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Wavelet Deconvolution

Jianging Fan and Ja-Yong Koo

Abstract—This paper studies the issue of optimal deconvo- bility densitiesg andf of Y and.X, respectively, are related by
lution density estimation using wavelets. The approach taken gz convolution equation
here can be considered as orthogonal series estimation in the
more general context of the density estimation. We explore the e
asymptotic properties of estimators based on thresholding of 9(w) = (f*fo) (W) :/ fly =) fo(z)da
estimated wavelet coefficients. Minimax rates of convergence -
under the inte_grated square Ios_s are studied over Besov classesyhere f. is the density function of the contaminating ereor
Boyq Of functions for both ordinary smooth and supersmooth The fynctionf. is called the convolution kernel. Our deconvo-

convolution kernels. The minimax rates of convergence depend on lution problem is to estimate the unknown density functjon
the smoothness of functions to be deconvolved and the decay rate P y

of the characteristic function of convolution kernels. It is shown based on observations from the dengity
that no linear deconvolution estimators can achieve the optimal  Models of measurements contaminated with error exist in
rates of convergence in the Besov spaces wih < 2 when the 5y gifferent fields and have been widely studied in both theo-

convolution kernel is ordinary smooth and super smooth. If the retical and applied settinas. Nonparametric deconvolution den-
convolution kernel is ordinary smooth, then linear estimators pp gs. P

can be improved by using thresholding wavelet deconvolution Sity estimation is studied in [3], [6], [10]-[12], [16]-[19], [21],
estimators which are asymptotically minimax within logarithmic ~ [23], [28], and [32], among others. In particular, the optimal

terms. Adaptive minimax properties of thresholding wavelet rates of convergence are derived in [3], [11], [12], [18], and [32].
deconvolution estimators are also discussed. Mastry [22] extends the study to stationary random processes
Index Terms—Adaptive estimation, Besov spaces, Kullback— and Hengartner [14] studies Poisson demixing problems. Re-
Leibler information, linear estimators, minimax estimation, cently, a number of authors have employed wavelet techniques
thresholding, wavelet bases. for nonparametric inverse problems [1], [7], [15], [25], [29]. In
particular, Pensky and Vidakovic [25] study linear wavelet de-
l. INTRODUCTION convolution density estimators for the Sobolev classes of density

functions. Nonparametric deconvolution problems have impor-

ECONVOLU.TION Is an interesting proble_m V\./h'Ch anseiant applications in statistical errors-in-variables regression [4],
often in engineering and statistical applications. It prg- ]

vides a simple structure for understanding the difficulty of ill-
conditioned problems and for studying fundamental properti
of general inverse problems. The deconvolution problem can
formulated as follows. Suppose we havéndependent obser-
vationsYi, ..., Y,, having the same distribution as that Bf
available to estimate the unknown densftyf a random vari-
able X, where

This paper focuses on nonparametric deconvolution density
Stimation based on wavelet techniques. This allows us to take
i advantages of sparse representations of functions in Besov
spaces by wavelet approximations. As a result, deconvolution
wavelet estimators have better ability in estimating local fea-
tures such as discontinuities and short aberrations. They can es-
timate functions in the Besov spaces better than the conventional
deconvolution kernel estimators.

Let ¢ be an orthogonal scaling function agdbe its corre-

di let functi 5], [24]. Set
ande has a known distribution. Assume furthermore that thsgDon ing wavelet function [5], [24]. Se

random variables\ ande are independent. Then, the probag, ;(x) = 2//2¢(27c — k) and ; x(x) = 29/2p(27x — k).

Y=X+¢

For eachj, € Z, the family

{d)jo,kv z/}j,k: J 2 jOv jv k S Z}
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operators can be expressed by dilations and translations afstimated wavelet coefficients when convolution kernels are su-

fixed function [7]. Since the convolution operator mappifig persmooth.

to f * f. is inhomogeneous, the family of functiofig; , = f.} Since the wavelet deconvolution estimators proposed here are
cannot in general be expressed by dilations and translations ofa form of orthogonal series estimator, there is no guarantee
fixed function. However, for each fixef they are translation of that such estimators are in the space of densities. It would be
a fixed function, which is enough to derive asymptotic results fevorthwhile to investigate deconvolution methods guaranteeing

wavelet deconvolution. A similar result holds for supersmoothat the estimators are in the space of densities [17].

convolution kernels. The rest of this paper is organized as follows. In Section II, we
Our approach to the deconvolution density estimation is agroduce some necessary properties on wavelets, Besov norm,
follows. Observe that and smoothness of convolution kernels. Technical conditions
- are also collected in Section Il. Minimax properties of linear
ok = / bjo. 1(2) f(2) da Wayelet estimators are studied in Section l. S_ect|on IV de-
—oo scribes minimax rates of thresholding wavelet estimators. Adap-
1 [ — Oy (t) tive results are studied in Section V.
— | dncoTde
™ — 00 (I)€(t)
Il. PRELIMINARY

Whered;;jk is the_ F_ourier transform abj,. k and<1>y_ and®, A. Notation

are the characteristic functions of the random variablesnd ) B )
¢, respectively. The unknown characteristic function can be Lt £, P, andV denote expectation, probability, and vari-
estimated from the observed data via the empirical charact@fce of random variables, respectively. tfév) denote thenth
istic function. This can be used to provide an unbiased estim&g/vative of a functiorh and denote by” t)he_space of func-
of a;, 1. Using only the estimated;, ; to construct estima- tionsh havmg_ all continuous derivativdg™ with m < r. We
tors of f yields so-called linear estimators. The linear decof!S€ the notation
volution estimators behave quite analogously to deconvolution b /2y
kernel density estimators. They cannot be optimal for functions i (@) = (2'x )

in general Besov spaces, no matter how high the resolution leysl given functiorz, wherej, k € Z. LetC be a generic con-

Jo is chosen. This drawback can be ameliorated by using NQa ¢ "\which may differ from line to line. For positive sequences
linear thresholding wavelet estimators. Estimate the coefﬁmenitg }andib }, leta, = b, mean thaC—! < a,/b, < C.

