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Wavelet Deconvolution
Jianqing Fan and Ja-Yong Koo

Abstract—This paper studies the issue of optimal deconvo-
lution density estimation using wavelets. The approach taken
here can be considered as orthogonal series estimation in the
more general context of the density estimation. We explore the
asymptotic properties of estimators based on thresholding of
estimated wavelet coefficients. Minimax rates of convergence
under the integrated square loss are studied over Besov classes

of functions for both ordinary smooth and supersmooth
convolution kernels. The minimax rates of convergence depend on
the smoothness of functions to be deconvolved and the decay rate
of the characteristic function of convolution kernels. It is shown
that no linear deconvolution estimators can achieve the optimal
rates of convergence in the Besov spaces with 2 when the
convolution kernel is ordinary smooth and super smooth. If the
convolution kernel is ordinary smooth, then linear estimators
can be improved by using thresholding wavelet deconvolution
estimators which are asymptotically minimax within logarithmic
terms. Adaptive minimax properties of thresholding wavelet
deconvolution estimators are also discussed.

Index Terms—Adaptive estimation, Besov spaces, Kullback–
Leibler information, linear estimators, minimax estimation,
thresholding, wavelet bases.

I. INTRODUCTION

DECONVOLUTION is an interesting problem which arises
often in engineering and statistical applications. It pro-

vides a simple structure for understanding the difficulty of ill-
conditioned problems and for studying fundamental properties
of general inverse problems. The deconvolution problem can be
formulated as follows. Suppose we haveindependent obser-
vations having the same distribution as that of
available to estimate the unknown densityof a random vari-
able , where

and has a known distribution. Assume furthermore that the
random variables and are independent. Then, the proba-

Manuscript received August 1, 1999; revised March 8, 2001. The work of
J. Fan was supported in part by the National Science Foundation (NSF) under
Grant DMS-0196041 and by RGC under Grant CUHK 4299/00P of HKSAR.
The work of J.-Y. Koo was supported by KOSEF under Grant 980701-0201-3.
The material in this paper was presented in part at the Autumn Conference of the
Korean Statistical Society, National Statistical Office, Korea, November 6–7,
1998.

J. Fan is with the Department of Statistics, Chinese University of Hong Kong,
Shatin, Hong Kong (e-mail: jfan@sta.cuhk.edu.hk).

J.-Y. Koo is with the Department of Statistics, Hallym University, Chunchon,
Kangwon-Do 200-702, Korea (e-mail: jykoo@sun.hallym.ac.kr).

Communicated by J. A. O’Sullivan, Associate Editor for Detection and Esti-
mation.

Publisher Item Identifier S 0018-9448(02)01057-X.

bility densities and of and , respectively, are related by
a convolution equation

where is the density function of the contaminating error.
The function is called the convolution kernel. Our deconvo-
lution problem is to estimate the unknown density function
based on observations from the density.

Models of measurements contaminated with error exist in
many different fields and have been widely studied in both theo-
retical and applied settings. Nonparametric deconvolution den-
sity estimation is studied in [3], [6], [10]–[12], [16]–[19], [21],
[23], [28], and [32], among others. In particular, the optimal
rates of convergence are derived in [3], [11], [12], [18], and [32].
Masry [22] extends the study to stationary random processes
and Hengartner [14] studies Poisson demixing problems. Re-
cently, a number of authors have employed wavelet techniques
for nonparametric inverse problems [1], [7], [15], [25], [29]. In
particular, Pensky and Vidakovic [25] study linear wavelet de-
convolution density estimators for the Sobolev classes of density
functions. Nonparametric deconvolution problems have impor-
tant applications in statistical errors-in-variables regression [4],
[13].

This paper focuses on nonparametric deconvolution density
estimation based on wavelet techniques. This allows us to take
full advantages of sparse representations of functions in Besov
spaces by wavelet approximations. As a result, deconvolution
wavelet estimators have better ability in estimating local fea-
tures such as discontinuities and short aberrations. They can es-
timate functions in the Besov spaces better than the conventional
deconvolution kernel estimators.

