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A variable screening procedure via correlation learning was proposed by Fan and Lv (2008) to reduce dimensionality in sparse ultra-high-
dimensional models. Even when the true model is linear, the marginal regression can be highly nonlinear. To address this issue, we further
extend the correlation learning to marginal nonparametric learning. Our nonparametric independence screening (NIS) is a specific type of
sure independence screening. We propose several closely related variable screening procedures. We show that with general nonparametric
models, under some mild technical conditions, the proposed independence screening methods have a sure screening property. The extent
to which the dimensionality can be reduced by independence screening is also explicitly quantified. As a methodological extension, we
also propose a data-driven thresholding and an iterative nonparametric independence screening (INIS) method to enhance the finite- sample
performance for fitting sparse additive models. The simulation results and a real data analysis demonstrate that the proposed procedure
works well with moderate sample size and large dimension and performs better than competing methods.
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independence screening; Variable selection.

1. INTRODUCTION

With rapid advances of computing power and other mod-
ern technology, high-throughput data of unprecedented size and
complexity are frequently seen in many contemporary statisti-
cal studies. Examples include data from genetic, microarray,
proteomic, snd functional magnetic resonance imaging stud-
ies, functional data, and high-frequency financial data. In all
of these examples, the number of variables p can grow much
faster than the number of observations n. To be more specific,
we assume log p = O(na) for some a ∈ (0,1/2). Following Fan
and Lv (2009), we call this nonpolynomial (NP) dimensionality,
or ultra-high dimensionality. What makes the underdetermined
statistical inference possible is the sparsity assumption; only a
small set of independent variables contribute to the response.
Thus, dimension reduction and feature selection play pivotal
roles in these ultra-high-dimensional problems.

The statistical literature contains numerous procedures on the
variable selection for linear models and other parametric mod-
els, including the Lasso (Tibshirani 1996), the SCAD and other
folded-concave penalty models (Fan 1997; Fan and Li 2001),
the Dantzig selector (Candes and Tao 2007), the Elastic net
(Enet) penalty (Zou and Hastie 2005), the MCP (Zhang 2010),
and related methods (Zou 2006; Zou and Li 2008). Neverthe-
less, due to the “curse of dimensionality” in terms of simul-
taneous challenges to computational expediency, statistical ac-
curacy, and algorithmic stability, these methods are limited in
handling ultra-high-dimensional problems.

Motivated by these concerns, Fan and Lv (2008) introduced a
new framework for variable screening via correlation learning
with NP dimensionality in the context of least squares. Hall,
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Titterington, and Xue (2009) used a different marginal util-
ity, derived from an empirical likelihood point of view. Hall
and Miller (2009) proposed a generalized correlation rank-
ing, which allows nonlinear regression. Huang, Horowitz, and
Ma (2008) also investigated marginal bridge regression in the
ordinary linear model. These methods focus on studying the
marginal pseudolikelihood and are fast but crude in terms of
reducing NP dimensionality to a more moderate size. To en-
hance performance, Fan and Lv (2008) and Fan, Samworth, and
Wu (2009) introduced some methodological extensions to in-
dependence screening (SIS), including iterative SIS (ISIS) and
multistage procedures, such as SIS-SCAD and SIS-LASSO, to
select variables and estimate parameters simultaneously. These
marginal screening methods have some methodological chal-
lenges, however. When the covariates are not jointly normal,
even if the linear model holds in the joint regression, the
marginal regression can be highly nonlinear. Thus, SIS based
on nonparametric marginal regression becomes a natural candi-
date.

In practice, there is often little prior information indicating
that the effects of the covariates take a linear form or belong
to any other finite-dimensional parametric family. Substantial
improvements are sometimes possible by using a more flexi-
ble class of nonparametric models, such as the additive model,
Y = ∑p

j=1 mj(Xj) + ε, introduced by Stone (1985). Thus sig-
nificantly increases the flexibility of the ordinary linear model
and allows a data-analytic transform of the covariates to enter
into the linear model. Nonetheless, the literature on variable se-
lection in nonparametric additive models s limited (see, e.g.,
Koltchinskii and Yuan 2008; Meier, Geer, and Bühlmann 2009;
Ravikumar et al. 2009; Huang, Horowitz, and Wei 2010). The
work of Koltchinskii and Yuan (2008) and Ravikumar et al.
(2009) is closely related to he COSSO methods proposed by
Lin and Zhang (2006) with fixed minimal signals, which does
not converge to 0. The approach of Huang, Horowitz, and Wei
(2010) can be viewed as an extension of adaptive lasso to ad-
ditive models with fixed minimal signals. Meier, Geer, and
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Bühlmann (2009) proposed a penalty that is a combination
of sparsity and smoothness with a fixed design. In ultra-high-
dimensional settings, all of these methods still suffer from the
aforementioned three challenges, because they can be viewed
as extensions of penalized pseudolikelihood approaches to ad-
ditive modeling. A commonly used algorithm in additive mod-
eling, such as backfitting, makes the situation even more chal-
lenging, given its great computational expense.

In this article, we consider independence learning by ranking
the magnitude of marginal estimators, nonparametric marginal
correlations, and the marginal residual sum of squares. That is,
we fit p marginal nonparametric regressions of the response Y
against each covariate Xi separately and rank their importance
to the joint model according to a measure of the goodness of fit
of their marginal model. The magnitude of these marginal util-
ities can preserve the nonsparsity of the joint additive models
under some reasonable conditions, even with converging min-
imum strength of signals. Our work can be regarded as an im-
portant and nontrivial extension of SIS procedures proposed
by Fan and Lv (2008) and Fan and Song (2010). Compared
with those articles, the minimum distinguishable signal is re-
lated not only to the stochastic error in estimating the nonpara-
metric components, but also to approximation errors in model-
ing nonparametric components, which depend on the number of
basis functions used for the approximation. This poses signifi-
cant challenges to the theoretical development and leads to an
interesting result regarding the extent to which the dimension-
ality can be reduced by nonparametric independence screen-
ing. We also propose an iterative nonparametric independence
screening procedure, INIS-penGAM, to reduce the false posi-
tive rate and stabilize the computation. This two-stage proce-
dure can deal with the aforementioned three challenges better
than other methods, as we demonstrated in our empirical stud-
ies.

We approximate the nonparametric additive components us-
ing a B-spline basis. Thus the component selection in additive
models can be viewed as a functional version of the grouped
variable selection. An early article on group variable selection
using group penalized least squares is that of Antoniadis and
Fan (2001, p. 966), in which blocks of wavelet coefficients
are either killed or selected. The group variable selection was
studied more thoroughly by Yuan and Lin (2006), Kim, Kim,
and Kim (2006), Wei and Huang (2007), and Meier, Geer, and
Bühlmann (2009). Our methods and results have important im-
plications for group variable selection, because in additive re-
gression, each component can be expressed as a linear combi-
nation of a set of basis functions whose coefficients must be
either killed or selected simultaneously.

The rest of the article is organized as follows. In Section 2 we
introduce the nonparametric independence screening (NIS) pro-
cedure in additive models. We present the theoretical properties
for NIS in Section 3. As a methodological extension, we out-
line INIS-penGAM and its greedy version g-INIS-penGAM in
Section 4. Our Monte Carlo simulations and a real data analysis
in Section 5 demonstrate the effectiveness of the INIS method.
We conclude with a discussion in Section 6, and relegate the
proofs to Section 7.

2. NONPARAMETRIC INDEPENDENCE SCREENING

Suppose that we have a random sample, {(Xi,Yi)}n
i=1, from

the population

Y = m(X) + ε, (1)

in which X = (X1, . . . ,Xp)
T , ε is the random error with condi-

tional mean 0. To expeditiously identify important variables in
model (1), without the curse of dimensionality, we consider the
following p marginal nonparametric regression problems:

min
fj∈L2(P)

E(Y − fj(Xj))
2, (2)

where P denotes the joint distribution of (X,Y) and L2(P) is
the class of square integrable functions under the measure P.
The minimizer of (2) is fj = E(Y|Xj), the projection of Y onto
Xj. We rank the utility of covariates in model (1) according to,
for example, Ef 2

j (Xj), and select a small group of covariates by
thresholding.