Aj,1 In an analogous manner tg;,,;. keep estimated coeffi- penqte pyj, the Fourier transform of a functiol, defined by
cients only when they exceed a given thresholding level and use

oo

the wavelet decomposition to construct an estimate of density h(t) = / ¢ () di

7. The resulting thresholding wavelet estimators are capable of T )

estimating functions in the Besov spaces optimally, within a log-

arithmic order, in terms of the rates of convergence. The x?-distance from density; to densityfs is defined by
The difficulty of deconvolution depends on the smoothness 5

of the convolution kernef. and the smoothness of the func- X2(f1, fo) = / M

tion f to be deconvolved. This was first systematically studied N

in [11] for functions in Lipschitz classes. We will show that thg-, any two probability measure® and @, their Kullback—
results continue to hold for the more general Besov classes| @p|er information is defined by

functions. The smoothness of convolution kernels can be char-

acterized as ordinary smooth and supersmooth [11]. When a K(P, Q) = Eplog(dP/dQ)

convolution kernel is ordinary smooth, we will establish the

optimal rates of convergence for both linear estimators and #llP is absolutely continuous with respect €, otherwise,
estimators. They are of polynomial order of sample size. FUic(P, Q) = +o0.

thermore, we will show that no linear estimators can achieve

the optimal rate of convergence for certain Besov classesBf Wavelets

functions, whereas the thresholding wavelet deconvolution esRecall that one can construct a functigsatisfying the fol-
timators can. This clearly demonstrates the advantages of us\ging properties [5], [24]. The sequence

wavelets thresholding procedure and is an extension of the phe-

nomenon proved by [8] for nonparametric density estimation. {p(x —k): ke Z}

When the error distribution is supersmooth, we will show that

the optimal rates of convergence are only of logarithmic order isfan orthonormal family of.?(R); the functions € C”

the sample size. In this case, while the linear wavelet estimators

cannot be optimal, thresholding wavelet estimators do not pro- ﬂ V; ={0}
vide much gain for estimating functions in the Besov spaces. i€z

The reason is that the last resolution level in the thresholdiagd

wavelet estimators has to be high enough in order to reduce ap- L*(R) = U V;

proximation errors, but this creates very large variance in the ez
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whereV; denotes the closed subspace spanned by

{d)j:k: ke Z}
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where

The function¢ with these properties is called an orthogonal
scaling function having regularityfor the multiresolution anal- Here we have set

ysis (Vj)jcz-
By the construction of the multiresolution analysis

Vi CVigr
Define the spacéV; by
Vi =V, & Wj.

Under the above conditions, there exists a functipr(the
“mother wavelet”) having the following properties:

{p(xz —k): ke Z}
is an orthonormal basis ¥, and
{wj:k:j7 ke Z}

is an orthonormal basis df?(R); 1 € C". Furthermore, ifi
has a compact support, so does the wavelet funetidfinally,
if p € C", theny hasr vanishing moments

/ a2 () da = 0,

see [5, Corollary 5.5.2].
From the above construction, the sequence

s k€ Z}
is an orthogonal basis fd#; for eachy, and for each givef,

{bio. 1> Vi1 4 = do, k€ Z}

form=0,1,...,r—1

1/p
1851l = <Z |/3/',k|p>

keZ
and the same notation applies to the sequénge, ). Abusing
the notation slightly, we will also writd 3|, for the above
sequence norm applied to the wavelet coefficients.

The Besov spaces have the following simple relationship:

Boipar € Bopgs foro; > o0 orop =0 andg; < ¢
and
Bcrpq CBcflplqv forpl >p and o :a—l/p-l-l/pl.

They include the Sobolev spacBs», and bounded-Lipschitz
functions B,eeeo fOr o € (0, 1).
Set

BUP’I(M) = {f ||f||0m < M}
The spaces of densities we consider are defined by
Dam(M) = {f /R f=1f20, ||f||om < M}
and
Dopy(M, S) = {f: f € Dopy(M),

whereM and.S are given constants.

supp f € [-S, S|}

D. Error Distributions

forms an orthogonal basis fé?(R). For the probability density ~ The asymptotic properties of proposed deconvolution wavelet

f € L?(R), it admits a formal expansion

F=3 ajortior+ > > Birtik
k

j2jo k

The coefficientsy;, ;, and3; ; are called the wavelet coeffi-

cients of f.

C. Besov Spaces

estimators can be characterized by two types of error distribu-
tions according to [11]: ordinary smooth and supersmooth dis-
tributions. Let

Oy (t) = Ee'tV

be the characteristic function of a random varialileWe calll
the distribution of the random variabighe ordinary smooth of
orders if ®.(¢) satisfies

Let E; be the associated orthogonal projection operator onto

V;andD; = E; ;1 — E;. Besov spaces depend on three param-
etersic > 0,1 < p < o0, andl < ¢ < oo and are denoted by for some positive constantdy, d;

Bypq- Say thatf € B, if and only if the norm

1/q

Topg(F)=NEof | oyt 2 (271D, fll Lo (my)*

=0

<0

(with usual modification for; = o0). Using the decompositions

Eof = Z o, ko, ks Dif = Z B, k), k

kEZ kcZ

the Besov spac8,,,,, can be defined via the equivalent norm

1/q

1 loma = llew by + 4 3 (27208:0)

Jj=z0

<0

dolt| =% < |®.(8)| < di|t|7%, asl|t| — oo

and nonnegatives. Ex-
amples of ordinary smooth distributions include Gamma,
symmetric Gamma distributions (including double exponential
distributions). We call the distribution of a random variable
supersmooth of orderif ®.(¢) satisfies

dolt|* exp(=[t]*/A) < |@:(#)] < du[t|™ exp(—[¢]*/A)

as|t| — oo for some positive constant®, di, s, A, and
constantssy, and s;. The supersmooth distributions include
Gaussian, mixture Gaussian, and Cauchy distributions.

E. Technical Conditions

To facilitate our presentation, we collect all technical condi-
tions that will be needed in this section. These conditions are
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not necessarily independent and can even be mutually exclusBesov spacés,,,, with p < 2, no linear estimators can achieve
Indeed, some of them are stronger than others. We first coll¢iaé optimal rates of convergence.

conditions needed for scaling functions and wavelet functions.
] A. Linear Estimators
(A1) The functionsp and+ are compactly supported.

, ) The clasg’;, of linear estimators is defined by the represen-
(A2) The functionsp, ¢ € C", wherer > s+ 2 ands > 0.

tation
(A3) s > 2. "
(A4) The supports ofs and¢ are {t: |[t| < 4x/3} and Y, Y, @) = (Y, @)
{t: 2n /3 < |t| < 87/3}, respectively. m=1
(A5) ForeveryintegeV > 1 and0 < g < r, there exists a where{T},(-, -)} are arbitrary measurable functions. The class
positive constandy such that of estimators is wide enough for most practical applications. For

(@ < dull N example, the o!econvol_ution kernel dens_ity estimators [28] admit
4 (x)‘ < dn(1+|z]) such a form witHZ’,,, being a deconvolution kernel. The decon-
w(q)(x)‘ < dn(1+ |z))N. vqution_estimators induced by an orthogonal series method are
also of linear form.

