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Variable selection is fundamental to high-dimensiona l statistical modeling, including nonparametri c regression. Many approaches in use
are stepwise selection procedures , which can be computationally expensive and ignore stochastic errors in the variable selection process.
In this article, penalized likelihood approaches are proposed to handle these kinds of problems. The proposed methods select variables
and estimate coef� cients simultaneously. Hence they enable us to construct con� dence intervals for estimated parameters. The proposed
approaches are distinguished from others in that the penalty functions are symmetric, nonconcave on 401ˆ5, and have singularities at the
origin to produce sparse solutions. Furthermore, the penalty functions should be bounded by a constant to reduce bias and satisfy certain
conditions to yield continuous solutions. A new algorithm is proposed for optimizing penalized likelihood functions. The proposed ideas
are widely applicable. They are readily applied to a variety of parametric models such as generalized linear models and robust regression
models. They can also be applied easily to nonparametri c modeling by using wavelets and splines. Rates of convergence of the proposed
penalized likelihood estimators are established. Furthermore, with proper choice of regularization parameters, we show that the proposed
estimators perform as well as the oracle procedure in variable selection; namely, they work as well as if the correct submodel were
known. Our simulation shows that the newly proposed methods compare favorably with other variable selection techniques. Furthermore,
the standard error formulas are tested to be accurate enough for practical applications.

KEY WORDS: Hard thresholding; LASSO; Nonnegative garrote; Penalized likelihood; Oracle estimator; SCAD; Soft thresholding.

1. INTRODUCTION

Variable selection is an important topic in linear regression
analysis. In practice, a large number of predictors usually are
introduced at the initial stage of modeling to attenuate possible
modeling biases. On the other hand, to enhance predictabil-
ity and to select signi� cant variables, statisticians usually use
stepwise deletion and subset selection. Although they are
practically useful, these selection procedures ignore stochas-
tic errors inherited in the stages of variable selections. Hence,
their theoretical properties are somewhat hard to understand.
Furthermore, the best subset variable selection suffers from
several drawbacks, the most severe of which is its lack of
stability as analyzed, for instance, by Breiman (1996). In an
attempt to automatically and simultaneously select variables,
we propose a uni� ed approach via penalized least squares,
retaining good features of both subset selection and ridge
regression. The penalty functions have to be singular at the
origin to produce sparse solutions (many estimated coef� cients
are zero), to satisfy certain conditions to produce continuous
models (for stability of model selection), and to be bounded
by a constant to produce nearly unbiased estimates for large
coef� cients. The bridge regression proposed in Frank and
Friedman (1993) and the least absolute shrinkage and selection
operator (LASSO) proposed by Tibshirani (1996, 1997) are
members of the penalized least squares, although their asso-
ciated Lq penalty functions do not satisfy all of the preceding
three required properties.

The penalized least squares idea can be extended naturally
to likelihood-based models in various statistical contexts. Our
approaches are distinguished from traditional methods (usu-
ally quadratic penalty) in that the penalty functions are sym-
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metric, convex on 401 ˆ5 (rather than concave for the negative
quadratic penalty in the penalized likelihood situation), and
possess singularities at the origin. A few penalty functions are
discussed. They allow statisticians to select a penalty function
to enhance the predictive power of a model and engineers to
sharpen noisy images. Optimizing a penalized likelihood is
challenging, because the target function is a high-dimensional
nonconcave function with singularities. A new and generic
algorithm is proposed that yields a uni� ed variable selection
procedure. A standard error formula for estimated coef� cients
is obtained by using a sandwich formula. The formula is tested
accurately enough for practical purposes, even when the sam-
ple size is very moderate. The proposed procedures are com-
pared with various other variable selection approaches. The
results indicate the favorable performance of the newly pro-
posed procedures.

Unlike the traditional variable selection procedures, the
sampling properties on the penalized likelihood can be estab-
lished. We demonstrate how the rates of convergence for the
penalized likelihood estimators depend on the regularization
parameter. We further show that the penalized likelihood esti-
mators perform as well as the oracle procedure in terms of
selecting the correct model, when the regularization param-
eter is appropriately chosen. In other words, when the true
parameters have some zero components, they are estimated as
0 with probability tending to 1, and the nonzero components
are estimated as well as when the correct submodel is known.
This improves the accuracy for estimating not only the null
components, but also the nonnull components. In short, the
penalized likelihood estimators work as well as if the correct
submodel were known in advance. The signi� cance of this is
that the proposed procedures outperform the maximum likeli-
hood estimator and perform as well as we hope. This is very
analogous to the superef� ciency phenomenon in the Hodges
example (see Lehmann 1983, p. 405).
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The proposed penalized likelihood method can be applied
readily to high-dimensional nonparametric modeling. After
approximating regression functions using splines or wavelets,
it remains very critical to select signi� cant variables (terms
in the expansion) to ef� ciently represent unknown functions.
In a series of work by Stone and his collaborators (see
Stone, Hansen, Kooperberg, and Truong 1997), the traditional
variable selection approaches were modi� ed to select useful
spline subbases. It remains very challenging to understand
the sampling properties of these data-driven variable selec-
tion techniques. Penalized likelihood approaches, outlined in
Wahba (1990), and Green and Silverman (1994) and refer-
ences therein, are based on a quadratic penalty. They reduce
the variability of estimators via the ridge regression. In wavelet
approximations, Donoho and Johnstone (1994a) selected sig-
ni� cant subbases (terms in the wavelet expansion) via thresh-
olding. Our penalized likelihood approach can be applied
directly to these problems (see Antoniadis and Fan, in press).
Because we select variables and estimate parameters simulta-
neously, the sampling properties of such a data-driven variable
selection method can be established.

In Section 2, we discuss the relationship between the penal-
ized least squares and the subset selection when design matri-
ces are orthonormal. In Section 3, we extend the penalized
likelihood approach discussed in Section 2 to various para-
metric regression models, including traditional linear regres-
sion models, robust linear regression models, and generalized
linear models. The asymptotic properties of the penalized
likelihood estimators are established in Section 3.2. Based
on local quadratic approximations, a uni� ed iterative algo-
rithm for � nding penalized likelihood estimators is proposed
in Section 3.3. The formulas for covariance matrices of the
estimated coef� cients are also derived in this section. Two
data-driven methods for � nding unknown thresholding param-
eters are discussed in Section 4. Numerical comparisons and
simulation studies also are given in this section. Some discus-
sion is given in Section 5. Technical proofs are relegated to
the Appendix.

2. PENALIZED LEAST SQUARES AND
VARIABLE SELECTION

Consider the linear regression model

y D X‚C ˜1 (2.1)

where y is an n � 1 vector and X is an n � d matrix. As in
the traditional linear regression model, we assume that yi’s are
conditionally independent given the design matrix. There are
strong connections between the penalized least squares and
the variable selection in the linear regression model. To gain
more insights about various variable selection procedures, in
this section we assume that the columns of X in (2.1) are
orthonormal. The least squares estimate is obtained via min-
imizing ˜y ƒ X‚˜2, which is equivalent to ˜ O‚ ƒ ‚˜2, where
O‚ D XT y is the ordinary least squares estimate.