Let be an orthogonal scaling function andbe its corre-
sponding wavelet function [5], [24]. Set

and

For each , the family

forms an orthogonal basis for . For the unknown density
, it can be decomposed as

For ordinary smooth convolution kernels with degree of smooth-
ness , it will be shown that behave like the
vaguelettes which are described for several homogeneous oper-
ators in [7]. Examples of homogeneous operators include inte-
gration and Radon operators. The vaguelettes for homogeneous
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operators can be expressed by dilations and translations of a
fixed function [7]. Since the convolution operator mapping
to is inhomogeneous, the family of functions
cannot in general be expressed by dilations and translations of a
fixed function. However, for each fixed, they are translation of
a fixed function, which is enough to derive asymptotic results for
wavelet deconvolution. A similar result holds for supersmooth
convolution kernels.

Our approach to the deconvolution density estimation is as
follows. Observe that

(1)

where is the Fourier transform of and and
are the characteristic functions of the random variablesand
, respectively. The unknown characteristic function can be

estimated from the observed data via the empirical character-
istic function. This can be used to provide an unbiased estimate
of . Using only the estimated to construct estima-
tors of yields so-called linear estimators. The linear decon-
volution estimators behave quite analogously to deconvolution
kernel density estimators. They cannot be optimal for functions
in general Besov spaces, no matter how high the resolution level

is chosen. This drawback can be ameliorated by using non-
linear thresholding wavelet estimators. Estimate the coefficients

in an analogous manner to keep estimated coeffi-
cients only when they exceed a given thresholding level and use
the wavelet decomposition to construct an estimate of density

. The resulting thresholding wavelet estimators are capable of
estimating functions in the Besov spaces optimally, within a log-
arithmic order, in terms of the rates of convergence.

The difficulty of deconvolution depends on the smoothness
of the convolution kernel and the smoothness of the func-
tion to be deconvolved. This was first systematically studied
in [11] for functions in Lipschitz classes. We will show that the
results continue to hold for the more general Besov classes of
functions. The smoothness of convolution kernels can be char-
acterized as ordinary smooth and supersmooth [11]. When a
convolution kernel is ordinary smooth, we will establish the
optimal rates of convergence for both linear estimators and all
estimators. They are of polynomial order of sample size. Fur-
thermore, we will show that no linear estimators can achieve
the optimal rate of convergence for certain Besov classes of
functions, whereas the thresholding wavelet deconvolution es-
timators can. This clearly demonstrates the advantages of using
wavelets thresholding procedure and is an extension of the phe-
nomenon proved by [8] for nonparametric density estimation.
When the error distribution is supersmooth, we will show that
the optimal rates of convergence are only of logarithmic order of
the sample size. In this case, while the linear wavelet estimators
cannot be optimal, thresholding wavelet estimators do not pro-
vide much gain for estimating functions in the Besov spaces.
The reason is that the last resolution level in the thresholding
wavelet estimators has to be high enough in order to reduce ap-
proximation errors, but this creates very large variance in the

estimated wavelet coefficients when convolution kernels are su-
persmooth.

Since the wavelet deconvolution estimators proposed here are
of a form of orthogonal series estimator, there is no guarantee
that such estimators are in the space of densities. It would be
worthwhile to investigate deconvolution methods guaranteeing
that the estimators are in the space of densities [17].

The rest of this paper is organized as follows. In Section II, we
introduce some necessary properties on wavelets, Besov norm,
and smoothness of convolution kernels. Technical conditions
are also collected in Section II. Minimax properties of linear
wavelet estimators are studied in Section III. Section IV de-
scribes minimax rates of thresholding wavelet estimators. Adap-
tive results are studied in Section V.

II. PRELIMINARY

A. Notation

Let , , and denote expectation, probability, and vari-
ance of random variables, respectively. Let denote the th
derivative of a function and denote by the space of func-
tions having all continuous derivatives with . We
use the notation

for a given function , where . Let be a generic con-
stant, which may differ from line to line. For positive sequences

and , let mean that .
Denote by the Fourier transform of a function, defined by

The -distance from density to density is defined by

For any two probability measures and , their Kullback–
Leibler information is defined by

if is absolutely continuous with respect to; otherwise,
.