We propose unbiased estimators of the wavelet coefficients

satisfying the above conditions. In particular, DaubechieF’JO”“ .Of the unknown der_15|t_y func_tlom”. When 'S abso

: ) tely integrable, the Fourier inversion theorem provides fat
wavelets satisfy (A1)~(A3) and Meyer's wavelets (Ad) anglujas a bounded, continuous density functfgn) given by
(A5). When the error distributions are ordinary smooth, '

and

References [5] and [24] contain examples of scaling functiogs

Daubechies’ wavelets will be used. On the other hand, Meyer’s fa) = 1 /oo e (8) dt.
wavelets are adopted for the supersmooth error distributions. 2r J_
We need the following conditions for the convolution kernelSince X ande are assumed to be independent
that are ordinary smooth. Double exponential and Gamma dis- o
tributions satisfy the following conditions. It can be noted that Px(t) = Ox(0)/ (1)
condition (B2) implies that. () # 0 for any¢. when®.(t) # 0 for all ¢. It can be seen that the wavelet coeffi-
cients at levelip can be written as (1). Leb,, be the empirical
(B1) |o-(1)] < €1+ )~ characteristic function of the random variabledefined by
(B2) |(I)F(t)| 2 O(]- + |t|)75' R 1 <&
(B3) [0 (1) < C(1+ [t)=*—™, form =0, 1, 2. Bult) = = > explitVy)
m=1

When the error distribution is supersmooth, the following,,q gefine

conditions are required. oo 2
k= = (b)) g 2
(C1) |2.(f)| < C(L+[t))" exp(—|¢]/A) for some positive ok = 5 [ Pan(=1) Gy @)
constants: and) and some constasi. The relation (1) implies that;, ; is an unbiased estimator of
(C2) P(le — z| < |z|®) = O(|z|~(>=™)) asz — +oo for aj,. k- Note that
somed <@ <1,a>1+a. Lo
(C3) |®.(t)] > C(1+[t])* exp(—|t|* /) for some positive Ajo, b = > (K5 ®)ijo, 1(Yom)
constants and A and a constandg. m=1
(C4) Form =0, 1,2 where the operatot;” is formally defined by
()| < C(1 + [t exp(=|t]* /A - :i/oo ity (=)
[20(8)] < G+ )™ exp(—t17/A) (i) =5 [ e g
with s, A > 0 ands» a constant. Under condition (A2), by integration by parts, we obtain that

If £ is Normal or Cauchy, then (C1)—(C3) are satisfied. The‘ (;)(m,)(t)‘ < C(1+Jt))~" and D) (t)‘ <CO+t)" ()
Normal error distribution satisfies condition (C4) with = 2. - -
We note that condition (C3) implies th&t (¢) # 0 for anyz. form > 0. These imply thakC; ¢ andk”; ¢ are well defined for
the ordinary smooth error distributions of ordetOn the other
IIl. LINEAR WAVELET DECONVOLUTION ESTIMATOR hand, when the error is supersmooth, we use Meyer’'s wavelet

In this section, we plan to establish the minimax rate for thvghose_Fourler transforms are of compact supports scttfiat
K+ are also well defined.

best linear estimator under the integrated square loss. Thid' . . .
achieved by first establishing a minimax lower bound over the ow we define the linear wavelet esimator as
class of linear deconvolution estimators and by proposing linear o () = Z &jo, kPjo, 1(2), z € R. 4)
deconvolution wavelet estimators that achieve this lower bound. k

From the results in this and the next section, we will see that tBg choosingj, properly, we will show in the next two subsec-
linear estimators can be optimal only when the function classtisns that the above linear estimator achieves the optimal rate of
Sobolev, a special case of the Besov spge,. For the general convergence among linear estimators.
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B. Ordinary Smooth Case D. Proof of Theorem 1

Daubechies’ compactly supported wavelets satisfying (Al)—We first introduce a few lemmas before proving Theorem 1.
(A3) are employed for deconvolution with the ordinary smootBefine the operatoler by
convolution kernels. The following theorem states the best pos-

sible rate for the class linear estimators when the convolution (}C;rh) (y) = S / e R (1), (27¢) dt.
kernel is ordinary smooth. 2m ) oo
Theorem 1: Suppose that < ¢ < o0, 1<p<2,ando >1/p. By Fourier inversion formula
Then, under conditions (Al), (A2), and (B3), we have that / h(y — @) dF.(/20) = (Iijh) (v) )
inf sup [Eslff - f||§]l/2 > Cp =0 /20 + 2540 _ o : .
F1CCL FeD,pq (M) where/, is the distribution function of the random varialale

Sinceg has compact support, the summatio# iof the linear Lemma 1: Under the assumptions (A2), (B3), we have

wavelet deconvolution estimator (4) is finite for eache R. [(KFy) ()| < C27% (1 + [y))~>
The following theorem shows that the lower bound on the linear
estimators is achievable by linear wavelet estimators when the
error is ordinary smooth.

Proof: By (A2) and [5, Corollary 5.5.3]

/ 2™p(x)de =0
Theorem 2: Suppose that < ¢g< o0, 1<p<2,ando >1/p. . .
Under conditions (A1), (A2), and (B2), we have that for 0 < m < r. From this and Taylor’s theorem we obtain
sup  [Bellfr,, — fl3]Y% < onme /@ et B (t)‘ =o(t|"™™), foro<m<r (6)
FE€Dope (M,S5)

. : , as|t| — 0. It follows from (B3), (3), and (6) that
provided thag’o < n!/(22+25+1) The result also holds for the

classf € D,,,(M) under the additional conditions (A3) and |(;Cfrz/}) (y)| < 2% / +/ |z/j(t)|(2—j ¢ dt
(B3). ! lt]<1 [t]>1
< o2

C. Supersmooth Case o
_which implies that
For the supersmooth kernels, Meyer's wavelets satisfying

(A4) and (A5) are employed. The following theorems establish | %) ()] < C27%(1 + [y]) 72, for |y| < 1.
the Io_wer_and the upper bounds. The optimal rates are onlyﬁppose}m > 1. Let
logarithmic order.

Theorem 3:1f 1<p, ¢< o0, p<2, ands > 1/p, then, under
conditions (A4), (A5), (C1), and (C2), we have that By (B3)

inf  sup  [EfE - FI2Y7 > Clogn) e ™) =0,  as|f| — oo form=0, 1.

FL€CL feD,, (M)
" It follows from this and integration by parts that

[(KF4) (v)| < Cy~? /_Z ‘n@(t)‘ dt.

