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Summary

I would like to congratulate Professor Antoniadis for successfully outlining the current
state-of-art of wavelet applications in statistics. Since wavelet techniques were introduced
to statistics in the early 90's, the applications of wavelet techniques have mushroomed.
There is a vast forest of wavelet theory and techniques in statistics and one can find
himself easily lost in the jungle. The review by Antoniadis, ranging from linear wavelets
to nonlinear wavelets, addressing both theoretical issues and practical relevance, gives
in-depth coverage of the wavelet applications in statistics and guides one entering easily
into the realm of wavelets.

1. Variable smoothing and spatial adaptation

Wavelets are a family of orthonormal bases having ability of representing func­
tions that are local in both time and frequency domains (subjects to the contraints
as in Heisenberg's uncertainty principle). These properties allow one to com­
press efficiently a wide array of classes of signals, reducing dimensionally from
n highly-correlated dimensions to much smaller nearly-independent dimensions,
without introducing large approximation errors. These classes of signals include
piecewise smooth functions and functions with variable degrees of smoothness
and functions with variable local frequencies. The adaptation properties of non­
linear wavelet methods to the Besov classes of functions are thoroughly studies
by Donoho, Johnstone, Kerkyacharian and Picard [37, 38]. The adaptation prop­
erties of nonlinear wavelet methods to the functions with variable frequencies
can be found in Fan, Hall, Martin and Patil [3]. The time and frequency localiza­
tion of wavelet functions permits nonlinear wavelets methods to conduct auto­
matically variable smoothing: different location uses a different value of smooth­
ing parameter. This feature enables nonlinear wavelet estimators to recover func­
tions with different degrees of smoothness and different local frequencies. Namely,
nonlinear wavelet estimators possess spatial adaptation property.

As pointed out in Donoho, Johnstone, Kerkyacharian and Picard [37], linear
estimators, including linear wavelet, kernel and spline methods, can not effi­
ciently estimate functions with variable degrees of smoothness. A natural ques­
tion is if the traditional methods can be modified to efficiently estimate the func-
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tions with variable degrees of smoothness. The answer is positive. To recover
functions with different degrees of smoothness, variable bandwidth schemes have
to be incorporated into kernel or local polynomial estimators, resulting in highly
nonlinear estimators. For example, with the implementation of variable band­
width as in Fan and Gijbels [2], it is shown via simulations that the resulting local
linear estimator performs at least comparably with the nonlinear wavelet tech­
niques. See also Fan, Hall, Martin and Patil [4] for the idea of using cross-valida­
tion to choose variable bandwidths. However, there is a premium for using the
variable bandwidth method: The computational cost can be high. In a seminal
work by Lepski, Mammen and Spokoiny [6], it is shown that with a variable
bandwidth selection, the kernel regression smoother can also enjoy the optimal
rates of convergence for Besov classes of functions in a similar fashion to the
nonlinear wavelet estimators.

Nonlinear wavelets and variable bandwidth smoothing are no monopoly in
adaptation to variable degrees of smoothness. When variable smoothing is incor­
porated in smoothing splines, the resulting estimator can also possess spatial ad­
aptation property. SeeLuo and Wahba [9] for details.

2. Thresholding and subset selection

Thresholding rules have strong connections with model selection in the tradi­
tionallinear models. Suppose that we have a linear model

Y=X[3+E.

Then the least-squares estimate is p=(XTX)-I XTy.Now suppose that the columns
ofX are orthonormal. Then, the least-square estimate in the full model is [3 =XTy,
the orthogonal transform of the vector Y. Let ai be i'"smallest value of the vector
Ipl. The stepwise deletion algorithm in the linear model is to delete a variable,
one at a time, with the smallest absolute t- value. For the orthonormal design
matrix, this corresponds to delete the variable with the smallest absolute value of
the estimated coefficients. When a variable is deleted, the remaining variables
are still orthonormal and the estimated coefficients remain unchanged. So, in the
second step, the algorithm deletes the variable that has the second smallest esti­
mated coefficient [3 in the full model. If the stepwise deletion is carrjed out m
times, the remaining variables are those with the largest n - m values of 1[31, namely

{i: I.B;I>,t} with a <,t < am+/

Therefore, the stepwise deletion algorithm leads to the hard thresholding rule.
Since the wavelet transforms are orthonormal, the hard-thresholding estimator is
the same as the least-squares estimator by using the stepwise deletion rule.
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The soft-thresholding rule can be viewed similarly. Let us for a moment as­
sume that we have n-dimensional Gaussian white noise model:

z = e+ e. with e- N(O, a'I,,} (2.1)

Suppose that the vector e is sparse so that it can reasonably be mode led as an
LLd. realization from a double exponential distribution with a scale parameter A,.
Then, the Bayesian estimate is to find e that minimizes

(2.2)

where A=a21A,. Minimization of (2.2) is equivalent to minimizing (2.2) compo­
nentwise. The solution to the above problem yields the soft-thresholding rule.