Denote z D XT y and let Oy D XXT y. A form of the penalized
least squares is

1
2
˜y ƒ X‚˜2 C ‹

dX

jD1

pj4—‚j —5 D 1
2
˜y ƒ Oy˜2 C 1

2

dX

jD1

4zj ƒ ‚j5
2

C ‹
dX

jD1

pj4—‚j —50 (2.2)

The penalty functions pj4¢5 in (2.2) are not necessarily the
same for all j . For example, we may wish to keep impor-
tant predictors in a parametric model and hence not be will-
ing to penalize their corresponding parameters. For simplicity
of presentation, we assume that the penalty functions for all
coef� cients are the same, denoted by p4—¢—5. Furthermore, we
denote ‹p4—¢—5 by p‹4—¢—5, so p4— ¢ —5 may be allowed to depend
on ‹. Extensions to the case with different thresholding func-
tions do not involve any extra dif� culties.

The minimization problem of (2.2) is equivalent to mini-
mizing componentwise. This leads us to consider the penal-
ized least squares problem

1
2
4zƒ ˆ52 C p‹4—ˆ—50 (2.3)

By taking the hard thresholding penalty function [see
Fig. 1(a)]

p‹4—ˆ—5 D ‹2 ƒ 4—ˆ—ƒ ‹52I4—ˆ— < ‹51 (2.4)

we obtain the hard thresholding rule (see Antoniadis 1997 and
Fan 1997)

Ô D zI4—z— > ‹53 (2.5)

see Figure 2(a). In other words, the solution to (2.2) is
simply zjI4—zj — > ‹5, which coincides with the best subset
selection, and stepwise deletion and addition for orthonor-
mal designs. Note that the hard thresholding penalty func-
tion is a smoother penalty function than the entropy penalty
p‹4—ˆ—5 D 4‹2=25I 4—ˆ— 6D 05, which also results in (2.5). The
former facilitates computational expedience in other settings.

A good penalty function should result in an estimator with
three properties.

1. Unbiasedness: The resulting estimator is nearly unbi-
ased when the true unknown parameter is large to avoid
unnecessary modeling bias.

2. Sparsity: The resulting estimator is a thresholding rule,
which automatically sets small estimated coef� cients to
zero to reduce model complexity.

3. Continuity: The resulting estimator is continuous in data
z to avoid instability in model prediction.

We now provide some insights on these requirements.
The � rst order derivative of (2.3) with respect to ˆ is

sgn4ˆ58—ˆ—Cp0
‹4—ˆ—59ƒz. It is easy to see that when p0

‹4—ˆ—5 D
0 for large —ˆ—, the resulting estimator is z when —z— is
suf� ciently large. Thus, when the true parameter —ˆ— is
large, the observed value —z— is large with high probability.
Hence the penalized least squares simply is Ô D z, which is
approximately unbiased. Thus, the condition that p0

‹4—ˆ—5 D 0
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Figure 1. Three Penalty Functions p‹(ˆ) and Their Quadratic Approximations. The values of ‹ are the same as those in Figure 5(c).

for large —ˆ— is a suf� cient condition for unbiasedness for a
large true parameter. It corresponds to an improper prior dis-
tribution in the Bayesian model selection setting. A suf� cient
condition for the resulting estimator to be a thresholding rule
is that the minimum of the function —ˆ— C p0

‹4—ˆ—5 is positive.
Figure 3 provides further insights into this statement. When
—z— < minˆ 6D08—ˆ— C p0

‹4—ˆ—59, the derivative of (2.3) is posi-
tive for all positive ˆ’s (and is negative for all negative ˆ’s).
Therefore, the penalized least squares estimator is 0 in this
situation, namely Ô D 0 for —z— < minˆ 6D08—ˆ—C p0

‹4—ˆ—59. When
—z— > minˆ 6D0 —ˆ— C p0

‹4—ˆ—5, two crossings may exist as shown
in Figure 1; the larger one is a penalized least squares esti-
mator. This implies that a suf� cient and necessary condition
for continuity is that the minimum of the function —ˆ—Cp0

‹4—ˆ—5
is attained at 0. From the foregoing discussion, we conclude
that a penalty function satisfying the conditions of sparsity
and continuity must be singular at the origin.

It is well known that the L2 penalty p‹4—ˆ—5 D ‹—ˆ—2 results
in a ridge regression. The L1 penalty p‹4—ˆ—5 D ‹—ˆ— yields a
soft thresholding rule

Ô
j D sgn4zj 54—zj — ƒ ‹5C1 (2.6)

Figure 2. Plot of Thresholding Functions for (a) the Hard, (b) the Soft, and (c) the SCAD Thresholding Functions With ‹ D 2 and a D 3.7
for SCAD.

which was proposed by Donoho and Johnstone (1994a).
LASSO, proposed by Tibshirani (1996, 1997), is the penalized
least squares estimate with the L1 penalty in the general least
squares and likelihood settings. The Lq penalty p‹4—ˆ—5 D ‹—ˆ—q

leads to a bridge regression (Frank and Friedman 1993 and
Fu 1998). The solution is continuous only when q ¶ 1. How-
ever, when q > 1, the minimum of —ˆ— C p0

‹4—ˆ—5 is zero and
hence it does not produce a sparse solution [see Fig. 4(a)].
The only continuous solution with a thresholding rule in this
family is the L1 penalty, but this comes at the price of shifting
the resulting estimator by a constant ‹ [see Fig. 2(b)].

2.1 Smoothly Clipped Absolute Deviation Penalty

The Lq and the hard thresholding penalty functions do not
simultaneously satisfy the mathematical conditions for unbi-
asedness, sparsity, and continuity. The continuous differen-
tiable penalty function de� ned by

p0
‹4ˆ5 D ‹ I4ˆ µ ‹5 C

4a‹ ƒ ˆ5C

4a ƒ 15‹
I4ˆ > ‹5

for some a > 2 and ˆ > 01 (2.7)
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Figure 3. A Plot of ˆ + p0
‹( ˆ) Against ˆ( ˆ > 0) .

improves the properties of the L1 penalty and the hard
thresholding penalty function given by (2.4) [see Fig. 1(c)
and subsequent discussion]. We call this penalty function the
smoothly clipped absolute deviation (SCAD) penalty. It corre-
sponds to a quadratic spline function with knots at ‹ and a‹.
This penalty function leaves large values of ˆ not excessively
penalized and makes the solution continuous. The resulting
solution is given by

Ô D

8
><
>:

sgn4z54—z— ƒ ‹5C1 when —z— µ 2‹1

84a ƒ 15zƒ sgn4z5a‹9=4aƒ 251 when 2‹ < —z— µ a‹1

z1 when —z— > a‹

(2.8)

[see Fig. 2(c)]. This solution is owing to Fan (1997), who gave
a brief discussion in the settings of wavelets. In this article,
we use it to develop an effective variable selection procedure
for a broad class of models, including linear regression models
and generalized linear models. For simplicity of presentation,
we use the acronym SCAD for all procedures using the SCAD
penalty. The performance of SCAD is similar to that of � rm
shrinkage proposed by Gao and Bruce (1997) when design
matrices are orthonormal.

Figure 4. Plot of p0
‹
( ˆ) Functions Over ˆ > 0 (a) for Lq Penalties, (b) the Hard Thresholding Penalty, and (c) the SCAD Penalty. In (a), the heavy

line corresponds to L1 , the dash-dot line corresponds to L.5 , and the thin line corresponds to L2 penalties.

