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Preface

Big data are ubiquitous. They come in varying volume, velocity, and va-
riety. They have a deep impact on systems such as storages, communications
and computing architectures and analysis such as statistics, computation, op-
timization, and privacy. Engulfed by a multitude of applications, data science
aims to address the large-scale challenges of data analysis, turning big data
into smart data for decision making and knowledge discoveries. Data science
integrates theories and methods from statistics, optimization, mathematical
science, computer science, and information science to extract knowledge, make
decisions, discover new insights, and reveal new phenomena from data. The
concept of data science has appeared in the literature for several decades and
has been interpreted differently by different researchers. It has nowadays be-
come a multi-disciplinary field that distills knowledge in various disciplines to
develop new methods, processes, algorithms and systems for knowledge dis-
covery from various kinds of data, which can be either low or high dimensional,
and either structured, unstructured or semi-structured. Statistical modeling
plays critical roles in the analysis of complex and heterogeneous data and
quantifies uncertainties of scientific hypotheses and statistical results.

This book introduces commonly-used statistical models, contemporary sta-
tistical machine learning techniques and algorithms, along with their mathe-
matical insights and statistical theories. It aims to serve as a graduate-level
textbook on the statistical foundations of data science as well as a research
monograph on sparsity, covariance learning, machine learning and statistical
inference. For a one-semester graduate level course, it may cover Chapters 2,
3, 9, 10, 12, 13 and some topics selected from the remaining chapters. This
gives a comprehensive view on statistical machine learning models, theories
and methods. Alternatively, one-semester graduate course may cover Chap-
ters 2, 3, 5, 7, 8 and selected topics from the remaining chapters. This track
focuses more on high-dimensional statistics, model selection and inferences
but both paths emphasize a great deal on sparsity and variable selections.

Frontiers of scientific research rely on the collection and processing of mas-
sive complex data. Information and technology allow us to collect big data
of unprecedented size and complexity. Accompanying big data is the rise of
dimensionality and high dimensionality characterizes many contemporary sta-
tistical problems, from sciences and engineering to social science and humani-
ties. Many traditional statistical procedures for finite or low-dimensional data
are still useful in data science, but they become infeasible or ineffective for
dealing with high-dimensional data. Hence, new statistical methods are in-
dispensable. The authors have worked on high-dimensional statistics for two
decades, and started to write the book on the topics of high-dimensional data
analysis over a decade ago. Over the last decide, there have been surges in
interest and exciting developments in high-dimensional and big data. This led
us to concentrate mainly on statistical aspects of data science.

We aim to introduce commonly-used statistical models, methods and pro-
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cedures in data science and provide readers with sufficient and sound theoret-
ical justifications. It has been a challenge for us to balance statistical theories
and methods and to choose the topics and works to cover since the amount
of publications in this emerging area is enormous. Thus, we focus on the
foundational aspects that are related to sparsity, covariance learning, machine
learning, and statistical inference.

Sparsity is a common assumption in the analysis of high-dimensional data.
By sparsity, we mean that only a handful of features embedded in a huge pool
suffice for certain scientific questions or predictions. This book introduces var-
ious regularization methods to deal with sparsity, including how to determine
penalties and how to choose tuning parameters in regularization methods and
numerical optimization algorithms for various statistical models. They can be
found in Chapters 3–6 and 8.

High-dimensional measurements are frequently dependent, since these vari-
ables often measure similar things, such as aspects of economics or personal
health. Many of these variables have heavy tails due to big number of collected
variables. To model the dependence, factor models are frequently employed,
which exhibit low-rank plus sparse structures in data matrices and can be
solved by robust principal component analysis from high-dimensional covari-
ance. Robust covariance learning, principal component analysis, as well as
their applications to community detection, topic modeling, recommender sys-
tems, ect. are also a feature of this book. They can be found in Chapters 9–11.
Note that factor learning or more generally latent structure learning can also
be regarded as unsupervised statistical machine learning.

Machine learning is critical in analyzing high-dimensional and complex
data. This book also provides readers with a comprehensive account on statis-
tical machine learning methods and algorithms in data science. We introduce
statistical procedures for supervised learning in which the response variable
(often categorical) is available and the goal is to predict the response based
on input variables. This book also provides readers with statistical procedures
for unsupervised learning, in which the responsible variable is missing and
the goal concentrates on learning the association and patterns among a set
of input variables. Feature creations and sparsity learning also arise in these
problems. See Chapters 2, 12–14 for details.

Statistical inferences on high-dimensional data are another focus of this
book. Statistical inferences require one to characterize the uncertainty, esti-
mate the standard errors of the estimated parameters of primary interest and
derive the asymptotic distributions of the resulting estimates. This is very
challenging under the high-dimensional regime. See Chapter 7.

Fueled by the surging demands on processing high-dimensional and big
data, there have been rapid and vast developments in high-dimensional statis-
tics and machine learning over the last decade, contributed by data scientists
from various fields such as statistics, computer science, information theory,
applied and computational mathematics, among others. Even though we have
narrowed the scope of the book to the statistical aspects of data science, the
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field is still too broad for us to cover. Many important contributions that do
not fit our presentation have been omitted. Conscientious effort was made in
the composition of the reference list and bibliographical notes, but they merely
reflect our immediate interests. Omissions and discrepancies are inevitable. We
apologize for their occurrence.

Although we all contribute to various chapters and share the responsibility
for the whole book, Jianqing Fan was the lead author for Chapters 1, 3 and
9–11, 14 and some sections in other chapters, Runze Li for Chapters 5, and 8
and part of Chapters 6–7, Cun-Hui Zhang for Chapters 4 and 7, and Hui Zou
for Chapters 2, 6, 11 and 12 and part of Chapter 5. In addition, Jianqing Fan
and Runze Li oversaw the whole book project.

Many people have contributed importantly to the completion of this book.
In particular, we would like to thank the editor, John Kimmel, who has been
extremely helpful and patient with us for over 10 years! We greatly appreciate
a set of around 10 anonymous reviewers for valuable comments that lead to
the improvement of the book. We are particularly grateful to Cong Ma and
Yiqiao Zhong for preparing a draft of Chapter 14, to Zhao Chen for helping us
with putting our unsorted and non-uniform references into the present form,
to Tracy Ke, Bryan Kelly, Dacheng Xiu and Jia Wang for helping us with
constructing Figure 1.3, and to Boxiang Wang, Yi Yang for helping produce
some figures in Chapter 12. Various people have carefully proof-read certain
chapters of the book and made useful suggestions. They include Krishna Bal-
asubramanian, Pierre Bayle, Elynn Chen, Wenyan Gong, Yongyi Guo, Cong
Ma, Igor Silin, Qiang Sun, Francesca Tang, Bingyan Wang, Kaizheng Wang,
Weichen Wang, Yuling Yan, Zhuoran Yang, Mengxin Yu, Wenxin Zhou, Yifeng
Zhou, and Ziwei Zhu. We owe them many thanks.

In the spring semester of 2019, we used a draft of this book as a textbook
for a first-year graduate course at Princeton University and a senior graduate
topic course at the Pennsylvania State University. We would like to thank the
graduate students in the classes for their careful readings. In particular, we
are indebted to Cong Ma, Kaizheng Wang and Zongjun Tan for assisting in
preparing the homework problems at Princeton, most of which are now a part
of our exercise at the end of each chapter. At Princeton, we covered chapters
2-3, 5, 8.1, 8.3, 9–14.

We are very grateful for grant supports from National Science Foundation
and National Institutes of Health on our research. Finally, we would like to
thank our families and our parents for their love and support.

Jianqing Fan
Runze Li
Cun-Hui Zhang
Hui Zou

January 2020.
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Chapter 1

Introduction

The first two decades of this century has witnessed the exposition of the
data collection at a blossoming age of information and technology. The recent
technological revolution has made information acquisition easy and inexpen-
sive through automated data collection processes. The frontiers of scientific
research and technological developments have collected huge amounts of data
that are widely available to statisticians and data scientists via internet dis-
semination. Modern computing power and massive storage allow us to process
this data of unprecedented size and complexity. This provides mathematical
sciences great opportunities with significant challenges. Innovative reasoning
and processing of massive data are now required; novel statistical and com-
putational methods are needed; insightful statistical modeling and theoretical
understandings of the methods are essential.

1.1 Rise of Big Data and Dimensionality

Information and technology have revolutionized data collection. Millions of
surveillance video cameras, billions of internet searches and social media chats
and tweets produce massive data that contain vital information about secu-
rity, public health, consumer preference, business sentiments, economic health,
among others; billions of prescriptions, and enormous amount of genetics and
genomics information provide critical data on health and precision medicine;
numerous experiments and observations in astrophysics and geosciences give
rise to big data in science.

Nowadays, Big Data are ubiquitous: from the internet, engineering, science,
biology and medicine to government, business, economy, finance, legal, and
digital humanities. “There were 5 exabytes of information created between
the dawn of civilization through 2003, but that much information is now
created every 2 days”, according to Eric Schmidt, the CEO of Google, in
2010; “Data are becoming the new raw material of business”, according to
Craig Mundie, Senior Advisor to the CEO at Microsoft; “Big data is not
about the data”, according to Gary King of Harvard University. The first
quote is on the volume, velocity, variety, and variability of big data nowadays,
the second is about the value of big data and its impact to the society, and
the third quote is on the importance of the smart analysis of big data.
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4 INTRODUCTION

Accompanying Big Data is rising of dimensionality. Frontiers of scientific
research depend heavily on the collection and processing of massive complex
data. Big data collection and high dimensionality characterize many contem-
porary statistical problems, from sciences and engineering to social science
and humanities. For example, in disease classification using microarray or
proteomics data, tens of thousands of expressions of molecules or proteins are
potential predictors; in genome-wide association studies, hundreds of thou-
sands of single-nucleotide polymorphisms (SNPs) are potential covariates; in
machine learning, millions or even billions of features are extracted from doc-
uments, images and other objects; in spatial-temporal problems in economics
and earth sciences, time series of hundreds or thousands of regions are col-
lected. When interactions are considered, the dimensionality grows much more
quickly. Yet, the interaction terms are needed for understanding the synergy
of two genes, proteins or SNPs or the meanings of words. Other examples
of massive data include high-resolution images, high-frequency financial data,
e-commerce data, warehouse data, functional and longitudinal data, among
others. See also Donoho (2000), Fan and Li (2006), Hastie, Tibshirani and
Friedman (2009), Bühlmann and van de Geer (2011), Hastie, Tibshirani and
Wainwright (2015), and Wainwright (2019) for other examples.

1.1.1 Biological Sciences

Bioimaging technology allows us to simultaneously monitor tens of thou-
sands of genes or proteins as they are expressed differently in the tissues or
cells under different experimental conditions. Microarray measures expression
profiles of genes, typically in the order of tens of thousands, in a single hy-
bridization experiment, depending on the microarray technology being used.
For customized microarrays, the number of genes printed on the chip can be
much smaller, giving more accurate measurements on the genes of focused
interest. Figure 1.1 shows two microarrays using the Agilent microarray tech-
nology and cDNA micorarray technology. The intensity of each spot represents
the level of expression of a particular gene. Depending on the nature of the
studies, the sample sizes range from a couple to tens or hundreds. For cell
lines, the individual variations are relatively small and the sample size can be
very small, whereas for tissues from different human subjects, the individual
variations are far larger and the sample sizes can be a few hundred.

RNA-seq (Nagalakshmi, et al., 2008), a methodology for RNA profiling
based on next-generation sequencing (NGS, Shendure and Ji, 2008), has re-
placed microarrays for the study of gene expression. Next-generation sequenc-
ing is a term used to describe a number of different modern sequencing tech-
nologies that allow us to sequence DNA and RNA much more quickly and
cheaply. RNA-seq technologies, based on assembling of short reads 30∼400
base pairs, offer advantages such as a wider range of expression levels, less
noise, higher throughput, in addition to more information to detect allele-
specific expression, novel promoters, and isoforms. There are a number of pa-
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Figure 1.1: Gene expression profiles of microarrays. The intensity at each spot
represents the gene expression profile (e.g. Agilent microarray, left panel) or
relative profile (e.g. cDNA-microarray, right panel).

pers on statistical methods for detecting differentially expressed genes across
treatments/conditions; see Kvam, Liu and Si (2012) for an overview.

After the gene/RNA expression measurements have been properly nor-
malized through RNA-seq or microarray technology, one can then select genes
with different expressions under different experimental conditions (e.g. treated
with cytokines) or tissues (e.g. normal versus tumor) and genes that express
differently over time after treatments (time course experiments). See Speed
(2003). This results in a lot of various literature on statistical analysis of
controlling the false discovery rate in large scale hypothesis testing. See, for
example, Benjamini and Hochberg (1995), Storey (2002), Storey and Tibshi-
rani (2003), Efron (2007, 2010b), Fan, Han and Gu (2012), Barber and Candés
(2015), Candés, Fan, Janson and Lv (2018), Fan, Ke, Sun and Zhou (2018),
among others. The monograph by Efron (2010a) contains a comprehensive
account on the subject.

Other aspects of analysis of gene/RNA expression data include associa-
tion of gene/RNA expression profiles with clinical outcomes such as disease
stages or survival time. In this case, the gene expressions are taken as the co-
variates and the number of variables is usually large even after preprocessing
and screening. This results in high-dimensional regression and classification
(corresponding to categorical responses, such as tumor types). It is widely
believed that only a small group of genes are responsible for a particular clin-
ical outcome. In other words, most of the regression coefficients are zero. This
results in high-dimensional sparse regression and classification problems.

There are many other high throughput measurements in biomedical stud-
ies. In proteomics, thousands of proteins expression profiles, which are directly
related to biological functionality, are simultaneously measured. Similar to ge-
nomics studies, the interest is to associate the protein expressions with clini-
cal outcomes and biological functionality. In genomewide association studies,
many common genetic variants (typically single-nucleotide polymorphisms or
SNPs) in different individuals are examined to study if any variant is associ-
ated with a trait (heights, weights, eye colors, yields, etc.) or a disease. These
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Figure 1.2: Schematic illustration of a brain response to a cognitive task and
several slices of its associated fMRI measurements .

genetic variants are referred to as the quantitative trait loci (QTL) and hun-
dreds of thousands or millions of SNPs are available for examination. The
need for understanding pathophysiology has also led to investigating the so-
called eQTL studies, the association between SNPs and the expressions of
nearby genes. In this case, the gene expressions are regarded as the responses
whereas the individual SNPs are taken as the covariates. This again results in
high-dimensional regression problems.

High throughput measurements are also commonly used in neuroscience,
astronomy, and agriculture and resource surveys using satellite and other
imaging technology. In neuroscience, for example, functional magnetic res-
onance imaging (fMRI) technology is frequently applied to measure Blood
Oxygenation Level-Dependent (BOLD) response to stimuli. This allows in-
vestigators to determine which areas of the brain are involved in a cognitive
task, or more generally, the functionality of brains. Figure 1.2 gives a schematic
illustration. fMRI data contain time-course measurements over tens or hun-
dreds of thousand voxels, resulting in high-dimensional statistical problems.

1.1.2 Health Sciences

Health scientists employ many advanced bioinformatic tools to understand
molecular mechanisms of disease initiation and progression, and the impact
of genetic variations on clinical outcomes. Many health studies also collect a
number of risk factors as well as clinical responses over a period of time: many
covariates and responses of each subject are collected at different time points.
These kinds of longitudinal studies can give rise to high-dimensional big data.

A famous example is the Framingham Heart Study, initiated in 1948 and
sponsored by the National Heart, Lung and Blood Institute. Documentation
of its first 55 years can be found at the website

http://www.framinghamheartstudy.org/.

More details on this study can be found from the website of the American
Heart Association. Briefly, the study follows a representative sample of 5,209
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adult residents and their offspring aged 28-62 years in Framingham, Mas-
sachusetts. These subjects have been tracked using standardized biennial car-
diovascular examination, daily surveillance of hospital admissions, death infor-
mation and information from physicians and other sources outside the clinic.
In 1971, the study enrolled a second-generation group, consisting of 5,124 of
the original participants’ adult children and their spouses, to participate in
similar examinations.

The aim of the Framingham Heart Study is to identify risk factors asso-
ciated with heart disease, stroke and other diseases, and to understand the
circumstances under which cardiovascular diseases arise, evolve and end fa-
tally in the general population. In this study, there are more than 25,000
samples, each consisting of more than 100 variables. Because of the nature of
this longitudinal study, some participants cannot be followed up due to their
migrations. Thus, the collected data contain many missing values. During the
study, cardiovascular diseases may develop for some participants, while other
participants may never experience cardiovascular diseases. This implies that
some data are censored because the event of particular interest never occurs.
Furthermore, data between individuals may not be independent because data
for individuals in a family are clustered and likely positively correlated. Miss-
ing, censoring and clustering are common features in health studies. These
three issues make the data structure complicated and identification of impor-
tant risk factors more challenging.

High-dimensionality is frequently seen in many other biomedical studies.
It also arises in the studies of health costs, health care and health records.