To obtain a sample version of the marginal nonparametric re-
gression, we use a B-spline basis. Let Sn be the space of poly-
nomial splines of degree l ≥ 1 and {�jk, k = 1, . . . ,dn} denote
a normalized B-spline basis with ‖�jk‖∞ ≤ 1, where ‖ · ‖∞ is
the sup norm. For any fnj ∈ Sn, we have

fnj(x) =
dn∑

k=1

βjk�jk(x), 1 ≤ j ≤ p,

for some coefficients {βjk}dn
k=1. Under some smoothness condi-

tions, the nonparametric projections {fj}p
j=1 can be well approx-

imated by functions in Sn. The sample version of the marginal
regression problem can be expressed as

min
fnj∈Sn

Pn(Y − fnj(Xj))
2 = min

β j∈Rdn
Pn(Y − �T

j β j)
2, (3)

where � j ≡ � j(Xj) = (�1(Xj), . . . ,�dn(Xj))
T denotes the dn-

dimensional basis functions and Png(X,Y) is the expectation
with respect to the empirical measure Pn, that is, the sample av-
erage of {g(Xi,Yi)}n

i=1. This univariate nonparametric smooth-
ing can be computed rapidly, even for NP-dimensional prob-
lems. We correspondingly define the population version of the
minimizer of the componentwise least squares regression,

fnj(Xj) = �T
j (E� j�

T
j )−1E� jY, j = 1, . . . ,p,

where E denotes the expectation under the true model.
We now select a set of variables

M̂νn = {1 ≤ j ≤ p :‖f̂nj‖2
n ≥ νn}, (4)

where ‖f̂nj‖2
n = n−1 ∑n

i=1 f̂nj(Xij)
2 and νn is a predefined thresh-

old value. Such an independence screening ranks the impor-
tance according to the marginal strength of the marginal non-
parametric regression. This screening also can be viewed as
ranking by the magnitude of the correlation of the marginal
nonparametric estimate {f̂nj(Xij)}n

i=1 with the response {Yi}n
i=1,

because ‖f̂nj‖2
n = ‖Yf̂nj‖n. In this sense, the proposed NIS pro-

cedure is related to the correlation learning proposed by Fan
and Lv (2008).
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Another screening approach is to rank according to the de-
scent order of the residual sum of squares of the componentwise
nonparametric regressions, where we select a set of variables:

N̂γn = {1 ≤ j ≤ p : uj ≤ γn},
with uj = minβ j

Pn(Y − �T
j β j)

2 is the residual sum of squares
of the marginal fit and γn is a predefined threshold value. It is
straightforward to show that uj = Pn(Y2 − f̂ 2

nj). Thus the two
methods are equivalent.

The NIS procedure reduces the dimensionality from p to
a possibly much smaller space with model size |M̂νn | or
|N̂γn |. The method is applicable to all models. The question
is whether we have mistakenly deleted some active variables in
model (1)—in other words, whether the procedure has a sure
screening property, as postulated by Fan and Lv (2008). In the
next section we show that the sure screening property indeed
holds for nonparametric additive models with a limited false
selection rate.

3. SURE SCREENING PROPERTIES

In this section we establish the sure screening properties for
additive models, with results presented in three steps.

3.1 Preliminaries

We assume that the true regression function admits the addi-
tive structure

m(X) =
p∑

j=1

mj(Xj). (5)

For identifiability, we assume that {mj(Xj)}p
j=1 have mean 0.

Consequently, the response Y has mean 0 as well. Let M� =
{j : Emj(Xj)

2 > 0} be the true sparse model with nonsparsity
size sn = |M�|. We allow p to grow with n and denote it by
pn whenever necessary.

The theoretical basis of the sure screening is that the marginal
signal of the active components (‖fj‖, j ∈ M�) does not vanish,
where ‖fj‖2 = Ef 2

j . The following conditions make this possi-
ble. For simplicity, let [a,b] be the support of Xj.

A. The nonparametric marginal projections {fj}p
j=1 belong to

a class of functions F , whose rth derivative f (r) exists
and is Lipschitz of order α,

F = {
f (·) :

∣∣f (r)(s) − f (r)(t)
∣∣ ≤ K|s − t|α for s, t ∈ [a,b]}

for some positive constant K, where r is a nonnegative
integer and α ∈ (0,1] such that d = r + α > 0.5.

B. The marginal density function gj of Xj satisfies 0 < K1 ≤
gj(Xj) ≤ K2 < ∞ on [a,b] for 1 ≤ j ≤ p for some con-
stants K1 and K2.

C. minj∈M�
E{E(Y|Xj)

2} ≥ c1dnn−2κ , for some 0 < κ <

d/(2d + 1) and c1 > 0.

Under conditions A and B, the following three facts hold when
l ≥ d and are used in this work. We state them here for readabil-
ity.

Fact 1. There exists a positive constant C1 such that (Stone
1985)

‖fj − fnj‖2 ≤ C1d−2d
n . (6)

Fact 2. There exists a positive constant C2 such that (Stone
1985; Huang, Horowitz, and Wei 2010)

E�2
jk(Xij) ≤ C2d−1

n . (7)

Fact 3. There exist some positive constants D1 and D2 such
that (Zhou, Shen, and Wolfe 1998)

D1d−1
n ≤ λmin(E� j�

T
j ) ≤ λmax(E� j�

T
j ) ≤ D2d−1

n . (8)

The following lemma shows that the minimum signal of
{‖fnj‖}j∈M�

is at the same level of the marginal projection, pro-
vided that the approximation error is negligible.

Lemma 1. Under conditions A–C, we have

min
j∈M�

‖fnj‖2 ≥ c1ξdnn−2κ ,

provided that d−2d−1
n ≤ c1(1 − ξ)n−2κ/C1 for some ξ ∈ (0,1).

A model selection consistency result can be established with
nonparametric independence screening under the partial or-
thogonality condition, that is, {Xj, j /∈ M�} is independent of
{Xi, i ∈ M�}. In this case, there is a separation between the
strengths of marginal signals ‖fnj‖2 for active variables {Xj; j ∈
M�} and for inactive variables {Xj, j /∈ M�}, which are zero.
When the separation is sufficiently large, these two sets of vari-
ables can be easily identified.

3.2 Sure Screening

In this section we establish the sure screening properties of
NIS. We require the following additional conditions:

D. ‖m‖∞ < B1 for some positive constant B1, where ‖ · ‖∞
is the sup norm.

E. The random error {εi}n
i=1 are iid with conditional mean

0, and for any B2 > 0, there exists a positive constant B3

such that E[exp(B2|εi|)|Xi] < B3.
F. There exist positive constants c1 and ξ ∈ (0,1) such that

d−2d−1
n ≤ c1(1 − ξ)n−2κ/C1.

The following theorem gives the sure screening properties.
It shows that it is only the size of nonsparse elements, sn, that
matters for the purpose of sure screening, not the dimensional-
ity, pn. The first result is on the uniform convergence of ‖f̂nj‖2

n
to ‖fnj‖2.

Theorem 1. Suppose that conditions A, B, D, and E hold.

(i) For any c2 > 0, there exist some positive constants c3

and c4 such that

P
(

max
1≤j≤pn

|‖f̂nj‖2
n − ‖fnj‖2| ≥ c2dnn−2κ

)
≤ pndn{(8 + 2dn) exp(−c3n1−4κd−3

n )

+ 6dn exp(−c4nd−3
n )}. (9)

(ii) If, in addition, conditions C and F hold, then, by taking
νn = c5dnn−2κ with c5 ≤ c1ξ/2, we have

P
(

M� ⊂ M̂νn

) ≥ 1 − sndn{(8 + 2dn) exp(−c3n1−4κd−3
n )

+ 6dn exp(−c4nd−3
n )}.
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Note that the second part of the upper bound in Theorem 1 is
related to the uniform convergence rates of the minimum eigen-
values of the design matrices. It gives an upper bound on the
number of basis, dn = o(n1/3), to have the sure screening prop-
erty, whereas condition F requires dn ≥ B4n2κ/(2d+1), where
B4 = (c1(1 − ξ)/C1)

−1/(2d+1).
It follows from Theorem 1 that we can handle the NP dimen-

sionality,

log pn = o(n1−4κd−3
n + nd−3

n ). (10)