The thresholding rule in (2.8) involves two unknown param-
eters ‹ and a. In practice, we could search the best pair 4‹1 a5
over the two-dimensional grids using some criteria, such as
cross-validation and generalized cross-validation (Craven and
Wahba 1979). Such an implementation can be computation-
ally expensive. To implement tools in Bayesian risk analy-
sis, we assume that for given a and ‹, the prior distribution
for ˆ is a normal distribution with zero mean and variance
a‹. We compute the Bayes risk via numerical integration.
Figure 5(a) depicts the Bayes risk as a function of a under the
squared loss, for the universal thresholding ‹ D

p
2 log4d5 (see

Donoho and Johnstone, 1994a) with d D 20140160, and 100;
and Figure 5(b) is for d D 512, 1024, 2048, and 4096. From
Figure 5, (a) and (b), it can be seen that the Bayesian risks
are not very sensitive to the values of a. It can be seen from
Figure 5(a) that the Bayes risks achieve their minimums at
a 307 when the value of d is less than 100. This choice gives
pretty good practical performance for various variable selec-
tion problems. Indeed, based on the simulations in Section
4.3, the choice of a D 307 works similarly to that chosen by
the generalized cross-validation (GCV) method.

2.2 Performance of Thresholding Rules

We now compare the performance of the four previously
stated thresholding rules. Marron, Adak, Johnstone, Neumann,
and Patil (1998) applied the tool of risk analysis to under-
stand the small sample behavior of the hard and soft thresh-
olding rules. The closed forms for the L2 risk functions
R4 Ô1 ˆ5 D E4 Ô ƒ ˆ52 were derived under the Gaussian model
Z N 4ˆ1‘ 25 for hard and soft thresholding rules by Donoho
and Johnstone (1994b). The risk function of the SCAD thresh-
olding rule can be found in Li (2000). To gauge the perfor-
mance of the four thresholding rules, Figure 5(c) depicts their
L2 risk functions under the Gaussian model Z N 4ˆ115. To
make the scale of the thresholding parameters roughly com-
parable, we took ‹ D 2 for the hard thresholding rule and
adjusted the values of ‹ for the other thresholding rules so that
their estimated values are the same when ˆ D 3. The SCAD
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Figure 5. Risk Functions of Proposed Procedures Under the Quadratic Loss. (a) Posterior risk functions of the SCAD under the prior ˆ

N( 0,a‹) using the universal thresholding ‹ D
p

2 log(d ) for four different values d: heavy line, d D 20; dashed line, d D 40; medium line, d D 60;
thin line, d D 100. (b) Risk functions similar to those for (a): heavy line, d D 572; dashed line, d D 1,024; medium line, d D 2, 048; thin line,
d D 4,096. (c) Risk functions of the four different thresholding rules. The heavy, dashed, and solid lines denote minimum SCAD, hard, and soft
thresholding rules, respectively.

performs favorably compared with the other two thresholding
rules. This also can be understood via their corresponding
penalty functions plotted in Figure 1. It is clear that the SCAD
retains the good mathematical properties of the other two
thresholding penalty functions. Hence, it is expected to per-
form the best. For general ‘ 2, the picture is the same, except
it is scaled vertically by ‘ 2, and the ˆ axis should be replaced
by ˆ=‘ .

3. VARIABLE SELECTION VIA PENALIZED
LIKELIHOOD

The methodology in the previous section can be applied
directly to many other statistical contexts. In this section, we
consider linear regression models, robust linear models, and
likelihood-based generalized linear models. From now on, we
assume that the design matrix X D 4xij 5 is standardized so that
each column has mean 0 and variance 1.

3.1 Penalized Least Squares and Likelihood

In the classical linear regression model, the least squares
estimate is obtained via minimizing the sum of squared resid-
ual errors. Therefore, (2.2) can be extended naturally to the
situation in which design matrices are not orthonormal. Simi-
lar to (2.2), a form of penalized least squares is

1
2
4y ƒ X‚5T 4y ƒ X‚5 C n

dX
jD1

p‹4—‚j —50 (3.1)

Minimizing (3.1) with respect to ‚ leads to a penalized least
squares estimator of ‚.

It is well known that the least squares estimate is not robust.
We can consider the outlier-resistant loss functions such as
the L1 loss or, more generally, Huber’s – function (see Huber
1981). Therefore, instead of minimizing (3.1), we minimize

nX
iD1

–4—yi ƒ xi‚—5 C n
dX

jD1

p‹4—‚j —5 (3.2)

with respect to ‚. This results in a penalized robust estimator
for ‚.

For generalized linear models, statistical inferences are
based on underlying likelihood functions. The penalized max-
imum likelihood estimator can be used to select signi� cant
variables. Assume that the data 84xi1 Yi59 are collected inde-
pendently. Conditioning on xi1 Yi has a density fi4g4xT

i ‚51 yi5,
where g is a known link function. Let `i D logfi denote the
conditional log-likelihood of Yi . A form of the penalized like-
lihood is

nX

iD1

`i g xT
i ‚ 1 yi ƒ n

dX

jD1

p‹4—‚j —50

Maximizing the penalized likelihood function is equivalent to
minimizing

ƒ
nX

iD1

`i g xT
i ‚ 1 yi C n

dX

jD1

p‹4—‚j —5 (3.3)

with respect to ‚. To obtain a penalized maximum likelihood
estimator of ‚, we minimize (3.3) with respect to ‚ for some
thresholding parameter ‹.

3.2 Sampling Properties and Oracle Properties

In this section, we establish the asymptotic theory for our
nonconcave penalized likelihood estimator. Let

‚0 D 4‚101 : : : 1 ‚d05
T D ‚T

101‚T
20

T
0

Without loss of generality, assume that ‚20 D 0. Let I4‚05 be
the Fisher information matrix and let I14‚10105 be the Fisher
information knowing ‚20 D 0. We � rst show that there exists
a penalized likelihood estimator that converges at the rate

OP4nƒ1=2 C an51 (3.4)

where an D max8p0
‹n

4—‚j0—52 ‚j0 6D 09. This implies that for the
hard thresholding and SCAD penalty functions, the penalized
likelihood estimator is root-n consistent if ‹n ! 0. Further-
more, we demonstrate that such a root-n consistent estimator
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must satisfy O‚2 D 0 and O‚1 is asymptotic normal with covari-
ance matrix Iƒ1

1 , if n1=2‹n ! ˆ. This implies that the penal-
ized likelihood estimator performs as well as if ‚20 D 0 were
known. In language similar to Donoho and Johnstone (1994a),
the resulting estimator performs as well as the oracle estima-
tor, which knows in advance that ‚20 D 0.

The preceding oracle performance is closely related to
the superef� ciency phenomenon. Consider the simplest linear
regression model y D 1nŒ C ˜, where ˜ Nn401 In5. A super-
ef� cient estimate for Œ is

„n D
(

SY 1 if —SY — ¶ nƒ1=41

cSY 1 if —SY — < nƒ1=41

owing to Hodges (see Lehmann 1983, p. 405). If we set c to
0, then „n coincides with the hard thresholding estimator with
the thresholding parameter ‹n D nƒ1=4. This estimator correctly
estimates the parameter at point 0 without paying any price
for estimating the parameter elsewhere.

We now state the result in a fairly general setting. To
facilitate the presentation, we assume that the penalization is
applied to every component of ‚. However, there is no extra
dif� culty to extend it to the case where some components
(e.g., variance in the linear models) are not penalized.