1.1.3 Computer and Information Sciences

The development of information and technology itself collects massive
amounts of data. For example, there are billions of web pages on the internet,
and an internet search engine needs to statistically learn the most likely out-
comes of a query and fast algorithms need to evolve with empirical data. The
input dimensionality of queries can be huge. In Google, Facebook and other
social networks, algorithms are designed to predict the potential interests of
individuals on certain services or products. A familiar example of this kind
is amazon.com in which related books are recommended online based on user
inputs. This kind of recommendation system applies to other types of services
such as music and movies. These are just a few examples of statistical learn-
ing in which the data sets are huge and highly complex, and the number of
variables is ultrahigh.

Machine learning algorithms have been widely applied to pattern recog-
nition, search engines, computer vision, document and image classification,
bioinformatics, medical diagnosis, natural language processing, knowledge
graphs, automatic driving machines, internet doctors, among others. The de-
velopment of these algorithms are based on high-dimensional statistical regres-
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Figure 1.3: Some illustrations of machine learning. Top panel: the word clouds
of sentiments of a company (Left: Negative Words; Right: Positive Words).
The plots were constructed by using data used in Ke, Kelly and Xiu (2019).
Bottom left: It is challenging for computer to recognize the pavillion from the
background in computer vision. Bottom right: Visualization of the friendship
connections in Facebook.

sion and classification with a large number of predictors and a large amount of
empirical data. For example, in text and document classification, the data of
documents are summarized by word-document information matrices: the fre-
quencies of the words and phrases x in document y are computed. This step
of feature extraction is very important for the accuracy of classification. A
specific example of document classification is E-mail spam in which there are
only two classes of E-mails, junk or non-junk. Clearly, the number of features
should be very large in order to find important features for accurate document
classifications. This results in high-dimensional classification problems.

Similar problems arise for image or object classifications. Feature extrac-
tions play critical roles. One approach for such a feature extrapolation is the
classical vector quantization technique, in which images represented by many
small subimages or wavelet coefficients, which are further reduced by sum-
mary statistics. Again, this results in high-dimensional predictive variables.
Figure 1.3 illustrates a few problems that arise in machine learning.
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1.1.4 Economics and Finance

Thanks to the revolution of information and technology, high-frequency
financial data have been collected for a host of financial assets, from stocks,
bonds, and commodity prices to foreign exchange rates and financial deriva-
tives. The asset correlations among 500 stocks in the S&P500 index already
involve over a hundred thousand parameters. This poses challenges on ac-
curately measuring the financial risks of the portfolios, systemic risks in the
financial systems, bubble migrations, and risk contagions, in additional to the
portfolio allocation and management (Fan, Zhang and Yu, 2012; Brownlees
and Engle, 2017). For an overview of high-dimensional economics and finance,
see, for example, Fan, Lv and Qi (2012).

To understand the dynamics of financial assets, large panels of financial
time series are widely available within asset classes (e.g. components of Russell
3000 stocks) and across asset classes (e.g. stocks, bonds, options, commodi-
ties, and other financial derivatives). This is important for understanding the
dynamics of price co-movements, time-dependent large volatility matrices of
asset returns, systemic risks, and bubble migrations.

Large panel data also arise frequently in economic studies. To analyze
the joint evolution of macroeconomic time series, hundreds of macroeconomic
variables are compiled to better understand the impact of government policies
and to gain better statistical accuracy via, for example, the vector autoregres-
sive model (Sims, 1980). The number of parameters are very large since it
grows quadratically with the number of predictors. To enrich the model in-
formation, Bernanke et al. (2005) propose to augment standard VAR models
with estimated factors (FAVAR) to measure the effects of monetary policy.
Factor analysis also plays an important role in prediction using large dimen-
sional data sets (for reviews, see Stock, Watson (2006), Bai and Ng (2008)).
A comprehensive collection 131 macroeconomics time series (McCracken and
Ng, 2015) with monthly updates can be found in the website

https://research.stlouisfed.org/econ/mccracken/fred-databases/

Spatial-temporal data also give rise to big data in economics. Unemploy-
ment rates, housing price indices and sale data are frequently collected in
many regions, detailed up to zip code level, over a period of time. The use of
spatial correlation enables us to better model the joint dynamics of the data
and forecast future outcomes. In addition, exploring homogeneity enables us
to aggregate a number of homogeneous regions to reduce the dimensionality,
and hence statistical uncertainties, and to better understand heterogeneity
across spatial locations. An example of this in prediction of housing appreci-
ation was illustrated in the paper by Fan, Lv, and Qi (2012). See Figure 1.4
and Section 3.9.
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Figure 1.4: Prediction of monthly housing appreciation. Top panel-left: Choro-
pleth map for the 2009 U.S. unemployment rate by county. Top panel-right:
Spatial correlation of monthly housing price appreciation among 352 largest
counties in the United States from January 2000 to December 2009 (from
Fan, Lv, and Qi, 2012). Bottom panel: Prediction of monthly housing pricing
appreciation in 48 regions from January 2006 to December 2009 using a large
sparse econometrics model with 352 monthly time series from January 2000 to
December 2005. Blue: OLS. Red: PLS. Black: Acutal. Thickness: Proportion
to repeated sales. Adapted from Fan, Lv, and Qi (2012).
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1.1.5 Business and Program Evaluation

Big data arises frequently in marketing and program evaluation. Multi-
channel strategies are frequently used to market products, such as drugs and
medical devices. Data from hundreds of thousands of doctors are collected with
different marketing strategies over a period of time, resulting in big data. The
design of marketing strategies and the evaluation of a program’s effectiveness
are important to corporate revenues and cost savings. This also applies to
online advertisements and AB-tests.

Similarly, to evaluate government programs and policies, large numbers
of confounders are collected, along with many individual responses to the
treatment. This results in big and high-dimensional data.

1.1.6 Earth Sciences and Astronomy

Spatial-temporal data have been widely available in the earth sciences. In
meteorology and climatology studies, measurements such as temperatures and
precipitations are widely available across many regions over a long period of
time. They are critical for understanding climate changes, local and global
warming, and weather forecasts, and provide an important basis for energy
storage and pricing weather based financial derivatives.

In astronomy, sky surveys collect a huge amount of high-resolution imaging
data. They are fundamental to new astronomical discoveries and to understand
the origin and dynamics of the universe.

1.2 Impact of Big Data

The arrival of Big Data has had deep impact on data system and analysis.
It poses great challenges in terms of storage, communication and analysis. It
has forever changed many aspects of computer science, statistics, and compu-
tational and applied mathematics: from hardware to software; from storage
to super-computing; from data base to data security; from data communi-
cation to parallel computing; from data analysis to statistical inference and
modeling; from scientific computing to optimization. The efforts to provide
solutions to these challenges gave birth to a new disciplinary science, data sci-
ence. Engulfed by the applications in various disciplines, data science consists
of studies on data acquisition, storage and communication, data analysis and
modeling, and scalable algorithms for data analysis and artificial intelligence.
For an overview, see Fan, Han, and Liu (2014).

Big Data powers the success of statistical prediction and artificial intelli-
gence. Deep artificial neural network models have been very successfully ap-
plied to many machine learning and prediction problems, resulting in a dis-
cipline called deep learning (LeCun, Bengio and Hinton, 2015; Goodfellow,
Bengio and Courville, 2016). Deep learning uses a family of over parameter-
ized models, defined through deep neural networks, that have small modeling
biases. Such an over-parameterized family of models typically have large vari-
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ances, too big to be useful. It is the big amount of data that reduces the
variance to an acceptable level, achieving bias and variance trade-off in pre-
diction. Similarly, such an over-parameterized family of models typically are
too hard to find reasonable local minima and it is modern computing power
and cheap GPUs that make the implementation possible. It is fair to say
that today’s success of deep learning is powered by the arrivals of big data
and modern computing power. These successes will be further carried into
the future, as we collect even bigger data and become even better computing
architect.

As Big Data are typically collected by automated process and by different
generations of technologies, the quality of data is low and measurement errors
are inevitable. Since data are collected from various sources and populations,
the problem of heterogeneity of big data arises. In addition, since the num-
ber of variables is typically large, many variables have high kurtosis (much
higher than the normal distribution). Moreover, endogeneity occurs inciden-
tally due to high-dimensionality that have huge impacts on model selection
and statistical inference (Fan and Liao, 2014). These intrinsic features of Big
Data have significant impacts on the future developments of big data anal-
ysis techniques: from heterogeneity and heavy tailedness to endogeneity and
measurement errors. See Fan, Han, and Liu (2014).

Big data are often collected at multiple locations and owned by different
parties. They are often too big and unsafe to be stored in one single machine. In
addition, the processing power required to manipulate big data is not satisfied
by standard computers. For these reasons, big data are often distributed in
multiple locations. This creates the issues of communications, privacy and
owner issues.

Figure 1.5: Schematic illustration of the distributed data analysis and com-
puting architect.
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A simple architect that tackles simultaneously the storage, communication,
privacy and ownership issues is the distributed data analysis in Figure 1.5.
Here, each node analyzes the local data and communicates only the results to
the central machine. The central machine then aggregates the results and re-
ports the final results (one-shot analysis) or communicates the results back to
each node machine for further analysis (multi-shot analysis). For recent devel-
opments on this subject, see Shamir, Srebro and Zhang (2014), Zhang, Duchi
and Wainwright (2015), Jordan, Lee and Yang (2018) for low-dimensional
regression; Chen and Xie (2014), Lee, Liu, Sun and Taylor (2017), Battey,
Fan, Liu, Lu and Zhu (2018) for high-dimensional sparse regression and infer-
ence, and El Karoui and d’Aspremont (2010), Liang, et al. (2014), Bertrand
and Moonen (2014), Schizas and Aduroja (2015), Garber, Shamir and Sre-
bro (2017), and Fan, Wang, Wang and Zhu (2019) for principal component
analysis.

As mentioned before, big data are frequently accompanied by high-
dimensionality. We now highlight the impacts of dimensionality on data anal-
ysis.

1.3 Impact of Dimensionality

What makes high-dimensional statistical inference different from tradi-
tional statistics? High-dimensionality has a significant impact on computa-
tion, spurious correlation, noise accumulation, and theoretical studies. We
now briefly touch these topics.

1.3.1 Computation

Statistical inferences frequently involve numerical optimization. Optimiza-
tions in millions and billions dimensional spaces are not unheard of and arise
easily when interactions are considered. High-dimensional optimization is not
only expensive in computation, but also slow in convergence. It also creates
numerical instability. Algorithms can easily get trapped at local minima. In
addition, algorithms frequently use iteratively the inversions of large matri-
ces, which causes many instability issues in addition to large computational
costs and memory storages. Scalable and stable implementations of high-
dimensional statistical procedures are very important to statistical learning.

Intensive computation comes also from the large number of observations,
which can be in the order of millions or even billions as in marketing and ma-
chine learning studies. In these cases, computation of summary statistics such
as correlations among all variables is expensive; yet statistical methods often
involve repeated evaluations of summation of loss functions. In addition, when
new cases are added, it is ideal to only update some of the summary statistics,
rather than to use the entire updated data set to redo the computation. This
also saves considerable data storage and computation. Therefore, scalability



14 INTRODUCTION

of statistical techniques to both dimensionality and the number of cases are
paramountly important.

The high dimensionality and the availability of big data have reshaped
statistical thinking and data analysis. Dimensionality reduction and feature
extraction play pivotal roles in all high-dimensional statistical problems. This
helps reduce computation costs as well as improve statistical accuracy and sci-
entific interpretability. The intensive computation inherent in these problems
has altered the course of methodological developments. Simplified methods
are developed to address the large-scale computational problems. Data scien-
tists are willing to trade statistical efficiencies with computational expediency
and robust implementations. Fast and stable implementations of optimization
techniques are frequently used.

1.3.2 Noise Accumulation

High-dimensionality has significant impact on statistical inference in at
least two important aspects: noise accumulation and spurious correlation.
Noise accumulation refers to the fact that when a statistical rule depends on
many parameters, each estimated with stochastic errors, the estimation errors
in the rule can accumulate. For high-dimensional statistics, noise accumula-
tion is more severe, and can even dominate the underlying signals. Consider,
for example, a linear classification rule which classifies a new data point x to
class 1 if xTβ > 0. This rule can have high discrimination power when β is
known. However, when an estimator β̂ is used instead, due to accumulation
of errors in estimating the high-dimensional vector β̂, the classification rule
can be as bad as random guess.

To illustrate the above point, let us assume that we have random samples
{Xi}ni=1 and {Yi}ni=1 from class 0 and class 1 with the population distri-
butions N(μ0, Ip) and N(μ1, Ip), respectively. To mimic the gene expression
data, we take p = 4500, μ0 = 0 without loss of generality, and μ1 from a real-
ization of 0.98δ0 + 0.02 ∗DE, a mixture of point mass 0 with probability 0.98
and the standard double exponential distribution with probability 0.02. The
realized μ1 is shown in Figure 1.6, which should have about 90 non-vanishing
components and is taken as true μ1. The components that are considerably
different from zero are numbered far less than 90, around 20 to 30 or so.

Unlike high-dimensional regression problems, high-dimensional classifica-
tion does not have implementation issues if the Euclidian distance based clas-
sifier is used; see Figure 1.6. It classifies x to class 1 if

‖x− μ1‖2 ≤ ‖x− μ0‖2 or βT (x− μ) ≥ 0, (1.1)

where β = μ1−μ0 and μ = (μ0+μ1)/2. For the particular setting in the last
paragraph, the distance-based classifier is the Fisher classifier and is the opti-
mal Bayes classifier if prior probability of class 0 is 0.5. The misclassification
probability for x from class 1 into class 0 is Φ(−‖μ1−μ0‖/2). This reveals the
fact that components with large differences contribute more to differentiating
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Figure 1.6: Illustration of Classification. Left panel: a realization of {μj}4500j=1

from the mixture distribution 0.98δ0 + 0.02 ∗ DE, where DE standards the
standard Double Exponential distribution. Right panel: Illustration of the Eu-
clidian distance based classifier, which classifies the query to a class according
to its distances to the centroids.

the two classes, and the more components the smaller the discrimination er-
ror. In other words, Δp = ‖μ1 − μ0‖ is a nondecreasing function of p. Let
Δ(m) be the distance computed based on the m largest components of the
difference vector μ1 − μ0. For our particular specification in the last para-
graph, the misclassification rate is around Φ(−

√
22 + 2.52/2) = 0.054 when

the two most powerful components are used (m = 2). In addition, Δ(m) stops
increasing noticeably when m reaches 30 and will be constant when m ≥ 100.

The practical implementation requires estimates of the parameters such as
β̂. The actual performance of the classifiers can differ from our expectation due
to the noise accumulation. To illustrate the noise accumulation phenomenon,
let us assume that the rank of the importance of the p features is known
to us. In this case, if we use only two features, the classification power is
very high. This is shown in Figure 1.7(a). Since the dimensionality is low,
the noise in estimated parameters is negligible. Now, if we take m = 100,
the signal strength Δm increases. On the other hand, we need to estimate 100
coefficients β, which accumulate stochastic noises in the classifier. To visualize
this, we project the observed data onto the first two principal components of
these 100-dimensional selected features. From Figure 1.7(b), it is clear that
signal and noise effect cancel. We still have classification power to differentiate
the two classes. When m = 500 and 4500, there is no further increase of
signals and noise accumulation effect dominates. The performance is as bad
as random guessing. Indeed, Fan and Fan (2008) show that almost all high-
dimensional classifiers can perform as bad as random guessing unless the signal
is excessively strong. See Figure 1.7(c) and (d).
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Figure 1.7: Illustration of noise accumulation. Left panel: Projection of ob-
served data (n = 100 from each class) onto the first two principal components
of m-dimensional selected feature space. The m most important features are
extracted before applying the principal component analysis.

Fan and Fan (2008) quantify explicitly the price paid with use of more fea-
tures. They demonstrate that the classification error rate depends on Δm/

√
m.

The numerator shows the benefit of the dimensionality through the increase
of signals Δm, whereas the denominator represents the noise accumulation
effect due to estimation of the unknown parameters. In particular, when
Δp/

√
p → ∞ as p → ∞, Hall, Pittelkow and Ghosh (2008) show that the

problem is perfectly classifiable (error rate converges to zero).

The above illustration of the noise accumulation phenomenon reveals the
pivotal role of feature selection in high dimensional statistical endeavors. Not
only does it reduce the prediction error, but also improves the interpretability
of the classification rule. In other words, the use of sparse β is preferable.

1.3.3 Spurious Correlation

Spurious correlation refers to the observation that two variables which
have no population correlation have a high sample correlation. The analogy
is that two persons look alike but have no genetic relation. In a small village,



IMPACT OF DIMENSIONALITY 17

spurious correlation rarely occurs. This explains why spurious correlation is
not an issue in the traditional low-dimensional statistics. In a moderate sized
city, however, spurious correlations start to occur. One can find two similar
looking persons with no genetic relation. In a large city, one can easily find
two persons with similar appearances who have no genetic relation. In the
same vein, high dimensionality easily creates issues of spurious correlation.

