simulation. The
sixth one, FN, measures the number of missed true variables by
a method in a simulation.

In the calculation of PE, an independent test sample of size
10,000 was generated to compute the expectation. For both BIC
and SIC, Lasso had median with some nonzeros, and
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Fig. 1. Boxplots of PE, � loss, and #S over 100 simulations for all methods in logistic regression, where � � ��. The �-axis represents different methods. Top
panel is for BIC and bottom panel is for SIC.

TABLE I
MEDIANS AND ROBUST STANDARD DEVIATIONS (IN PARENTHESES) OF PE, � LOSS, � LOSS, DEVIANCE, #S, AND FN OVER 100 SIMULATIONS FOR ALL

METHODS IN LOGISTIC REGRESSION BY BIC AND SIC, WHERE � � ��

SCAD and MCP had over 100 simulations. Table I and
Fig. 1 summarize the comparison results given by PE, loss,

loss, deviance, #S, and FN, respectively for BIC and SIC.
The Lasso selects larger model sizes than SCAD and MCP. Its
associated median losses are also larger.

We also examined the performance of nonconcave penalized
likelihood methods in high dimensional logistic regression. The
setting of this simulation is the same as above, except that

and 1000. Since is larger than , the information criteria
break down in the tuning of due to the overfitting. Thus, we used
five-fold cross-validation (CV) based on prediction error to se-
lect the tuning parameter. Lasso had many nonzeros of FN, and
SCAD and MCP had over almost all 100 simulations ex-
cept very few nonzeros. Table II and Fig. 2 report the comparison
results given by PE, loss, loss, deviance, #S, and FN.

It is clear from Table II that LASSO selects far larger model
size than SCAD and MCP. This is due to the bias of the

penalty. The larger bias in LASSO forces the CV to choose a
smaller value of to reduce its contribution to PE. But, a smaller
value of allows more false positive variables to be selected.
The problem is certainly less severe for the SCAD penalty and
MCP. The performance between SCAD and MCP is compa-
rable, as expected.

We also investigated the performance of the regular-
ization methods for the case in which the true model
has small nonzero coefficients but can be well approx-
imated by a sparse model. The simulation setting is
the same as above with except that

and
. Since the coefficients of the sixth through tenth

covariates are significantly smaller than other nonzero coeffi-
cients and the covariates are independent, the distribution of the
response can be well approximated by the sparse model with
the five small nonzero coefficients set to be zero. This sparse
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Fig. 2. Boxplots of PE, � loss, and #S over 100 simulations for all methods in logistic regression, where � � ��� and 1000. The �-axis represents different
methods. Top panel is for � � ��� and bottom panel is for � � ����.

TABLE II
MEDIANS AND ROBUST STANDARD DEVIATIONS (IN PARENTHESES) OF PE, � LOSS, � LOSS, DEVIANCE, #S, AND FN OVER 100 SIMULATIONS FOR ALL

METHODS IN LOGISTIC REGRESSION, WHERE � � ��� AND 1000

TABLE III
MEDIANS AND ROBUST STANDARD DEVIATIONS (IN PARENTHESES) OF PE,
� LOSS, � LOSS, DEVIANCE, #S, AND FN OVER 100 SIMULATIONS FOR

ALL METHODS IN LOGISTIC REGRESSION MODEL HAVING SMALL NONZERO

COEFFICIENTS, WHERE � � ����

model is referred to as the oracle model. The five-fold CV was
used to select the tuning parameter. Table III summarizes the
comparison results given by the PE, loss, loss, deviance,
#S, and FN. The conclusions are similar to those above.