Observing that

Lemma 2 below implies that, for all € R

< Csup |y, | < C
K

> Gy w1 ()
k oo

L. . 2

unQer the condlthns (C1)—(C3). .Hence, the linear wavelet ‘n(g)(t)‘ < 02 Z
estimator fx ; () is also well defined for the supersmooth

case. According to the following theorem, the lower bound on )

the linear estimators is achievable by linear wavelet estimatéfad using (3) and (6), we get that

when the error is supersmooth. |(ICJF1/;) (U)| < Q232

j (IS (

PO @7+ ey

m=0

Theorem 4: Suppose that < g< oo, 1<p<2,ando>1/p.  from which the desired result follows. O
Under the assumptions (A4), (A5), (C1)—(C3), we have that
)11/2 g Lemma 2 [30]: Supposé:(y) is a function onR such that
su E«fr . — < C(logn)~77°
ren Py gy A = Sll) T < Ollogm) byl < O+ )

provided that Then for any sequence of scaldrsy )z, we have that, for
, - s s l<p=so
jo = |logy ((4m/3) 1 (\/9)*(logm)/*) |

The result also holds for the clags € D, (M) under the
additional condition (C4).

< Cfledlp-

p

E Oékhj’k

kcZ
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Lemma 3: Under the assumptions (A2), (B3), we have thate have that

for any sequence of scalafs; )rez

< 02 a2
2

Z oty ko fe

keZ
Proof: Observe that
Wj % f) () = (KT 9)j,0(y).-
By Lemma 1 and Lemma 2, we have the desired result. [
Let

folz) =Cr,(1+22)7™, 1/2<ro<1

whereC,,, is a constant such thg is a density. Note that ag
gets close td /2, the constant,., is close to zero. Sincé, is
infinitely differentiable, by choosing, arbitrarily close tal /2
we may assume that

M > 2||f0||opq'
Consider the hypercube defined by

f‘]oz {f:f0+ Z )\j7k”(/}j7k:)\jyk200rA}

kCK;

whereK; = {k: supp; » € [-S, S]} andA is a constant to
be specified later.

Lemma 4: Suppose that (A2) and (B3) hold. X can be
chosen such that

inf
zC[—S,5

1
S Nkl < 5 (7)

KEK;

] fo()

o

then
2 J A20—2s]
X (fi* fe, fox fo) S C2VAT277

forall fi, f> € FP.
Proof: Letgy = fo * f-. By (7)

P g0) 2 5 o)
from which it follows that
UL o 1) 2 [ Uin k= fax 105 @
forall f1, f, € Ff. Write
Juefe—fox fo = Hx [,

for all f € 7

H= Z Aj, k¥, ke
k
From (5) and Lemma 1
((H = f)W)] <2772 3 [N (K )(20y — k)]
kEK;
SCPPA2T N (14 2y — k)7
kEK;

Note that the number of elements/fy is of order2’. Applying
[13, Lemma 7] to the function

S (14 iy k)

kCK;

|(H x f.) (y)| < C272A279 (1 4 [y])~>.
Hence, by [11, Lemma 5.1]

/ (H = f)*(1)g0 * () dy

<o [ it ) dy
< C2IA%272%,
It follows from this and (8), we obtain the desired result. I

To prove Theorem 1, we use the subclass ofdensﬁjéwith

2

The constant; will be chosen below. Whefl < n < A, the
functions

SE=fot+npix and fi = fo—mbj«
belong toj’-"]‘.), and the pyramid

is contained inD ., (M).
Suppose thaf} is such that

E;fi(z) <oo, forall f e FP andz € R.

. M 7.
A = min <0123/2||¢||o<}, —2 J) .

forj >0

We first use the information inequality to establish a lower

bound for the variance of the estimated wavelet coefficient
fia= [ fi@wsa@
Let

7]
b= [ G (B @] (o)

By applying the information inequality of [20, Ch. 2, Theorem
6.4] to the model in which7, ..., Y, is an independent and
identically distributed (i.i.d.) sample frorfy * f. for fy € J”-"]‘»)
with an unknown parametér= }; ;, we have

a R 2
Eeﬁj,k)

A <% bl
V(B x) > nI() .

- nl(6)

where

i1 ¥ femr

1) = By { Fov 1Y)

Observe that

D(z) =

ST <A [ ale)].
k k

For fixed , #{k: v, »(x) # 0} is a fixed finite number de-
pending only on the support @f. Hence,
D(x) £ CA27?||¢)]| .

Choose’; in the definition ofA sufficiently small such that

] fo()

1
D(z) < - inf
2 x¢[-5,5
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for j sufficiently large. By the argument used to prove Lemma &ecall thatp was constrained to be at mast This amounts

we have to requiring that; < M2~ whenn is large, sincer >
, 1/p. To maximize the lower bound subject to this constraint,
1(8) < 0272, 2(25+1)J /5 and227"7 should be of the same order. This leads
Thus to choosingj so that2? =< n!/(2'+25+1) and, hence,

Eo|Bj x> = V(B,1) = 2 |bj u* /1.

9)

25+1)j
2( ) vn72o"/(20"+25+1)

n
which establishes Theorem 1.

We now follow arguments used to prove [8, Theorem 1] to

complete the proof. Observe now that

15 = Fll2 2 1D;(fE = Dll2

and, hence,
Efllft =32 Er Y 1Bin— Nl
FIJL 2= &f 7k gk
keK;
By the definition of the pyramidP;
Ry:= sup Ef|ff - fII3
fEDUPq(Jw
1 *
ZW Z E|lf — 113
J fcP;
> 0270 S B i - S+ B, 7 - S5

kCK;

>0270t Ny {Ef;|/§j,kf|2+Ef];|/§j,kf|2}

kEK; | Mek;
kR

+E 1 |0y, 1=+ B |3 1+ |

Note that
Ef;“/;jz k— Ef;/%" k — 2771)]'7 k-
Using this, we have
Ef]j |/}j, E— 77|2 + Ef]: |/§, kT 77|2

> |-Ef;rﬁj,k - 77|2 + |‘Ef;/3*,k + 77|2

2 5B fin = By B — 20

= 2772|bj,k — 1|2.
Combination of (9) and (10) entails

(10)

RyzC279 O3 Pl n=1P4 D > 2%l /n

keK; kCK; wek;
B £k

The double sum is bounded from below by

o(25+1)j Z |b;. 1|2 /.

kCK,
Settingn? = 225117 /n, we have

2(2s+1)j
2793 by — 1 + by, xl%)
kek

RL>C

2(25+1)j

n

E. Proof of Theorem 2
Lemma 5: Under conditions (A2), (B2), we have
(Ko )| < C27 and [(K79) (y)] < 627,
Proof: By (3), (A2), and (B2)
0670 ] < 02 [ 1o +1e)ear < €29
which is the desired result fd€; ¢. Since the same argument
can be applied fok; ¢, the proof is now complete. O

Lemma 6: Suppose that conditions (A2), (A3), (B2), and
(B3) hold. Then, we have

(K7 ) (w)| <C2%9 (1 + Jy|) 2
and
(K 4) ()| <C27 (1 + [y])~>.
Proof: By Lemma 5
[(K74) (v)| < 027,
Supposegy| > 1. Let
n(t) = P(—1)/®.(21).