To illustrate the above concept, let us generate a random sample of size n =
50 of p+1 independent standard normal random variables Z1, · · · , Zp+1 ∼i.i.d.

N(0, 1). Theoretically, the sample correlation between any of two random
variables is small. When p is small, say p = 10, this is indeed the case and
the issue of spurious correlation is not severe. However, when p is large, the
spurious correlation starts to be noticeable. To illustrate this, let us compute

r̂ = max
j≥2

ĉor(Z1, Zj) (1.2)

where ĉor(Z1, Zj) is the sample correlation between the variables Z1 and Zj .
Similarly, let us compute

R̂ = max
|S|=5

ĉor(Z1,ZS) (1.3)

where ĉor(Z1,ZS) is the multiple correlation between Z1 and ZS , namely,
the correlation between Z1 and its best linear predictor using ZS . To avoid
computing all

(
p
5

)
multiple R2 in (1.3), we use the forward selection algorithm

to compute R̂. The actual value of R̂ is larger than what we present here. We
repeat this experiment 200 times and present the distributions of r̂ and R̂ in
Figure 1.8.
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Figure 1.8: Illustration of spurious correlation. Left panel: a typical realization
of Z1 with its mostly spuriously correlated variable (p = 1000); middle and left

panels: distributions of r̂ and R̂ for p = 1, 000 and p = 10, 000, respectively.
The sample size is n = 50.

The maximum spurious correlation r̂ is around 0.45 for p = 1000 and
0.55 for p = 10, 000. They become 0.85 and 0.91 respectively when multiple
correlation R̂ in (1.3) is considered. Theoretical results on the order of these
spurious correlations can be found in Cai and Jiang (2012) and Fan, Guo and
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Hao (2012), and more comprehensively in Fan, Shao, and Zhou (2018) and
Fan and Zhou (2016).

The impact of spurious correlation includes false scientific discoveries and
false statistical inferences. Since the correlation between Z1 and Z

̂S is around

0.9 for a set Ŝ with |Ŝ| = 5 (Figure 1.8), Z1 and Z
̂S are practically indistin-

guishable given n = 50. If Z1 represents the gene expression of a gene that is
responsible for a disease, we will also discover 5 genes Ŝ that have a similar
predictive power although they have no relation to the disease.

To further appreciate the concept of spurious correlation, let us consider
the neuroblastoma data used in Oberthuer et al. (2006). The study consists
of 251 patients, aged from 0 to 296 months at diagnosis with a median age
of 15 months, of the German Neuroblastoma Trials NB90-NB2004, diagnosed
between 1989 and 2004. Neuroblastoma is a common paediatric solid cancer,
accounting for around 15% of paediatric cancers. 251 neuroblastoma specimens
were analyzed using a customized oligonucleotide microarray with p = 10, 707
gene expressions available after preprocessing. The clinical outcome is taken
as the indicator of whether a neuroblastoma child has a 3 year event-free sur-
vival. 125 cases are taken at random as the training sample (with 25 positives)
and the remaining data are taken as the testing sample. To illustrate the spu-
rious correlation, we now replace the gene expressions by artificially simulated
Gaussian data. Using only p = 1000 artificial variables along with the tradi-
tional forward selection, we can easily find 10 of those artificial variables that
perfectly classify the clinical outcomes. Of course, these 10 artificial variables
have no relation with the clinical outcomes. When the classification rule is
applied to the test samples, the classification result is the same as random
guessing.

To see the impact of spurious correlation on statistical inference, let us
consider a linear model

Y = XTβ + ε, σ2 = Var(ε). (1.4)

Let Ŝ be a selected subset and we compute the residual variances based on
the selected variables Ŝ:

σ̂2 = YT (In −P
̂S)Y/(n− |Ŝ|), P

̂S = X
̂S(X

T
̂SX ̂S)

−1XT
̂S . (1.5)

In particular, when β = 0, all selected variables are spurious. In this case,
Y = ε and

σ̂2 ≈ (1− γ2n)‖ε‖2/n ≈ (1− γ2n)σ2, (1.6)

when |Ŝ|/n → 0, where γ2n = εTP
̂Sε/‖ε‖2. Therefore, σ2 is underestimated

by a factor of γ2n
Suppose that we select only one spurious variable, then that variable must

be mostly correlated with Y. Since the spurious correlation is high, the bias
is large. The two left panels of Figure 1.9 depicts the distribution of γn along
with the associated estimates of σ̂2 for different choices of p. Clearly, the bias
increases with the dimensionality p.
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Figure 1.9: Distributions of spurious correlations. Left panel: Distributions of
γn for the null model when |Ŝ| = 1 and their associated estimates of σ2 = 1
for various choices of p. Right panel: Distributions of γn for the model Y =
2X1 + 0.3X2 + ε and their associated estimates of σ2 = 1 for various choices
of |Ŝ| but fixed p = 1000. The sample size n = 50. Adapted from Fan, Guo,
and Hao (2012).

Spurious correlation gets larger when more than one spurious variables are
selected, as seen in Figure 1.8. To see this, let us consider the linear model Y =
2X1+0.3X2+ε and use forward selection methods to recruit variables. Again,
the spurious variables are selected mainly due to their spurious correlation
with ε, the unobservable but realized random noises. As shown in the right
panel of Figure 1.9, the spurious correlation is very large and σ̂2 gets notably
more biased when |Ŝ| gets larger.

Underestimate of residual variance leads to further wrong statistical infer-
ences. More variables will be called statistically significant and that further
leads to wrong scientific conclusions. There is active literature on the selective
inference for dealing with such kind of issues, starting from Lockhart, Taylor,
Tibshirani and Tibshirani (2014); see also Taylor and Tibshirani (2015) and
Tibshirani, Taylor, Lockhart and Tibshirani (2016).

1.3.4 Statistical theory

High dimensionality has a strong impact on statistical theory. The tradi-
tional asymptotic theory assumes that sample size n tends to infinity while
keeping p fixed. This does not reflect the reality of the high dimensionality
and cannot explain the observed phenomena such as noise accumulation and
spurious correlation. A more reasonable framework is to assume p grows with
n and investigate how high the dimensionality pn a given procedure can han-
dle given the sample size n. This new paradigm is now popularly used in
literature.
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High dimensionality gives rise to new statistical theory. Many new insights
have been unveiled and many new phenomena have been discovered. Subse-
quent chapters will unveil some of these.

1.4 Aim of High-dimensional Statistical Learning

As shown in Section 1.1, high-dimensional statistical learning arises from
various different scientific contexts and has very different disciplinary goals.
Nevertheless, its statistical endeavor can be abstracted as follows. The main
goals of high dimensional inferences, according to Bickel (2008), are

(a) to construct a method as effective as possible to predict future observa-
tions and

(b) to gain insight into the relationship between features and responses for
scientific purposes, as well as, hopefully, to construct an improved predic-
tion method.

This view is also shared by Fan and Li (2006). The former appears in problems
such as text and document classifications or portfolio optimizations, in which
the performance of the procedure is more important than understanding the
features that select spam E-mail or stocks that are chosen for portfolio con-
struction. The latter appears naturally in many genomic studies and other
scientific endeavors. In these cases, scientists would like to know which genes
are responsible for diseases or other biological functions, to understand the
molecular mechanisms and biological processes, and predict future outcomes.
Clearly, the second goal of high dimensional inferences is more challenging.

The above two objectives are closely related. However, they are not neces-
sarily the same and can be decisively different. A procedure that has a good
mean squared error or, more generally risk properties, might not have model
selection consistency. For example, if an important variable is missing in a
model selection process, the method might find 10 other variables, whose lin-
ear combination acts like the missing important variable, to proxy it. As a
result, the procedure can still have good prediction power. Yet, the absence
of that important variable can lead to false scientific discoveries for objective
(b).

As to be seen in Sec 3.3.2, Lasso (Tibshirani, 1996) has very good risk
properties under mild conditions. Yet, its model selection consistency requires
the restricted irrepresentable condition (Zhao and Yu, 2006; Zou, 2006; Mein-
shausen and Bühlmann, 2006). In other words, one can get optimal rates in
mean squared errors, and yet the selected variables can still differ substantially
from the underlying true model. In addition, the estimated coefficients are bi-
ased. In this view, Lasso aims more at objective (a). In an effort to resolve the
problems caused by the L1-penalty, a class of folded-concave penalized least-
squares or likelihood procedures, including SCAD, was introduced by Fan and
Li (2001), which aims more at objective (b).
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1.5 What big data can do

Big Data hold great promise for the discovery of heterogeneity and search
for personalized treatments and precision marketing. An important aim for
big data analysis is to understand heterogeneity for personalized medicine or
services from large pools of variables, factors, genes, environments and their
interactions as well as latent factors. Such a kind of understanding is only
possible when sample size is very large, particularly for rare diseases.

Another important aim of big data is to discover the commonality and
weak patterns, such as the impact of drinking teas and wines on the health,
in presence of large variations. Big data allow us to reduce large variances
of complexity models such as deep neural network models, as discussed in
Section 1.2. The successes of deep learning technologies rest to quite an extent
on the variance reduction due to big data so that a stable model can be
constructed.

1.6 Scope of the book

This book will provide a comprehensive and systematic account of theo-
ries and methods in high-dimensional data analysis. The statistical problems
range from high-dimensional sparse regression, compressed sensing, sparse
likelihood-based models, supervised and unsupervised learning, large covari-
ance matrix estimation and graphical models, high-dimensional survival analy-
sis, robust and quantile regression, among others. The modeling techniques can
either be parametric, semi-parametric or nonparametric. In addition, variable
selection via regularization methods and sure independent feature screening
methods will be introduced.
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Chapter 2

Multiple and Nonparametric Regression

2.1 Introduction

In this chapter we discuss some popular linear methods for regression anal-
ysis with continuous response variable. We call them linear regression models
in general, but our discussion is not limited to the classical multiple linear
regression. They are extended to multivariate nonparametric regression via
the kernel trick. We first give a brief introduction to multiple linear regression
and least-squares, presenting the basic and important ideas such as inferential
results, Box-Cox transformation and basis expansion. We then discuss linear
methods based on regularized least-squares with ridge regression as the first
example. We then touch on the topic of nonparametric regression in a re-
producing kernel Hilbert space (RKHS) via the kernel trick and kernel ridge
regression. Some basic elements of the RKHS theory are presented, including
the famous representer theorem. Lastly, we discuss the leave-one-out analysis
and generalized cross-validation for tuning parameter selection in regularized
linear models.

2.2 Multiple Linear Regression

Consider a multiple linear regression model:

Y = β1X1 + · · ·+ βpXp + ε, (2.1)

where Y represents the response or dependent variable and the X variables
are often called explanatory variables or covariates or independent variables.
The intercept term can be included in the model by including 1 as one of
the covariates, say X1 = 1. Note that the term “random error” ε in (2.1) is
a generic name used in statistics. In general, the “random error” here corre-
sponds the part of the response variable that cannot be explained or predicted
by the covariates. It is often assumed that “random error” ε has zero mean,
uncorrelated with covariates X, which is referred to as exogenous variables.
Our goal is to estimate these β’s, called regression coefficients, based on a
random sample generated from model (2.1).

Suppose that {(Xi1, · · · , Xip, Yi)}, i = 1, · · · , n is a random sample from

23
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model (2.1). Then, we can write

Yi =

p∑
j=1

Xijβj + εi. (2.2)

The method of least-squares is a standard and popular technique for data fit-
ting. It was advanced early in the nineteenth century by Gauss and Legendre.
In (2.2) we have the residuals (ri’s)

ri = Yi −
p∑

j=1

Xijβj .

Assume that random errors εi’s are homoscedastic, i.e., they are uncorrelated
random variables with mean 0 and common variance σ2. The least-squares
method is to minimize the residual sum-of-squares (RSS):

RSS(β) =

n∑
i=1

r2i =

n∑
i=1

(Yi −
p∑

j=1

Xijβj)
2. (2.3)

with respect to β. Since (2.3) is a nice quadratic function of β, there is a
closed-form solution. Denote by

Y =

⎛⎜⎝Y1...
Yn

⎞⎟⎠ , Xj =

⎛⎜⎝X1j

...
Xnj

⎞⎟⎠ , X =

⎛⎜⎝X11 · · · X1p

... · · ·
...

Xn1 · · · Xnp

⎞⎟⎠ , β =

⎛⎜⎝β1...
βp

⎞⎟⎠ , ε =

⎛⎜⎝ε1...
εn

⎞⎟⎠ .

Then (2.2) can be written in the matrix form

Y = Xβ + ε.

The matrix X is known as the design matrix and is of crucial importance to
the whole theory of linear regression analysis. The RSS(β) can be written as

RSS(β) = ‖Y −Xβ‖2 = (Y −Xβ)T (Y −Xβ).

Differentiating RSS(β) with respect to β and setting the gradient vector to
zero, we obtain the normal equations

XTY = XTXβ.

Here we assume that p < n and X has rank p. Hence XTX is invertible and
the normal equations yield the least-squares estimator of β

β̂ = (XTX)−1XTY. (2.4)

In this chapter XTX is assumed to be invertible unless specifically mentioned
otherwise.
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The fitted Y value is

Ŷ = Xβ̂ = X(XTX)−1XTY,

and the regression residual is

r̂ = Y − Ŷ = (I−X(XTX)−1XT )Y.

Theorem 2.1 Define P = X(XTX)−1XT . Then we have

PXj = Xj , j = 1, 2, · · · , p;

P2 = P or P(In −P) = 0,

namely P is a projection matrix onto the space spanned by the columns of X.

Proof. It follows from the direct calculation that

PX = X(XTX)−1XTX = X.

Taking the j column of the above equality, we obtain the first results. Similarly,

PP = X(XTX)−1XTX(XTX)−1XT = X(XTX)−1XT = P.

This completes the proof.
By Theorem 2.1 we can write

Ŷ = PY, r̂ = (In −P)Y (2.5)

and we see two simple identities:

PŶ = Ŷ, ŶT r̂ = 0.

This reveals an interesting geometric interpretation of the method of least-
squares: the least-squares fit amounts to projecting the response vector onto
the linear space spanned by the covariates. See Figure 2.1 for an illustration
with two covariates.

2.2.1 The Gauss-Markov Theorem

We assume the linear regression model (2.1) with

• exogeneity: E(ε|X) = 0;

• homoscedasticity: Var(ε|X) = σ2.

Theorem 2.2 Under model (2.1) with exogenous and homoscedastic error, it
follows that

(i) (unbiasedness) E(β̂|X) = β.
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Figure 2.1: Geometric view of least-squares. The fitted value is the blue arrow,
which is the projection of Y on the plane spanned by X1 and X2.

(ii) (conditional standard errors) Var(β̂|X) = σ2(XTX)−1.

(iii) (BLUE) The least-squares estimator β̂ is the best linear unbiased esti-

mator (BLUE). That is, for any given vector a, aT β̂ is a linear unbiased
estimator of the parameter θ = aTβ. Further, for any linear unbiased esti-
mator bTY of θ, its variance is at least as large as that of aT β̂.

Proof. The first property follows directly from E(Y|X) = Xβ and

E(β̂|X) = (XTX)−1XT (Xβ) = β.

To prove the second property, note that for any linear combination AY,
its variance-covariance matrix is given by

Var(AY|X) = AVar(Y|X)AT = σ2AAT . (2.6)

Applying this formula to the least-squares estimator with A = (XTX)−1XT ,
we obtain the property (ii).

To prove property (iii), we first notice that aT β̂ is an unbiased estimator
of the parameter θ = aTβ, with the variance

Var(aT β̂|X) = aT Var(β̂|X)a = σ2aT (XTX)−1a.

Now, consider any linear unbiased estimator, bTY, of the parameter θ. The
unbiasedness requires that

bTXβ = aTβ,
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namely XTb = a. The variance of this linear estimator is

σ2bTb.

To prove (iii) we need only to show that

aT (XTX)−1a ≤ bTb.

Note that
(XTX)−1/2XTb = (XTX)−1/2a.

Hence, by computing their norms, we have

aT (XTX)−1a = bTX(XTX)−1XTb = bTPb.

Note that P = P2 which means that the eigenvalues of P are either 1 or 0
and hence In −P is semi-positive matrix. Hence,

bT (In −P)b ≥ 0,

or equivalently bTb ≥ bTPb.
Property (ii) of Theorem 2.2 gives the variance-covariance matrix of the

least-squares estimate. In particular, the conditional standard error of β̂i is

simply σa
1/2
ii and the covariance between β̂i and β̂j is σ2aij , where aij is the

(i, j)-th element of matrix (XTX)−1.
In many applications σ2 is often an unknown parameter of the model in

addition to the regression coefficient vector β. In order to use the variance-
covariance formula, we first need to find a good estimate of σ2. Given the
least-squares estimate of β, RSS can be written as

RSS =
n∑

i=1

(Yi − Ŷi)2 = (Y − Ŷ)T (Y − Ŷ). (2.7)

Define
σ̂2 = RSS /(n− p).

This can be shown in Theorem 2.3 that σ̂2 is an unbiased estimator of σ2.