TABLE IV
MEDIANS AND ROBUST STANDARD DEVIATIONS (IN PARENTHESES) OF PE, �

LOSS, � LOSS, DEVIANCE, #S, AND FN OVER 100 SIMULATIONS FOR ALL

METHODS IN POISSON REGRESSION, WHERE � � ��

B. Poisson Regression

In this example, we demonstrate the performance of noncon-
cave penalized likelihood methods in Poisson regression. The
data were generated from the Poisson regression model (1). The
setting of this example is similar to that in Section VI.A. We set
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TABLE V
MEDIANS AND ROBUST STANDARD DEVIATIONS (IN PARENTHESES) OF PE, � LOSS, � LOSS, DEVIANCE, #S, AND FN OVER 100 SIMULATIONS FOR ALL

METHODS IN POISSON REGRESSION BY BIC AND CV, WHERE � � ��� AND 1000

and chose the true regression coefficients
vector by setting . For
each simulated data set, the response vector was generated
independently from the Poisson distribution with conditional
mean vector . The regularization parameter was se-
lected by BIC (SIC performed similarly to BIC).

The PE is defined as , where is the
estimated coefficients vector by a method and is an in-
dependent test point. Lasso, SCAD and MCP had over
100 simulations. Table IV summarizes the comparison results
given by PE, loss, loss, deviance, #S, and FN.

We also examined the performance of nonconcave penalized
likelihood methods in high dimensional Poisson regression. The
setting of this simulation is the same as above, except that

and 1000. The regularization parameter was selected by
BIC and five-fold CV based on prediction error. For both BIC
and CV, Lasso had median with some nonzeros, and
SCAD and MCP had over 100 simulations. Table V
reports the comparison results given by PE, loss, loss,
deviance, #S, and FN.

We further investigated the performance of the regular-
ization methods for the case in which the true model has
small nonzero coefficients but can be well approximated
by a sparse model as in Section VI.A. The simulation set-
ting is the same as above with except that

and . Similarly, the distribution of the response can be
well approximated by the sparse model with the small nonzero
coefficients of the sixth through tenth covariates set to be zero,
which is referred to as the oracle model. The BIC and five-fold
CV were used to select the regularization parameter. Table VI
presents the comparison results given by the PE, loss,
loss, deviance, #S, and FN. The conclusions are similar to those
above.

C. Real Data Analysis

In this example, we apply nonconcave penalized likelihood
methods to the neuroblastoma data set, which was studied by
Oberthuer et al. (2006). This data set, obtained via the Mi-
croArray Quality Control phase-II (MAQC-II) project, consists
of gene expression profiles for 10,707 genes from 251 patients
of the German Neuroblastoma Trials NB90-NB2004, diagnosed
between 1989 and 2004. The patients at diagnosis were aged
from 0 to 296 months with a median age of 15 months. The
study aimed to develop a gene expression-based classifier for
neuroblastoma patients that can reliably predict courses of the
disease.

We analyzed this data set for two binary responses: 3-year
event-free survival (3-year EFS) and gender, where 3-year EFS
indicates whether a patient survived 3 years after the diagnosis
of neuroblastoma. There are 246 subjects with 101 females and
145 males, and 239 of them have the 3-year EFS information
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TABLE VI
MEDIANS AND ROBUST STANDARD DEVIATIONS (IN PARENTHESES) OF PE, � LOSS, � LOSS, DEVIANCE, #S, AND FN OVER 100 SIMULATIONS FOR ALL

METHODS IN POISSON REGRESSION MODEL HAVING SMALL NONZERO COEFFICIENTS BY BIC AND CV, WHERE � � ����

TABLE VII
CLASSIFICATION ERRORS IN THE NEUROBLASTOMA DATA SET

available (49 positives and 190 negatives). We applied Lasso,
SCAD and MCP using the logistic regression model. Five-fold
cross-validation was used to select the tuning parameter. For the
3-year EFS classification, we randomly selected 125 subjects
(25 positives and 100 negatives) as the training set and the rest
as the test set. For the gender classification, we randomly chose
120 subjects (50 females and 70 males) as the training set and
the rest as the test set. Table VII reports the classification results
of all methods, as well as those of SIS and ISIS, which were
extracted from Fan et al. (2009). Tables VIII and IX list the
selected genes by Lasso, SCAD and MCP for the 3-year EFS
classification and gender classification, respectively. Although
the sparse logistic regression model is generally misspecified
for the real data set, our theoretical results provide guidance on
its practical use and the numerical results are consistent with
the theory of nonconcave penalized likelihood estimation; that
is, folded-concave penalties such as SCAD can produce sparse
models with increased prediction accuracy.