B. Wavelets

Recall that one can construct a functionsatisfying the fol-
lowing properties [5], [24]. The sequence

is an orthonormal family of ; the function

and
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where denotes the closed subspace spanned by

The function with these properties is called an orthogonal
scaling function having regularityfor the multiresolution anal-
ysis .

By the construction of the multiresolution analysis

Define the space by

Under the above conditions, there exists a function(the
“mother wavelet”) having the following properties:

is an orthonormal basis of and

is an orthonormal basis of ; . Furthermore, if
has a compact support, so does the wavelet function. Finally,
if , then has vanishing moments

for

see [5, Corollary 5.5.2].
From the above construction, the sequence

is an orthogonal basis for for each , and for each given

forms an orthogonal basis for . For the probability density
, it admits a formal expansion

The coefficients and are called the wavelet coeffi-
cients of .

C. Besov Spaces

Let be the associated orthogonal projection operator onto
and . Besov spaces depend on three param-

eters: , , and and are denoted by
. Say that if and only if the norm

(with usual modification for ). Using the decompositions

the Besov space can be defined via the equivalent norm

where

Here we have set

and the same notation applies to the sequence . Abusing
the notation slightly, we will also write for the above
sequence norm applied to the wavelet coefficients.

The Besov spaces have the following simple relationship:

for or and

and

for and

They include the Sobolev spaces and bounded-Lipschitz
functions for .

Set

The spaces of densities we consider are defined by

and

where and are given constants.

D. Error Distributions

The asymptotic properties of proposed deconvolution wavelet
estimators can be characterized by two types of error distribu-
tions according to [11]: ordinary smooth and supersmooth dis-
tributions. Let

be the characteristic function of a random variable. We call
the distribution of the random variablethe ordinary smooth of
order if satisfies

as

for some positive constants , and nonnegative . Ex-
amples of ordinary smooth distributions include Gamma,
symmetric Gamma distributions (including double exponential
distributions). We call the distribution of a random variable
supersmooth of order if satisfies

as for some positive constants , , , , and
constants and . The supersmooth distributions include
Gaussian, mixture Gaussian, and Cauchy distributions.

E. Technical Conditions

To facilitate our presentation, we collect all technical condi-
tions that will be needed in this section. These conditions are
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not necessarily independent and can even be mutually exclusive.
Indeed, some of them are stronger than others. We first collect
conditions needed for scaling functions and wavelet functions.

(A1) The functions and are compactly supported.

(A2) The functions , where and .

(A3) .

(A4) The supports of and are and
, respectively.

(A5) For every integer and , there exists a
positive constant such that

and

References [5] and [24] contain examples of scaling functions
satisfying the above conditions. In particular, Daubechies’
wavelets satisfy (A1)–(A3) and Meyer’s wavelets (A4) and
(A5). When the error distributions are ordinary smooth,
Daubechies’ wavelets will be used. On the other hand, Meyer’s
wavelets are adopted for the supersmooth error distributions.

We need the following conditions for the convolution kernels
that are ordinary smooth. Double exponential and Gamma dis-
tributions satisfy the following conditions. It can be noted that
condition (B2) implies that for any .

(B1) .

(B2) .

(B3) , for .

When the error distribution is supersmooth, the following
conditions are required.

(C1) for some positive
constants and and some constant .

(C2) as for
some , .

(C3) for some positive
constants and and a constant .

(C4) For

with and a constant.

If is Normal or Cauchy, then (C1)–(C3) are satisfied. The
Normal error distribution satisfies condition (C4) with .
We note that condition (C3) implies that for any .

III. L INEAR WAVELET DECONVOLUTION ESTIMATOR

In this section, we plan to establish the minimax rate for the
best linear estimator under the integrated square loss. This is
achieved by first establishing a minimax lower bound over the
class of linear deconvolution estimators and by proposing linear
deconvolution wavelet estimators that achieve this lower bound.
From the results in this and the next section, we will see that the
linear estimators can be optimal only when the function class is
Sobolev, a special case of the Besov space . For the general

Besov space with , no linear estimators can achieve
the optimal rates of convergence.