Under this condition,

P
(

M� ⊂ M̂νn

) → 1,

that is, the sure screening property. It is worthwhile to point
out that the number of spline bases, dn, affects the order of
dimensionality; compare this with the results of Fan and Lv
(2008) and Fan and Song (2010), in which univariate marginal
regression is used. Equation (10) shows that the larger the min-
imum signal level or the smaller the number of basis functions,
the higher the dimensionality that the NIS can handle. This is
in line with our intuition. On the other hand, the number of
basis functions can not be too small, because the approxima-
tion error can not be too large. As required by condition F,
dn ≥ B4n2κ/(2d+1); the smoother the underlying function, the
smaller the dn that we can take and the higher the dimension
that the NIS can handle. If the minimum signal does not con-
verge to 0 (as in Lin and Zhang 2006; Koltchinskii and Yuan
2008; and Huang, Horowitz, and Wei 2010), then κ = 0. In
this case, dn can be taken to be finite as long as it is suf-
ficiently large so that the minimum signal in Lemma 1 ex-
ceeds the noise level. Taking dn = n1/(2d+1), the optimal rate
for nonparametric regression (Stone 1985), we have log pn =
o(n2(d−1)/(2d+1)). In other words, the dimensionality can be as
high as exp{o(n2(d−1)/(2d+1))}.
3.3 Controlling False Selection Rates

The sure screening property without controlling for false se-
lection rates is not insightful. It basically states that the NIS has
no false negatives. An ideal case for the vanishing false-positive
rate is that

max
j/∈M�

‖fnj‖2 = o(dnn−2κ ),

so that there is a gap between active variables and inactive
variables in model (1) when using the marginal nonparamet-
ric screener. In this case, by Theorem 1(i), if (9) tends to 0, with
probability tending to 1 that

max
j/∈M�

‖f̂nj‖2
n ≤ c2dnn−2κ for any c2 > 0.

Thus, by the choice of νn as in Theorem 1(ii), we can achieve
model selection consistency:

P
(

M̂νn = M�

) = 1 − o(1).

We now deal with the more general case. The idea is to bound
the size of the selected set making use of the fact that var(Y) is
bounded. In this part, we show that the correlations among the
basis functions (i.e., the design matrix of the basis functions)
are related to the size of selected models.

Theorem 2. Suppose that conditions A–F hold and var(Y) =
O(1). Then, for any νn = c5dnn−2κ , there exist positive con-
stants c3 and c4 such that

P
[∣∣M̂νn

∣∣ ≤ O{n2κλmax(�)}]
≥ 1 − pndn{(8 + 2dn) exp(−c3n1−4κd−3

n )

+ 6dn exp(−c4nd−3
n )},

where � = E��T and � = (�1, . . . ,�pn)
T .

The significance of this result is that when λmax(�) = O(nτ ),
the selected model size with the sure screening property is only
of polynomial order, whereas the original model size is of NP
dimensionality. In other words, the false selection rate con-
verges to 0 exponentially fast. The size of the selected variables
is of order O(n2κ+τ ), of the same order as in the approach of
Fan and Lv (2008). Our result is an extension of the work of
Fan and Lv (2008), even in this very specific case without the
condition 2κ + τ < 1. The results are also consistent with that
of Fan and Song (2010), with the number of selected variables
related to the correlation structure of the covariance matrix.

In the specific case where the covariates are independent,
then the matrix � is block diagonal with jth block �j. Thus
it follows from (8) that λmax(�) = O(d−1

n ).

4. INIS METHOD

4.1 Description of the Algorithm

After variable screening, the next step is naturally to se-
lect the variables using more refined techniques in the additive
model. For example, the penalized method for additive model
(penGAM) of Meier, Geer, and Bühlmann (2009) can be used
to select a subset of active variables, resulting in NIS-penGAM.
To further enhance the performance of the method in terms
of false selection rates, following Fan and Lv (2008) and Fan,
Samworth, and Wu (2009), we can iteratively use a large-scale
screening and moderate-scale selection strategy, resulting in the
INIS-penGAM.

Given the data {(Xi,Yi)}, i = 1, . . . ,n, for each component
fj(·), j = 1, . . . ,p, we choose the same truncation term, dn =
O(n1/5). To determine a data-driven thresholding for indepen-
dence screening, we extend the random permutation idea of
Zhao and Li (2010), which allows only 1 − q proportion (for a
given q ∈ [0,1]) of inactive variables to enter the model when X
and Y are not related (the null model). We use random permuta-
tion to decouple Xi and Yi, so that the resulting data (Xπ(i),Yi)

follow a null model, where π(1), . . . , π(n) are a random permu-
tation of the index 1, . . . ,n. The algorithm works as follows:

Step 1. For every j ∈ {1, . . . ,p}, compute

f̂nj = arg min
fnj∈Sn

Pn(Y − fnj(Xj))
2 for 1 ≤ j ≤ p.

Randomly permute the rows of X, yielding X̃. Let ω(q) be the
qth quantile of {‖f̂ ∗

nj‖2
n, j = 1,2, . . . ,p}, where

f̂ ∗
nj = arg min

fnj∈Sn

Pn(Y − fnj(X̃j))
2.

Then NIS selects the following variables:

A1 = {
j :‖f̂ ∗

nj‖2
n ≥ ω(q)

}
.
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In our numerical examples, we use q = 1 (i.e., take the maxi-
mum value of the empirical norm of the permuted estimates).

Step 2. Apply penGAM (Meier, Geer, and Bühlmann 2009)
on the set A1 to select a subset M1. Inside the penGAM algo-
rithm, the penalty parameter is selected by cross-validation.

Step 3. For every j ∈ Mc
1 = {1, . . . ,p} \ M1, minimize

Pn

(
Y −

∑
i∈M1

fni(Xi) − fnj(Xj)

)2

, (11)

with respect to fni ∈ Sn for all i ∈ M1 and fnj ∈ Sn. This re-
gression reflects the additional contribution of the jth compo-
nents conditioning on the existence of the variable set M1. Af-
ter marginally screening as in Step 1, choose a set of indices,
A2. Here the determination of size is the same as in Step 1, ex-
cept that only the variables not in M1 are randomly permuted.
Then the penGAM algorithm is applied on the set M1 ∪ A2 to
select a subset M2.

Step 4. Iterate the process until |Ml| ≥ s0 or Ml = Ml−1.

We have a few comments about this method. In Step 2, we
use penGAM. In fact, any variable selection method for additive
models, such as SpAM (Ravikumar et al. 2009) and the adap-
tive group LASSO for additive models of Huang, Horowitz, and
Wei (2010), would work. A similar sample splitting idea as de-
scribed by Fan, Samworth, and Wu (2009) can be applied here
to further decrease the false selection rate.

4.2 Greedy INIS

We now propose a greedy modification to the INIS algo-
rithm to speed up the computation and to enhance performance.
Specifically, we restrict the size of the set Aj in the iterative
screening steps to be at most p0, a small positive integer, and
the algorithm stops when none of the variables is recruited, that
is, exceeding the thresholding for the null model. In the nu-
merical studies, p0 is taken to be 1 for simplicity. This greedy
version of the INIS algorithm is called g-INIS.

When p0 = 1, the g-INIS method is connected with forward
selection (Efroymson 1960; Draper and Smith 1966). Recently,
Wang (2009) showed that under certain technical conditions,
forward selection also can achieve the sure screening property.
Both g-INIS and forward selection recruit at most one new vari-
able into the model at a time. The major difference is that unlike
forward selection, which keeps a variable once selected, g-INIS
includes a deletion step via penalized least squares that can re-
move multiple variables. This makes the g-INIS algorithm more
attractive, because it is more flexible in terms of recruiting and
deleting variables.

The g-INIS method is particularly effective when the covari-
ates are highly correlated or conditionally correlated. In this
case, the original INIS method tends to select many unimpor-
tant variables that have high correlation with important vari-
ables because they too have large marginal effects on the re-
sponse. Although greedy, the g-INIS method is better at choos-
ing true positives due to more stringent screening and improves
the likelihood of selecting the remaining important variables
in subsequent stages because of fewer false positives at each
stage. This leads to conditioning on a smaller set of more rele-
vant variables and improves the overall performance. Based on

our numerical experience, the g-INIS method outperforms the
original INIS method in all examples in terms of a higher true-
positive rate, lower false-positive rate, and smaller prediction
error.

5. NUMERICAL RESULTS

In this section we illustrate our method by studying its perfor-
mance on the simulated data and in a real data analysis. Some of
the simulation settings are adapted from the work of Fan and Lv
(2008), Meier, Geer, and Bühlmann (2009), Huang, Horowitz,
and Wei (2010), and Fan and Song (2010).