By (A2), (B2), (B3), and (3)5™)(t) — 0 as|t| — oo for
m = 0, 1. It follows from (3) and (A3) that

/W”(t)‘ dthZSj/i[

m=0

for |y| < 1.

P 2+t e
<27,
Hence, by integration by parts
KOl cr [ [n@0)] s oz,
Now let -
n(t) = ¢(—1)/S(2'7).
It follows from (3) and (A3) that

. 2
@) ae<c [ ;W"‘Mt)\ (27 4]ty 20| at

<C2%.

This completes the proof since the same argument is true
for ¢. O

Now we prove Theorem 2. If € D,,,(M), then

e < (1=27") " peat)

1y 1/(1,
5M(1—2“’ q)
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wheres” = o —1/p > 0andl/q+1/¢ = 1. Consequently, if F. Proof of Theorem 3

FE€Dgp (M), || flloo < C from which it follows that| || < C.
We now consider two cases.

The key idea of the proof is similar to that in the proof of
Theorem 1. We continue to use the notation introduced in the

a) Suppose thaf € D,,,(M, S). Then, the number of proof of Theorem 1.

«; that is not vanishing is only of orde¥e. Recall that
ar, = E(K;, ¢)j,,x(Y). By Lemma5

B (8,1 — a3, 0)” = V {(K5,0)0,4(0)}

1
2 105900 )
I 225j0

i / 9(y) dy

22sjo

<

<C

n
from which it follows that

Efllfy 50— EinfI13 =D Efldy, x — a1l
k

2(25+1)j0
<C———. (11)
n
Using the fact tha3,,; C Bosr2oo
If=Eiflz=>_ 1815
J>jo
2 —207 5
<Ol fllopg2™7 . (12)

Choose2’o x n!/(27'+2:+1), Combination of (11) and [11,

(12) leads to

Ef”f;,jo - f||§ < Op =20 /(2o 2541

b) Consider the case whehe D, (M). Let
Nj(y) = D (K5, 0) (y = k).
kCZ
Observe that for any given
S a+-r e fax
keZ

It follows from this and Lemma 6 thak ;, (y) < 220,
Hence,

N 2
> E(fjo,x — ajy 1)

keZ

zZ

Y 2dz< C.

> VK, 9}

kCZ

/ > (K5 D)o, ()] 9(w) dy
-

/ 200 (A, (2] g(y) dy

270
< —
n

IA
= 3= 3+

[sgp Aj, (z)r/g(y) dy

9(2s+1)j0

n

Now we obtain the desired result as in a). This completes

the proof of Theorem 2.

Lemma 7: Suppose that conditions (A4) and (C1) hold. Then

1/2
< 02"V exp(—277 /) <Z |ak|2> :

2 kcZ
Proof: By the Parseval identity and conditions (A4) and
(C1)

Z arPj k* fe

kcZ

2
> aix [

kCZ

1

2
2

1D (8)[2|®-(271) | dt

ag Cztk

k

27

/277/3§|t|§87r/3
2

47
dt.
0

< 022 exp(—2199 /) /

E :akeztk
k

This completes the proof. O

Lemma 8: Assume that conditions (A5) and (C2) hold. Then,
for |y| > C27

((KF) (w)] < C@ [y~ @™,
Proof: ChooseN in (A5) such that N + 1)& > a. By
Lemma 5.2] and (5), whely /27| > M
(H) (9)] = \ | vty-ayaniy)
<oy
which is what needed to be shown.

Consider the hypercube defined by

27

f:]S: {f:f0+z )\j,kr(/}j,k:)\j,k:() OrA}.

k=1

Lemma 9: Suppose that (A4), (A5), (C1), (C2) hold.Afcan
be chosen such thg(-) > 3 fo() for f € F7, then we have

XQ(fl * féa f2 * fé) =0 (281jA2 exp(_6125j))

forall fi, fo € F7, wheree; = min((1 — r9)/A, ¢o/2)) and
eo=2(a—@—rp) — 1.
Proof: Again, letgy = fo * f. and write

fl*fa_fQ* EIH*fE
whereH = 3", A, 1% . By Lemma 7

/(H * fe)Q(y) dy < 0225‘jexp(—21+5j/)\) Z )\JQk
k

Let

I

/  (H* ) (w)eo () dy
lyl<exp(227 /N)

and
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= :/H oy )(H*fa)Q(y)go_l(y) dy. Then
e o, €xp(2612%7) /
22»”2 EEPYEALT) S oe 207/
Observe that : * Cloem
/Oo (H * [ ()0 () dy = 11 + 1. which establishes Theorem 3.

Using [11, Lemma 5.1] and Lemma 7, we obtain that G. Proof of Theorem 4

’ 00 Lemma 10: Under conditions (A4), (A5), (C3), we have
I < Cexp(27’025] /)\) /_Oo (H * f5)2(y) dy |(/C;(/)) (y)| < 9507 exp ((47r/3)525j/)\)
< Cexp(2ro27 /A)2% exp(—2 17 /0) Y A7 . and
% |(K74) ()] <C27°%7 exp ((87/3)°2%7 /) .

It follows from [13, Lemma 7] and Lemma 8 that Proof: Letd — 47/3. Observe that

23

(H + f) ()] <2720 [(KF) 27y — k)| (K5 6) ()] < O/H |@-(278)| " at.
k=1 t|<b
<O/ Ay~ (13) By (C3), whenC2~ < |t| < 4n/3
for [y| > C27. By (13) ®.(271)] > C(278)™ exp(—b°2% /\) (14)
|yy| ~2(e=) and

I, <C2A? / dy

lylzexp(zei/n) Y72 |©.(2t)] > ﬁ?iré |®.(t)] >0,  when|t| <C27/. (15)

. L
< CP A" exp(=o2™ /). The conclusion follows directly from the above inequalitiEs.