Theorem 2.3 Under the linear model (2.1) with homoscedastic error, it fol-
lows that

E(σ̂2|X) = σ2.

Proof. First by Theorem 2.1 we have

RSS = ‖(In −P)Y‖2 = ‖(In −P)(Y −Xβ)‖2 = εT (In −P)ε.

Let tr(A) be the trace of the matrix A. Using the property that tr(AB) =
tr(BA), we have

RSS = tr{(In −P)εεT }.
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Hence,
E(RSS |X) = σ2 tr(In −P).

Because the eigenvalues of P are either 1 or 0, its trace is equal to its rank
which is p under the assumption that XTX is invertible. Thus,

E(σ̂2|X) = σ2(n− p)/(n− p) = σ2.

This completes the proof.

2.2.2 Statistical Tests

After fitting the regression model, we often need to perform some tests on
the model parameters. For example, we may be interested in testing whether a
particular regression coefficient should be zero, or whether several regression
coefficients should be zero at the same time, which is equivalent to asking
whether these variables are important in presence of other covariates. To fa-
cilitate the discussion, we focus on the fixed design case where X is fixed. This
is essentially the same as the random design case but conditioning upon the
given realization X.

We assume a homoscedastic model (2.1) with normal error. That is, ε
is a Gaussian random variable with zero mean and variance σ2, written as
ε ∼ N(0, σ2). Note that

β̂ = β + (XTX)−1XTε. (2.8)

Then it is easy to see that

β̂ ∼ N(β, (XTX)−1σ2). (2.9)

If we look at each β̂j marginally, then β̂j ∼ N(βj , vjσ
2) where vj is the jth

diagonal element of (XTX)−1. In addition,

(n− p)σ̂2 ∼ σ2χ2
n−p (2.10)

and σ̂2 is independent of β̂. The latter can easily be shown as follow. By
(2.7), σ̂2 depends on Y through Y− Ŷ = (In−P)ε whereas β̂ depends on Y
through (2.8) or XTε. Note that both (In −P)ε and XTε are jointly normal
because they are linear transforms of normally distributed random variables,
and therefore their independence is equivalent to their uncorrelatedness. This
can easily be checked by computing their covariance

E(In −P)ε(XTε)T = E(In −P)εεTX = σ2(In −P)X = 0.

If we want to test the hypothesis that βj = 0, we can use the following t
test statistic

tj =
β̂j√
vj σ̂

(2.11)
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which follows a t-distribution with n − p degrees of freedom under the null
hypothesis H0 : βj = 0. A level α test rejects the null hypothesis if |tj | >
tn−p,1−α/2, where tn−p,1−α/2 denotes the 100(1 − α/2) percentile of the t-
distribution with n− p degrees of freedom.

In many applications the null hypothesis is that a subset of the covari-
ates have zero regression coefficients. That is, this subset of covariates can be
deleted from the regression model: they are unrelated to the response variable
given the remaining variables. Under such a null hypothesis, we can reduce the
model to a smaller model. Suppose that the reduced model has p0 many re-
gression coefficients. Let RSS and RSS0 be the residual sum-of-squares based
on the least-squares fit of the full model and the reduced smaller model, re-
spectively. If the null hypothesis is true, then these two quantities should be
similar: The RSS reduction by using the full model is small, in relative term.
This leads to the F -statistic:

F =
(RSS0−RSS)/(p− p0)

RSS /(n− p) . (2.12)

Under the null hypothesis that the reduced model is correct, F ∼ Fp−p0,n−p.
The normal error assumption can be relaxed if the sample size n is large.

First, we know that (XTX)
1
2 (β̂−β)/σ always has zero mean and an identity

variance-covariance matrix. On the other hand, (2.8) gives us

(XTX)
1
2 (β̂ − β)/σ = (XTX)−

1
2XTε/σ.

Observe that (XTX)−
1
2XTε/σ is a linear combination of n i.i.d. random vari-

ables {εi}ni=1 with zero mean and variance 1. Then the central limit theorem
implies that under some regularity conditions,

β̂
D−→ N(β, (XTX)−1σ2). (2.13)

Consequently, when n is large, the distribution of the t test statistic in (2.11)
is approximately N(0, 1), and the distribution of the F test statistic in (2.12)
is approximately χ2

p−p0
/(p− p0).

2.3 Weighted Least-Squares

The method of least-squares can be further generalized to handle the sit-
uations where errors are heteroscedastic or correlated. In the linear regression
model (2.2), we would like to keep the assumption E(ε|X) = 0 which means
there is no structure information left in the error term. However, the constant
variance assumption Var(εi|Xi) = σ2 may not likely hold in many applica-
tions. For example, if yi is the average response value of the ith subject in
a study in which ki many repeated measurements have been taken, then it
would be more reasonable to assume Var(εi|Xi) = σ2/ki.

Let us consider a modification of model (2.1) as follows

Yi =

p∑
j=1

Xijβj + εi; Var(εi|Xi) = σ2vi (2.14)
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where vis are known positive constants but σ2 remains unknown. One can still
use the ordinary least-squares (OLS) estimator β̂ = (XTX)−1XTY. It is easy
to show that the OLS estimator is unbiased but no longer BLUE. In fact, the
OLS estimator can be improved by using the weighted least-squares method.

Let Y ∗
i = v

−1/2
i Yi, X

∗
ij = v

−1/2
i Xij , ε

∗
i = v

−1/2
i εi. Then the new model

(2.14) can be written as

Y ∗
i =

p∑
j=1

X∗
ijβj + ε∗i (2.15)

with Var(ε∗i |X∗
i ) = σ2. Therefore, the working data {(X∗

i1, · · · , X∗
ip, Y

∗
i )}ni=1

obey the standard homoscedastic linear regression model. Applying the stan-
dard least-squares method to the working data, we have

β̂
wls

= argminβ

n∑
i=1

⎛⎝Y ∗
i −

p∑
j=1

X∗
ijβj

⎞⎠2

= argminβ

n∑
i=1

v−1
i

⎛⎝Yi − p∑
j=1

Xijβj

⎞⎠2

.

It follows easily from Theorem 2.2 that the weighted least-squares estimator
is the BLUE for β.

In model (2.14) the errors are assumed to be uncorrelated. In general,
the method of least-squares can be extended to handle heteroscedastic and
correlated errors.

Assume that
Y = Xβ + ε.

and the variance-covariance matrix of ε is given

Var(ε|X) = σ2W, (2.16)

in which W is a known positive definite matrix. Let W−1/2 be the square
root of W−1, i.e.,

(W−1/2)TW−1/2 = W−1.

Then
Var(W−1/2ε) = σ2I,

which are homoscedastic and uncorrelated.
Define the working data as follows:

Y∗ = W−1/2Y, X∗ = W−1/2X, ε∗ = W−1/2ε.

Then we have
Y∗ = X∗β + ε∗. (2.17)

Thus, we can apply the standard least-squares to the working data. First, the
residual sum-of-squares (RSS) is

RSS(β) = ||Y∗ −X∗β||2 = (Y −Xβ)TW−1(Y −Xβ). (2.18)
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Then the general least-squares estimator is defined by

β̂ = argminβ RSS(β) (2.19)

= (X∗TX∗)−1X∗TY∗

= (XTW−1X)−1XTW−1Y.

Again, β̂ is the BLUE according to Theorem 2.2.
In practice, it is difficult to know precisely the n×n covariance matrix W;

the misspecification of W in the general least-squares seems hard to avoid.
Let us examine the robustness of the general least-squares estimate. Assume
that Var(ε) = σ2W0, where W0 is unknown to us, but we employ the general
least-squares method (2.19) with the wrong covariance matrix W. We can see
that the general least-square estimator is still unbiased:

E(β̂|X) = (XTW−1X)−1XTW−1Xβ = β.

Furthermore, the variance-covariance matrix is given by

Var(β̂) = (XTW−1X)−1(XTW−1W0W
−1X)(XTW−1X)−1,

which is of order O(n−1) under some mild conditions. In other words, using
wrong covariance matrix would still give us a root-n consistent estimate. So
even when errors are heteroscedastic and correlated, the ordinary least-squares
estimate with W = I and the weighted least-squares estimate with W =
diag(W0) still give us an unbiased and n−1/2 consistent estimator. Of course,
we still prefer using a working W matrix that is identical or close to the true
W0.

2.4 Box-Cox Transformation

In practice we often take a transformation of the response variable before
fitting a linear regression model. The idea is that the transformed response
variable can be modeled by the set of covariates via the classical multiple
linear regression model. For example, in many engineering problems we expect

Y ∝ Xβ1

1 Xβ2

2 · Xβp
p where all variables are positive. Then a linear model

seems proper by taking logarithms: log(Y ) =
∑p

j=1 βjXj + ε. If we assume

ε ∼ N(0, σ2), then in the original scale the model is Y = (
∏p

j X
βj

j )ε∗ where

ε∗ is a log-normal random variable: log ε∗ ∼ N(0, σ2).
Box and Cox (1964) advocated the variable transformation idea in linear

regression and also proposed a systematic way to estimate the transformation
function from data. Their method is now known as Box-Cox transform in
the literature. Box and Cox (1964) suggested a parametric family for the
transformation function. Let Y (λ) denote the transformed response where λ
parameterizes the transformation function:

Y (λ) =

{
Y λ−1

λ if λ �= 0
log(Y ) if λ = 0

.
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Box-Cox model assumes that

Y (λ) =

p∑
j=1

Xjβj + ε

where ε ∼ N(0, σ2).
The likelihood function of the Box-Cox model is given by

L(λ,β, σ2) = (
1√
2πσ

)ne−
1

2σ2 ‖Y(λ)−Xβ‖2 · J(λ,Y)

where J(λ,Y) =
∏n

i=1 |
dy

(λ)
i

dyi
| = (

∏n
i=1 |yi|)λ−1. Given λ, the maximum likeli-

hood estimators (MLE) of β and σ2 are obtained by the ordinary least-squares:

β̂(λ) = (XTX)−1XTY(λ), σ̂2(λ) =
1

n
‖Y(λ) −X(XTX)−1XTY(λ)‖2.

Plugging β̂(λ), σ̂2(λ) into L(λ,β, σ2) yields a likelihood function of λ

logL(λ) = (λ− 1)

n∑
i=1

log(|yi|)−
n

2
log σ̂2(λ)− n

2
.

Then the MLE of λ is

λ̂mle = argmaxλ logL(λ),

and the MLE of β and σ2 are β̂(λ̂mle) and σ̂
2(λ̂mle), respectively.

2.5 Model Building and Basis Expansions

Multiple linear regression can be used to produce nonlinear regression and
other very complicated models. The key idea is to create new covariates from
the original ones by adopting some transformations. We then fit a multiple
linear regression model using augmented covariates.

For simplicity, we first illustrate some useful transformations in the case of
p = 1, which is closely related to the curve fitting problem in nonparametric
regression. In a nonparametric regression model

Y = f(X) + ε,

we do not assume a specific form of the regression function f(x), but assume
only some qualitative aspects of the regression function. Examples include
that f(·) is continuous with a certain number of derivatives or that f(·) is
convex. The aim is to estimate the function f(x) and its derivatives, without
a specific parametric form of f(·). See, for example Fan and Gijbels (1996),
Li and Racine (2007), Hastie, Tibshirani and Friedman (2009), among others.
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Polynomial versus cubic spline fit

Figure 2.2: Scatter plot of time (in milliseconds) after a simulated impact on
motorcycles against the head acceleration (in a) of a test object. Red = cubic
polynomial fit, blue = cubic spline fit.

2.5.1 Polynomial Regression

Without loss of generality, assumeX is bounded on [0, 1] for simplicity. The
Weierstrass approximation theorem states that any continuous f(x) can be
uniformly approximated by a polynomial function up to any precision factor.
Let us approximate the model by

Y = β0 + β1X + · · ·+ βdX
d︸ ︷︷ ︸

≈f(X)

+ε

This polynomial regression is a multiple regression problem by setting X0 =
1, X1 = X, · · · , Xd = Xd. The design matrix now becomes

B1 =

⎛⎜⎝1 x1 · · · xd1
...

... · · ·
...

1 xn · · · xdn

⎞⎟⎠ .

We estimate f(x) by

f̂(x) = β̂0 +

d∑
m=1

β̂mx
m,

where β̂ = (BT
1 B1)

−1BT
1 Y is the least-squares estimate.

Polynomial functions have derivatives everywhere and are global functions.
They are not very flexible in approximating functions with local features such
as functions with various degrees of smoothness at different locations. Fig-
ure 2.2 shows the cubic polynomial fit to a motorcycle data. Clearly, it does
not fit the data very well. Increasing the order of polynomial fits will help
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reduce the bias issue, but will not solve the lack of fit issue. This is because
that the underlying function cannot be economically approximated by a poly-
nomial function. It requires high-order polynomials to reduce approximation
biases, but this increases both variances and instability of the fits. This leads
to the introduction of spline functions that allow for more flexibility in func-
tion approximation.

2.5.2 Spline Regression

Let τ0 < τ1 < · · · < τK+1. A spline function of degree d on [τ0, τK+1]
is a piecewise polynomial function of degree d on intervals [τj , τj+1) (j =
0, · · · ,K), with continuous first d−1 derivatives. The points where the spline
function might not have continuous dth derivatives are {τj}Kj=1, which are
called knots. Thus, a cubic spline function is a piecewise polynomial function
with continuous first two derivatives and the points where the third derivative
might not exist are called knots of the cubic spline. An example of a cubic fit
is given by Figure 2.2.

All spline functions of degree d form a linear space. Let us determine its
basis functions.

Linear Splines: A continuous function on [0, 1] can also be approximated
by a piecewise constant or linear function. We wish to use a continuous func-
tion to approximate f(x). Since a piecewise constant function is not continuous
unless the function is a constant in the entire interval, we use a continuous
piecewise linear function to fit f(x). Suppose that we split the interval [0, 1]
into three regions: [0, τ1], [τ1, τ2], [τ2, 1] with given knots τ1, τ2. Denote by l(x)
the continuous piecewise linear function. In the first interval [0, τ1] we write

l(x) = β0 + β1x, x ∈ [0, τ1],

as it is linear. Since l(x) must be continuous at τ1, the newly added linear
function must have an intercept 0 at point τ1. Thus, in [τ1, τ2] we must have

l(x) = β0 + β1x+ β2(x− τ1)+, x ∈ [τ1, τ2],

where z+ equals z if z > 0 and zero otherwise. The function is linear in [τ1, τ2]
with slope β1 + β2. Likewise, in [τ2, 1] we write

l(x) = β0 + β1x+ β2(x− τ1)+ + β3(x− τ2)+, x ∈ [τ2, 1].

The function is now clearly a piecewise linear function with possible different
slopes on different intervals. Therefore, the basis functions are

B0(x) = 1, B1(x) = x,B2(x) = (x− τ1)+, B3(x) = (x− τ2)+; (2.20)

which are called a linear spline basis. We then approximate the nonparametric
regression model as

Y = β0B0(X) + β1B1(X) + β2B2(X) + β3B3(X)︸ ︷︷ ︸
≈f(X)

+ε.
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This is again a multiple regression problem where we set X0 = B0(X), X1 =
B1(X), X2 = B2(X), X3 = B3(X). The corresponding design matrix becomes

B2 =

⎛⎜⎝1 x1 (x1 − τ1)+ (x1 − τ2)+
...

...
...

...
1 xn (xn − τ1)+ (xn − τ2)+

⎞⎟⎠ ,

and we estimate f(x) by

f̂(x) = β̂0 + β̂1x+ β̂2(x− τ1)+ + β̂3(x− τ2)+,

where β̂ = (BT
2 B2)

−1BT
2 Y. The above method applies more generally to a

multiple knot setting for the data on any intervals.

Cubic Splines: We can further consider fitting piecewise polynomials
whose derivatives are also continuous. A popular choice is the so-called cu-
bic spline that is a piecewise cubic polynomial function with continuous
first and second derivatives. Again, we consider two knots and three regions:
[0, τ1], [τ1, τ2], [τ2, 1]. Let c(x) be a cubic spline. In [0, τ1] we write

c(x) = β0 + β1x+ β2x
2 + β3x

3, x ≤ τ1.

And c(x) = β0 + β1x + β2x
2 + β3x

3 + δ(x) in [τ1, τ2]. By definition, δ(x) is
a cubic function in [τ1, τ2] and its first and second derivatives equal zero at
x = τ1. Then we must have

δ(x) = β4(x− τ1)3+, x ∈ [τ1, τ2]

which means

c(x) = β0 + β1x+ β2x
2 + β3x

3 + β4(x− τ1)3+, x ∈ [τ1, τ2].

Likewise, in [τ2, 1] we must have

c(x) = β0 + β1x+ β2x
2 + β3x

3 + β4(x− τ1)3+ + β5(x− τ2)3+, x > τ2.

Therefore, the basis functions are

B0(x) = 1, B1(x) = x,B2(x) = x2, B3(x) = x3

B4(x) = (x− τ1)3+, B5(x) = (x− τ2)3+.