5.1 Comparison of Minimum Model Size

We first illustrate the behavior of the NIS procedure under
different correlation structures. Following Fan and Song (2010),
we use the minimum model size (MMS) required for the NIS
procedure and the penGAM procedure to have the sure screen-
ing property (i.e., to contain the true model M∗) as a measure
of the effectiveness of a screening method. We also include the
correlation screening method of Fan and Lv (2008) for com-
parison. The advantage of the MMS method is that we do not
need to choose the thresholding parameter or penalized param-
eters. For NIS, we take dn = �n1/5
 + 2 = 5. We set n = 400
and p = 1000 for all examples.

Example 1. Following Fan and Song (2010), let {Xk}950
k=1 be

iid standard normal random variables and

Xk =
s∑

j=1

Xj(−1)j+1
/

5 +
√

1 − s

25
εk, k = 951, . . . ,1000,

where {εk}1000
k=951 are standard normally distributed. We con-

sider the following linear model as a specific case of the ad-
ditive model: Y = β∗TX + ε, in which ε ∼ N(0,3) and β∗ =
(1,−1, . . .)T has s nonvanishing components, taking values ±1
alternately.

Example 2. In this example, the data are generated from the
simple linear regression Y = X1 + X2 + X3 + ε, where ε ∼
N(0,3). The covariates are not normally distributed, however;
{Xk}k �=2 are iid standard normal random variables, whereas
X2 = − 1

3 X3
1 + ε̃, where ε̃ ∼ N(0,1). In this case, E(Y|X1) and

E(Y|X2) are nonlinear.

The MMS for each method and its associated robust estimate
of the standard deviation (RSD = IQR/1.34) are given in Ta-
ble 1. The columns “NIS,” “penGAM,” and “SIS” summarize
the results for the MMS based on 100 simulations for our pro-
posed NIS method, the penalized method for the additive model
of Meier, Geer, and Bühlmann (2009), and the linear correlation

Table 1. Minimum model size and robust estimate of standard
deviations (in parentheses).

Model NIS penGAM SIS

Example 1 (s = 3,SNR ≈ 1.01) 3 (0) 3 (0) 3 (0)
Example 1 (s = 6,SNR ≈ 1.99 ) 56 (0) 1000 (0) 56 (0)
Example 1 (s = 12,SNR ≈ 4.07) 66 (7) 1000 (0) 62 (1)
Example 1 (s = 24,SNR ≈ 8.20) 269 (134) 1000 (0) 109 (43)
Example 2 (SNR ≈ 0.83) 3 (0) 3 (0) 360 (361)
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ranking method of Fan and Lv (2008). For Example 1, when the
nonsparsity size s > 5, the irrepresentable condition required
for the model selection consistency of LASSO fails. For these
cases, penGAM fails to even include the true model until the
last step. In contrast, our proposed NIS method performs rea-
sonably well. It is also worth noting that SIS performs better
than NIS in the first example, particularly for s = 24. This is
due to the fact that the true model is linear and the covariates
are jointly normally distributed, which implies that the marginal
projection is linear as well. In this case, NIS selects variables
from pdn parameters, whereas SIS selects only from p parame-
ters. However, for the nonlinear problem as in Example 2, both
the nonlinear NIS method and penGAM behave nicely, whereas
SIS fails badly even though the underlying true model is indeed
linear.

5.2 Comparison of Model Selection and Estimation

As in the previous section, we set n = 400 and p = 1000 for
all of the examples to demonstrate the power of our proposed
INIS and g-INIS methods. Here, in the NIS step, we fix dn = 5
as in the previous section. The number of simulations is 100.
Here we use five-fold cross-validation in Step 2 of the INIS
algorithm. For simplicity of notation, we let

g1(x) = x, g2(x) = (2x − 1)2, g3(x) = sin(2πx)

2 − sin(2πx)
,

and

g4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin(2πx)2

+ 0.4 cos(2πx)3 + 0.5 sin(2πx)3.

Example 3. Following Meier, Geer, and Bühlmann (2009),
we generate the data from the following additive model:

Y = 5g1(X1) + 3g2(X2) + 4g3(X3) + 6g4(X4) + √
1.74ε.

The covariates X = (X1, . . . ,Xp)
T are simulated according to

the random-effects model

Xj = Wj + tU

1 + t
, j = 1, . . . ,p,

where W1, . . . ,Wp and U are iid Unif(0,1), and ε ∼ N(0,1).
When t = 0, the covariates are all independent, and when t = 1,
the pairwise correlation of covariates is 0.5.

Example 4. Again, we adapt the simulation model of Meier,
Geer, and Bühlmann (2009). This example is a more difficult
case than Example 3, because it has 12 important variables with
different coefficients

Y = g1(X1) + g2(X2) + g3(X3) + g4(X4)

+ 1.5g1(X5) + 1.5g2(X6) + 1.5g3(X7) + 1.5g4(X8)

+ 2g1(X9) + 2g2(X10) + 2g3(X11) + 2g4(X12)

+ √
0.5184ε,

where ε ∼ N(0,1). The covariates are simulated as in Exam-
ple 3.

Example 5. We follow the simulation model of Fan, Sam-
worth, and Wu (2009), in which Y = β1X1 + β2X2 + β3X3 +
β4X4 + ε is simulated, where ε ∼ N(0,1). The covariates
X1, . . . ,Xp are jointly Gaussian, marginally N(0,1), and with
corr(Xi,X4) = 1/

√
2 for all i �= 4 and corr(Xi,Xj) = 1/2 if i

and j are distinct elements of {1, . . . ,p} \ {4}. The coefficients
β1 = 2, β2 = 2, β3 = 2, β4 = −3

√
2, and βj = 0 for j > 4 are

taken so that X4 is independent of Y , even though it is the most
important variable in the joint model in terms of the regression
coefficient.

For each example, we compare the performance of INIS-
penGAM, g-INIS-penGAM proposed in this article, penGAM
(Meier, Geer, and Bühlmann 2009), and ISIS-SCAD (Fan, Sam-
worth, and Wu 2009), which aims for a sparse linear model.
The results are given in Table 2, in which the true positives
(TP), false positives (FP), prediction error (PE), and computa-
tion time (Time) are reported for each method. Here the pre-
diction error is calculated on an independent test dataset of
size n/2.

For the greedy modification, g-INIS-penGAM, the number of
false-positive variables is approximately 1 for all examples. The
number of false-positive variables for both INIS-penGAM and
ISIS-SCAD is much smaller than that for penGAM. In terms
of false positives, we can see that in Examples 3 and 4, INIS-
penGAM and penGAM have similar performance, whereas
penGAM misses one variable most of the time in Example 5.
The linear method ISIS-SCAD misses important variables in
the nonlinear models in Examples 3 and 4.

Note that in Example 4 (t = 1), even INIS and g-INIS miss
more than one variable on average. To explore the reason for
this, we closely examined the iterative process for this example
and found that the variables X1 and X2 were missed quite of-
ten. The explanation for this is that although the overall signal-
to-noise ratio (SNR) for this example is approximately 10.89,
the individual contributions to the total signal vary significantly.
We now introduce the notion of individual SNR. For example,
var(m1(X1))/var(ε) in the additive model

Y = m1(X1) + · · · + mp(Xp) + ε

is the individual SNR for the first component under the oracle
model where m2, . . . ,mp are known. In Example 4 (t = 1), the
variances of all 12 components are as follows:

1 2 3 4 5 6 7 8 9 10 11 12

0.08 0.09 0.21 0.26 0.19 0.20 0.47 0.58 0.33 0.36 0.84 1.03

We can see that the variance varies significantly among the
12 components, which leads to very different marginal SNRs.
For example, the individual SNR for the first component is
merely 0.08/0.518 = 0.154, th detecton of which is very chal-
lenging. With the overall SNR fixed, the individual SNRs play
an important role in determining the difficulty of selecting indi-
vidual variables.