Combining the bounds od;, and I, we have the desired [ emma 11:Under conditions (A4), (A5), (C3)—(C4), we
result. U have that, for some real constant

To complete the proof of Theorem 3, we consider the subclass K- < C9—s3i 47 /37259 7)) (1 —2
F7. By (A5) and [13, Lemma 7], whelV > 2r, andj is large |( J ¢)(y)| - exp ((4m/3)°27/A) (1 + Jy])

and
‘Z Akt 1) (K5 9) ()| <C27°% exp ((4r/3)°2% /) (1 4 [y) 2.
ka SYPAL+ )N Proof: By (14), (15), the desired result follows as in Lem-
ma 6. |

<C2PPA<1)/2
L < If f€Dgp(M, S)or feD,ne(M), then||g|le <C. Using
which implies thatf(-) > fo(-)/2 for all f € F7. We now | emma 10, we can prove the desired result for the case when
follow the arguments in the proof of Theorem 1 to complete tf}ee D, (M, S), asin Theorem 2. Now consider the case when

proof. _ _ _ f € Dopy(M). Let
By the argument used in proving Lemma 9, we obtain that
I(6) < o2 exp(—e12%7) io(Y) % |(’CJO¢) (y k)|

for somee,. Hence, It follows from this and Lemma 11 that

E9|/§j7k|2 > C2%i¢2 eXp(2612Sj)|bj7 k|2/7'L Ajo (y) < 02(2—s)j0 exp ((47r/3)s2sj0/)\) .
Now, as in the proof of Theorem 1, we can show that Hence,

L %jes exp(2¢12%7) N 2 2000 5085
Rn 202] ” ZE(ajo,k_ajo,k) SCT exp((47r/3)'2"0/)\)

. keZ

after setting
=o(n"Y?)

* = 2% exp(2¢,2%) /n.
by choosing the levely such that
To maximize the lower bound subject to the constraint thiat

at mostA, choosej so that Jo= Llogz ((47f/3)71()\/4)1/5(109;71)1/5)J

j= {10g2 ((261)*1/5(1(%71 — €3 10g10gn)1/5)1 wherea = 5 if s > 0, anda = 5 — 25 if s < 0. Hence, the
term
with )
> E(dy,n — 1)

€3 = 2(ea + ') /s. iez
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is negligible. Since wavelet estimators for the supersmooth case are optimal within
. a logarithmic order. As discussed at the beginning of this sec-
If — Ej, fll3 < C2727 7 tion, thresholding wavelet deconvolution estimators do not seem
to enhance the performance, due to excessive variance of esti-
we have mated wavelet coefficients at high resolution levels.
E/||fy ., —fl3sC (n—l/?’ + (1ogn)—20'/5) Theorem 6: Suppose that < ¢ < oo ande > 1/p. Under

conditions (A4), (A5), (C1), (C2), we have that

from which the desired result follows.
inf  sup [E|fy - fIB]Y? > Clogn)=7/".
f7§€A fEDqu(JW)
IV. NONLINEAR WAVELET DECONVOLUTION ESTIMATOR

The gim of this s_ecti_on is to es_tal_JIish the m_inimax raFe fogg Thresholding Wavelet Estimator
estimating the density in B,,,. This is accomplished by first ) ) )
establishing a minimax lower bound and then showing that aAMOng nonlinear estimators, we study a very special one: a
class of nonlinear wavelet deconvolution estimators achieJdncated threshold wavelet estimator. Define
the rate of the lower bound. For ordinary smooth convolution . 1 o (t)
kernels, we will show that thresholding wavelet deconvolution Bk = o / ¥ 1(—1t) <I>n(t)

—co =

estimators are optimal within a logarithmic order. However, for
R%an be seen that; ;. is an unbiased estimator g, ;. Note

>

dt. (16)

the supersmooth case, since the optimal rates are only of lo
rithmic orders (see Theorems 3 and 7), losing a factor of log-
arithmic orders in nonlinear wavelet deconvolution estimators

makes the thresholding wavelet estimators perform similarly to . n

linear wavelet estimators. Indeed, our study shows that the last Bk = Z (K5 )5,k (Ym)-
resolution level (see notatigih below) in thresholding wavelet m=l1

estimators has to be large enough in order to make approxi-_ . . - - .
mation errors negligible. Yet, this creates excessive variance P efine empirical wavelet coefficients;,, x andf; » asin (2)
the estimated wavelet coefficients at high resolution levels aﬁad (16) and employ the hard-thresholding

hence the thresholding does not have much effect on the overall .

performance of thresholding wavelet estimators. For this reason, Bix = {
we do not present the upper bound for the thresholding wavelet
estimators for the supersmooth case. Only lower bound is pre-

S|

Bj: k> if |/§j7 k| > TCj?’Lil/2
0, if |ﬁj:k| < ,TC]'TL_l/2

persmooth kernels are only of logarithmic orders. ciated with the parameteys(n), j.(n), andT is

A. Minimax Lower Bound Fow =fr . +Dj,
/ n, jo 0571

To establish minimax lower bounds, we follow the popular i
approach, which consists of specifying a subproblem and using _ . 3 b
Fano’s lemma to calculate the difficulty of the subproblem. The Z G, ki e + %: zk: Pio i,

lower bound will then appear, where the Kullback—Leibler in- *

formation is crucial in using Fano’s lemma. Takejo andj; such that

Let

, 1/(204+2s5+1)
B o 2J0(n) = (n(log n)@_p)/p)
“= 20 =+ 2s =+ 1 and

and A, the class of all estimators gf based ony7, ..., Y,,. 271(1) < e/’
We have the following minimax lower bound for the ordinary
smooth error distributions. Theorem 7: Suppose that > 1/p, 1 <p < 2,1 < ¢ < oo,

Theorem 5: Suppose that < ¢ < oo ando > 1/p. Under @nds < {p/(2 — p)}o’. Then, under conditions (A1)—~(A3),
conditions (A1)—(A3) and (B3), we have that (B2), we have that there exist constatts= C(o, p, ¢, M)

and7, = Io(o, p, M) such that foll’ > T

inf sup  [Eyl|fy - fI3]2 = one
TREA fEDope (M) sup  {Eg||fiw — I3} < On~*(logn)t =¥/ 7P
fE€Dope(M,S)
For supersmooth convolution kernels, we have shown (Thve\:/hereé _ 2 2-p)
orems 3 and 4) that linear wavelet estimators have a very slow - op 2 5 -
rate of convergence. Can they be improved significantly by otherThe conditions < (p/(2 — p))o’ is purely a technical condi-

types of estimators? The following theorem shows that lineton. It was also imposed in [7].
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C. Proof of Theorem 5 From the orthonormality of, & } and [16, Lemma 3.1], (17)

Let fo, j, andK; be the same as those defined in the proof &nd (18) hold for ,th? clasg;, even when Meyer's wavelets are
Theorem 1. Consider the set of vertices of a hypercube defifétfd- By Jensen’s inequality and Lemma 9, it can be seen that

by K(u*fé,U*fE)SXQ(U*fE,U*fE)

< 02720300 exp(—e12% /\)
Fi=Sf=fotfrifr=> mmthik, =01

kEK; foru, v € F7. By Fano’'s lemma, iff* is any estimator off,

. then

with :
/2 . sup  22VE|| [~ [li3
0 S Ui S F - Inin <O277 % 2](0+1/2)> . fCDapq(]w) ?
ol o .