The corresponding transformed design matrix becomes

B3 =

⎛⎜⎝1 x1 x21 x31 (x1 − τ1)3+ (x1 − τ2)3+
...

...
...

...
...

...
1 xn x2n x3n (xn − τ1)3+ (xn − τ2)3+

⎞⎟⎠ ,
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and we estimate f(x) by

f̂(x) = β̂0 + β̂1x+ β̂2x
2 + β̂3x

3 + β̂4(x− τ1)3+ + β̂5(x− τ2)3+,

where β̂ = (BT
3 B3)

−1BT
3 Y is the least-squares estimate of the coefficients.

In general, if there are K knots {τ1, · · · , τK}, then the basis functions of
cubic splines are

B0(x) = 1, B1(x) = x,B2(x) = x2, B3(x) = x3

B4(x) = (x− τ1)3+, · · · , BK+3(x) = (x− τK)3+.

By approximating the nonparametric function f(X) by the spline function
with knots {τj}Kj=1, we have

Y = β0B0(X) + β1B1(X) + · · ·+ βK+3BK+3(X)︸ ︷︷ ︸
≈f(X)

+ε (2.21)

This spline regression is again a multiple regression problem.

Natural Cubic Splines: Extrapolation is always a serious issue in regres-
sion. It is not wise to fit a cubic function to a region where the observations
are scarce. If we must, extrapolation with a linear function is preferred. A
natural cubic spline is a special cubic spline with additional constraints: the
cubic spline must be linear beyond two end knots. Consider a natural cubic
spline, NC(x), with knots at {τ1, · · · , τK}. By its cubic spline representation,
we can write

NC(x) = β0 + β1x+ β2x
2 + β3x

3 +

K∑
j=1

β3+j(x− τj)3+.

First, NC(x) is linear for x < τ1, which implies that

β2 = β3 = 0.

Second, NC(x) is linear for x > τK , which means that

K∑
j=1

β3+j = 0,

K∑
j=1

τjβ3+j = 0,

corresponding to the coefficients for the cubic and quadratic term of the poly-
nomial

∑K
j=1 β3+j(x − τj)

3 for x > τK . We solve for βK+2, βK+3 from the
above equations and then write NC(x) as

NC(x) =

K−1∑
j=0

βjBj(x),
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where the natural cubic spline basis functions are given by

B0(x) = 1, B1(x) = x,

Bj+1(x) =
(x− τj)3+ − (x− τK)3+

τj − τK
− (x− τK−1)

3
+ − (x− τK)3+

τK−1 − τK
for j = 1, · · · ,K − 2.

Again, by approximating the nonparametric function with the natural cubic
spline, we have

Y =
K−1∑
j=0

βjBj(X) + ε. (2.22)

which can be solved by using multiple regression techniques.

2.5.3 Multiple Covariates

The concept of polynomial regression extends to multivariate covariates.
The simplest example is the bivariate regression model

Y = β0 + β1X1 + β2X2 + β3X
2
1 + β4X1X2 + β5X

2
2 + ε.

The term X1X2 is called the interaction, which quantifies how X1 and X2

work together to contribute to the response. Often, one introduces interactions
without using the quadratic term, leading to a slightly simplified model

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε.

More generally, the multivariate quadratic regression is of the form

Y =

p∑
j=1

βjXj +
∑
j≤k

βjkXjXk + ε (2.23)

and the multivariate regression with main effects (the linear terms) and inter-
actions is of the form

Y =

p∑
j=1

βjXj +
∑
j<k

βjkXjXk + ε. (2.24)

This concept can also be extended to the multivariate spline case. The
basis function can be the tensor of univariate spline basis function for not
only unstructured f(x), but also other basis functions for structured f(x).
Unstructured nonparametric functions are not very useful: If each variable
uses 100 basis functions, then there are 100p basis functions in the tensor
products, which is prohibitively large for say, p = 10. Such an issue is termed
the “curse-of-dimensionality” in literature. See Hastie and Tibshirani (1990)
and Fan and Gijbels (1996). On the other hand, for the structured multivariate
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model, such as the following additive model (Stone, 1985, 1994; Hastie and
Tibshirani, 1990),

Y = f1(X1) + · · ·+ fp(Xp) + ε (2.25)

the basis functions are simply the collection of all univariate basis functions
for approximating f1, · · · , fp. The total number grows only linearly with p.

In general, let Bm(x) be the basis functions m = 1, · · · ,M . Then, we
approximate multivariate nonparametric regression model Y = f(X) + ε by

Y =
M∑

m=1

βjBj(X) + ε. (2.26)

This can be fit using a multiple regression technique. The new design matrix
is

B =

⎛⎜⎝B1(X1) · · · BM (X1)
... · · ·

...
B1(Xn) · · · BM (Xn)

⎞⎟⎠
and the least-squares estimate is given by

f̂(x) =

M∑
m=1

β̂mBm(x),

where
β̂ = (BTB)−1BTY.

The above fitting implicitly assumes that M � n. This condition in fact
can easily be violated in unstructured multivariate nonparametric regression.
For the additive model (2.25), in which we assume f(x) =

∑p
j=1 fj(xj) where

each fj(xj) is a smooth univariate function of xj , the univariate basis expan-
sion ideas can be readily applied to approximation of each fj(xj):

fj(xj) ≈
Mj∑
m=1

Bjm(xj)βjm

which implies that the fitted regression function is

f(x) ≈
p∑

j=1

Mj∑
m=1

Bjm(xj)βjm.

In Section 2.6.5 and Section 2.7 we introduce a fully nonparametric multi-
ple regression technique which can be regarded as a basis expansion method
where the basis functions are given by kernel functions.

2.6 Ridge Regression
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2.6.1 Bias-Variance Tradeoff

Recall that the ordinary least squares estimate is defined by β̂ =
(XTX)−1XTY when X is of full rank. In practice, we often encounter highly
correlated covariates, which is known as the collinearity issue. As a result,
although XTX is still invertible, its smallest eigenvalue can be very small.
Under the homoscedastic error model, the variance-covariance matrix of the
OLS estimate is Var(β̂) = (XTX)−1σ2. Thus, the collinearity issue makes

Var(β̂) large.
Hoerl and Kennard (1970) introduced the ridge regression estimator as

follows:
β̂λ = (XTX+ λI)−1XTY, (2.27)

where λ > 0 is a regularization parameter. In the usual case (XTX is in-
vertible), ridge regression reduces to OLS by setting λ = 0. However, ridge
regression is always well defined even when X is not full rank.

Under the assumption Var(ε) = σ2I, it is easy to show that

Var(β̂λ) = (XTX+ λI)−1XTX(XTX+ λI)−1σ2. (2.28)

We always have Var(β̂λ) < (XTX)−1σ2. Ridge regression estimator reduces
the estimation variance by paying a price in estimation bias:

E(β̂λ)− β = (XTX+ λI)−1XTXβ − β = −λ(XTX+ λI)−1β. (2.29)

The overall estimation accuracy is gauged by the mean squared error
(MSE). For β̂λ its MSE is given by

MSE(β̂λ) = E(‖β̂λ − β‖2). (2.30)

By (2.28) and (2.29) we have

MSE(β̂λ) = tr
(
(XTX+ λI)−1XTX(XTX+ λI)−1σ2

)
+λ2βT (XTX+ λI)−2β

= tr
(
(XTX+ λI)−2[λ2ββT + σ2XTX]

)
. (2.31)

It can be shown that dMSE(̂βλ)
dλ |λ=0 < 0, which implies that there are some

proper λ values by which ridge regression improves OLS.

2.6.2 �2 Penalized Least Squares

Define a penalized residual sum-of-squares (PRSS) as follows:

PRSS(β|λ) =
n∑

i=1

(Yi −
p∑

j=1

Xijβj)
2 + λ

p∑
j=1

β2
j . (2.32)
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Then let
β̂λ = argminβ PRSS(β|λ). (2.33)

Note that we can write it in a matrix form

PRSS(β|λ) = ‖Y −Xβ‖2 + λ‖β‖2.

The term λ‖β‖2 is called the �2-penalty of β. Taking derivatives with respect
to β and setting it to zero, we solve the root of the following equation

−XT (Y −Xβ) + λβ = 0,

which yields
β̂λ = (XTX+ λI)−1XTY.

The above discussion shows that ridge regression is equivalent to the �2 pe-
nalized least-squares.

We have seen that ridge regression can achieve a smaller MSE than OLS. In
other words, the �2 penalty term helps regularize (reduce) estimation variance
and produces a better estimator when the reduction in variance exceeds the
induced extra bias. From this perspective, one can also consider a more general
�q penalized least-squares estimate

min
β
‖Y −Xβ‖2 + λ

p∑
j=1

|βj |q (2.34)

where q is a positive constant. This is referred to as the Bridge estimator
(Frank and Friedman, 1993). The �q penalty is strictly concave when 0 < q <
1, and strictly convex when q > 1. For q = 1, the resulting �1 penalized least-
squares is also known as the Lasso (Tibshirani, 1996). Chapter 3 covers the
Lasso in great detail. Among all Bridge estimators only the ridge regression
has a nice closed-form solution with a general design matrix.

2.6.3 Bayesian Interpretation

Ridge regression has a neat Bayesian interpretation in the sense that it
can be a formal Bayes estimator. We begin with the homoscedastic Gaussian
error model:

Yi =

p∑
j=1

Xijβj + εi

and εi|Xi ∼ N(0, σ2). Now suppose that βj ’s are also independent N(0, τ2)
variables, which represent our knowledge about the regression coefficients be-
fore seeing the data. In Bayesian statistics, N(0, τ2) is called the prior dis-
tribution of βj . The model and the prior together give us the posterior dis-
tribution of β given the data (the conditional distribution of β given Y,X).
Straightforward calculations yield

P (β|Y,X) ∝ exp(− 1

2σ2
‖Y −Xβ‖2) exp(− 1

2τ2
‖β‖2). (2.35)
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A maximum posteriori probability (MAP) estimate is defined as

β̂
MAP

= argmaxβP (β|Y,X)

= argmaxβ

{
− 1

2σ2
‖Y −Xβ‖2 − 1

2τ2
‖β‖2

}
. (2.36)

It is easy to see that β̂
MAP

is ridge regression with λ = σ2

τ2 . Another popular
Bayesian estimate is the posterior mean. In this model, the posterior mean
and posterior mode are the same.

From the Bayesian perspective, it is easy to construct a generalized ridge
regression estimator. Suppose that the prior distribution for the entire β vector
is N(0,Σ), where Σ is a general positive definite matrix. Then the posterior
distribution is computed as

P (β|Y,X) ∝ exp(− 1

2σ2
‖Y −Xβ‖2) exp(−1

2
βTΣ−1β). (2.37)

The corresponding MAP estimate is

β̂
MAP

= argmaxβP (β|Y,X)

= argmaxβ

{
− 1

2σ2
‖Y −Xβ‖2 − 1

2
βTΣ−1β

}
. (2.38)

It is easy to see that

β̂
MAP

= (XTX+ σ2Σ−1)−1XTY. (2.39)

This generalized ridge regression can take into account different scales of co-
variates, by an appropriate choice of Σ.

2.6.4 Ridge Regression Solution Path

The performance of ridge regression heavily depends on the choice of λ. In
practice we only need to compute ridge regression estimates at a fine grid of λ
values and then select the best from these candidate solutions. Although ridge
regression is easy to compute for a λ owing to its nice closed-form solution
expression, the total cost could be high if the process is repeated many times.
Through a more careful analysis, one can see that the solutions of ridge re-
gression at a fine grid of λ values can be computed very efficiently via singular
value decomposition.

Assume n > p and X is full rank. The singular value decomposition (SVD)
of X is given by

X = UDVT

where U is a n × p orthogonal matrix, V is a p × p orthogonal matrix and
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D is a p × p diagonal matrix whose diagonal elements are the ordered (from
large to small) singular values of X. Then

XTX = VDUTUDVT = VD2VT ,

XTX+ λI = VD2VT + λI = V(D2 + λI)VT ,

(XTX+ λI)−1 = V(D2 + λI)−1VT .

The ridge regression estimator β̂λ can now be written as

β̂λ = (XTX+ λI)−1XTY

= V(D2 + λI)−1DUTY

=

p∑
j=1

dj
d2j + λ

〈Uj ,Y〉Vj , (2.40)

where dj is the jth diagonal element of D and 〈Uj ,Y〉 is the inner product
between Uj and Y and Uj (Vj are respectively the jth column of U and V).
In particular, when λ = 0, ridge regression reduces to OLS and we have

β̂
OLS

= VD−1UTY =

p∑
j=1

1

dj
〈Uj ,Y〉Vj . (2.41)

Based on (2.40) we suggest the following procedure to compute ridge re-
gression at a fine grid λ1, · · · , λM :
1. Compute the SVD of X and save U,D,V.

2. Compute wj =
1
dj
〈Uj ·Y〉Vj for j = 1, · · · , p and save wjs.

3. For m = 1, 2 · · · ,M ,

(i). compute γj =
d2
j

d2
j+λm

(ii). compute β̂λm
=
∑p

j=1 γjwj .

The essence of the above algorithm is to compute the common vectors {wj}pj=1

first and then utilize (2.40).

2.6.5 Kernel Ridge Regression

In this section we introduce a nonparametric generalization of ridge re-
gression. Our discussion begins with the following theorem.
Theorem 2.4 Ridge regression estimator is equal to

β̂λ = XT (XXT + λI)−1Y (2.42)

and the fitted value of Y at x is

ŷ = xT β̂λ = xTXT (XXT + λI)−1Y (2.43)
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Proof. Observe the following identity

(XTX+ λI)XT = XTXXT + λXT = XT (XXT + λI).

Thus, we have

XT = (XTX+ λI)−1XT (XXT + λI)

and

XT (XXT + λI)−1 = (XTX+ λI)−1XT .

Then by using (2.27) we obtain (2.42) and hence (2.43).

It is important to see that XXT not XTX appears in the expression for
β̂λ. Note that XXT is a n × n matrix and its ij elements is 〈xi,xj〉. Sim-
ilarly, xTXT is an n-dimensional vector with the ith element being 〈x,xi〉
i = 1, · · · , n. Therefore, the prediction by ridge regression boils down to com-
puting the inner product between p-dimensional covariate vectors. This is the
foundation of the so-called “kernel trick”.

Suppose that we use another “inner product” to replace the usual inner
product in Theorem 2.4 then we may end up with a new ridge regression
estimator. To be more specific, let us replace 〈xi,xj〉 with K(xi,xj) where
K(·, ·) is a known function:

xTXT → (K(x,X1), · · · ,K(x,Xn)) ,

XXT → K = (K(Xi,Xj))1≤i,j≤n .

By doing so, we turn (2.43) into

ŷ = (K(x,X1), · · · ,K(x,Xn)) (K+ λI)−1Y =

n∑
i=1

α̂iK(x,Xi), (2.44)

where α̂ = (K+ λI)−1Y. In particular, the fitted Y vector is

Ŷ = K(K+ λI)−1Y. (2.45)

The above formula gives the so-called kernel ridge regression. Because XXT

is at least positive semi-definite, it is required that K is also positive semi-
definite. Some widely used kernel functions (Hastie, Tibshirani and Friedman,
2009) include

• linear kernel: K(xi,xj) = 〈xi,xj〉,
• polynomial kernel: K(xi,xj) = (1 + 〈xi,xj〉)d, d = 2, 3, · · · ,
• radial basis kernel: K(xi,xj) = e−γ‖xi−xj‖2

, γ > 0, which is the Gaussian
kernel, and K(xi,xj) = e−γ‖xi−xj‖, γ > 0, which is the Laplacian kernel.
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To show how we get (2.45) more formally, let us consider approximate the
multivariate regression by using the kernel basis functions {K(·,xj)}nj=1 so
that our observed data are now modeled as

Yi =

n∑
j=1

αjK(Xi,Xj) + εi

or in matrix form Y = Kα+ ε. If we apply the ridge regression

‖Y −Kα‖2 + λ

2
αKα,

the minimizer of the above problem is

α̂ = (KTK+ λK)−1KTY = {K(K+ λI)}−1KY,

where we use the fact K is symmetric. Assuming K is invertible, we easily get
(2.45).

So far we have only derived the kernel ridge regression based on heuristics
and the kernel trick. In section 2.7 we show that the kernel ridge regression
can be formally derived based on the theory of function estimation in a re-
producing kernel Hilbert space.

2.7 Regression in Reproducing Kernel Hilbert Space

A Hilbert space is an abstract vector space endowed by the structure of an
inner product. Let X be an arbitrary set and H be a Hilbert space of real-
valued functions on X , endowed by the inner product 〈·, ·〉H. The evaluation
functional over the Hilbert space of functions H is a linear functional that
evaluates each function at a point x:

Lx : f → f(x), ∀f ∈ H.

A Hilbert space H is called a reproducing kernel Hilbert space (RKHS) if, for
all x ∈ X , the map Lx is continuous at any f ∈ H, namely, there exists some
C > 0 such that

|Lx(f)| = |f(x)| ≤ C‖f‖H, ∀f ∈ H.