From the perspective of the prediction error, INIS-penGAM,
g-INIS-penGAM, and penGAM outperform ISIS-SCAD in the
nonlinear models but perform worse than ISIS-SCAD in the
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Table 2. Average values of the numbers of true positives (TP), false positives (FP), prediction error
(PE), and time (in seconds). Robust standard deviations are given in parentheses

Model Method TP FP PE Time

Example 3 (t = 0) INIS 4.00 (0.00) 2.58 (2.24) 3.02 (0.34) 18.50 (7.22)
(SNR ≈ 9.02) g-INIS 4.00 (0.00) 0.67 (0.75) 2.92 (0.30) 25.03 (4.87)

penGAM 4.00 (0.00) 31.86 (23.51) 3.30 (0.40) 180.63 (6.92)
ISIS 3.03 (0.00) 29.97 (0.00) 15.95 (1.74) 12.95 (4.18)

Example 3 (t = 1) INIS 3.98 (0.00) 15.76 (6.72) 2.97 (0.39) 78.80 (26.91)
(SNR ≈ 7.58) g-INIS 4.00 (0.00) 0.98 (1.49) 2.61 (0.26) 33.89 (9.99)

penGAM 4.00 (0.00) 39.21 (24.63) 2.97 (0.28) 254.06 (13.06)
ISIS 3.01 (0.00) 29.99 (0.00) 12.91 (1.39) 18.59 (4.37)

Example 4 (t = 0) INIS 11.97 (0.00) 3.22 (1.49) 0.97 (0.11) 73.60 (25.77)
(SNR ≈ 8.67) g-INIS 12.00 (0.00) 0.73 (0.75) 0.91 (0.10) 160.75 (19.94)

penGAM 11.99 (0.00) 80.10 (18.28) 1.27 (0.14) 233.72 (10.25)
ISIS 7.96 (0.75) 25.04 (0.75) 4.70 (0.40) 12.89 (5.00)

Example 4 (t = 1) INIS 10.01 (1.49) 15.56 (0.93) 1.03 (0.13) 125.11 (39.99)
(SNR ≈ 10.89) g-INIS 10.78 (0.75) 1.08 (1.49) 0.87 (0.11) 156.37 (28.58)

penGAM 10.51 (0.75) 62.11 (26.31) 1.13 (0.12) 278.61 (16.93)
ISIS 6.53 (0.75) 26.47 (0.75) 4.30 (0.44) 17.02 (4.01)

Example 5 INIS 3.99 (0.00) 21.96 (0.00) 1.62 (0.18) 94.50 (7.12)
(SNR ≈ 6.11) g-INIS 4.00 (0.00) 1.04 (1.49) 1.16 (0.12) 39.78 (12.45)

penGAM 3.00 (0.00) 195.03 (21.08) 1.93 (0.28) 1481.12 (181.93)
ISIS 4.00 (0.00) 29.00 (0.00) 1.40 (0.17) 17.78 (3.85)

linear model of Example 5. Overall, the greedy modification g-
INIS clearly is a competitive variable selection method in ultra-
high-dimensional additive models with a very low false selec-
tion rate, small prediction error, and fast computation.

5.3 dn and SNR

Here we report a simulation study conducted to investigate
the performance of the INIS-penGAM estimator under different
SNR settings using different numbers (dn) of basis functions.

Example 6. We generate the data from the following additive
model:

Y = 3g1(X1) + 3g2(X2) + 2g3(X3) + 2g4(X4) + C
√

3.3843ε,

where the covariates X = (X1, . . . ,Xp)
T are simulated accord-

ing to Example 3. Here C takes a series of different val-
ues (C2 = 2,1,0.5,0.25) to make the corresponding SNR =
0.5,1,2,4. The results of using different numbers of basis func-
tions, dn = 2,4,6,8, are reported in Tables A.1 and A.2 in the
Appendix.

From Table A.1 in the Appendix, in which all of the vari-
ables are independent, both methods have very good true pos-
itives under various SNRs when dn is not too large. However,
for the case of SNR = 0.5 and dn = 16, INIS and penGAM per-
form poorly in terms of a low true-positive rate. This is due to
the fact that when dn is large, the estimation variance is large,
which makes it difficult to differentiate the active variables from
inactive variables when the signals are weak.

We now consider the more difficult case shown in Table A.2
(in the Appendix) where pairwise correlation between variables
is 0.5. INIS has a competitive performance under various SNR
values except when dn = 16. When SNR = 0.5, we cannot
achieve sure screening with the current sample size and con-
figuration, for the aforementioned reasons.

5.4 An Analysis on Affymetric GeneChip
Rat Genome 230 2.0 Array

We use the dataset reported by Scheetz et al. (2006) and an-
alyzed by Huang, Horowitz, and Wei (2010) to illustrate an
application of our proposed method. For this dataset, 120 12-
week-old male rats were selected for harvesting of tissue from
the eyes and subsequent microarray analysis. The microarrays
used to analyze the RNA from the eyes of these animals contain
more than 31,042 different probe sets (Affymetric GeneChip
Rat Genome 230 2.0 Array). The intensity values were normal-
ized using the robust multichip averaging method (Irizarry et al.
2003) method to obtain summary expression values for each
probe set. Gene expression levels were analyzed on a logarith-
mic scale.

Following Huang, Horowitz, and Wei (2010), we were in-
terested in finding the genes that are related to the TRIM32
gene, which was recently found to cause Bardet–Biedl syn-
drome (Chiang et al. 2006) and is a genetically heterogeneous
disease of multiple organ systems, including the retina. Al-
though more than 30,000 probe sets are represented on the
Rat Genome 230 2.0 Array, many of these are not expressed
in the eye tissue. We focused only on the 18,975 probes that
are expressed in the eye tissue. We used our INIS-penGAM
method directly on this dataset, where n = 120 and p = 18,975,
and designated this method INIS-penGAM (p = 18,975). The
fitted regression functions are shown in Figure 1. Direct appli-
cation of penGAM approach on the whole dataset is too slow.
Following Huang, Horowitz, and Wei (2010), we used 2000
probe sets that are expressed in the eye and have the greatest
marginal correlation with TRIM32 in the analysis. On the sub-
set of the data (n = 120,p = 2000), we applied INIS-penGAM
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Figure 1. Fitted regression functions for the eight probes selected by INIS-penGAM (p = 18,975).

and penGAM to model the relationships between the expres-
sion of TRIM32 and expression of the 2000 genes. For simplic-
ity, we did not implement g-INIS-penGAM. Before the anal-
ysis, we standardized each probe to be of mean 0 and vari-
ance 1. We now have three different estimators: INIS-penGAM
(p = 18,975), INIS-penGAM (p = 2000), and penGAM (p =
2000). INIS-penGAM (p = 18,975) selects the following eight
probes: 1371755_at, 1372928_at, 1373534_at, 1373944_at,
1374669_at, 1376686_at, 1376747_at, 1377880_at. INIS-
penGAM (p = 2000) selects the following eight probes:
1376686_at, 1376747_at, 1378590_at, 1373534_at,
1377880_at, 1372928_at, 1374669_at, 1373944_at. In contrast,
penGAM (p = 2000) selects 32 probes: The residual sum of
squares (RSS) for these fittings are 0.24 for INIS-penGAM
(p = 18,975), 0.26 for INIS-penGAM (p = 2000), and 0.1 for
penGAM (p = 2000).

To further evaluate the performance of the two methods,
we used cross-validation and compared the prediction mean
squared error (PE). We randomly partitioned the data into a
training set of 100 observations and a test set of 20 observa-
tions. We computed the number of probes selected using the
100 observations and the PEs on these 20 test sets. This process
was repeated 100 times. Table 3 presents the average values
and their associated robust standard deviations over 100 repli-

cations. As clearly shown in the table, the INIS-penGAM ap-
proach selects far fewer genes and has a smaller PE. Thus, in
this example, INIS-penGAM provides the biological investiga-
tor with a more targeted list of probe sets, which could be very
useful in subsequent studies.

6. DISCUSSION

In this article we have studied the NIS method for variable se-
lection in additive models. We used B-spline basis functions for
fitting the marginal nonparametric components. Our proposed
marginal projection criteria represent an important extension of
the marginal correlation. We also have proposed iterative NIS
procedures in which variable selection and coefficient estima-
tion can be achieved simultaneously. By applying the INIS-
penGAM method, we can preserve the sure screening property

Table 3. Mean model size (MS) and prediction error (PE) over 100
repetitions and their robust standard deviations (in parentheses) for

INIS (p = 18,975), INIS (p = 2000), and penGAM (p = 2000)

Method MS PE

INIS (p = 18975) 7.73 (0.00) 0.47 (0.13)
INIS (p = 2000) 7.68 (0.75) 0.44 (0.15)
penGAM (p = 2000) 26.71 (14.93) 0.48 (0.16)
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and substantially reduce the false selection rate. We have pro-
posed a greedy modification of the g-INIS-penGAM method
to further reduce the false selection rate. Moreover, this method
can deal with the case where some variable is marginally uncor-
related but jointly correlated with the response. The proposed
method can be easily generalized to generalized additive mod-
els with appropriate conditions.