Observe that = - 20Q0+1=251)) exp(e,299 /A) J

| fllopg <l follopg + Il f+llopg Choosing; such that

e Jj= {10g2 (()\/el)l/s(logn — €2 loglogn)l/s)—l
SME2+27 0 Y Il <M
kCK for a constant,, we obtain the desired result of Theorem 6.
and that we can choosg such that E. Proof of Theorem 7
Il £rlloo < C272)|9)]| 00 < E inf  fo(x) In the first part, we set up the technical tools of the proof:
2 wc[-55] moment bounds and large-deviation results. In the second part,

for f € F;. we derive the results.

Let|F;| denote the number of elements in the&etBy [16, Moment Bounds:We use the result of [27]. Lefy, ..., Z,
Lemma 3.1] and the orthonormality éf; 1}, there is a subset be i.i.d. random variables witkZ,, = 0, EZ?% < ¢%.Then
Fi of F; such that there exists:, such that

—jo * a 2 a
lfi = fall2 > C2777, for fi # fo e F;  (17) E‘nflzZm <caq <U—Z+M>, if @ >2
na/2 no—1
and
log(| 77| = 1) > 0272 log(|%;1) A8) Bl Y Za| sodn? f1gas2

whenn is sufficiently large and.F;| > 8.

' - ] Note that||g||.c < C as it was shown in the proof of The-
By Jensen’s inequality and Lemma 4, it can be seen that

orem 2.
Kus fo,vs f2) < x2(ux fo, v f2) < 02720+ (19) Recall that

n

foru, v € F7. By Fano’slemma 2], [31], iff* is any estimator /}Lk =pn~! Z (’wa)j,k(Ym)
of f, then m=1
ol 227 E || f*— flI3 and that
CDspq ~
2 Epj =ik = / Pj, k() f(z) de.
= <fscufp] 2B - f||2> Applying Rosenthal’s inequality to
1 ; =(K:9); & — B &
> 55 swp Py (IS = fll2 > 0277) Zm = (K0 e(Vm) = Bk
FE7; by Lemma 5
Klux f.,vx f.) +1log2 “
1 n Sup H(uxfe vxfo) Flog E\Zn|" <2°E|(K79); 1 (Ym)
> 1— J (20) J 2
= C2 log (|F7] - 1) ' < C2ie/2genig=

< 02(0,/2—1—(1,5—1)]'.
Finally, let2/ =< n!/(20+25+1) 35, — 0. By (17), (18), and
usinglog(|F;|) > C2¢ for some constant’, the desired resul
of Theorem 5 follows readily from (19) and (20).

¢ It follows that fora > 2

E

225]' 2(0,/2+0,s—1)j
} 1)

na/2 no—L

Bin—Bia| < 0{
D. Proof of Theorem 6

We use the sam&;, except thaty is Meyer’'s wavelet sat-
isfying (A4) and (A5). As in the proof of Theorem 1, we ca
see thatf(-) > 3 fo(-) for f € F7 by choosingC' sufficiently
small. EZ, =0 EZ2 =02, 1Zm| <1200 < o0

Large Deviation: We use the Bernstein’s or Bennett's in-
equality [26, pp. 192-193]. I¥/4, ..., Z,, are i.i.d. bounded
andom variables such that
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then

P (‘n_l Z Zom

Applying this to

ny
<2 — .
>7) < 20 < 2% + ||Z||oofy/3>)

an = (K;z/})J,k(an) - /j,k

and noting that, by Lemma 52 < M22?% and

|(K54),,6(m)| <

29/ sup |(ICj_z/))(y)| < M2+1/2)i
Y

we conclude that if2/ < n, then there exists a constafit=
¢(M)n such that, for alhy > 1

P (|30 = 014 > /207257 n)

< Zexp< T—2J> <27,
SM(1+1T/2)
For example, it suffices to choose= ¢(M) such that
> 8M(14¢/2)log2.
We are ready to complete the proof. Write

f:Ej0f+Dj07j1f+f_Ej1fv

where

Jo,hf ZD f

Jj=jo

Note that by the definition of ;.-

Ef fiw - FI3<3(BA 57 jy— Ein 1
+E{|1 Dy, s~ Div. i JI3+ IS = B3, £13)
whereDJ0 i = Dijo, v Fw-
Using (12), we have
If = i[5 < Ol fl13p27%7 7 < On72e

745

We may then write

Djo,jl _Djﬂyjlf
J1
=323 (B~
jo Kk

x [I{k € B;S;}+1{k e Bij}]

Bi, k) (N

_ Z Z Bi.xbj 1 [I{k € 8;B,} + I{k € Sjs;}}

Jjo
= (ebs + Cbb) + (esb + 655) .

For the terme;,, we set

Fioe =B = Bi){k € B;S;}

Gir= {k:

the large-deviation event. Clearly

and

Bisk = Bix ‘ (T/2)T}

BJ'SJ' - Gj,k-
Using this, and the Cauchy—Schwartz inequality and (21), we
have
N2 1/2
Z Ey ‘f; ‘ < (Eflﬁ = Bl ) P(Gjx)
s s i\ /2
<0 2 + 2 2= (n/2)j
n n3

Choosingn > 4s + 3, we have
s 2
EillewlB =" Y Ey |
Jjo k

9do(4s+3-m)/2  9jo(1+s—n/2)
+ < Cn~t.
n3/2 n

Hence, it is negligible.
To give a bound foeg;,, we note that

SJB; - Gj7 k-

This bound has the rate of convergence specified in Theorenh?

By (21)
Ej |y, k — 0y k] ? < €229 /.
It follows that
E||fh - Einfls =

Z‘Ef |O‘107
< '2(2s+1)jo /n

=0 (n_2

— Qg k

a(logn)(l—é/crp)a) )

This bound is the rate of convergence specified in Theorem 7.