A. Linear Estimators

The class of linear estimators is defined by the represen-
tation

where are arbitrary measurable functions. The class
of estimators is wide enough for most practical applications. For
example, the deconvolution kernel density estimators [28] admit
such a form with being a deconvolution kernel. The decon-
volution estimators induced by an orthogonal series method are
also of linear form.

We propose unbiased estimators of the wavelet coefficients
of the unknown density function. When is abso-

lutely integrable, the Fourier inversion theorem provides that
has a bounded, continuous density function given by

Since and are assumed to be independent

when for all . It can be seen that the wavelet coeffi-
cients at level can be written as (1). Let be the empirical
characteristic function of the random variabledefined by

and define

(2)

The relation (1) implies that is an unbiased estimator of
. Note that

where the operator is formally defined by

Under condition (A2), by integration by parts, we obtain that

and (3)

for . These imply that and are well defined for
the ordinary smooth error distributions of order. On the other
hand, when the error is supersmooth, we use Meyer’s wavelet
whose Fourier transforms are of compact supports so that
and are also well defined.

Now we define the linear wavelet estimator as

(4)

By choosing properly, we will show in the next two subsec-
tions that the above linear estimator achieves the optimal rate of
convergence among linear estimators.
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B. Ordinary Smooth Case

Daubechies’ compactly supported wavelets satisfying (A1)–
(A3) are employed for deconvolution with the ordinary smooth
convolution kernels. The following theorem states the best pos-
sible rate for the class linear estimators when the convolution
kernel is ordinary smooth.

Theorem 1: Suppose that , , and .
Then, under conditions (A1), (A2), and (B3), we have that

Since has compact support, the summation inof the linear
wavelet deconvolution estimator (4) is finite for each .
The following theorem shows that the lower bound on the linear
estimators is achievable by linear wavelet estimators when the
error is ordinary smooth.

Theorem 2: Suppose that , , and .
Under conditions (A1), (A2), and (B2), we have that

provided that . The result also holds for the
class under the additional conditions (A3) and
(B3).

C. Supersmooth Case

For the supersmooth kernels, Meyer’s wavelets satisfying
(A4) and (A5) are employed. The following theorems establish
the lower and the upper bounds. The optimal rates are only of
logarithmic order.

Theorem 3: If , , and , then, under
conditions (A4), (A5), (C1), and (C2), we have that

Lemma 2 below implies that, for all

under the conditions (C1)–(C3). Hence, the linear wavelet
estimator is also well defined for the supersmooth
case. According to the following theorem, the lower bound on
the linear estimators is achievable by linear wavelet estimators
when the error is supersmooth.

Theorem 4: Suppose that , , and .
Under the assumptions (A4), (A5), (C1)–(C3), we have that

provided that

The result also holds for the class under the
additional condition (C4).

D. Proof of Theorem 1

We first introduce a few lemmas before proving Theorem 1.
Define the operator by

By Fourier inversion formula

(5)

where is the distribution function of the random variable.

Lemma 1: Under the assumptions (A2), (B3), we have

Proof: By (A2) and [5, Corollary 5.5.3]

for . From this and Taylor’s theorem we obtain

for (6)

as . It follows from (B3), (3), and (6) that

which implies that

for

Suppose . Let

By (B3)

as for

It follows from this and integration by parts that

Observing that

and using (3) and (6), we get that

from which the desired result follows.

Lemma 2 [30]: Suppose is a function on such that

Then for any sequence of scalars , we have that, for
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Lemma 3: Under the assumptions (A2), (B3), we have that
for any sequence of scalars

Proof: Observe that

By Lemma 1 and Lemma 2, we have the desired result.

Let

where is a constant such that is a density. Note that as
gets close to , the constant is close to zero. Since is
infinitely differentiable, by choosing arbitrarily close to
we may assume that

Consider the hypercube defined by

or

where and is a constant to
be specified later.