Given that in this work the additive components are specif-
ically approximated by truncated series expansions with B-
spline bases, the theoretical results should hold in general,
and the proposed framework can be readily adapted to other
smoothing methods with additive models (Silverman 1984;
Horowitz, Klemelä, and Mammen 2006), such as local polyno-
mial regression (Fan and Jiang 2005), wavelet approximations
(Antoniadis and Fan 2001; Sardy and Tseng 2004), and smooth-
ing splines (Speckman 1985). This is an interesting topic for
future research.

7. PROOFS

Proof of Lemma 1. By the least squares property, E(Y −
fnj)fnj = 0 and E(Y − fj)fnj = 0. Therefore,

Efnj(fj − fnj) = E(Y − fnj)fnj − E(Y − fj)fnj = 0.

It follows from this and the orthogonal decomposition fj = fnj +
(fj − fnj) that

‖fnj‖2 = ‖fj‖2 − ‖fj − fnj‖2.

The desired result follows from condition C together with
Fact 1.

The following types of Bernstein’s inequality in van der Vaart
and Wellner (1996) are needed:

Lemma 2 (Bernstein’s inequality, lemma 2.2.9, van der
Vaart and Wellner 1996). For independent random variables
Y1, . . . ,Yn with bounded ranges [−M,M] and 0 means,

P(|Y1 + · · · + Yn| > x) ≤ 2 exp
{−x2/(2(v + Mx/3))

}
for v ≥ var(Y1 + · · · + Yn).

Lemma 3 (Bernstein’s inequality, lemma 2.2.11, van der
Vaart and Wellner 1996). Let Y1, . . . ,Yn be independent ran-
dom variables with 0 mean such that E|Yi|m ≤ m!Mm−2vi/2,
for every m ≥ 2 (and all i) and some constants M and vi.
Then

P(|Y1 + · · · + Yn| > x) ≤ 2 exp
{−x2/(2(v + Mx))

}
for v ≥ v1 + · · · + vn.

The following lemmas are needed to prove Theorem 1.

Lemma 4. Under conditions A, B, and D, for any δ > 0, there
exist some positive constants c6 and c7 such that

P
(|(Pn − E)�jkY| ≥ δn−1) ≤ 4 exp(−δ2/2(c6nd−1

n + c7δ))

for k = 1, . . . ,dn, j = 1, . . . ,p.

Proof. Write Tjki = �jk(Xij)Yi − E�jk(Xij)Yi. Because Yi =
m(Xi) + εi, we can write Tjki = Tjki1 + Tjki2, where

Tjki1 = �jk(Xij)m(Xi) − E�jk(Xij)m(Xi),

and Tjki2 = �jk(Xij)εi.

By conditions A, B, D, and Fact 2, recalling that ‖�jk‖∞ ≤ 1,
we have

|Tjki1| ≤ 2B1,
(12)

var(Tjki1) ≤ E�2
jk(Xij)mi(Xij)

2 ≤ B2
1C2d−1

n .

By Bernstein’s inequality (Lemma 2), for any δ1 > 0,

P

(∣∣∣∣∣
n∑

i=1

Tjki1

∣∣∣∣∣ > δ1

)
≤ 2 exp

(
−1

2

δ2
1

nB2
1C2d−1

n + 2B1δ1/3

)
.

(13)
We next bound the tails of Tjki2. For every r ≥ 2,

E|Tjki2|r ≤ E|�jk(Xij)|2E(|εi|r|Xi)

≤ r!B−r
2 E|�jk(Xij)|2E exp(B2|εi||Xi)

≤ B3C2d−1
n r!B−r

2 ,

where the last inequality uses condition E and Fact 2. By Bern-
stein’s inequality (Lemma 3), for any δ2 > 0,

P

(∣∣∣∣∣
n∑

i=1

Tjki2

∣∣∣∣ > δ2

)
≤ 2 exp

(
−1

2

δ2
2

2nB−2
2 B3C2d−1

n + B−1
2 δ2

)
.

(14)
Combining (13) and (14), the desired result follows by taking
c6 = max(B2

1C2,2B−2
2 B3C2) and c7 = max(2/3B1,B−1

2 ).

Throughout the rest of the proof, for any matrix A, let ‖A‖ =√
λmax(ATA) be the operator norm and ‖A‖∞ = maxi,j |Aij| be

the infinity norm. The next lemma is about the tail probability
of the eigenvalues of the design matrix.

Lemma 5. Under conditions A and B, for any δ > 0,

P
(|λmin(Pn� j�

T
j ) − λmin(E� j�

T
j )| ≥ dnδ/n

)
≤ 2d2

n exp

{
−1

2

δ2

C2nd−1
n + δ/3

}
.

In addition, for any given constant c4, there exists some positive
constant c8 such that

P
{∣∣‖(Pn� j�

T
j )−1‖ − ‖(E� j�

T
j )−1‖∣∣ ≥ c8‖(E� j�

T
j )−1‖}

≤ 2d2
n exp(−c4nd−3

n ). (15)

Proof. For any symmetric matrices A and B and any ‖x‖ = 1,
where ‖ · ‖ is the Euclidean norm,

xT(A + B)x = xTAx + xTBx ≥ min‖x‖=1
xTAx + min‖x‖=1

xTBx.

Taking the minimum among ‖x‖ = 1 on the left side, we have

min‖x‖=1
xT(A + B)x ≥ min‖x‖=1

xTAx + min‖x‖=1
xTBx,

which is equivalent to λmin(A + B) ≥ λmin(A) + λmin(B).
We then have

λmin(A) ≥ λmin(B) + λmin(A − B),
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which is the same as

λmin(A − B) ≤ λmin(A) − λmin(B).

By switching the roles of A and B, we also have

λmin(B − A) ≤ λmin(B) − λmin(A).

In other words,

|λmin(A) − λmin(B)|
≤ max

{|λmin(A − B)|, |λmin(B − A)|}. (16)

Let Dj = Pn� j�
T
j − E� j�

T
j . It then follows from (16) that

|λmin(Pn� j�
T
j ) − λmin(E� j�

T
j )|

≤ max
{|λmin(Dj)|, |λmin(−Dj)|

}
. (17)

We now bound the right side of (17). Let D(i,l)
j be the (i, l) entry

of Dj. Then it is easy to see that for any ‖x‖ = 1,

|xTDjx| ≤ ‖Dj‖∞

( dn∑
i=1

|xi|
)2

≤ dn‖Dj‖∞. (18)

Thus,

λmin(Dj) = min‖x‖=1
xTDjx ≤ dn‖Dj‖∞.

On the other hand, using (18) again, we have

λmin(Dj) = − max
‖x‖=1

(−xTDjx) ≥ −dn‖Dj‖∞.

We conclude that

|λmin(Dj)| ≤ dn‖Dj‖∞.

The same bound on |λmin(−Dj)| can be obtained using the same
argument. Thus, by (17), we have

|λmin(Pn� j�
T
j ) − λmin(E� j�

T
j )| ≤ dn‖Dj‖∞. (19)

We now use Bernstein’s inequality to bound the right side
of (19). Because ‖�jk‖∞ ≤ 1, and using Fact 2, we have that

var(�jk(Xj)�jl(Xj)) ≤ E�2
jk(Xj)�

2
jl(Xj) ≤ E�2

jk(Xj) ≤ C2d−1
n .

By Bernstein’s inequality (Lemma 2), for any δ > 0,

P
(|(Pn − E)�jk(Xj)�jl(Xj)| > δ/n

)
≤ 2 exp

{
− δ2

2(C2nd−1
n + δ/3)

}
. (20)

It follows from (19), (20), and the union bound of probability
that

P
(|λmin(Pn� j�

T
j ) − λmin(E� j�

T
j )| ≥ dnδ/n

)
≤ 2d2

n exp

{
− δ2

2(C2nd−1
n + δ/3)

}
.