To decompose the details term, define

By = {k: |Bj ] > Tey/v/my, S5 =By
B ={k:1Bj,kl > (T/2)c;//n},  5;=Dj
By = {k: |8kl > 2T¢;/v/n}, S5 = Bj".

J1
Eflleals <C YY" 18 xP PGy 1)

jo Kk

Ji
<0y |8 l527
Jo

Ji
< C||f||02c>o Z 2_](20 )

< C2‘f0<”+2”'> < On~2

by choosing; > 2(c—¢"). Hencegy; is at most of the specified
rate of convergence.
To derive a bound on,, let

Fiw = (B — B0 I{k € B;B;}.
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In this case, using (21)

225j p

>

€B;

(T/2)c;/v/n
< O||p;. |[p2@ P jp/ 2y~ (2-p)/2
S C||f||§p002(25—1’0'—PS)jj—p/2n—(2_p)/2'

Since§ = po’ — (2 —p)s > 0and;j?/2 <1

J1
Efllewl =Y Y By |fi
jo k

< C'max (27%0, 27801 5 =(271)/2

‘ 2

<Cn 2*(logn)™¥

for somew > 0, from which we have thaE||e;|2 is negli-
gible.
Finally, we consider the cassg,. Let

1k = 27" Bj 1
and write
1= (), k)0, kcz  aNd B = (Bj k)j>jo, kcz-
By the definition of Besov norm, il € B,,,(M), thenu €
jnB(;rms, we have
lesallz < || (85,6250 <3 < jr, k€ 5]/'})H022
=||({ws,x: Jo <J < jr, ke Si})

The conditionk € S} implies

g, u] 2T\ j1/n = Ay,

522 °

We have

(Eflless|3)

< Q= sup {||ullos: 1 € Bapg(M), I ] < An}. (22)
From [9, Theorem 3], we read off that
- 20
Q, < M2 <2T1/J—1> . (23)
n

Sincey; < logn, we conclude from this argument that, <
C(n~llogn)®.
The exponent ofog n can be improved t¢1 — é/op)a by

spq(M), Wherez = o + s. Using the structure of sequence
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Letting
AL 202 = AL-P/2 (M2_]’E’)p/2
leads to
205" = (M /A, )P/ @ 'P+D)

and

A,27/2 = M2797'
to

2010 = (M/A,)Y T+,
Since

(@' +1/2) 2 p/ (@ +1)

the least favorable levgl*(n) is chosen ag}(n). One can see
that the range of € (jo(n), j1(n)) in f; lies entirely above
the least favorable level (n), which satisfies

2]‘(71) = nl/(?o’—l—?s—l—l)
and leads to the bound (23). It leads to
Qn <201°(G)HT = Jo(n)}2

whereQ*(j) satisfies
r/

. — 2 .
QF(j) < 295 AL P/2 (MTN ) — 2 A}/

whereng; = (MA;12797")v, Let us note that when is suffi-
ciently largeng, /2 < 1for j > jo(n). Thus,
Q) < CA}L—P/QQJ(S—F'/Q).

Whens < o'p/(2 — p), we have thatt — 7'/2 < 0 and,
therefore, that

Qn <2Q°(G) {5 = Joll2
1/2

< CALP/2 Z (2(5_3,/2)].)2

JjZjo

<o (Vi) "

< COn~*(logn)=%/r),

Since the terne,, has the specified rate of convergence, the

desired result follows from this and (22).

V. ADAPTATION RESULTS

In this section, we wish to show that a slight modification of
f7w gives an adaptive minimax estimator in the sense that it
approximately achieves the rates of convergence in Theorem 7
without the need to specify, p, andq. For a given integer,
define a class of parameters

the following argument. Let
Q'(j) = 2 W* (A M5 2, p, )
whereg’ =5 +1/2—1/p and
W*(A, C; p', p, m) = min (Aml/zf/7 Al—e/? e/ C’) . J= {(0, P, q, S): % <o<r,1<p, q< o0, 0<S<oo}.
By the assumption that < 2 and [9, Lemma 4]
/2

The modified estimatof} ;- is obtained from compactly sup-
ported and--regular functionsp, v/, using resolution levels
2j0 = 7,L1/(2’!’—1—284—1)7

Q*(j) < 2° min <A,,,2j/2, A;—P/2(M2—ﬁ’)p , M2—ﬁ’).

291 = n/logy n.
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Theorem 8: Suppose that the conditions (A1)-(A3) and (B2)

hold. If f € D,,,(M, S), where(o, p, ¢, S) € J, then, for 1]
all (o, p, q, S) € J, there exist = ¢(o, p, q, s, M) andTy
such that for” > Ty 2
* 1/2 @
(il Faaw = 1) < cognfmy™. (24)
Proof: BecauseL?-norms decrease ip for compactly
supported functions, the cage> 2 reduces to the cage= 2. [4]
Thus, we investigate only the cage < 2. Define indexes [g]
ji(av P, q, 8) by (6]
2Jo (o,p,q,8) o (n/ log n)l/(20+25+1)
and 7]
931(7,p, 4, 5) Xna/al.
The indexes used in Theorem 7 are denoteghyrhen (8l
70(71) S jO(O—v D, q, S) S?S(O—v D, q, S)
. [9]
Sjl(aa D, q, 3)
<ji(o, p, ¢, 5) < ju(n). 0]

First of all, onD,,, (M, S), the rates of the bias and linear
terms can easily be bounded as follows: [11

||Ej1f — f||§ < 22051 (n) < Cn—2e

2(25+1)j0 (n)

[12]

[13]

Eflf5 5, — Enfl3 £C ).

=o(n

[14]

Secondly, the large-deviation termg ande,; can be treated
exactly as forf;;-. The terme, is bounded byCn=! which is
smaller than the bound in (24). For the teegy, by choosing;

sufficiently large

[15]
[16]
[17]
2—(77+20")j0(n) < n—?a.
- [18]
Therefore, it has the specified rate of convergence.
We can establish the bound in Theorem 8 for the tegm
For a bound or,,, we decompose

[19]

[20]
Jolo,p,q,8) Ji(n) . . 21]
Cop = + Z Z(ﬁj,k—ﬁj,kﬂ{k € B;B;}
Jo(n) Jo(o,p,q,8) k
[22]
=epp1 + Cop2-

The termey,2 is bounded exactly as in the previous section. For[23]
the termeg,;, we have

2(2s4+1)jo(o, p,a,5)

Egllellz <C [24]
[25]
2(25—1—1)]0 (o’, P, 4, s)

< Cn—?a

" [26]
Thus, the proof is completed. O

[27]
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