VII. DISCUSSIONS

We have studied penalized likelihood methods for ultrahigh
dimensional variable selection. In the context of GLMs, we
have shown that such methods have model selection consistency
with oracle properties even for NP-dimensionality, for a class
of nonconcave penalized likelihood approaches. Our results
are consistent with a known fact in the literature that concave
penalties can reduce the bias problems of convex penalties. The

convex function of -penalty falls at the boundary of the class
of penalty functions under consideration. We have exploited
the coordinate optimization with the ICA algorithm to find the
solution paths and illustrated the performance of nonconcave
penalized likelihood methods with numerical studies. Our
results show that the coordinate optimization works equally
well and efficiently for producing the entire solution paths for
concave penalties.

VIII. PROOFS

A. Proof of Theorem 1

We will first derive the necessary condition. In view of (2),
we have

and

(30)

where . It follows from the classical optimization theory
that if is a local maximizer of the penalized
likelihood (3), it satisfies the Karush-Kuhn-Tucker (KKT) con-
ditions, i.e., there exists some such
that

(31)

where , for , and
for . Let . Note

that is also a local maximizer of (3) constrained on the
-dimensional subspace of ,

where denotes the subvector of formed by components
in , the complement of . It follows from the second order
condition that

(32)

where is given by (6). It is easy to see that (31) can be
equivalently written as

(33)

(34)
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TABLE VIII
SELECTED GENES FOR THE 3-YEAR EFS CLASSIFICATION

TABLE IX
SELECTED GENES FOR THE GENDER CLASSIFICATION

where and denotes the subma-
trix of formed by columns in .

We now prove the sufficient condition. We first constrain the
penalized likelihood (3) on the -dimensional subspace of

. It follows from condition (9) that is strictly concave
in a ball in the subspace centered at . This along with (7)

immediately entails that , as a critical point of in , is
the unique maximizer of in the neighborhood .

It remains to prove that the sparse vector is indeed a strict
local maximizer of on the space . To show this, take
a sufficiently small ball in centered at such that

. We then need to show that for any
. Let be the projection of onto the subspace

. Then we have , which entails that
if , since is the strict maximizer of in . Thus,
it suffices to show that .

By the mean-value theorem, we have

(35)

where lies on the line segment joining and . Note that
the components of are zero for the indices in and
the sign of is the same as that of for , where
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and are the th components of and , respectively.
Therefore, the right hand side of (35) can be expressed as

(36)

where is a subvector of formed by the components in
. By , we have .
It follows from the concavity of in Condition 1 that is

decreasing in . By condition (8) and the continuity of
and , there exists some such that for any in a

ball in centered at with radius

(37)

We further shrink the radius of the ball to less than so that
for and (37) holds for any .

Since , it follows from (37) that the term (36) is strictly
less than

where the monotonicity of was used in the second term.
Thus, we conclude that . This completes the
proof.

B. Proof of Proposition 1

Let be the level set. By the
concavity of , we can easily show that for ,
is a closed convex set with and being its interior points and
the level set is its boundary. We now show that the global
maximizer of the penalized likelihood belongs to .

For any , let be a ray. By the
convexity of , we have for ,
which implies that

Thus, to show that the global maximizer of belongs to
, it suffices to prove for any

and . This follows easily from the definition of ,
, and ,

where .
It remains to prove that the local maximizer of in

must be a global maximizer. This is entailed by the concavity
of on , which is ensured by condition (11). This con-
cludes the proof.

C. Proof of Proposition 2

Since , from the proof of Proposition 1 we know
that the global maximizer of the penalized likelihood be-
longs to . Note that by assumption, the SCAD penalized like-
lihood estimator and

. It follows from (3) and (4) that is a critical point of ,
and thus, by the strict concavity of . It remains to
prove that is the maximizer of on .

The key idea is to use a first order Taylor expansion of
around and retain the Lagrange remainder term. This along

with and
gives for any

since is in the convex set . Thus, if is the global maxi-
mizer of on , then we have for any

This entails that is the global maximizer of .
To maximize , we only need to maximize it compo-

nentwise. Let . Then it remains to show
that for each , is the global minimizer of the
univariate SCAD penalized least squares problem

(38)

This can easily been shown from the analytical solution to (38).
For the sake of completeness, we give a simple proof here.