This completes the proof of the first inequality.
To prove the second inequality, take δ = c9D1nd−2

n in (20),
where c9 ∈ (0,1). Recalling Fact 3, it follows that

P
(|λmin(Pn� j�

T
j ) − λmin(E� j�

T
j )| ≥ c9λmin(E� j�

T
j )

)
≤ 2d2

n exp(−c4nd−3
n ) (21)

for some positive constant c4. The second part of the lemma
thus follows from the fact that λmin(H)−1 = λmax(H−1), if we
establish

P
(∣∣{λmin(Pn� j�

T
j )}−1 − {λmin(E� j�

T
j )}−1

∣∣
≥ c8{λmin(E� j�

T
j )}−1)

≤ 2d2
n exp(−c4nd−3

n ), (22)

by using (21), where c8 = 1/(1 − c9) − 1.
We now deduce (22) from (21). Let A = λmin(Pn� j�

T
j ) and

B = λmin(E� j�
T
j ). Then A > 0 and B > 0. We aim to show that

for a ∈ (0,1),

|A−1 − B−1| ≥ cB−1 implies |A − B| ≥ aB,

where c = 1/(1 − a) − 1.
Because

|A−1 − B−1| ≥ (1/(1 − a) − 1)B−1,

we have

A−1 − B−1 ≤ −(1/(1 − a) − 1)B−1 or

≥ (1/(1 − a) − 1)B−1.

Note that for a ∈ (0,1), we have 1 − 1/(1 + a) < 1/(1 − a)− 1.
It then follows that

A−1 − B−1 ≤ −(1 − 1/(1 + a))B−1 or

≥ (1/(1 − a) − 1)B−1,

which is equivalent to |A − B| ≥ aB.
This concludes the proof of the lemma.

Proof of Theorem 1. We first prove part (a). Recall that

‖f̂nj‖2
n = (Pn� jY)T(Pn� j�

T
j )−1

Pn� jY

and

‖fnj‖2 = (E� jY)T(E� j�
T
j )−1E� jY.

Let an = Pn� jY , Bn = (Pn� j�
T
j )−1, a = E� jY , and B =

(E� j�
T
j )−1. By some algebra,

aT
n Bnan − aTBa = (an − a)TBn(an − a)

+ 2(an − a)TBna + aT
n (Bn − B)a,

we have

‖f̂nj‖2
n − ‖fnj‖2 = S1 + S2 + S3, (23)

where

S1 = (Pn� jY − E� jY)T(Pn� j�
T
j )−1(Pn� jY − E� jY),

S2 = 2(Pn� jY − E� jY)T(Pn� j�
T
j )−1E� jY,

S3 = (E� jY)T((Pn� j�
T
j )−1 − (E� j�

T
j )−1)E� jY.

Note that

S1 ≤ ‖(Pn� j�
T
j )−1‖ · ‖Pn� jY − E� jY‖2. (24)

By Lemma 4 and the union bound of probability,

P(‖Pn� jY − E� jY‖2 ≥ dnδ
2n−2)

≤ 4dn exp(−δ2/2(c6nd−1
n + c7δ)). (25)
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Recall the result in Lemma 5 that, for any given constant c4,
there exists a positive constant c8 such that

P
{∣∣‖(Pn� j�

T
j )−1‖ − ‖(E� j�

T
j )−1‖∣∣ ≥ c8‖(E� j�

T
j )−1‖}

≤ 2d2
n exp(−c4nd−3

n ).

Because by Fact 3,

‖(E� j�
T
j )−1‖ ≤ D−1

1 dn,

it follows that

P
{‖(Pn� j�

T
j )−1‖ ≥ (c8 + 1)D−1

1 dn
}

≤ 2d2
n exp(−c4nd−3

n ). (26)

Combining (24)–(26) and the union bound of probability, we
have

P(S1 ≥ (c8 + 1)D−1
1 d2

nδ
2/n2)

≤ 4dn exp(−δ2/2(c6nd−1
n + c7δ))

+ 2d2
n exp(−c4nd−3

n ). (27)

To bound S2, we note that

|S2| ≤ 2‖Pn� jY − E� jY‖ · ‖(Pn� j�
T
j )−1E� jY‖

≤ 2‖Pn� jY − E� jY‖ · ‖(Pn� j�
T
j )−1‖ · ‖E� jY‖. (28)

Because by condition D,

‖E� jY‖2 =
dn∑

k=1

(E�jkY)2 =
dn∑

k=1

(E�jkm)2

≤
dn∑

k=1

B2
1E�2

jk ≤ B2
1C2, (29)

it follows from (25), (26), (28), (29), and the union bound of
probability that

P
(|S2| ≥ 2(c8 + 1)D−1

1 C1/2
2 B1d3/2

n δ/n
)

≤ 4dn exp(−δ2/2(c6nd−1
n + c7δ))

+ 2d2
n exp(−c4nd−3

n ). (30)

We now bound S3. Note that

S3 = (E� jY)T(Pn� j�
T
j )−1

× (E − Pn)� j�
T
j (E� j�

T
j )−1E� jY. (31)

By the fact that ‖AB‖ ≤ ‖A‖ · ‖B‖, we have

|S3| ≤ ‖(Pn − E)� j�
T
j ‖ · ‖(Pn� j�

T
j )−1‖

· ‖(E� j�
T
j )−1‖ · ‖E� jY‖2. (32)

For any ‖x‖ = 1 and dn-dimensional square matrix D,

xTDTDx =
∑

i

(∑
j

dijxj

)2

≤ ‖D‖2∞dn

( dn∑
j=1

|xi|
)2

≤ d2
n‖D‖2∞.

Thus ‖D‖ ≤ dn‖D‖∞. We conclude that

‖(Pn − E)� j�
T
j ‖ ≤ dn‖(Pn − E)� j�

T
j ‖∞. (33)

By (20), (26), (29), (32), (33), and the union bound of probabil-
ity, it follows that

P(|S3| ≥ (c8 + 1)D−2
1 B2

1C2d3
nδ/n)

≤ 2d2
n exp(−δ2/2(c6nd−1

n + c7δ))

+ 2d2
n exp(−c4nd−3

n ). (34)

It follows from (23), (27), (30), (34), and the union bound of
probability that for some positive constants c10, c11, and c12,

P
(|‖f̂nj‖2

n − ‖fnj‖2| ≥ c10d2
nδ

2/n2 + c11d3/2
n δ/n + c12d3

nδ/n
)

≤ (8dn + 2d2
n) exp(−δ2/2(c6nd−1

n + c7δ))

+ 6d2
n exp(−c4nd−3

n ). (35)

In (35), let c10d2
nδ

2/n2 + c11d3/2
n δ/n + c12d3

nδ/n = c2dnn−2κ

for any given c2 > 0 (i.e., taking δ = n1−2κd−2
n c2/c12), there

exist some positive constants c3 and c4 such that

P
(|‖f̂nj‖2

n − ‖fnj‖2| ≥ c2dnn−2κ
)

≤ (8dn + 2d2
n) exp(−c3n1−4κd−3

n ) + 6d2
n exp(−c4nd−3

n ).

The first part thus follows the union bound of probability.
To prove the second part, note that on the event

An ≡
{

max
j∈M�

|‖f̂nj‖2
n − ‖fnj‖2| ≤ c1ξdnn−2κ/2

}
,

by Lemma 1, we have

‖f̂nj‖2
n ≥ c1ξdnn−2κ/2 for all j ∈ M�. (36)

Thus, by the choice of νn, we have M� ⊂ M̂νn . The result now
follows from a simple union bound:

P(Ac
n) ≤ sn{(8dn + 2d2

n) exp(−c3n1−4κd−3
n )

+ 6d2
n exp(−c4nd−3

n )}.
This completes the proof.

Proof of Theorem 2. The key idea of the proof is to show that

‖E�Y‖2 = O(λmax(�)). (37)

If so, by definition and ‖�jk‖∞ ≤ 1, we have

pn∑
j=1

‖fnj‖2 ≤ max
1≤j≤pn

λmax{(E� j�
T
j )−1}‖E�Y‖2

= O(dnλmax(�)).

This implies that the number of {j :‖fnj‖2 > εdnn−2κ } cannot
exceed O(n2κλmax(�)) for any ε > 0. Thus, on the set

Bn =
{

max
1≤j≤pn

|‖f̂nj‖2
n − ‖fnj‖2| ≤ εdnn−2κ

}
,

the number of {j :‖f̂nj‖2
n > 2εdnn−2κ} cannot exceed the number

of {j :‖fnj‖2 > εdnn−2κ}, which is bounded by O{n2κλmax(�)}.
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By taking ε = c5/2, we have

P
[∣∣M̂νn

∣∣ ≤ O{n2κλmax(�)}] ≥ P(Bn).