Lemma 4: Suppose that (A2) and (B3) hold. If can be
chosen such that

(7)

then

for all .
Proof: Let . By (7)

for all

from which it follows that

(8)

for all . Write

From (5) and Lemma 1

Note that the number of elements in is of order . Applying
[13, Lemma 7] to the function

we have that

Hence, by [11, Lemma 5.1]

It follows from this and (8), we obtain the desired result.

To prove Theorem 1, we use the subclass of densitieswith

The constant will be chosen below. When , the
functions

and

belong to , and the pyramid

for

is contained in .
Suppose that is such that

for all and

We first use the information inequality to establish a lower
bound for the variance of the estimated wavelet coefficient

Let

By applying the information inequality of [20, Ch. 2, Theorem
6.4] to the model in which is an independent and
identically distributed (i.i.d.) sample from for
with an unknown parameter , we have

where

Observe that

For fixed , is a fixed finite number de-
pending only on the support of. Hence,

Choose in the definition of sufficiently small such that
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for sufficiently large. By the argument used to prove Lemma 4,
we have

Thus,

(9)

We now follow arguments used to prove [8, Theorem 1] to
complete the proof. Observe now that

and, hence,

By the definition of the pyramid

Note that

Using this, we have

(10)

Combination of (9) and (10) entails

The double sum is bounded from below by

Setting , we have

Recall that was constrained to be at most. This amounts
to requiring that when is large, since

. To maximize the lower bound subject to this constraint,
and should be of the same order. This leads

to choosing so that and, hence,

which establishes Theorem 1.

E. Proof of Theorem 2

Lemma 5: Under conditions (A2), (B2), we have

and

Proof: By (3), (A2), and (B2)

which is the desired result for . Since the same argument
can be applied for , the proof is now complete.

Lemma 6: Suppose that conditions (A2), (A3), (B2), and
(B3) hold. Then, we have

and

Proof: By Lemma 5

for

Suppose . Let

By (A2), (B2), (B3), and (3), as for
. It follows from (3) and (A3) that

Hence, by integration by parts

Now let

It follows from (3) and (A3) that

This completes the proof since the same argument is true
for .

Now we prove Theorem 2. If , then
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where and . Consequently, if
, from which it follows that .

We now consider two cases.

a) Suppose that . Then, the number of
that is not vanishing is only of order . Recall that

. By Lemma 5

from which it follows that

(11)

Using the fact that

(12)

Choose . Combination of (11) and
(12) leads to

b) Consider the case when . Let

Observe that for any given

It follows from this and Lemma 6 that .
Hence,

Now we obtain the desired result as in a). This completes
the proof of Theorem 2.

F. Proof of Theorem 3

The key idea of the proof is similar to that in the proof of
Theorem 1. We continue to use the notation introduced in the
proof of Theorem 1.

Lemma 7: Suppose that conditions (A4) and (C1) hold. Then

Proof: By the Parseval identity and conditions (A4) and
(C1)

This completes the proof.

Lemma 8: Assume that conditions (A5) and (C2) hold. Then,
for

Proof: Choose in (A5) such that . By
[11, Lemma 5.2] and (5), when

which is what needed to be shown.

Consider the hypercube defined by

or

Lemma 9: Suppose that (A4), (A5), (C1), (C2) hold. Ifcan
be chosen such that for , then we have

for all , where and
.

Proof: Again, let and write

where . By Lemma 7

Let

and
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Observe that

Using [11, Lemma 5.1] and Lemma 7, we obtain that

It follows from [13, Lemma 7] and Lemma 8 that

(13)

for . By (13)

Combining the bounds on and , we have the desired
result.

To complete the proof of Theorem 3, we consider the subclass
. By (A5) and [13, Lemma 7], when and is large

which implies that for all . We now
follow the arguments in the proof of Theorem 1 to complete the
proof.

By the argument used in proving Lemma 9, we obtain that

for some . Hence,

Now, as in the proof of Theorem 1, we can show that

after setting

To maximize the lower bound subject to the constraint thatis
at most , choose so that

with

Then

which establishes Theorem 3.