By the Riesz representation theorem, for all x ∈ X , there exists a unique
element Kx ∈ H with the reproducing property

f(x) = Lx(f) = 〈f,Kx〉H, ∀f ∈ H.

Since Kx is itself a function in H, it holds that for every x′ ∈ X , there exists
a Kx′ ∈ H such that

Kx(x
′) = 〈Kx, Kx′〉H.



REGRESSION IN REPRODUCING KERNEL HILBERT SPACE 45

This allows us to define the reproducing kernel K(x, x′) = 〈Kx, Kx′〉H. From
the definition, it is easy to see that the reproducing kernel K is a symmetric
and semi-positive function:

n∑
i,j=1

cicjK(xi, xj) =

n∑
i,j=1

cicj〈Kxi
, Kxj

〉H =
∥∥∥ n∑

i=1

ciKxi

∥∥∥2
H
≥ 0,

for all c′s and x′s. The reproducing Hilbert space is a class of nonparametric
functions, satisfying the above properties.

Let HK denote the reproducing kernel Hilbert space (RKHS) with kernel
K(x,x′) (Wahba, 1990; Halmos, 2017). Then, the kernel K(x,x′) admits the
eigen-decomposition

K(x,x′) =
∞∑
j=1

γjψj(x)ψj(x
′). (2.46)

where γj ≥ 0 are eigen-values and
∑∞

j=1 γ
2
j < ∞. Let g and g′ be any two

functions in HK with expansions in terms of these eigen-functions

g(x) =

∞∑
j=1

βjψj(x), g′(x) =
∞∑
j=1

β′
jψj(x)

and their inner product is defined as

〈g, g′〉HK
=

∞∑
j=1

βjβ
′
j

γj
. (2.47)

The functional �2 norm of g(x) is equal to

‖g‖2HK
= 〈g, g〉HK

=

∞∑
j=1

β2
j

γj
. (2.48)

The first property shows the reproducibility of the kernel K.
Theorem 2.5 Let g be a function in HK . The following identities hold:

(i). 〈K(·,x′), g〉HK
= g(x′),

(ii). 〈K(·,x1),K(·,x2)〉HK
= K(x1,x2).

(iii). If g(x) =
∑n

i=1 αiK(x,xi), then ‖g‖2HK
=
∑n

i=1

∑n
j=1 αiαjK(xi,xj).

Proof. Write g(x) =
∑∞

j=1 βjψj(x), by (2.46) we have K(x,x′) =∑∞
j=1(γjψj(x

′))ψj(x). Thus

〈K(·,x′), g〉HK
=

∞∑
j=1

βjγjψj(x
′)

γj
=

∞∑
j=1

βjψj(x
′) = g(x′).
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This proves part (i). Now we apply part (i) to get part (ii) by letting g(x) =
K(x,x2).

For part (iii) we observe that

‖g‖2HK
= 〈

n∑
i=1

αiK(x,xi),

n∑
j=1

αjK(x,xj)〉HK

=

n∑
i=1

n∑
j=1

αiαj〈K(x,xi),K(x,xj)〉HK

=

n∑
i=1

n∑
j=1

αiαjK(xi,xj),

where we have used part (ii) in the final step.

Consider a general regression model

Y = f(X) + ε (2.49)

where ε is independent of X and has zero mean and variance σ2. Given a
realization {(Xi, Yi)}ni=1 from the above model, we wish to fit the regression
function in HK via the following penalized least-squares:

f̂ = argminf∈HK

n∑
i=1

[Yi − f(Xi)]
2 + λ‖f‖2HK

, λ > 0. (2.50)

Note that without ‖f‖2HK
term there are infinite many functions in HK that

can fit the observations perfectly, i.e., Yi = f(Xi) for i = 1, · · · , n. By using
the eigen-function expansion of f

f(x) =

∞∑
j=1

βjψj(x), (2.51)

an equivalent formulation of (2.50) is

min
{βj}∞

j=1

n∑
i=1

[Yi −
∞∑
j=1

βjψj(Xi)]
2 + λ

∞∑
j=1

1

γj
β2
j . (2.52)

Define β∗
j =

βj√
γj

and ψ∗
j =

√
γjψj for j = 1, 2, · · · . Then (2.52) can be

rewritten as

min
{β∗

j }∞
j=1

n∑
i=1

[Yi −
∞∑
j=1

β∗
jψ

∗
j (Xi)]

2 + λ

∞∑
j=1

(β∗
j )

2. (2.53)

The above can be seen as a ridge regression estimate in an infinite dimensional
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space. Symbolically, our covariate vector is now (ψ∗
1(x), ψ

∗
2(x), · · · ) and the

enlarged design matrix is

Ψ =

⎛⎜⎝ψ
∗
1(X1) · · · ψ∗

j (X1) · · ·
... · · ·

... · · ·
ψ∗
1(Xn) · · · ψ∗

j (Xn) · · ·

⎞⎟⎠ .

Because Theorem 2.4 is valid for any finite dimensional covariate space, it
is not unreasonable to extrapolate it to the above infinite dimensional setting.
The key assumption is that we can compute the inner product in the enlarged
space. This is indeed true because

inner product =

∞∑
j=1

ψ∗
j (xi)ψ

∗
j (xi′) =

∞∑
j=1

γjψj(xi)ψj(xi′) = K(xi,xj).

Now we can directly apply the kernel ridge regression formula from Sec-
tion 2.6.5 to get

f̂(x) =

n∑
i=1

α̂iK(x,Xi), (2.54)

where K = (K(Xi,Xj))1≤i,j≤n and

α̂ = (K+ λI)−1Y. (2.55)

We have derived (2.54) by extrapolating Theorem 2.4 to an infinite dimen-
sional space. Although the idea seems correct, we still need a rigorous proof.
Moreover, Theorem 2.4 only concerns ridge regression, but it turns out that
(2.54) can be made much more general.

Theorem 2.6 Consider a general loss function L(y, f(x)) and let

f̂ = argminf∈HK

n∑
i=1

L(yi, f(xi)) + Pλ(‖f‖HK
), λ > 0.

where Pλ(t) is a strictly increasing function on [0,∞). Then we must have

f̂(x) =

n∑
i=1

α̂iK(x,Xi) (2.56)

where α̂ = (α̂1, · · · , α̂n) is the solution to the following problem

min
α

n∑
i=1

L

⎛⎝yi, n∑
j=1

αjK(x,xj)

⎞⎠+ Pλ(
√
αTKα). (2.57)
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Proof. Any function f in HK can be decomposed as the sum of two
functions: one is in the span {K(·,X1), · · · ,K(·,Xn)} and the other is in the
orthogonal complement. In other words, we write

f(x) =

n∑
i=1

αiK(x,Xi) + r(x)

where 〈r(x),K(x,Xi)〉HK
= 0 for all i = 1, 2, · · · , n. By part (i) of Theo-

rem 2.5 we have

r(xi) = 〈r,K(·,Xi)〉HK
= 0, 1 ≤ i ≤ n.

Denote by g(x) =
∑n

i=1 αiK(x,Xi). Then we have g(Xi) = f(Xi) for all i,
which implies

n∑
i=1

L(Yi, f(Xi)) =

n∑
i=1

L(Yi, g(Xi)). (2.58)

Moreover, we notice

‖f‖2HK
= 〈g + r, g + r〉HK

= 〈g, g〉HK
+ 〈r, r〉HK

+ 2〈g, r〉HK

and

〈g, r〉HK
=

n∑
i=1

αi〈K(·,Xi), r〉HK
= 0.

Thus ‖f‖2HK
= ‖g‖2HK

+‖r‖2HK
. Because Pλ(·) is a strictly increasing function,

we then have
Pλ(‖f‖HK

) ≥ Pλ(‖g‖HK
) (2.59)

and the equality holds if and only if f = g. Combining (2.58) and (2.59) we
prove (2.56).

To prove (2.57), we use (2.56) and part (iii) of Theorem 2.5 to write

‖f‖2HK
= αTKα. (2.60)

Hence Pλ(‖f‖HK
) = Pλ(

√
αTKα) under (2.56) .

Theorem 2.6 is known as the representer theorem (Wahba, 1990). It shows
that for a wide class of statistical estimation problems in a RKHS, although the
criterion is defined in an infinite dimensional space, the solution always has a
finite dimensional representation based on the kernel functions. This provides
a solid mathematical foundation for the kernel trick without resorting to any
optimization/computational arguments.

Let the loss function in Theorem 2.6 be the squared error loss and
Pλ(t) = λt2. Then Theorem 2.6 handles the problem defined in (2.50) and
(2.57) reduces to

min
α
‖Y −Kα‖2 + λαTKα. (2.61)
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Table 2.1: A list of Commonly used kernels.

Linear kernel K(xi,xj) = 〈xi,xj〉
Polynomial kernel K(xi,xj) = (1 + 〈xi,xj〉)d
Gaussian kernel K(xi,xj) = e−γ‖xi−xj‖2

Laplacian kernel K(xi,xj) = e−γ‖xi−xj‖

It is easy to see the solution is

α̂ = (K+ λI)−1Y.

which is identical to (2.55). The fitted multivariate nonparametric regression
function is given by (2.56). In practice, one takes a kernel function from the
list of linear, polynomial, Gaussian or Laplacian kernels given in Table 2.1.
It remains to show how to choose the regularization parameter λ (and γ for
Gaussian and Laplacian kernels) to optimize the prediction performance. This
can be done by cross-validation methods outlined in the next section.

2.8 Leave-one-out and Generalized Cross-validation

We have seen that both ridge regression and the kernel ridge regression use
a tuning parameter λ. In practice, we would like to use the data to pick a data-
driven λ in order to achieve the “best” estimation/prediction performance.
This problem is often called tuning parameter selection and is ubiquitous in
modern statistics and machine learning. A general solution is k-fold cross-
validation (CV), such as 10-fold or 5-fold CV. k-fold CV estimates prediction
errors as follows.
• Divide data randomly and evenly into k subsets.

• Use one of the subsets as the testing set and the remaining k− 1 subsets of
data as a training set to compute testing errors.

• Compute testing errors for each of k subsets of data and average these
testing errors.

An interesting special case is the n-fold CV, which is also known as the leave-
one-out CV.

In this section we focus on regression problems under the squared error loss.
Following the above scheme, the leave-one-out CV error, using the quadratic
loss, is defined as

CV =
1

n

n∑
i=1

(Yi − f̂ (−i)(Xi))
2, (2.62)

where f̂ (−i)(Xi) is the predicted value at xi computed by using all the data
except the ith observation. So in principle we need to repeat the same data
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Table 2.2: A list of commonly used regression methods and their S matrices.
djs are the singular values of X and γis are the eigenvalues of K.

Method S trS

Multiple Linear Regression X(XTX)−1XT p

Ridge Regression X(XTX+ λI)−1XT
∑p

j=1

d2
j

d2
j+λ

Kernel Regression in RKHS K(K+ λI)−1
∑n

i=1
γi

γi+λ

fitting process n times to compute the leave-one-out CV. Fortunately, we can
avoid much computation for many popular regression methods.

A fitting method is called a linear smoother if we can write

Ŷ = SY (2.63)

for any dataset {(Xi, Yi}n1 where S is a n×n matrix that only depends on X.
Many regression methods are linear smoothers with different S matrices. See
Table 2.2.

Assume that a linear smoother is fitted on {Xi, Yi}ni=1. Let x be a new co-

variate vector and f̂(x) be its the predicted value by using the linear smoother.

We then augment the dataset by including (x, f̂(x)) and refit the linear
smoother on this augmented dataset. The linear smoother is said to be self-
stable if the fit based on the augmented dataset is identical to the fit based
on the original data regardless of x.

It is easy to check that the three linear smoothers in Table 2.2 all have the
self-stable property.

Theorem 2.7 For a linear smoother Ŷ = SY with the self-stable property,
we have

Yi − f̂ (−i)(Xi) =
Yi − Ŷi
1− Sii

, (2.64)

and its leave-one-out CV error is equal to 1
n

∑n
i=1

(
Yi−̂Yi

1−Sii

)2
.

Proof. We first apply the linear smoother to all the data except the ith
to compute f̂ (−i)(Xi). Write ỹj = yj for j �= i and ỹi = f̂ (−i)(Xi). Then we
apply the linear smoother to the following working dataset:

{(Xj , Yj), j �= i, (Xi, Ỹi)}

The self-stable property implies that the fit stays the same. In particular,

Ỹi = f̂ (−i)(Xi) = (SỸ)i = SiiỸi +
∑
j �=i

SijYj (2.65)
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and
Ŷi = (SY)i = SiiYi +

∑
j �=i

SijYj . (2.66)

Combining (2.65) and (2.66) yields

Ỹi =
Ŷi − SiiYi
1− Sii

.

Thus,

Yi − Ỹi = Yi −
Ŷi − SiiYi
1− Sii

=
Yi − Ŷi
1− Sii

.

The proof is now complete.
Theorem 2.7 shows a nice shortcut for computing the leave-one-out CV er-

ror of a self-stable linear smoother. For some smoothers trS can be computed
more easily than its diagonal elements. To take advantage of this, general-
ized cross-validation (GCV) (Golub, Heath and Wahba, 1979) is a convenient
computational approximation to the leave-one-out CV error. Suppose that we
approximate each diagonal elements of S by their average which equals trS

n ,
then we have

1

n

n∑
i=1

(
Yi − Ŷi
1− Sii

)2

≈ 1

n

∑n
i=1(Yi − Ŷi)2
(1− trS

n )2
:= GCV.

In the literature trS is called the effective degrees of freedom of the linear
smoother. Its rigorous justification is based on Stein’s unbiased risk estimation
theory (Stein, 1981; Efron, 1986). In Table 2.2 we list the degrees of freedom
of three popular linear smoothers.

Now we are ready to handle the tuning parameter selection issue in the
linear smoother. We write S = Sλ and

GCV(λ) =
1

n

YT (I− Sλ)
2Y

(1− trSλ

n )2
.

According to GCV, the best λ is given by

λGCV = argminλ
1

n

YT (I− Sλ)
2Y

(1− trSλ

n )2
.

2.9 Exercises

2.1 Suppose that {Xi, Yi}, i = 1, · · · , n is a random sample from linear
regression model (2.1). Assume that the random error ε ∼ N(0, σ2) and is
independent of X = (X1, · · · , Xp)

T .
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(a) Show that the maximum likelihood estimate of β is the same as its
least squares estimator, while the maximum likelihood estimate of σ2 is
RSS /n, where RSS =

∑n
i=1(Yi −XT

i β̂)
2 is the residual sum-of-squares

and β̂ is the least squares estimator.

(b) Assume that X is of full rank. Show that RSS ∼ σ2χ2
n−p.

(c) Prove that 1−α CI for βj is β̂j± tn−p(1−α/2)
√
vj RSS /(n− p), where

vj is the jth diagonal element of (XTX)−1.

(d) Dropping the normality assumption, if {Xi} are independent and identi-
cally distributed from a population with EX1X

T
1 = Σ and independent

of {εi}ni=1, which are independent and identically distributed from a
population with E ε = 0 and Var(ε) = σ2, show that

√
n(β̂ − β)

d−→ N(0, σ2Σ−1).

2.2 Suppose that a random sample of size n from linear regression model
(2.1), where the random error ε ∼ N(0, σ2) and is independent of
(X1, · · · , Xp). Consider a general linear hypothesis H0 : Cβ = h versus
H0 : Cβ �= h, where C is q × p constant matrix with rank q (≤ p), and h
is a q × 1 constant vector.

(a) Derive the least squares estimator of β under H0, denoted by β̂0.

(b) Define RSS1 = ‖Y−Xβ̂‖2 and RSS0 = ‖Y−Xβ̂0‖2, the residual sum-of-
squares under H1 and H0. Show that RSS1 /σ

2 ∼ χ2
n−p. Further, under

the null hypothesis H0, (RSS0−RSS1)/σ
2 ∼ χ2

q and is independent of
RSS1.

(c) Show that Under H0, F = {(RSS0−RSS1)/q}/{RSS1 /(n− p)} follows
an Fq,n−p distribution.

(d) Show that the F -test for H0 is equivalent to the likelihood ratio test for
H0.

2.3 Suppose that we have n independent data Yi ∼ N(μ, σ2
i ), where σi =

σ2vi with known vi. Use the weighted least-squares method to find an
estimator of μ. Show that it is the best linear unbiased estimator. Compare
the variance of the sample mean ȳ with that of the weighted least-squares
estimator v2i = log(i+ 1) when n = 20.

2.4 Consider the linear model Y = Xβ+ ε, where ε ∼ N(0,Σ), and X is of
full rank.

(a) Show that the general least-squares estimator, which minimizes (Y −
Xβ)TΣ−1(Y − Xβ), is the best linear unbiased estimator. More pre-

cisely, for any vector c �= 0, cT β̂ is the best linear estimator of β. Do we
need the normality assumption?

(b) Deduce from Part (a) that the weighted least-squares estimator is the
best linear unbiased estimator, when the error distribution is uncorre-
lated.
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(c) If Σ is the equi-correlation matrix with unknown correlation ρ, what is
the solution to Part (a)?