Set Vi D 4Xi1 Yi5, i D 11 : : : 1 n. Let L4‚5 be the log-
likelihood function of the observations V11 : : : 1Vn and
let Q4‚5 be the penalized likelihood function L4‚5 ƒ
n

Pd
jD1 p‹n

4—‚j —5. We state our theorems here, but their proofs
are relegated to the Appendix, where the conditions for the
theorems also can be found.

Theorem 1. Let V11 : : : 1Vn be independent and identi-
cally distributed, each with a density f 4V1‚5 (with respect
to a measure Œ) that satis� es conditions (A)–(C) in the
Appendix. If max8—p00

‹n
4—‚j0—5—2 ‚j0 6D 09 ! 0, then there exists

a local maximizer O‚ of Q4‚5 such that ˜ O‚ƒ‚0˜ D OP4nƒ1=2 C
an5, where an is given by (3.4).

It is clear from Theorem 1 that by choosing a proper ‹n,
there exists a root-n consistent penalized likelihood estimator.
We now show that this estimator must possess the sparsity
property O‚2 D 0, which is stated as follows.

Lemma 1. Let V11 : : : 1Vn be independent and identically
distributed, each with a density f 4V1‚5 that satis� es condi-
tions (A)–(C) in the Appendix. Assume that

lim inf
n!ˆ

lim inf
ˆ!0C

p0
‹n

4ˆ5=‹n > 00 (3.5)

If ‹n ! 0 and
p

n‹n ! ˆ as n ! ˆ, then with probabil-
ity tending to 1, for any given ‚1 satisfying ˜‚1 ƒ ‚10˜ D
OP4nƒ1=25 and any constant C ,

Q
‚1

0
D max

˜‚2˜µCnƒ1=2
Q

‚1

‚2
0

Denote
è D diag p00

‹n
4—‚10—51 : : : 1 p00

‹n
4—‚s0—5

and

b D p0
‹n

4—‚10—5sgn4‚1051 : : : 1 p0
‹n

4—‚s0—5sgn4‚s05
T
1

where s is the number of components of ‚10.

Theorem 2 (Oracle Property). Let V11 : : : 1Vn be inde-
pendent and identically distributed, each with a density
f 4V1‚5 satisfying conditions (A)–(C) in Appendix. Assume
that the penalty function p‹n

4—ˆ—5 satis� es condition (3.5). If
‹n ! 0 and

p
n‹n ! ˆ as n ! ˆ, then with probability tend-

ing to 1, the root-n consistent local maximizers O‚ D O‚1
O‚2

in
Theorem 1 must satisfy:

(a) Sparsity: O‚2 D 0.
(b) Asymptotic normality:

p
n4I14‚105 C è5 O‚1 ƒ ‚10

C 4I14‚105 C è5ƒ1b ! N 01 I14‚105

in distribution, where I14‚105 D I14‚10105, the Fisher informa-
tion knowing ‚2 D 0.

As a consequence, the asymptotic covariance matrix of O‚1 is

1

n
I14‚105C è

ƒ1
I14‚105 I14‚105 C è

ƒ1
1

which approximately equals 41=n5Iƒ1
1 4‚105 for the threshold-

ing penalties discussed in Section 2 if ‹n tends to 0.

Remark 1. For the hard and SCAD thresholding penalty
functions, if ‹n ! 01 an D 0. Hence, by Theorem 2, whenp

n‹n ! ˆ, their corresponding penalized likelihood esti-
mators possess the oracle property and perform as well as
the maximum likelihood estimates for estimating ‚1 knowing
‚2 D 0. However, for the L1 penalty, an D ‹n. Hence, the root-
n consistency requires that ‹n D OP 4nƒ1=25. On the other hand,
the oracle property in Theorem 2 requires that

p
n‹n ! ˆ.

These two conditions for LASSO cannot be satis� ed simul-
taneously. Indeed, for the L1 penalty, we conjecture that the
oracle property does not hold. However, for Lq penalty with
q < 1, the oracle property continues to hold with suitable
choice of ‹n.

Now we brie� y discuss the regularity conditions (A)–(C)
for the generalized linear models (see McCullagh and Nelder
1989). With a canonical link, the condition distribution of Y
given X D x belongs to the canonical exponential family, that
is, with a density function

f 4y3 x1 ‚5 D c4y5 exp
yxT ‚ƒ b4xT ‚5

a4”5
0

Clearly, the regularity conditions (A) are satis� ed. The Fisher
information matrix is

I4‚5 D E b004xT ‚5xxT =a4”50

Therefore, if E8b004xT ‚5xxT 9 is � nite and positive de� nite,
then condition (B) holds. If for all ‚ in some neighborhood
of ‚0, —b4354xT ‚5— µ M04x5 for some function M04x5 satisfy-
ing E‚0

8M04x5XjXkXl9 < ˆ for all j1 k1 l, then condition (C)
holds. For general link functions, similar conditions need to
guarantee conditions (B) and (C). The mathematical deriva-
tion of those conditions does not involve any extra dif� culty
except more tedious notation. Results in Theorems 1 and 2
also can be established for the penalized least squares (3.1)
and the penalized robust linear regression (3.2) under some
mild regularity conditions. See Li (2000) for details.
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3.3 A New Uni’ ed Algorithm

Tibshirani (1996) proposed an algorithm for solving
constrained least squares problems of LASSO, whereas
Fu (1998) provided a “shooting algorithm” for LASSO.
See also LASSO2 submitted by Berwin Turlach at Statlib
(http:==lib.stat.cmu.edu=S=). In this section, we propose a new
uni� ed algorithm for the minimization problems (3.1), (3.2),
and (3.3) via local quadratic approximations. The � rst term in
(3.1), (3.2), and (3.3) may be regarded as a loss function of
‚. Denote it by `4‚5. Then the expressions (3.1), (3.2), and
(3.3) can be written in a uni� ed form as

`4‚5 C n
dX

jD1

p‹4—‚j —50 (3.6)

The L1, hard thresholding, and SCAD penalty functions are
singular at the origin, and they do not have continuous second
order derivatives. However, they can be locally approximated
by a quadratic function as follows. Suppose that we are given
an initial value ‚0 that is close to the minimizer of (3.6). If
‚j0 is very close to 0, then set O‚j D 0. Otherwise they can be
locally approximated by a quadratic function as

p‹4—‚j —5
0 D p0

‹4—‚j —5sgn4‚j5 p0
‹4—‚j0—5=—‚j0— ‚j1

when ‚j 6D 0. In other words,

p‹4—‚j —5 p‹4—‚j0—5 C 1
2

p0
‹4—‚j0—5=—‚j0— 4‚2

j ƒ ‚2
j051

for ‚j ‚j00 (3.7)

Figure 1 shows the L1, hard thresholding, and SCAD penalty
functions, and their approximations on the right-hand side of
(3.7) at two different values of ‚j0. A drawback of this approx-
imation is that once a coef� cient is shrunken to zero, it will
stay at zero. However, this method signi� cantly reduces the
computational burden.

If `4‚5 is the L1 loss as in (3.2), then it does not have
continuous second order partial derivatives with respect to ‚.
However, –4—y ƒ xT ‚—5 in (3.2) can be analogously approx-
imated by 8–4y ƒ xT ‚05=4y ƒ xT ‚05

294y ƒ xT ‚52, as long as
the initial value ‚0 of ‚ is close to the minimizer. When some
of the residuals —y ƒxT ‚0— are small, this approximation is not
very good. See Section 3.4 for some slight modi� cations of
this approximation.