G. Proof of Theorem 4

Lemma 10: Under conditions (A4), (A5), (C3), we have

and

Proof: Let . Observe that

By (C3), when

(14)

and

when (15)

The conclusion follows directly from the above inequalities.

Lemma 11: Under conditions (A4), (A5), (C3)–(C4), we
have that, for some real constant

and

Proof: By (14), (15), the desired result follows as in Lem-
ma 6.

If or , then . Using
Lemma 10, we can prove the desired result for the case when

, as in Theorem 2. Now consider the case when
. Let

It follows from this and Lemma 11 that

Hence,

by choosing the level such that

where if , and if . Hence, the
term



FAN AND KOO: WAVELET DECONVOLUTION 743

is negligible. Since

we have

from which the desired result follows.

IV. NONLINEAR WAVELET DECONVOLUTION ESTIMATOR

The aim of this section is to establish the minimax rate for
estimating the density in . This is accomplished by first
establishing a minimax lower bound and then showing that a
class of nonlinear wavelet deconvolution estimators achieves
the rate of the lower bound. For ordinary smooth convolution
kernels, we will show that thresholding wavelet deconvolution
estimators are optimal within a logarithmic order. However, for
the supersmooth case, since the optimal rates are only of loga-
rithmic orders (see Theorems 3 and 7), losing a factor of log-
arithmic orders in nonlinear wavelet deconvolution estimators
makes the thresholding wavelet estimators perform similarly to
linear wavelet estimators. Indeed, our study shows that the last
resolution level (see notation below) in thresholding wavelet
estimators has to be large enough in order to make approxi-
mation errors negligible. Yet, this creates excessive variance in
the estimated wavelet coefficients at high resolution levels and
hence the thresholding does not have much effect on the overall
performance of thresholding wavelet estimators. For this reason,
we do not present the upper bound for the thresholding wavelet
estimators for the supersmooth case. Only lower bound is pre-
sented to ensure that minimax rates for deconvolution with su-
persmooth kernels are only of logarithmic orders.

A. Minimax Lower Bound

To establish minimax lower bounds, we follow the popular
approach, which consists of specifying a subproblem and using
Fano’s lemma to calculate the difficulty of the subproblem. The
lower bound will then appear, where the Kullback–Leibler in-
formation is crucial in using Fano’s lemma.

Let

and , the class of all estimators of based on .
We have the following minimax lower bound for the ordinary
smooth error distributions.

Theorem 5: Suppose that and . Under
conditions (A1)–(A3) and (B3), we have that

For supersmooth convolution kernels, we have shown (The-
orems 3 and 4) that linear wavelet estimators have a very slow
rate of convergence. Can they be improved significantly by other
types of estimators? The following theorem shows that linear

wavelet estimators for the supersmooth case are optimal within
a logarithmic order. As discussed at the beginning of this sec-
tion, thresholding wavelet deconvolution estimators do not seem
to enhance the performance, due to excessive variance of esti-
mated wavelet coefficients at high resolution levels.

Theorem 6: Suppose that and . Under
conditions (A4), (A5), (C1), (C2), we have that

B. Thresholding Wavelet Estimator

Among nonlinear estimators, we study a very special one: a
truncated threshold wavelet estimator. Define

(16)

It can be seen that is an unbiased estimator of . Note
that

Define empirical wavelet coefficients and as in (2)
and (16) and employ the hard-thresholding

if
if

where and the constant will be determined below.
Then the nonlinear deconvolution wavelet estimator asso-
ciated with the parameters , , and is

Take and such that

and

Theorem 7: Suppose that , , ,
and . Then, under conditions (A1)–(A3),
(B2), we have that there exist constants
and such that for

where .

The condition is purely a technical condi-
tion. It was also imposed in [7].
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C. Proof of Theorem 5

Let , , and be the same as those defined in the proof of
Theorem 1. Consider the set of vertices of a hypercube defined
by

with

Observe that

and that we can choose such that

for .
Let denote the number of elements in the set. By [16,

Lemma 3.1] and the orthonormality of , there is a subset
of such that

for (17)

and

(18)

when is sufficiently large and .
By Jensen’s inequality and Lemma 4, it can be seen that

(19)

for . By Fano’s lemma [2], [31], if is any estimator
of , then

(20)

Finally, let as . By (17), (18), and
using for some constant , the desired result
of Theorem 5 follows readily from (19) and (20).