This connection was observed by Donoho, Johnstone, Hoch and Stem [1] and
forms the core of the lasso introduced by Tibshirani [10].

The minimization problem (2.1) is closely related to (11) in the review paper
with p =1. If the L,-penalty in (2.1) is replaced by the weighted Lz-loss, then we
obtain a shrinkage rule that is similar to equation (12) of the reviewed paper. In
wavelet applications, one applies the above method to wavelet coefficients from
resolution 10 + 1 to log, n. This results in the Donoho and Johnstone soft-shrink­
age rule.

We would like to note a few other penalty functions. Consider the more gener­
al form of penalized least-squares:

(2.3)

It can be shown that with the discontinuous penality P2(e) =lelI(lel ~ A)+
A / 2I(lel > A), which remains constant for large values of lel, the resulting
solution is the harding thresholding rule:

with the continuous penalty function Pi0) =min(1 el,A), the solution is a mixture
of a soft and hard thresholding rule:
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When the continuous differentiable penaly-function

(aA -9)
pA9)=1(9::=;A)+ ( + 1(9),1.), for9>Oanda>2

a-1)A

is used, the resulting solution is a piecewise linear thresholding:

(IZj/-At when IZjl::=; 2A

9j =
(a-1)Zj-aA

when 2,1. <IZjl::=;aA
a-2

Zj when IZjl > aA

This thresholding function is in the same spirit to that in Bruce and Gao [20]. The
penality function, its derivative and the solution 9j as a function of Zj are depicted
in the following figure.
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Fig. I - (a) Derivative of penalty function p,; (b) Thresholding functions. Solid line - piece­
wise linear thresholding, dotted line - soft-thresholding, dashed line - hard thresholding.

3. Robustness and likelihood based models

Because of the localization nature of wavelets transform, the wavelets coeffi­
cients are seriously affected by outliers, particularly for those at high-resolution
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levels. These contaminated coefficients are usually large and they can not be
eliminated by thresholding rules. Hence, the wavelet estimators are highly af­
fected by outliners.

It is easier and more interpretable to model directly the unknown function. Let
us assume that the collected data (Xi' Y;) are independent. Conditioning on Xi' Yj

has a density /; (g(X;), YJ Model (9) in the review article is a special case of this
likelihood modeling with/; being a normal density. For simplicity, we consider
the uniform density case with X j = i/n. Let W be the orthonormal matrix corre­
sponding to a wavelet transform. Let e = Wg be the wavelet transform of the
vector g =(g(l/n), "', g(n/n)y' Then, g(i!n) =eTw.where w,is the if" column of W.
The penalized likelihood function can be written as

IA(eTwi· Yi )-Ailei~
i=/ ;=m

(3.1)

for some thresholding parameter A. As noted in the last section, when f; is the
normal likelihood, the resulting estimator is the Donoho and Johnstone soft-thrink­
age estimator. Thus, the penalized likelihood estimator is an extension of the
wavelet shrinkage estimator. It also admits Bayesian interpretation as in (2.2).

When f;(g, y) = p(y - g), then (3.1) becomes

11 If

L,P(Yi -eTwi)-AL,leJ
i=/ i=m

(3.2)

If an outlier-resistant loss function such as the Lrloss or more generally Huber's
psi-function (see Huber [8]) is used, the resulting wavelet estimator is robust.

We now close this section by introducing an iterative algorithm to compute the
estimator defined by (3.1). Let us assume that (t, y) are continuous. Suppose
that we are given the initial value eo that is close to the minimizer of (3.1). Then,
(3.1) can locally be approximated by a quadratic function:

where
n n

£(eo) = L,£i(ebwi'Y;)' v£(eo) = L,£:(ebWi'Yi)W;,
~I ~I

and
11

v2£(e
o) =L,('(ebWi'Yi)WiWr,

;=1
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The quadratic minimization problem (3.3) yields the solution

where

1:'(00)=diag(0", 'O,IOm+l.ol-
I,

... ,10n.l') and

sgn(00)=(0,···,0, sgn(0m+I.O ~ ... ,sgn(0".0 ~ "', sgn(0".0)r.
A drawback of the above algorithm is that once a coefficient is shrunk to zero, it
will remain zero. The benefit is that it reduces a lot of computation burden. A
reasonable initial value 00 is to use the soft-threholded wavelet coefficients. This
would shrink many coefficients to zero, resulting in a much smaller dimension of
minimization problem.