Now assume that the log-likelihood function is smooth with
respect to ‚ so that its � rst two partial derivatives are contin-
uous. Thus the � rst term in (3.6) can be locally approximated
by a quadratic function. Therefore, the minimization problem
(3.6) can be reduced to a quadratic minimization problem and
the Newton–Raphson algorithm can be used. Indeed, (3.6) can
be locally approximated (except for a constant term) by

`4‚05 C ï`4‚05
T 4‚ƒ ‚05 C 1

2
4‚ƒ ‚05

T ï 2`4‚054‚ ƒ ‚05

C 1
2
n‚T è‹4‚05‚1 (3.8)

where

ï`4‚05 D
¡`4‚05

¡‚
1 ï 2`4‚05 D

¡2`4‚05

¡‚ ¡‚T
1

è‹4‚05 D diag p0
‹4—‚10—5=—‚10—1 : : : 1 p0

‹4—‚d0—5=—‚d0— 0

The quadratic minimization problem (3.8) yields the solution

‚1 D ‚0 ƒ ï 2`4‚05 C nè‹4‚05
ƒ1

ï`4‚05 C nU‹4‚05 1
(3.9)

where U‹4‚05 D è‹4‚05‚0. When the algorithm converges,
the estimator satis� es the condition

¡`4 O‚05

¡‚j

C np 0
‹4— O‚j0—5sgn4 O‚j05 D 01

the penalized likelihood equation, for nonzero elements of
O‚0. Speci� cally, for the penalized least squares problem (3.1),
the solution can be found by iteratively computing the ridge
regression

‚1 D XT X C nè‹4‚05
ƒ1

7XT y0

Similarly we obtain the solution for (3.2) by iterating

‚1 D XT WX C 1
2
nè‹4‚05

ƒ1XT Wy1

where W D diag8–4—y1 ƒ xT
1 ‚0—5=4y1 ƒ xT

1 ‚05
21 : : : 1–4—yn ƒ

xT
n ‚0—5=4yn ƒ xT

n ‚05
29.

As in the maximum likelihood estimation (MLE) setting,
with the good initial value ‚0, the one-step procedure can
be as ef� cient as the fully iterative procedure, namely, the
penalized maximum likelihood estimator, when the Newton–
Raphson algorithm is used (see Bickel 1975). Now regarding
‚4kƒ15 as a good initial value at the kth step, the next iteration
also can be regarded as a one-step procedure and hence the
resulting estimator still can be as ef� cient as the fully itera-
tive method (see Robinson 1988 for the theory on the differ-
ence between the MLE and the k-step estimators). Therefore,
estimators obtained by the aforementioned algorithm with a
few iterations always can be regarded as a one-step estima-
tor, which is as ef� cient as the fully iterative method. In this
sense, we do not have to iterate the foregoing algorithm until
convergence as long as the initial estimators are good enough.
The estimators from the full models can be used as initial esti-
mators, as long as they are not overly parameterized.

3.4 Standard Error Formula

The standard errors for the estimated parameters can be
obtained directly because we are estimating parameters and
selecting variables at the same time. Following the conven-
tional technique in the likelihood setting, the corresponding
sandwich formula can be used as an estimator for the covari-
ance of the estimates O‚1, the nonvanishing component of O‚.
That is,

dcov4 O‚15 D ï 2`4 O‚15C nè‹4 O‚15
ƒ1dcov ï`4 O‚15

� ï 2`4 O‚15 C nè‹4 O‚15
ƒ1

0 (3.10)
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Compare with Theorem 2(b). This formula is shown to have
good accuracy for moderate sample sizes.

When the L1 loss is used in the robust regression, some
slight modi� cations are needed in the aforementioned algo-
rithm and its corresponding sandwich formula. For –4x5 D —x—,
the diagonal elements of W are 8—ri—ƒ19 with ri D yi ƒ xT

i ‚0.
Thus, for a given current value of ‚0, when some of the resid-
uals 8ri9 are close to 0, these points receive too much weight.
Hence, we replace the weight by 4an C —ri—5ƒ1. In our imple-
mentations, we took an as the 2nƒ1=2 quantile of the absolute
residuals 8—ri—1 i D 11 : : : 1 n9. Thus, the constant an changes
from iteration to iteration.

3.5 Testing Convergence of the Algorithm

We now demonstrate that our algorithm converges to the
right solution. To this end, we took a 100-dimensional vector
‚ consisting of 50 zeros and other nonzero elements gener-
ated from N 401 525, and used a 100� 100 orthonormal design
matrix X. We then generated a response vector y from the
linear model (2.1). We chose an orthonormal design matrix
for our testing case, because the penalized least squares has
a closed form mathematical solution so that we can compare
our output with the mathematical solution. Our experiment
did show that the proposed algorithm converged to the right
solution. It took MATLAB 0.27, 0.39, and 0.16 s to converge
for the penalized least squares with the SCAD, L1, and hard
thresholding penalties. The numbers of iterations were 30, 30,
and 5, respectively for the penalized least squares with the
SCAD, L1, and the hard thresholding penalty. In fact, after 10
iterations, the penalized least squares estimators are already
very close to the true value.

4. NUMERICAL COMPARISONS

The purpose of this section is to compare the performance
of the proposed approaches with existing ones and to test the
accuracy of the standard error formula. We also illustrate our
penalized likelihood approaches by a real data example. In
all examples in this section, we computed the penalized like-
lihood estimate with the L1 penalty, referred as to LASSO,
by our algorithm rather than those of Tibshirani (1996) and
Fu (1998).

4.1 Prediction and Model Error

The prediction error is de� ned as the average error in the
prediction of Y given x for future cases not used in the con-
struction of a prediction equation. There are two regression
situations, X random and X controlled. In the case that X is
random, both Y and x are randomly selected. In the controlled
situation, design matrices are selected by experimenters and
only y is random. For ease of presentation, we consider only
the X-random case.

In X-random situations, the data 4xi1 Yi5 are assumed to be
a random sample from their parent distribution 4x1 Y 5. Then,
if OŒ4x5 is a prediction procedure constructed using the present
data, the prediction error is de� ned as

PE4 OŒ5 D E8Y ƒ OŒ4x5921

where the expectation is taken only with respect to the new
observation 4x1 Y 5. The prediction error can be decomposed as

PE4 OŒ5 D E Y ƒ E4Y —x5
2 C E E4Y —x5ƒ OŒ4x5

2
0

The � rst component is the inherent prediction error due to
the noise. The second component is due to lack of � t to an
underlying model. This component is called model error and
is denoted ME4 OŒ50 The size of the model error re� ects perfor-
mances of different model selection procedures. If Y D xT ‚C
˜, where E4˜—x5 D 0, then ME4 OŒ5 D 4 O‚ƒ‚5T E4xxT 54 O‚ƒ‚5.

4.2 Selection of Thresholding Parameters

To implement the methods described in Sections 2 and 3,
we need to estimate the thresholding parameters ‹ and a

(for the SCAD). Denote by ˆ the tuning parameters to be
estimated, that is, ˆ D 4‹1a5 for the SCAD and ˆ D ‹ for
the other penalty functions. Here we discuss two methods of
estimating ˆ: � vefold cross-validation and generalized cross-
validation, as suggested by Breiman (1995), Tibshirani (1996),
and Fu (1998).