2.5 Suppose that Y1, · · · , Yn are random variables with common mean μ
and covariance matrix σ2V, where V is of the form vii = 1 and vij = ρ
(0 < ρ < 1) for i �= j.

(a) Find the generalized least squares estimate of μ.

(b) Show that it is the same as the ordinary least squares estimate.

2.6 Suppose that data {Xi1, · · · , Xip, Yi}, i = 1, · · · , n, are an independent
and identically distributed sample from the model

Y = f(X1β1 + · · ·+Xpβp + ε),

where ε ∼ N(0, σ2) with unknown σ2, and f(·) is a known, differentiable,
strictly increasing, non-linear function.

(a) Consider transform Y ∗
i = h(Yi), where h(·) is a differentiable function

yet to be determined. Show that Var(Y ∗
i ) =constant for all i leads to

the equation: [h′{f(u)}]2{f ′(u)}2 =constant for all u.

(b) Let f(x) = xp (p > 1). Find the correspondent h(·) using the equation
in (a).

(c) Let f(x) = exp(x). Find the corresponding h transform.

2.7 The data set ‘hkepd.txt’ consist of daily measurements of levels of air
pollutants and the number of total hospital admissions for circulatory and
respiratory problems from January 1, 1994 to December 31, 1995 in Hong
Kong. This data set can be downloaded from this book website. Of inter-
est is to investigate the association between the number of total hospital
admissions and the levels of air pollutants.
We set the Y variable to be the number of total hospital admissions and
the X variables the levels of air pollutants. Define

X1 = the level of sulfur dioxide (μg/m3);

X2 = the level of nitrogen dioxide (μg/m3);

X3 = the level of dust (μg/m3).

(a) Fit the data to the following linear regression model

Y = β0 + β1X1 + β2X2 + β3X3 + ε, (2.67)

and test whether the level of each air pollutant has significant impact
on the number of total hospital admissions.

(b) Construct residual plots and examine whether the random error approx-
imately follows a normal distribution.

(c) Take Z = log(Y ) and fit the data to the following linear regression model

Z = β0 + β1X1 + β2X2 + β3X3 + ε, (2.68)
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and test whether the level of each air pollutant has significant impact
on the logarithm of the number of total hospital admissions.

(d) Construct residual plots based on model (2.68) and compare this residual
plot with the one obtained in Part (b).

(e) Since the observations in this data set were collected over time, it is
of interest to explore the potential seasonal trends on the total number
of hospital admissions. For simplicity, define t to be the day at which
data were collected. This corresponds to the first column of the data set.
Consider time-varying effect model

Z = β0(t) + β1(t)X1 + β2(t)X2 + β3(t)X3 + ε, (2.69)

which allows the effects of predictors varying over time. Model (2.69)
indeed is a nonparametric regression model. Fit model (2.69) to the data
by using nonparametric regression techniques introduced in Section 2.5.

(f) For model (2.69), construct an F -type test for H0 : β3(·) ≡ 0 (i.e., the
level of dust not significant) by comparing their residual sum of squares
under H0 and H1.

2.8 The data set ‘macroecno.txt’ consist of 129 macroecnomic time series
and can be downloaded from this book website. Let the response Yt =
log(PCEt) be the personal consumption expenditure. Define covariates as
follows.

Xt,1 = log(PCEt−1), Xt,2 = Unratet−1, Xt,3 = Δ log(IndProt),

Xt,4 = Δ log(M2Realt), Xt,5 = Δ log(CPIt), Xt,6 = Δlog(SPYt),

Xt,7 = HouStat, Xt,8 = FedFundt

Set the last 10 years data as testing data and remaining as training data.
Conduct linear regression analysis and address the following questions.

(a) What are σ̂2, adjusted R2 and insignificant variables?

(b) Conduct the stepwise deletion, eliminating one least significant variable
at a time (by looking at the small |t|-statistic) until all variables are

statistically significant. Name this model as model M̂. (The function
step can do the job automatically)

(c) Using model M̂, what are root mean-square prediction error and mean
absolute deviation prediction error for the test sample?

(d) Compute the standardized residuals. Present the time series plot of the
residuals, fitted values versus the standardized residuals, and QQ plot
for the standardized residuals.

(e) Compare the result in part (c) with the nonparametric model using
Gaussian kernel with γ = 1/4 (standardize predictors first) and λ chosen
by 5-fold CV or GCV.
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2.9 Zillow is an online real estate database company that was founded in
2006. The most important task for Zillow is to predict the house price.
However, their accuracy has been criticized a lot. According to Fortune,
“Zillow has Zestimated the value of 57 percent of U.S. housing stock, but
only 65 percent of that could be considered ‘accurate’ by its definition,
within 10 percent of the actual selling price. And even that accuracy isn’t
equally distributed”. Therefore, Zillow needs your help to build a housing
pricing model to improve their accuracy. Download the data from the book
website, and read the data (traing data: 15129 cases, testing data: 6484
cases)

train.data <- read.csv(’train.data.csv’, header=TRUE)

test.data <- read.csv(’test.data.csv’, header=TRUE)

train.data$zipcode <- as.factor(train.data$zipcode)

test.data$zipcode <- as.factor(test.data$zipcode)

where the last two lines make sure that zip code is treated as factor. Let T
be a test set, define out-of-sample R2 as of a prediction method {ŷpredi } as

R2 = 1−
∑

i∈T (yi − ŷ
pred
i )2∑

i∈T (yi − ȳpred)2
,

where ȳpred = ave({yi}i∈T0) and T0 is the training set.

(a) Calculate out-of-sample R2 using variables “bedrooms”, “bathrooms”,
“sqft living”, and “sqft lot”.

(b) Calculate out-of-sample R2 using the 4 variables above along with inter-
action terms.

(c) Compare the result with the nonparametric model using Gaussian kernel
with γ = 0.3−2/2 and γ = 0.1−2/2 (standardize predictors first) and λ
chosen by 5-fold CV or GCV. Hint: To speed up computation, please
divide data randomly into 10 pieces and get 10 predicted values based
on 10 fitted kernel models. Use the median as these 10 predicted values
as your final prediction.

(d) Add the factor zipcode to (b) and compute out-of-sample R2.

(e) Add the following additional variables to (d): X12 = I(view == 0),
X13 = L2, X13+i = (L− τi)2+, i = 1, · · · , 9, where τi is 10 ∗ ith percentile
and L is the size of living area (“sqft living”). Compute out-of-sample
R2.

(f) Why do you see the increased out-of-sample R2 with modeling complex-
ity?
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Chapter 3

Introduction to Penalized Least-Squares

Variable selection is vital to high-dimensional statistical learning and in-
ference, and is essential for scientific discoveries and engineering innovation.
Multiple regression is one of the most classical and useful techniques in statis-
tics. This chapter introduces penalized least-squares approaches to variable
selection problems in multiple regression models. They provide fundamental
insights and basis for model selection problems in other more sophisticated
models.

3.1 Classical Variable Selection Criteria

In this chapter, we will follow the notation and model introduced in Chap-
ter 2. To reduce noise accumulation and to enhance interpretability, variable
selection techniques have been popularly used even in traditional statistics.
When the number of predictors p is larger than the sample size n, the model
parameters in the linear model (2.2) are not identifiable. What makes them
estimable is the sparsity assumption on the regression coefficients {βj}pj=1:
many of them are too small to matter, so they are ideally regarded as zero.
Throughout this chapter, we assume the linear model (2.1):

Y = β1X1 + · · ·+ βpXp + ε,

unless otherwise stated.

3.1.1 Subset selection

One of the most popular and intuitive variable selection techniques is the
best subset selection. Among all models with m variables, pick the one with
the smallest residual sum of squares (2.3), which is denoted by RSSm. This is
indeed very intuitive: among the models with the same complexity, a better
fit is preferable. This creates a sequence of submodels {Mm}pm=0 indexed by
the model size m. The choice of the model size m will be further illuminated
in Section 3.1.3.

Computation of the best subset method is expensive even when p is mod-
erately large. At each step, we compare the goodness-of-fit among

(
p
m

)
models

of size m and there are 2p submodels in total. Intuitive and greedy algorithms

57
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have been introduced to produce a sequence of submodels with different num-
bers of variables. These include forward selection also called stepwise addition,
backward elimination also named stepwise deletion, and stepwise regression.
See for example, Weisberg (2005).

Forward selection recruits one additional regressor at a time to optimize
the fit. Starting with Ma

0 as the empty set, at step m one chooses a variable
not in Ma

m−1 along with the m− 1 variables in Ma
m−1 to minimize the RSS.

At step m, only p − m + 1 submodels instead of
(
p
m

)
of size m are fitted

and compared. The total number of regressions is only p(p + 1)/2, which is
considerably less than 2p. Of course, the sequence of submodels {Ma

m}pm=0

may not have been as good of a fit as the models produced by the best subset
selection.

Backward elimination deletes one least statistically significant variable in
each fitted model. Starting from the full modelMp, denoted also byMd

p, one
eliminates the least statistically significant variable in the full model, resulting
in a model Md

p−1. We then use the variables in Md
p−1 to fit the data again

and delete the least statistically significant variable to obtain model Md
p−2,

continuing this process to yield a sequence of models {Md
m}pm=0.

In classical statistics, one does not produce the full sequence of the models
in the forward selection and backward elimination methods. One often sets
a very simple stopping criterion such as when all variables are statistically
significant (e.g. P-values for each fitted coefficient is smaller than 0.05).

When p is larger than n, backward elimination cannot be applied since we
cannot fit the full model. Yet, the forward selection can still be used to select
a sequence of submodels. When p < n or when p is relatively large compared
to n, backward elimination cannot produce a stable selection process, but
forward selection can as long as it is stopped early enough. These are the
advantages of the forward selection algorithm.

Stepwise regression is a combination of backward elimination and forward
selection procedures. We omit its details. Other greedy algorithms include
matching pursuit (Mallot and Zhang, 1993), which picks the most correlated
variable with the residuals from the previous step of fitting, also referred to as
partial residuals, and runs the univariate regression to fit the partial residuals.
See Section 3.5.11 for additional details.

3.1.2 Relation with penalized regression

Best subset selection can be regarded as penalized least-squares (PLS).
Let ‖β‖0 be the L0-norm of the vector β, which counts the number of non-
vanishing components of β. Consider the penalized least-squares with L0

penalty:
‖Y −Xβ‖2 + λ‖β‖0. (3.1)

The procedure is also referred to as complexity or entropy based PLS. Clearly,
given the model size ‖β‖0 = m, the solution to the penalized least-squares
(3.1) is the best subset selection. The computational complexity is NP-hard.
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The stepwise algorithms in the last subsection can be regarded as greedy
(approximation) algorithms for penalized least-squares (3.1).

Recall RSSm is the smallest residual sum of squares among models with
size m. With this definition, minimization of (3.1) can be written as

RSSm + λm. (3.2)

The optimal model size is obtained by minimizing (3.2) with respect to m.
Clearly, the regularization parameter λ dictates the size of the model. The
larger the λ, the larger the penalty on the model complexity m, the smaller
the selected model.

3.1.3 Selection of regularization parameters

The best subset technique does not tell us the choice of model size m. The
criterion used to compare two models is usually the prediction error. For a
completely new observation (X∗T , Y ∗), the prediction error of using model
Mm is

PE(Mm) = E(Y ∗ − β̂
T

mX∗
Mm

)2,

where β̂m is the fitted regression coefficient vector with m variables, X∗
Mm

is
the subvector of X∗ with the selected variables, and the expectation is taken
only with respect to the new random variable (X∗T , Y ∗).

An unbiased estimation of the prediction error nPE(Mm) was derived by
Mallows (1973) (after ignoring a constant; see Section 3.6.1 for a derivation):

Cp(m) = RSSm + 2σ2m. (3.3)

This corresponds to taking λ = 2σ2 in the penalized least-squares problem
(3.1) or (3.2). The parameter m is chosen to minimize (3.3), which is often
referred to as Mallow’s Cp criterion.

Akaike (1973, 1974) derived an approximately unbiased estimate of the
prediction error (in terms of the Kullback-Leibler divergence) in a general
likelihood based model. His work is regarded as one of the important break-
throughs in statistics in the twentieth century. Translating his criterion into
the least-squares setting, it becomes

AIC(m) = log(RSSm/n) + 2m/n,

which is called the Akaike information criterion (AIC). Note that when
RSSm/n ≈ σ2, which is correct whenMm contains the true model, by Taylor’s
expansion,

log(RSSm/n) = log σ2 + log(1 + RSSm/(nσ
2)− 1)

≈ log σ2 + (RSSm/(nσ
2)− 1).

Therefore,
AIC(m) ≈ [RSSm + 2σ2m]/(nσ2) + log σ2 − 1,
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which is approximately the same as the Cp criterion (3.3) after ignoring the
affine transformation.

Many information criteria have been derived since the pioneering work of
Akaike and Mallow. They correspond to different choices of λ in

IC(m) = log(RSSm/n) + λm/n. (3.4)

Examples include
• Bayesian information criterion (BIC, Schwarz, 1978): λ = log(n)σ2;

• φ-criterion (Hannan and Quinn, 1979; Shibata, 1984): λ = c(log log n)σ2;

• Risk inflation criterion (RIC, Foster and George, 1994): λ = 2 log(p)σ2.

Using the Taylor expansion above, the information criterion (3.4) is asymptot-
ically equivalent to (3.2). An advantage of using these information criterions
over criterion (3.2) is that they do not need to estimate σ2. But this also cre-
ates the bias issue. In particular, when a submodel contains modeling biases,
AIC is no longer an approximately unbiased estimator. The issue of model
selection consistency has been thoroughly studied in Shao (1997).

In summary, the best subset method along with an information criterion
corresponds to the L0-penalized least-squares with penalty parameters λ being
a multiple 2, log(n), c log log n, and 2 log p of σ2, respectively for the AIC, BIC,
φ-criterion, and RIC.

Cross-validation (Allen 1974; Stone, 1974) is a novel and widely applicable
idea for estimating prediction error of a model. It is one of the most widely
used and innovative techniques in statistics. It involves partitioning a sample
of data into a training set used to estimate model parameters and a testing
set reserved for validating the analysis of the fitted model. See Section 2.8.

In k-fold cross-validation, the original sample is randomly partitioned into
k approximately equal-sized subsamples with index sets {Sj}kj=1. Of the k
subsamples, a single subsample Sk is retained as the validation set, and the
remaining data {Sj}j �=k are used as a training set. The cross-validation process
is then repeated k times, with each of the k subsamples used exactly once
as the validation data. The prediction error of the k-fold cross-validation is
computed as

CVk(m) = n−1
k∑

j=1

{∑
i∈Sj

(Yi − β̂
T

m,−Sj
Xi,Mm)2

}
, (3.5)

where β̂m,−Sj
is the fitted coefficients of the submodelMm without using the

data indexed in Sj . The number of fittings is k, which is much smaller than
n. In practice, the popular choice of k is 5 or 10. An interesting choice of k
is n, which is called the leave-one-out cross-validation. The leave-one-out CV
error of the submodel Mm is

CV(m) = n−1
n∑

i=1

(Yi − β̂
T

m,−iXi,Mm
)2. (3.6)
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In general, the leave-one-out CV error is expensive to compute. For multiple
linear regression and other linear smoothers with self-stable property, there is
a neat formula for computing CV(m) without fitting the model n times. See
Theorem 2.7 in Section 2.8 of Chapter 2. Another simplification of CV(m) is
to use generalized cross-validationGeneralized Cross-Validation (GCV, Craven
and Wahba, 1979), defined by

GCV(m) =
RSSm

n(1−m/n)2 . (3.7)

By using a simple Taylor expansion,

(1−m/n)−2 = 1 + 2m/n+ o(m/n)

and RSSm/n ≈ σ2, one can easily see that GCV(m) is approximately the
same as Cp(m)/n.

A classical choice of m is to maximize the adjusted multiple R2, defined
by

R2
adj,m = 1− n− 1

n−m
RSSm
RSS0

, (3.8)

where RSS0 is the sample standard deviation of the response variable {Yi}.
This is equivalent to minimizing RSSm/(n−m). Derived the same way as the
GCV, it corresponds to approximately λ = σ2 in (3.2).

3.2 Folded-concave Penalized Least Squares

The complexity based PLS (3.1) possesses many nice statistical properties,
as documented in the paper by Barron, Birgé and Massart (1999). However,
its minimization problem is impossible to carry out when the dimensionality
is high. A natural relaxation is to replace the discontinuous L0-penalty by
more regular functions. This results in penalized least-squares

Q(β) =
1

2n
‖Y −Xβ‖2 +

p∑
j=1

pλ(|βj |)

≡ 1

2n
‖Y −Xβ‖2 + ‖pλ(|β|)‖1, (3.9)

where pλ(·) is a penalty function in which the regularization or penalization
parameters λ are the same for convenience of presentation.