Recall that we have shown that . In view of (38) and
, for any with , we have

where we used the fact that is constant on .
Thus, it suffices to prove on the interval

. For such a , we have
. Thus, we need to show that

which always holds as long as and thus
completes the proof.

D. Proof of Proposition 3

Let be any -dimensional coordinate subspace different
from .
Clearly is a -dimensional coordinate subspace with

. Then part a) follows easily from the assumptions and
Proposition 1. Part b) is an easy consequence of Proposition 2
in view of the assumptions and the fact that

for the SCAD penalty given by (4).

E. Proof of Proposition 4

Part a) follows easily from a simple application of Ho-
effding’s inequality (Hoeffding, 1963), since
are independent bounded random variables, where

. We now prove part b). In view of condition
(20), are independent random variables with
mean zero and satisfy
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Thus, an application of Bernstein’s inequality (see, e.g., Ben-
nett, 1962 or van der Vaart and Wellner, 1996) yields

which concludes the proof.

F. Proof of Theorem 2

We break the whole proof into several steps. Let and
respectively be the submatrices of formed by columns

in and its complement , and .
Let . Consider events

and

where is a diverging sequence
and denotes a subvector of consisting of elements in .
Since , it follows from Bonferroni’s inequality and
(22) that

(39)

where and for un-
bounded responses, which is guaranteed for sufficiently large
by Condition 3. Under the event , we will show that there
exists a solution to (7)–(9) with and

, where the function is applied
componentwise.

Step 1: Existence of a Solution to (7): We first prove that for
sufficiently large , (7) has a solution inside the hypercube

For any , since , we
have

(40)

and . Let . Using the mono-
tonicity condition of , by (40) we have

which along with the definition of entails

(41)

Define vector-valued functions

and

Then, (7) is equivalent to . We need to show that
the latter has a solution inside the hypercube . To this end,
we represent by using a second order Taylor expansion
around with the Lagrange remainder term componentwise
and obtain

(42)

where and for each

with some -vector lying on the line segment joining and
. By (17), we have (43), shown at the bottom of the page. Let

(44)

where . It follows from
(41), (43), and (15) in Condition 2 that for any

(45)

By Condition 3, the first and third terms are of order
and so is the second term by (18). This shows that

By (44), for sufficiently large , if , we
have

(46)

(43)
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and if , we have

(47)

where . By the continuity of the
vector-valued function , (46) and (47), an application of
Miranda’s existence theorem (see, e.g., Vrahatis, 1989) shows
that equation has a solution in . Clearly also
solves equation in view of (44). Thus, we have shown
that (7) indeed has a solution in .

Step 2: Verification of Condition (8): Let with
a solution to (7) and , and .

We now show that satisfies inequality (8) for given by
(18). Note that

(48)

On the event , the norm of the first term is bounded by
by the condition on . It remains to

bound the second term of (48).
A Taylor expansion of around componentwise

gives

(49)

where with
and some -vector lying on

the line segment joining and . By (17) in Condition 2 and
, arguing similarly to (43), we have

(50)

Since solves equation in (44), we have

(51)

It follows from (15) and (16) in Condition 2, (41), (43), and
(48)–(51) that (see the equation at the bottom of the page). The
second term is of order by (18).
Using (16), we have

for sufficiently large .

Finally, note that condition (9) for sufficiently large is guar-
anteed by in Condition 3. Therefore, by Theorem

1, we have shown that is a strict local max-
imizer of the nonconcave penalized likelihood (3) with

and under the event .
These along with (39) prove parts a) and b). This completes the
proof.