For completeness, we now describe the details of the
cross-validation and the generalized cross-validation proce-
dures. Here we discuss only these two procedures for lin-
ear regression models. Extensions to robust linear models and
likelihood-based linear models do not involve extra dif� cul-
ties. The � vefold cross-validation procedure is as follows:
Denote the full dataset by T , and denote cross-validation
training and test set by T ƒ T � and T �, respectively, for

� D 11 : : : 150 For each ˆ and �, we � nd the estimator O‚
4�5

4ˆ5

of ‚ using the training set T ƒ T �. Form the cross-validation
criterion as

CV4ˆ5 D
5X

�D1

X

4yk 1 xk52T �

yk ƒ xT
k

O‚
4�5

4ˆ5
2
0

We � nd a Ô that minimizes CV4ˆ5.
The second method is the generalized cross-validation. For

linear regression models, we update the solution by

‚14ˆ5 D XT X C nè‹4‚05
ƒ1

XT y0

Thus the � tted value Oy of y is X8XT XC nè‹4‚059
ƒ1XT y, and

PX8 O‚4ˆ59 D X XT X C nè‹4 O‚5
ƒ1

XT

can be regarded as a projection matrix. De� ne the num-
ber of effective parameters in the penalized least squares
� t as e4ˆ5 D tr6PX8 O‚4ˆ5970 Therefore, the generalized cross-
validation statistic is

GCV4ˆ5 D
1
n

˜y ƒ X‚4ˆ5˜2

81ƒ e4ˆ5=n92

and Ô D argminˆ8GCV4ˆ59.
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4.3 Simulation Study

In the following examples, we numerically compare the
proposed variable selection methods with the ordinary least
squares, ridge regression, best subset selection, and nonneg-
ative garrote (see Breiman 1995). All simulations are con-
ducted using MATLAB codes. We directly used the constraint
least squares module in MATLAB to � nd the nonnegative gar-
rote estimate. As recommended in Breiman (1995), a � vefold
cross-validation was used to estimate the tuning parameter for
the nonnegative garrote. For the other model selection pro-
cedures, both � vefold cross-validation and generalized cross-
validation were used to estimate thresholding parameters.
However, their performance was similar. Therefore, we present
only the results based on the generalized cross-validation.

Example 4.1 (Linear Regression). In this example we
simulated 100 datasets consisting of n observations from the
model

Y D xT ‚C‘ ˜1

where ‚ D 4311051 010121 010105T , and the components of x
and ˜ are standard normal. The correlation between xi and xj

is �—iƒj— with � D 05. This is a model used in Tibshirani (1996).
First, we chose n D 40 and ‘ D 3. Then we reduced ‘ to 1 and
� nally increased the sample size to 60. The model error of the
proposed procedures is compared to that of the least squares
estimator. The median of relative model errors (MRME) over
100 simulated datasets are summarized in Table 1. The aver-
age of 0 coef� cients is also reported in Table 1, in which the
column labeled “Correct” presents the average restricted only
to the true zero coef� cients, and the column labeled “ Incor-
rect” depicts the average of coef� cients erroneously set to 0.

From Table 1, it can be seen that when the noise level
is high and the sample size is small, LASSO performs the
best and it signi� cantly reduces both model error and model
complexity, whereas ridge regression reduces only model
error. The other variable selection procedures also reduce
model error and model complexity. However, when the noise
level is reduced, the SCAD outperforms the LASSO and the
other penalized least squares. Ridge regression performs very
poorly. The best subset selection method performs quite sim-
ilarly to the SCAD. The nonnegative garrote performs quite
well in various situations. Comparing the � rst two rows in
Table 1, we can see that the choice of a D 307 is very reason-
able. Therefore, we used it for other examples in this article.
Table 1 also depicts the performance of an oracle estimator.
From Table 1, it also can be seen that the performance of

Table 2. Standard Deviations of Estimators for the Linear Regression Model (n D 60)

O‚1
O‚2

O‚5

Method SD SDm (SDmad ) SD SDm (SDmad ) SD SDm (SDmad )

SCAD1 0166 0161 (0021) 0170 0160 (0024) 0148 0145 (0022)
SCAD2 0161 0161 (0021) 0164 0161 (0024) 0151 0143 (0023)
LASSO 0164 0154 (0019) 0173 0150 (0022) 0153 0142 (0021)
Hard 0169 0161 (0022) 0174 0162 (0025) 0178 0148 (0021)
Best subset 0163 0155 (0020) 0152 0154 (0026) 0152 0139 (0020)
Oracle 0155 0154 (0020) 0147 0153 (0024) 0146 0137 (0019)

Table 1. Simulation Results for the Linear Regression Model

Avg. No. of 0 Coef’ cients

Method MRME (%) Correct Incorrect

n D 40, ‘ D 3
SCAD1 72090 4020 021
SCAD2 69003 4031 027
LASSO 63019 3053 007
Hard 73082 4009 019
Ridge 83028 0 0
Best subset 68026 4050 035
Garrote 76090 2080 009
Oracle 33031 5 0

n D 40, ‘ D 1
SCAD1 54081 4029 0
SCAD2 47025 4034 0
LASSO 63019 3051 0
Hard 69072 3093 0
Ridge 95021 0 0
Best subset 53060 4054 0
Garrote 56055 3035 0
Oracle 33031 5 0

n D 60, ‘ D 1
SCAD1 47054 4037 0
SCAD2 43079 4042 0
LASSO 65022 3056 0
Hard 71011 4002 0
Ridge 97036 0 0
Best subset 46011 4073 0
Garrote 55090 3038 0
Oracle 29082 5 0

NOTE: The value of a in SCAD1 is obtained by generalized cross-validation, whereas the
value of a in SCAD2 is 3.7.

SCAD is expected to be as good as that of the oracle esti-
mator as the sample size n increases (see Tables 5 and 6 for
more details).

We now test the accuracy of our standard error formula
(3.10). The median absolute deviation divided by 06745,
denoted by SD in Table 2, of 100 estimated coef� cients in the
100 simulations can be regarded as the true standard error. The
median of the 100 estimated SD’s, denoted by SDm, and the
median absolute deviation error of the 100 estimated standard
errors divided by 06745, denoted by SDmad , gauge the over-
all performance of the standard error formula (3.10). Table 2
presents the results for nonzero coef� cients when the sample
size n D 60. The results for the other two cases with n D 40
are similar. Table 2 suggests that the sandwich formula per-
forms surprisingly well.
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Table 3. Simulation Results for the Robust Linear Model

Avg. No. of 0 Coef’ cients

Method MRME (%) Correct Incorrect

SCAD (a D 307) 35052 4071 0
LASSO 52080 4029 0
Hard 47022 4070 0
Best subset 41053 4085 018
Oracle 23033 5 0

Example 4.2 (Robust Regression). In this example, we
simulated 100 datasets consisting of 60 observations from the
model

Y D xT ‚C ˜1

where ‚ and x are the same as those in Example 1. The ˜ is
drawn from the standard normal distribution with 10% outliers
from the standard Cauchy distribution. The simulation results
are summarized in Table 3. From Table 3, it can be seen that
the SCAD somewhat outperforms the other procedures. The
true and estimated standard deviations of estimators via sand-
wich formula (3.7) are shown in Table 4, which indicates that
the performance of the sandwich formula is very good.