The estimator (3.4) can be regarded as a one-step procedure to the constrained
likelihood problem (3. I). Like in parametric case, with good initial value 0o, the
one-step procedure 01 can be as efficient as the fully iterative MLE. Now, regard­
ing 01 as a good initial value, the next iteration can also be regarded as a one-step
procedure and the resulting estimator can still be as efficient as the fully iterative
MLE. Therefore, estimators defined by (3.4) after a few iterations can always be
regarded as an one-step estimator, which is expected to be as efficient as the fully
iterative method as long as the initial estimator is good enough. In this sense, one
does not have to iterate (3.4) until it converges.

When the L1-Ioss is used in (3.2), one can not directly approximate it by a
quadratic equation as (3.3). However, it can be approximated as

1J 2 n

L (Y; - OTw;) fly; - 0;;w;1 + AL 0;2 fIO;o~
i=f ;=m

From this quadratic approximation, an iterative algorithm can easily be obtained:

01 = {WR(Oo)WT+U(Oo)f' WR(Oo)Y'

where R(00)=diag{lrJ""',lrJ
1

) with 'i =Iy; -O;;w;~
In the penalized likelihood (3.1), one can also use the quadratic penalty ifthe

prior distribution of 0; is Gaussian instead of double exponential. This leads to
the following minimization problem:

" n

- Lf;(OTW;,y;)+ALO;O/
i=/ i=m
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for some given 0;. Note that (3.5) can also be regarded as a constrained MLE with
parameter space

{o: ~OiO/ $ constant}

which imposes some smoothness constraints on the underlying function. As in
(3.4), the solution to the minimization problem (3.5) can be obtained via the
following iterative algorithm:

where Eo =diag(o,,···,on)·
The above algorithms involve solving equation of form:

(WR,W+RX'a (3.6)

for given diagonal matrix R, and R2 with nonnegative elements. A fast algorithm
for computing such a vector is needed. One possible way is to use the following
iterative algorithm. Let b =(WR,W + R2f 'a. Then,

This suggests the following iterative algorithm for finding b:

(3.7)

for some given value of A. > O. The operations on the right hand side of equation
(3.7) is easy to compute: Sine R2 is a diagonal matrix, one can explicitly compute
the inverse matrix (AIn + R2f '.The vector W T R,Wb can be computed by discrete
wavelet transform and the inverse wavelet transform of the transformed vector
multiplied with the diagonal matrix R,. The effectiveness for this algorithm re­
mains to be seen.

4. Applications to functional data analysis

With advantage of modern technology, data can easily be collected in a form of
curves {Xlt)} (i = 1, ..., n; j = 1, ..., T) - the rh observation at time tj • Such a kind
of data are called functional data. For details on functional data analyses, see
Ramsey and Silverman [7]. We outline here how wavelets can be used for com­
paring two sets of curves. Details can be found in Fan and Lin [5].
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Suppose that we have two sets of functional data {X;(t)} and {Y;(t)}, collect­
ing at equip-spaced time point tj • We are interested in testing if the mean curves
are the same or not. If the data are only collected at one time point, then the above
problem is the standard two-sample t-test problem. We assume that each ob­
served curve is the true mean curve contaminated with stationary stochastic noise.
The approach of Fan and Lin [5] can be outlined as follows.

Firstly, apply Fourier transform to each observed curve and obtain the trans­
formed data. The Fourier transform converts stationary errors into nearly inde­
pendent Gaussian errors. Secondly, compute the two-sample Hest statistic at each
coordinate of the transformed data. This basically tests if the two groups have the
same mean at each given frequency. The resulting t-test statistics from a T-di­
mensional vector. When n is reasonably large, this t-vector follows basically the
Gaussian model. Our original problem becomes to test if the mean vector is zero
or not. Thirdly, apply the wavelet threshold tests in Fan [42] to obtain an overall
test-statistic. The role of wavelet thresholding can be regarded as to select power­
ful coordinates to test. From this, an overall P-value can be obtained.
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