G. Proof of Theorem 3

We continue to adopt the notation in the proof of Theorem
2. To prove the conclusions, it suffices to show that under the
given regularity conditions, there exists a strict local maximizer

of the penalized likelihood in (3) such that 1)
with probability tending to 1 as (i.e., sparsity), and 2)

(i.e., -consistency).
Step 1: Consistency in the -Dimensional Subspace: We first

constrain on the -dimensional subspace
of . This constrained penalized likelihood is given

by

(52)

where and
. We now show that there exists a strict local

maximizer of such that .
To this end, we define an event

where denotes the boundary of the closed set
and . Clearly, on the

event , there exists a local maximizer of in .
Thus, we need only to show that is close to 1 as
when is large. To this end, we need to analyze the function
on the boundary .

Let be sufficiently large such that
since by Condition 5. It is easy to see that

entails ,
, and . By Taylor’s the-

orem, we have for any ,

(53)

where ,
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, and lies on the line segment joining and
. More generally, when the second derivative of the penalty

function does not necessarily exist, it is easy to show that the
second part of the matrix can be replaced by a diagonal matrix
with maximum absolute element bounded by . Recall that

and , where is given by (6). For
any , we have and . Then
for sufficiently large , by (26) and in Conditions
4 and 5 we have

Thus, by (53), we have

which along with Markov’s inequality entails that

It follows from , , and Condi-
tions 4 and 5 that

since is decreasing in . Hence, we have

This proves .
Step 2: Sparsity: Let with

a strict local maximizer of and , and

. It remains to prove that the vector is indeed a strict
local maximizer of on the space . From the proof of
Theorem 1, we see that it suffices to check condition (8). The
idea is the same as that in Step 2 of the proof of Theorem 2. Let

and consider the event

where . We have shown in the proof of
Theorem 2 that

(54)

since . It follows from (27) and (28) in Condition
4, (48), (49) that

which shows that inequality (8) holds for sufficiently large .
This concludes the proof.

H. Proof of Theorem 4

Clearly by Theorem 3, we only need to prove the asymptotic
normality of . On the event defined in the proof of The-
orem 3, it has been shown that is a strict
local maximizer of and . It follows easily that

. In view of (52), we have

We expand the first term around to the first order
componentwise. Then by (28) in Condition 4 and

, we have under the norm

(55)

It follows from , and in
Condition 6 that

(56)

due to the monotonicity of . Combing (55) and (56) gives

since . This along with the first part of (26) in Con-
dition 4 entails

(57)

where and the small order term is under-
stood under the norm.

We are now ready to show the asymptotic normality of . Let
, where is a matrix and is a symmetric

positive definite matrix. It follows from (57) that

where . Thus, by Slutsky’s
lemma, to show that

it suffices to prove . For any unit vector
, we consider the asymptotic distribution of the linear

combination
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where and
. Clearly ’s are independent and have mean 0,

and

as . By Condition 6 and the Cauchy-Schwarz inequality,
we have

Therefore, an application of Lyapunov’s theorem yields

Since this asymptotic normality holds for any unit vector

, we conclude that , which completes the
proof.

APPENDIX

A) Three Commonly Used GLMs: In this section we give
the formulas used in the ICA algorithm for three commonly used
GLMs: linear regression model, logistic regression model, and
Poisson regression model.

Linear Regression: For this model, , and
. The penalized likelihood in (3) can be written

as

(58)

where . Thus, maximizing becomes
the penalized least squares problem. In Step 3 of ICA, we have

, where the subvector of with com-

ponents in is identical to that of .
Logistic Regression: For this model, ,

and . In Step 3 of ICA, by (30) we have

(59)

where the subvector of with components in

is identical to that of , ,

, ,
and

with .
Poisson Regression: For this model, , and

. In Step 3 of ICA, has the same expression
as in (59) with

and

where .
B) SCAD Penalized Least Squares Solution: Consider the

univariate SCAD penalized least squares problem

(60)

where , , and is the SCAD penalty given
by (4). The solution when was given by Fan (1997). We
denote by the objective function and the minimizer
of problem (60). Clearly equals 0 or solves the gradient
equation

(61)

It is easy to show that and ,
i.e., is between 0 and . Let .

1) If , we can easily show that .
2) Let . Note that defined in (61) is piece-

wise linear between 0 and , and
, ,

. Thus, it is easy to see that if
, we have , and if , we have

3) Let . The same argument as in 2) shows that when
, we have if

and otherwise. When , we have
.
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