Example 4.3 (Logistic Regression). In this example, we
simulated 100 datasets consisting of 200 observations from
the model Y Bernoulli8p4xT ‚591 where p4u5 D exp4u5=41C
exp4u55, and the � rst six components of x and ‚ are the same
as those in Example 1. The last two components of x are
independently identically distributed as a Bernoulli distribu-
tion with probability of success 05. All covariates are stan-
dardized. Model errors are computed via 1000 Monte Carlo
simulations. The summary of simulation results is depicted in
Tables 5 and 6. From Table 5, it can be seen that the perfor-
mance of the SCAD is much better than the other two penal-
ized likelihood estimates. Results in Table 6 show that our
standard error estimator works well. From Tables 5 and 6,
SCAD works as well as the oracle estimator in terms of the
MRME and the accuracies of estimated standard errors.

We remark that the estimated SDs for the L1 penalized like-
lihood estimator (LASSO) are consistently smaller than the
SCAD, but its overall MRME is larger than that of the SCAD.
This implies that the biases in the L1 penalized likelihood esti-
mators are large. This remark applies to all of our examples.
Indeed, in Table 7, all coef� cients were noticeably shrunken
by LASSO.

Table 4. Standard Deviations of Estimators for the Robust Regression Model

O‚1
O‚2

O‚5

Method SD SDm (SDmad ) SD SDm (SDmad ) SD SDm (SDmad )

SCAD 0167 0171 (0018) 0185 0176 (0022) 0165 0155 (0020)
LASSO 0158 0165 (0022) 0159 0167 (0020 0182 0154 (0019)
Hard 0179 0168 (0018) 0176 0176 (0025) 0157 0154 (0020)
Best subset 0198 0172 (0023) 0185 0175 (0024) 0199 0152 (0023)
Oracle 0163 0199 (0040) 0156 0202 (0043) 0166 0177 (0037)

Table 5. Simulation Results for the Logistic Regression

Avg. No. of 0 Coef’ cients

Method MRME (%) Correct Incorrect

SCAD (a D 307) 26048 4098 004
LASSO 53014 3076 0
Hard 59006 4027 0
Best subset 31063 4084 001
Oracle 25071 5 0

Example 4.4. In this example, we apply the proposed
penalized likelihood methodology to the burns data, collected
by the General Hospital Burn Center at the University of
Southern California. The dataset consists of 981 observations.
The binary response variable Y is 1 for those victims who sur-
vived their burns and 0 otherwise. Covariates X1 D age1X2 D
sex1X3 D log4burn areaC15, and binary variable X4 D oxygen
(0 normal, 1 abnormal) were considered. Quadratic terms of
X1 and X3, and all interaction terms were included. The inter-
cept term was added and the logistic regression model was
� tted. The best subset variable selection with the Akaike infor-
mation criterion (A IC) and the Bayesian information criterion
(B IC) was applied to this dataset. The unknown parameter ‹
was chosen by generalized cross-validation: it is .6932, .0015,
and .8062 for the penalized likelihood estimates with the
SCAD, L1, and hard thresholding penalties, respectively. The
constant a in the SCAD was taken as 3.7. With the selected
‹, the penalized likelihood estimator was obtained at the 6th,
28th, and 5th step iterations for the penalized likelihood with
the SCAD, L1, and hard thresholding penalties, respectively.
We also computed 10-step estimators, which took us less than
50 s for each penalized likelihood estimator, and the differ-
ences between the full iteration estimators and the 10-step
estimators were less than 1%. The estimated coef� cients and
standard errors for the transformed data, based on the penal-
ized likelihood estimators, are reported in Table 7.

From Table 7, the best subset procedure via minimizing
the B IC scores chooses 5 out of 13 covariates, whereas the
SCAD chooses 4 covariates. The difference between them is
that the best subset keeps X4. Both SCAD and the best sub-
set variable selection (BIC) do not include X2

1 and X2
3 in the

selected subset, but both LASSO and the best subset variable
selection (A IC) do. LASSO chooses the quadratic term of X1

and X3 rather than their linear terms. It also selects an inter-
action term X2X3, which may not be statistically signi� cant.
LASSO shrinks noticeably large coef� cients. In this example,
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Table 6. Standard Deviations of Estimators for the Logistic Regression

O‚1
O‚2

O‚5

Method SD SDm (SDmad ) SD SDm (SDmad ) SD SDm (SDmad )

SCAD (a D 307) 0571 0538 (0107) 0383 0372 (0061) 0432 0398 (0065)
LASSO 0310 0379 (0037) 0285 0284 (0019) 0244 0287 (0019)
Hard 0675 0561 (0126) 0428 0400 (0062) 0467 0421 (0079)
Best subset 0624 0547 (0121) 0398 0383 (0067) 0468 0412 (0077)
Oracle 0553 0538 (0103) 0374 0373 (0060) 0432 0398 (0064)

the penalized likelihood with the hard thresholding penalty
retains too many predictors. Particularly, it selects variables
X2 and X2X3.

5. CONCLUSION

We proposed a variable selection method via penalized
likelihood approaches. A family of penalty functions was
introduced. Rates of convergence of the proposed penalized
likelihood estimators were established. With proper choice of
regularization parameters, we have shown that the proposed
estimators perform as well as the oracle procedure for vari-
able selection. The methods were shown to be effective and
the standard errors were estimated with good accuracy. A uni-
� ed algorithm was proposed for minimizing penalized likeli-
hood function, which is usually a sum of convex and concave
functions. Our algorithm is backed up by statistical theory and
hence gives estimators with good statistical properties. Com-
pared with the best subset method, which is very time con-
suming, the newly proposed methods are much faster, more
effective, and have strong theoretical backup. They select vari-
ables simultaneously via optimizing a penalized likelihood,
and hence the standard errors of estimated parameters can
be estimated accurately. The LASSO proposed by Tibshirani
(1996) is a member of this penalized likelihood family with
L1 penalty. It has good performance when the noise to signal
ratio is large, but the bias created by this approach is notice-
ably large. See also the remarks in Example 4.3. The penal-
ized likelihood with the SCAD penalty function gives the best
performance in selecting signi� cant variables without creating

Table 7. Estimated Coef’ cients and Standard Errors for Example 4.4

Best Subset Best Subset

Method MLE (AIC) (BIC) SCAD LASSO Hard

Intercept 5051 (075) 4081 (045) 6012 (057) 6009 (029) 3070 (025) 5088 (041)
X1 ƒ8083 (2097) ƒ6049 (1075) ƒ12015 (1081) ƒ12024 (008) 0 (—) ƒ11032 (101)
X2 2030 (2000) 0 (—) 0 (—) 0 (—) 0 (—) 2021 (1041)
X3 ƒ2077 (3043) 0 (—) ƒ6093 (079) ƒ7000 (021) 0 (—) ƒ4023 (064)
X4 ƒ1074 (1041) 030 (011) ƒ029 (011) 0 (—) ƒ028 (009) ƒ1016 (1004)
X 2

1 ƒ075 (061) ƒ1004 (054) 0 (—) 0 (—) ƒ1071 (024) 0 (—)
X 2

3 ƒ2070 (2045) ƒ4055 (055) 0 (—) 0 (—) ƒ2067 (022) ƒ1092 (095)
X1X2 003 (034) 0 (—) 0 (—) 0 (—) 0 (—) 0 (—)
X1X3 7046 (2034) 5069 (1029) 9083 (1063) 9084 (014) 036 (022) 9006 (096)
X1X4 024 (032) 0 (—) 0 (—) 0 (—) 0 (—) 0 (—)
X2X3 ƒ2015 (1061) 0 (—) 0 (—) 0 (—) ƒ0010 (010) ƒ2013 (1027)
X2X4 ƒ012 (016) 0 (—) 0 (—) 0 (—) 0 (—) 0 (—)
X3X4 1023 (1021) 0 (—) 0 (—) 0 (—) 0 (—) 082 (1001)

excessive biases. The approach proposed here can be applied
to other statistical contexts without any extra dif� culties.