The conclusion follows from Theorem 1(i).
It remains to prove (37). Note that (37) is more related to the

joint regression rather than the marginal regression. Let

αn = arg min
α

E(Y − �Tα)2,

which is the joint regression coefficients in the population. By
the score equation of αn, we get

E�(Y − �Tαn) = 0.

Thus

‖E�Y‖2 = αT
n E��TE��Tαn ≤ λmax(�)αT

n E��Tαn.

It now follows from the orthogonal decomposition that

var(Y) = var(�Tαn) + var(Y − �Tαn).

Because var(Y) = O(1), we conclude that var(�Tαn) = O(1),
that is,

αT
n E��Tαn = O(1).

This completes the proof.

APPENDIX: TABLES FOR SIMULATION RESULTS OF SECTION 5.3

Table A.1. Average values of the numbers of TP, FP, PE, and computation time for Example 6 (t = 0).
Robust standard deviations are given in parentheses

SNR dn Method TP FP PE Time

0.5 2 INIS 3.96 (0.00) 2.28 (1.49) 7.74 (0.79) 16.09 (5.32)

penGAM 4.00 (0.00) 27.85 (16.98) 8.07 (0.92) 354.46 (31.48)

4 INIS 3.93 (0.00) 2.29 (1.68) 7.90 (0.81) 21.68 (8.95)

penGAM 3.99 (0.00) 25.61 (13.62) 8.21 (0.84) 421.17 (35.71)

8 INIS 3.81 (0.00) 2.59 (2.24) 8.16 (1.08) 33.10 (15.79)

penGAM 3.95 (0.00) 34.59 (20.34) 8.49 (0.82) 484.17 (179.70)

16 INIS 3.38 (0.75) 2.02 (1.49) 8.60 (1.13) 42.69 (20.13)

penGAM 3.74 (0.00) 33.48 (23.88) 9.04 (0.93) 685.97 (267.43)

1.0 2 INIS 4.00 (0.00) 2.16 (2.24) 3.98 (0.34) 16.03 (5.74)

penGAM 4.00 (0.00) 26.51 (14.18) 4.20 (0.46) 284.85 (20.30)

4 INIS 4.00 (0.00) 2.08 (1.49) 3.97 (0.45) 20.80 (8.57)

penGAM 4.00 (0.00) 28.33 (15.49) 4.24 (0.47) 362.02 (81.43)

8 INIS 4.00 (0.00) 2.72 (2.24) 4.04 (0.43) 35.79 (18.38)

penGAM 4.00 (0.00) 36.50 (21.83) 4.37 (0.47) 427.60 (152.53)

16 INIS 4.00 (0.00) 1.80 (1.49) 4.26 (0.45) 46.81 (21.47)

penGAM 4.00 (0.00) 38.60 (19.78) 4.80 (0.57) 595.87 (197.06)

2.0 2 INIS 4.00 (0.00) 2.03 (2.24) 2.12 (0.17) 15.92 (5.42)

penGAM 4.00 (0.00) 25.89 (13.06) 2.25 (0.24) 235.69 (13.32)

4 INIS 4.00 (0.00) 2.38 (2.24) 2.06 (0.22) 23.54 (9.08)

penGAM 4.00 (0.00) 30.37 (17.16) 2.21 (0.26) 341.13 (19.44)

8 INIS 4.00 (0.00) 2.79 (2.24) 2.03 (0.21) 38.56 (19.58)

penGAM 4.00 (0.00) 38.51 (16.42) 2.24 (0.26) 396.84 (20.51)

16 INIS 4.00 (0.00) 1.77 (1.49) 2.17 (0.25) 48.40 (24.65)

penGAM 4.00 (0.00) 42.58 (16.60) 2.54 (0.30) 540.89 (165.39)

4.0 2 INIS 4.00 (0.00) 2.06 (2.24) 1.19 (0.13) 17.74 (6.42)

penGAM 4.00 (0.00) 28.57 (14.37) 1.27 (0.15) 213.43 (12.09)

4 INIS 4.00 (0.00) 2.33 (1.49) 1.09 (0.10) 23.28 (9.37)

penGAM 4.00 (0.00) 30.75 (17.35) 1.18 (0.14) 300.69 (12.21)

8 INIS 4.00 (0.00) 2.88 (2.24) 1.02 (0.12) 39.21 (19.17)

penGAM 4.00 (0.00) 40.51 (17.54) 1.14 (0.14) 340.06 (11.49)

16 INIS 4.00 (0.00) 1.72 (1.49) 1.10 (0.12) 49.79 (25.78)

penGAM 4.00 (0.00) 45.77 (19.03) 1.33 (0.16) 481.19 (141.51)
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Table A.2. Average values of the numbers of TP, FP, PE, and computation time (Time) for Example 6 (t = 1).
Robust standard deviations are given in parentheses

SNR dn Method TP FP PE Time

0.5 2 INIS 3.35 (0.75) 33.67 (8.96) 9.49 (1.28) 196.87 (91.48)

penGAM 3.10 (0.00) 17.74 (15.11) 7.92 (0.89) 1107.78 (385.95)

4 INIS 3.02 (0.00) 20.22 (2.43) 8.70 (1.14) 109.51 (56.11)

penGAM 2.78 (0.00) 15.91 (10.07) 7.99 (0.91) 734.08 (227.55)

8 INIS 2.51 (0.75) 10.48 (0.75) 8.37 (0.89) 65.12 (16.64)

penGAM 2.59 (0.75) 16.47 (9.70) 8.13 (0.90) 624.31 (56.23)

16 INIS 2.10 (0.00) 4.47 (0.75) 8.44 (1.00) 46.84 (15.61)

penGAM 2.41 (0.75) 15.56 (10.63) 8.42 (0.97) 786.45 (244.02)

1.0 2 INIS 3.83 (0.00) 32.46 (9.70) 4.86 (0.60) 164.97 (64.14)

penGAM 3.64 (0.75) 24.61 (21.08) 4.19 (0.49) 849.23 (294.03)

4 INIS 3.56 (0.75) 20.53 (1.68) 4.42 (0.52) 118.14 (43.97)

penGAM 3.46 (0.75) 22.07 (16.04) 4.18 (0.49) 614.93 (97.36)

8 INIS 3.09 (0.00) 10.67 (0.75) 4.28 (0.49) 71.16 (32.10)

penGAM 3.12 (0.00) 19.92 (10.63) 4.30 (0.50) 548.60 (33.88)

16 INIS 2.68 (0.75) 4.18 (0.75) 4.45 (0.52) 46.08 (15.35)

penGAM 2.95 (0.00) 16.39 (11.19) 4.57 (0.55) 710.56 (199.86)

2.0 2 INIS 3.99 (0.00) 29.45 (11.57) 2.55 (0.38) 139.67 (70.45)

penGAM 3.97 (0.00) 36.57 (22.57) 2.25 (0.28) 626.84 (210.44)

4 INIS 3.93 (0.00) 19.12 (3.73) 2.26 (0.24) 111.01 (21.82)

penGAM 3.91 (0.00) 31.31 (20.52) 2.19 (0.23) 481.87 (52.11)

8 INIS 3.50 (0.75) 10.29 (0.75) 2.21 (0.23) 78.06 (32.23)

penGAM 3.71 (0.75) 27.06 (19.03) 2.28 (0.29) 448.38 (26.63)

16 INIS 2.93 (0.00) 4.07 (0.00) 2.42 (0.32) 51.69 (1.10)

penGAM 3.22 (0.00) 19.51 (12.13) 2.53 (0.30) 661.93 (46.27)

4.0 2 INIS 4.00 (0.00) 29.47 (11.38) 1.45 (0.21) 144.22 (72.54)

penGAM 4.00 (0.00) 37.27 (20.71) 1.27 (0.17) 533.98 (69.29)

4 INIS 3.99 (0.00) 17.36 (5.22) 1.17 (0.12) 102.97 (32.71)

penGAM 4.00 (0.00) 38.71 (20.34) 1.16 (0.11) 403.32 (28.29)

8 INIS 3.78 (0.00) 10.00 (0.00) 1.13 (0.16) 88.79 (12.02)

penGAM 3.99 (0.00) 41.42 (15.86) 1.19 (0.13) 402.92 (16.94)

16 INIS 3.02 (0.00) 3.98 (0.00) 1.36 (0.15) 49.13 (1.85)

penGAM 3.72 (0.75) 29.58 (19.40) 1.43 (0.18) 556.31 (35.48)

[Received December 2009. Revised November 2010.]
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