D. Proof of Theorem 6

We use the same , except that is Meyer’s wavelet sat-
isfying (A4) and (A5). As in the proof of Theorem 1, we can
see that for by choosing sufficiently
small.

From the orthonormality of and [16, Lemma 3.1], (17)
and (18) hold for the class , even when Meyer’s wavelets are
used. By Jensen’s inequality and Lemma 9, it can be seen that

for . By Fano’s lemma, if is any estimator of ,
then

Choosing such that

for a constant , we obtain the desired result of Theorem 6.

E. Proof of Theorem 7

In the first part, we set up the technical tools of the proof:
moment bounds and large-deviation results. In the second part,
we derive the results.

Moment Bounds:We use the result of [27]. Let
be i.i.d. random variables with , . Then
there exists such that

if

if

Note that as it was shown in the proof of The-
orem 2.

Recall that

and that

Applying Rosenthal’s inequality to

by Lemma 5

It follows that for

(21)

Large Deviation: We use the Bernstein’s or Bennett’s in-
equality [26, pp. 192–193]. If are i.i.d. bounded
random variables such that
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then

Applying this to

and noting that, by Lemma 5, and

we conclude that if , then there exists a constant
such that, for all

For example, it suffices to choose such that

We are ready to complete the proof. Write

where

Note that by the definition of

where .
Using (12), we have

This bound has the rate of convergence specified in Theorem 7.
By (21)

It follows that

This bound is the rate of convergence specified in Theorem 7.
To decompose the details term, define

We may then write

For the term , we set

and

the large-deviation event. Clearly

Using this, and the Cauchy–Schwartz inequality and (21), we
have

Choosing , we have

Hence, it is negligible.
To give a bound for , we note that

Hence,

by choosing . Hence, is at most of the specified
rate of convergence.

To derive a bound on , let
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In this case, using (21)

Since and

for some , from which we have that is negli-
gible.

Finally, we consider the case . Let

and write

and

By the definition of Besov norm, if , then
, where . Using the structure of sequence

norms, we have

The condition implies

We have

(22)

From [9, Theorem 3], we read off that

(23)

Since , we conclude from this argument that
.

The exponent of can be improved to by
the following argument. Let

where and

By the assumption that and [9, Lemma 4]

Letting

leads to

and

to

Since

the least favorable level is chosen as . One can see
that the range of in lies entirely above
the least favorable level , which satisfies

and leads to the bound (23). It leads to

where satisfies

where . Let us note that when is suffi-
ciently large, for . Thus,

When , we have that and,
therefore, that

Since the term has the specified rate of convergence, the
desired result follows from this and (22).

V. ADAPTATION RESULTS

In this section, we wish to show that a slight modification of
gives an adaptive minimax estimator in the sense that it

approximately achieves the rates of convergence in Theorem 7
without the need to specify, , and . For a given integer,
define a class of parameters

The modified estimator is obtained from compactly sup-
ported and -regular functions , , using resolution levels
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Theorem 8: Suppose that the conditions (A1)–(A3) and (B2)
hold. If , where , then, for
all , there exist and
such that for

(24)

Proof: Because -norms decrease in for compactly
supported functions, the case reduces to the case .
Thus, we investigate only the case . Define indexes

by

and

The indexes used in Theorem 7 are denoted by. Then

First of all, on , the rates of the bias and linear
terms can easily be bounded as follows:

Secondly, the large-deviation terms and can be treated
exactly as for . The term is bounded by which is
smaller than the bound in (24). For the term, by choosing
sufficiently large

Therefore, it has the specified rate of convergence.
We can establish the bound in Theorem 8 for the term.

For a bound on , we decompose

The term is bounded exactly as in the previous section. For
the term , we have

Thus, the proof is completed.
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