APPENDIX: PROOFS

Before we present the proofs of the theorems, we � rst state some
regularity conditions. Denote by ì the parameter space for ‚.

Regularity Conditions

(A) The observations Vi are independent and identically dis-
tributed with probability density f 4V1‚5 with respect to some mea-
sure Œ. f 4V1‚5 has a common support and the model is identi� able.
Furthermore, the � rst and second logarithmic derivatives of f satis-
fying the equations

E‚

¡ log f 4V1‚5

¡‚j

D 0 for j D 11 : : : 1 d

and

Ijk4‚5 D E‚

¡

¡‚j

log f 4V1‚5
¡

¡‚k

log f 4V1‚5

D E‚ ƒ
¡2

¡‚j ¡‚k

log f 4V1 ‚5 0

(B) The Fisher information matrix

I4‚5 D E
¡

¡‚
log f 4V1‚5

¡

¡‚
log f 4V1‚5

T

is � nite and positive de� nite at ‚ D ‚0 .
(C) There exists an open subset — of ì that contains the true

parameter point ‚0 such that for almost all V the density f 4V1‚5
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admits all third derivatives 4¡f 4V1‚55=4¡‚j ¡‚k ¡‚l5 for all ‚ 2 —.
Furthermore, there exist functions Mjkl such that

¡3

¡‚j ¡‚k ¡‚l

log f 4V1‚5 µ Mjkl4V5 for all ‚ 2 —1

where mjkl D E‚0
6Mjkl4V57 < ˆ for j1 k1 l0

These regularity conditions guarantee asymptotic normality of the
ordinary maximum likelihood estimates. See, for example, Lehmann
(1983).

Proof of Theorem 1

Let �n D nƒ1=2 C an. We want to show that for any given ˜ > 0,
there exists a large constant C such that

P sup
˜u˜DC

Q4‚0 C �nu5 < Q4‚05 ¶ 1ƒ ˜0 (A.1)

This implies with probability at least 1 ƒ ˜ that there exists a local
maximum in the ball 8‚0 C �nu2 ˜u˜ µ C9. Hence, there exists a
local maximizer such that ˜ O‚ ƒ‚0˜ D OP 4�n5.

Using p‹n
405 D 0, we have

Dn4u5 ² Q4‚0 C�nu5ƒQ4‚05

µ L4‚0 C�nu5ƒL4‚05ƒn
sX

jD1

p‹n
4—‚j0 C�nuj —5ƒp‹n

4—‚j0—5 1

where s is the number of components of ‚10 . Let L04‚05 be the gra-
dient vector of L. By the standard argument on the Taylor expansion
of the likelihood function, we have

Dn4u5 µ �nL04‚05
T u ƒ 1

2 uT I 4‚05un�2
n81 CoP 4159

ƒ
sX

jD1

n�np0
‹n

4—‚j0—5sgn4‚j05uj

Cn�2
np00

‹n
4—‚j0—5u2

j 81 Co4159 0 (A.2)

Note that nƒ1=2L04‚05 D OP 415. Thus, the � rst term on the right-hand
side of (A.2) is on the order OP 4n1=2�n5 D OP 4n�2

n5. By choosing
a suf� ciently large C , the second term dominates the � rst term uni-
formly in ˜u˜ D C . Note that the third term in (A.2) is bounded by

p
sn�nan˜u˜ Cn�2

n max —p00
‹n

4—‚j0—5—2 ‚j0 6D 0 ˜u˜20

This is also dominated by the second term of (A.2). Hence, by choos-
ing a suf� ciently large C , (A.1) holds. This completes the proof of
the theorem.

Proof of Lemma 1

It is suf� cient to show that with probability tending to 1 as n ! ˆ,
for any ‚1 satisfying ‚1 ƒ‚10 D OP 4nƒ1=25 and for some small ˜n D
Cnƒ1=2 and j D s C11 : : : 1 d,

¡Q4‚5

¡‚j

< 0 for 0 < ‚j < ˜n (A.3)

> 0 for ƒ˜n < ‚j < 00 (A.4)

To show (A.3), by Taylor’s expansion, we have

¡Q4‚5

¡‚j

D
¡L4‚5

¡‚j

ƒ np0
‹n

4—‚j —5sgn4‚j5

D
¡L4‚05

¡‚j

C
dX

lD1

¡2L4‚05

¡‚j ¡‚l

4‚l ƒ ‚l05 C
dX

lD1

dX

kD1

¡3L4‚ ü 5

¡‚j ¡‚l ‚k

� 4‚l ƒ ‚l054‚k ƒ‚k05 ƒnp0
‹n

4—‚j —5sgn4‚j51

where ‚ ü lies between ‚ and ‚0 . Note that by the standard argu-
ments,

nƒ1 ¡L4‚05

¡‚j

D OP 4nƒ1=25

and
1

n

¡2L4‚05

¡‚j ¡‚l

D E
¡2L4‚05

¡‚j ¡‚l

CoP 4150

By the assumption that ‚ ƒ‚0 D OP 4nƒ1=25, we have

¡Q4‚5

¡‚j

D n‹n ƒ‹ƒ1
n p0

‹n
4—‚j —5sgn4‚j5 COP 4nƒ1=2=‹n5 0

Whereas lim infn!ˆ lim infˆ!0C ‹ƒ1
n p0

‹n
4ˆ5 > 0 and nƒ1=2=‹n ! 0,

the sign of the derivative is completely determined by that of ‚j .
Hence, (A.3) and (A.4) follow. This completes the proof.

Proof of Theorem 2

It follows by Lemma 1 that part (a) holds. Now we prove part (b).
It can be shown easily that there exists a O‚1 in Theorem 1 that is a
root-n consistent local maximizer of Q8 ‚1

0 9, which is regarded as a
function of ‚1, and that satis� es the likelihood equations

¡Q4‚5

¡‚j ‚D4
O‚1
0 5

D 0 for j D 11 : : : 1 s0 (A.5)

Note that O‚1 is a consistent estimator,

¡L4‚5

¡‚j ‚D4
O‚1
0 5

ƒ np0
‹n

4— O‚j —5sgn4 O‚j5

D
¡L4‚05

¡‚j

C
sX

lD1

¡2L4‚05

¡‚j ¡‚l

CoP 415 4 O‚l ƒ ‚l05

ƒ n p0
‹n

4—‚j0—5sgn4‚j05C 8p00
‹n

4—‚j0—5 C oP 41594 O‚j ƒ‚j05 0

It follows by Slutsky’s theorem and the central limit theorem that

p
n4I14‚105 Cè5 O‚1 ƒ‚10 C 4I14‚105 Cè5ƒ1b ! N801 I14‚1059

in distribution.

[Received March 2000. Revised December 2000.]
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