A natural choice is pλ(θ) = λθ2/2, whose solution is ridge regression

β̂ridge = (XTX+ nλIp)
−1XTY, (3.10)

which is also called the Tikhonov regularization (Tikhonov, 1943). The estima-
tor shrinks all components toward zero, but none of them are actually zero. It
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does not have a model selection property and creates biases for large param-
eters. In order to reduce the bias, Frank and Friedman (1993) propose to use
pλ(θ) = λ|θ|q for 0 < q < 2, called the bridge regression, which bridges the best
subset selection (penalized L0) and ridge regression (penalized L2). Donoho
and Johnstone (1994), Tibshirani (1996) and Chen, Donoho and Sanders
(1998) observe that penalized L1 regression leads to a sparse minimizer and
hence possesses a variable selection property. The procedure is called Lasso
by Tibshirani (1996), for ‘least absolute shrinkage and selection operator’.
Unlike the complexity penalty pλ(|θ|) = λI(|θ| �= 0), Lasso solves a convex
optimization problem. This gives the Lasso huge computational advantages.
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Figure 3.1: (a) The entropy or complexity penalty L0 (green solid), L1-penalty
(blue dash), and the smoothly clipped L1-penalty (SCAD, red dotdash).
Clearly, SCAD inherits desired properties from L0 and L1 penalty at tails and
the origin. (b) Solution to the penalized least-squares (3.12) (a=3.7, λ = 2 for
SCAD)

As shown in Figure 3.1, L1-penalty differs substantially from L0-penalty.
It penalizes the large parameters too much. To further reduce the bias in
the estimation, Antoniadis and Fan (2001) and Fan and Li (2001) intro-
duce folded concave penalized least-squares, in which pλ(θ) is symmetric and
concave on each side. In particular, the smoothly clipped absolute deviation
(SCAD) penalty [see (3.14) below] is introduced to improve the bias property.
As shown in Figure 3.1, SCAD behaves like the L1-penalty at the origin in or-
der to keep the variable selection property and acts like the L0-penalty at the
tails in order to improve the bias property of the L1-penalty. The smoothness
of the penalty function is introduced to ensure the continuity of the solution
for model stability.
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Let us examine what kind of penalty functions are desirable for variable
selection. Significant insights can be gained by studying a specific case in
which the design matrix is orthonormal.

3.2.1 Orthonormal designs

For an orthonormal design in which the design matrix multiplied by n−1/2

is orthonormal (i.e., XTX = nIp, which implies p ≤ n), (3.9) reduces to

1

2n
‖Y −Xβ̂‖2 + 1

2
‖β̂ − β‖2 + ‖pλ(|β|)‖1, (3.11)

where β̂ = n−1XTY is the ordinary least-squares estimate. Noticing that the
first term is constant, minimizing (3.11) becomes minimizing

p∑
j=1

{
1

2
(β̂j − βj)2 + pλ(|βj |)

}
,

which is a componentwise regression problem: each component consists of the
univariate PLS problem of the form

θ̂(z) = argmin
θ

{
1

2
(z − θ)2 + pλ(|θ|)

}
. (3.12)

Fan and Li (2001) advocate penalty functions that give estimators with
the following three properties:
1) Sparsity : The resulting estimator automatically sets small estimated coeffi-

cients to zero to accomplish variable selection and reduce model complexity.

2) Unbiasedness: The resulting estimator is nearly unbiased, especially when
the true coefficient βj is large, to reduce model bias.

3) Continuity : The resulting estimator is continuous in the data to reduce
instability in model prediction (Breiman, 1996).

The third property is nice to have, but not necessarily required.
Let pλ(t) be nondecreasing and continuously differentiable on [0,∞). As-

sume that the function −t − p′λ(t) is strictly unimodal on (0,∞) with the
convention p′λ(0) = p′λ(0+). Antoniadis and Fan (2001) characterize the prop-

erties of θ̂(z) as follows:

(1) Sparsity if mint≥0{t+ p′λ(t)} > 0, which holds if p′(0+) > 0;

(2) Approximate unbiasedness if p′λ(t) = 0 for large t;

(3) Continuity if and only if argmint≥0{t+ p′λ(t)} = 0.

Note that Properties 1) and 2) require the penalty functions to be folded-
concave. Fan and Li (2001) advocate to use a family of folded-concave penal-
ized likelihoods as a viable variable selection technique. They do not expect
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the form of the penalty functions to play a particularly important role pro-
vided that it satisfies Properties 1) – 3). Antoniadis and Fan (2001) show

further that θ̂(z) is an anti-symmetric shrinkage function:

|θ̂(z)| ≤ |z|, and θ̂(−z) = −θ̂(z). (3.13)

The approximate unbiasedness requires θ(z)/z → 1, as |z| → ∞.

3.2.2 Penalty functions

From the above discussion, singularity at the origin (i.e., p′λ(0+) > 0)
is sufficient for generating sparsity in variable selection and the concavity is
needed to reduce the estimation bias. This leads to a family of folded concave
penalty functions with singularity at the origin. The L1 penalty can be re-
garded as both a concave and convex function. It falls on the boundary of the
family of the folded-concave penalty functions.

The Lq penalty with q > 1 is convex. It does not satisfy the sparsity con-
dition, whereas L1 penalty does not satisfy the unbiasedness condition. The
Lq penalty with 0 ≤ q < 1 is concave but does not satisfy the continuity
condition. In other words, none of the Lq penalties possesses all three afore-
mentioned properties simultaneously. For this reason, Fan (1997) introduces
the smoothly clipped absolute deviation (SCAD), whose derivative is given by

p′λ(t) = λ

{
I (t ≤ λ) +

(aλ− t)+
(a− 1)λ

I (t > λ)

}
for some a > 2, (3.14)

where pλ(0) = 0 and often a = 3.7 is used (suggested by a Bayesian argument
in Fan and Li, 2001). Now this satisfies the aforementioned three properties.
Note that when a =∞, SCAD reduces to the L1-penalty.

In response to Fan (1997), Antoniadis (1997) proposes the penalty function

pλ(t) =
1

2
λ2 − 1

2
(λ− t)2+, (3.15)

which results in the hard-thresholding estimator

θ̂H(z) = zI(|z| > λ). (3.16)

Fan and Li (2001) refer to this penalty function as the hard thresholding
penalty, whose derivative function is p′λ(t)/2 = (λ− t)+. An extension of this
penalty function, derived by Zhang (2010) from a minimax point of view, is
the minimax concave penalty (MCP), whose derivative is given by

p′λ(t) = (λ− t/a)+ . (3.17)

Note that the hard thresholding penalty corresponds to a = 1 and the MCP
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Figure 3.2: Some commonly used penalty functions (left panel) and their
derivatives (right panel). They correspond to the risk functions shown in the
right panel of Figure 3.3. More precisely, λ = 2 for hard thresholding penalty,
λ = 1.04 for L1-penalty, λ = 1.02 for SCAD with a = 3.7, and λ = 1.49 for
MCP with a = 2. Taken from Fan and Lv (2010).

does not satisfy the continuity property. But this is not that important as
noted before. Figure 3.2 depicts some of those commonly used penalty func-
tions.

3.2.3 Thresholding by SCAD and MCP

We now look at the PLS estimator θ̂(z) in (3.12) for some penalties. The
entropy penalty (L0 penalty) and the hard thresholding penalty (3.15) yield
the hard thresholding rule (3.16) (Donoho and Johnstone, 1994) and the L1

penalty gives the soft thresholding rule (Bickel, 1983; Donoho and Johnstone,
1994):

θ̂soft(z) = sgn(z)(|z| − λ)+. (3.18)

The SCAD and MCP give rise to analytical solutions to (3.12), each of which
is a linear spline in z. For the SCAD penalty, the solution is

θ̂SCAD(z) =

⎧⎨⎩ sgn(z)(|z| − λ)+, when |z| ≤ 2λ;
sgn(z)[(a− 1)|z| − aλ]/(a− 2), when 2λ < |z| ≤ aλ;
z, when |z| ≥ aλ.

.

(3.19)
See Fan (1997) and Figure 3.1(b). Note that when a =∞, the SCAD estimator
becomes the soft-thresholding estimator (3.18).

For the MCP with a ≥ 1, the solution is

θ̂MCP(z) =

{
sgn(z)(|z| − λ)+/(1− 1/a), when |z| < aλ;
z, when |z| ≥ aλ.

(3.20)

It has discontinuity points at |z| = λ, which can create model instability. In
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particular, when a = 1, the solution is the hard thresholding function θ̂H(z)
(3.16). When a =∞, it also becomes a soft-thresholding estimator.

In summary, SCAD and MCP are folded concave functions. They are gen-
eralizations of the soft-thresholding and hard-thresholding estimators. The
former is continuous whereas the latter is discontinuous.

3.2.4 Risk properties
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Figure 3.3: The risk functions for penalized least squares under the Gaussian
model with the hard-thresholding penalty, L1-penalty, SCAD (a = 3.7), and
MCP (a = 2). The left panel corresponds to λ = 1 and the right panel
corresponds to λ = 2 for the hard-thresholding estimator, and the rest of
parameters are chosen so that their risks are the same at the point θ = 3.
Adapted from Fan and Lv (2010).

We now numerically compare the risk property of several commonly
thresholded-shrinkage estimators under the fundamental model Z ∼ N(θ, 1).
Let

R(θ) = E(θ̂(Z)− θ)2

be the risk function for the estimator θ̂(Z). Figure 3.3 depicts R(θ) for some
commonly used penalty functions. To make them comparable, we chose λ = 1
and 2 for the hard thresholding penalty, and for other penalty functions the
values of λ are selected to make their risks at θ = 3 the same as that of the
hard thresholding estimator θ̂H(z).

Figure 3.3 shows that the PLS estimators improve the ordinary least
squares estimator Z in the region where θ is near zero, and have the same
risk as the ordinary least squares estimator when θ is far away from zero (e.g.,
4 standard deviations away). An exception to this is the Lasso estimator. The
Lasso estimator has a bias approximately of size λ for large θ, and this causes
higher risk as shown in Figure 3.3. The better risk property at the origin is
the payoff that we earn for exploring sparsity.
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When λhard = 2, Lasso has higher risk than the SCAD estimator except
in a small region. Lasso prefers smaller λ due to its bias. For λhard = 1, Lasso
outperforms other methods near the origin. As a result, when λ is chosen
automatically by data, Lasso has to choose a smaller λ in order to have a
desired mean squared error (to reduce the modeling bias). Yet, a smaller
value of λ yields a more complex model. This explains why Lasso tends to
have many false positive variables in selected models.

3.2.5 Characterization of folded-concave PLS

Folded-concave penalized least-squares (3.9) is in general a non-convex
function. It is challenging to characterize the global solution so let us first
characterize its local minimizers.

From Lv and Fan (2009) and Zhang (2010), the local concavity of the
penalty pλ(·) at v = (v1, · · · , vq)T is defined as

κ(pλ;v) = lim
ε→0+

max
1≤j≤q

sup
t1<t2∈(|vj |−ε,|vj |+ε)

−p
′
λ(t2)− p′λ(t1)

t2 − t1
. (3.21)

By the concavity of pλ on [0,∞), κ(pλ;v) ≥ 0. It is easy to see by the mean-
value theorem that κ(pλ;v) = max1≤j≤q −p′′λ(|vj |) when the second derivative
of pλ(·) is continuous. For the L1 penalty, κ(pλ;v) = 0 for any v. For the SCAD
penalty, κ(pλ;v) = 0 unless some component of |v| takes values in [λ, aλ]. In
the latter case, κ(pλ;v) = (a− 1)−1λ−1.

Let λmin(A) be the minimum eigenvalue of a symmetric matrix A and
‖a‖∞ = maxj |aj |. Lv and Fan (2009) prove the following result. The gap
between the necessary condition for local minimizer and sufficient condition
for strict local minimizer is tiny (non-strict versus strict inequalities).

Theorem 3.1 (Characterization of PLSE) Assume that pλ(|θ|) is folded

concave. Then a necessary condition for β̂ ∈ Rp being a local minimizer of
Q(β) defined by (3.9) is

n−1XT
1 (Y −Xβ̂)− p′λ(|β̂1|) sgn(β̂1) = 0, (3.22)

‖n−1XT
2 (Y −Xβ̂)‖∞ ≤ p′λ(0+), (3.23)

λmin(n
−1XT

1 X1) ≥ κ(pλ; β̂1), (3.24)

where X1 and X2 are respectively the submatrices of X formed by columns
indexed by supp(β̂) and its complement, and β̂1 is a vector of all non-vanishing

components β̂. On the other hand, if (3.22) – (3.24) hold with inequalities

replaced by strict inequalities, then β̂ is a strict local minimizer of Q(β).

Conditions (3.22) – (3.24) can be regarded as the Karush-Kuhn-Tucker
conditions. They can also be derived by using subgradient calculus. Condi-
tions (3.22) and (3.24) are respectively the first and second order conditions
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for (β̂1,0) to be the local minimizer of Q(β1,0), the local minimizer on the re-
stricted coordinate subspace. Condition (3.23) guarantees the local minimizer
on the restricted coordinate subspace is also the local minimizer of the whole
space Rp.

When Q(β) is strictly convex, there exists at most one local minimizer. In
this case, the local minimizer is also the unique global minimizer. For a folded
concave penalty function, let κ(pλ) be the maximum concavity of the penalty
function pλ defined by

κ(pλ) = sup
t1<t2∈(0,∞)

−p
′
λ(t2)− p′λ(t1)

t2 − t1
. (3.25)

For the L1 penalty, SCAD and MCP, we have κ(pλ) = 0, (a− 1)−1, and a−1,
respectively. Thus, the maximum concavity of SCAD and MCP is small when
a is large. When

λmin(n
−1XTX) > κ(pλ), (3.26)

the function Q(β) is strictly convex, as the convexity of the quadratic loss
dominates the maximum concavity of the penalty in (3.9). Hence, the global
minimum is unique. Note that condition (3.26) requires p ≤ n.

In general, the global minimizer of the folded-concave penalized least-
squares is hard to characterize. Fan and Lv (2011) are able to give conditions
under which a solution is global optimal on the union of all m-dimensional
coordinate subspaces:

Sm = {β ∈ Rp : ‖β‖0 ≤ m}. (3.27)

3.3 Lasso and L1 Regularization

Lasso gains its popularity due to its convexity and computational expe-
dience. The predecessor of Lasso is the negative garrote. The study of Lasso
also leads to the Dantzig selector, the adaptive Lasso and the elastic net.
This section touches on the basis of these estimators in which the L1-norm
regularization plays a central role.

3.3.1 Nonnegative garrote

The nonnegative garrote estimator, introduced by Breiman (1995), is the
first modern statistical method that uses the L1-norm regularization to do
variable selection in multiple linear regression. Consider the usual setting with
p < n and let β̂ = (β̂1, · · · , β̂p)T be the OLS estimator. When p > n, β̂ can
be the ridge regression estimator (Yuan and Lin, 2005), the main idea stays
the same. Then, the fitted model becomes

Ŷ = β̂1X1 + · · ·+ β̂pXp



LASSO AND L1 REGULARIZATION 69

The above model uses all variables. To do variable selection, we introduce the
nonnegative shrinkage parameter θ = (θ1, · · · , θp)T and regard β̂ as fixed, a
new fitted model becomes

Ŷ = θ1Z1 + · · ·+ θpZp, Zj = β̂jXj .

If θj is zero, then variable Xj is excluded from the fitted model. The nonneg-
ative garrote estimates θ via the following L1 regularized least squares:

min
θ≥0

1

2n
‖Y − Zθ‖2 + λ

∑
j

θj . (3.28)

Note that under the nonnegative constraints
∑p

j=1 θj = ‖θ‖1.
By varying λ, the nonnegative garrote automatically achieves model selec-

tion. Many components of the minimizer of (3.28), θ̂, will be zero. This can
be easily seen when X is scaled orthonormal XTX = nIp, as in Section 3.2.1.
In this case, {Zj} are still orthogonal and ZTZ is diagonal. The ordinary
least-squares estimator is given by

θ̂0 = (ZTZ)−1ZTY = (Z1/‖Z1‖2, · · · ,Zp/‖Zp‖2)TY.

Note that by the orthogonality of the least-squares fit to its residuals,

‖Y − Zθ‖2 = ‖Y − Zθ̂0‖2 + ‖Z(θ − θ̂0)‖2

= ‖Y − Zθ̂0‖2 +
p∑

j=1

‖Zj‖2(θj − θ̂j0)2,

where θ̂j0 = ZT
j Y/‖Zj‖2 is the jth component of θ0 and the last equality

utilizes the orthogonality of Zj . Therefore, problem (3.28) becomes

min
θ≥0

1

2

p∑
j=1

‖Zj‖2(θj − θ̂j0)2 + λ

p∑
j=1

θj .

This reduces to the componentwise minimization problem

min
θ≥0

1

2
(θ − θ0)2 + λθ,

whose minimizer is clearly θ̂ = (θ0 − λ)+ by taking the first derivative and

setting it to zero. Applying this to our scenario and noticing ‖Zj‖2 = nβ̂2
j and

θ̂j0 = n−1XT
j Y/β̂j we have

θ̂j =
(
θ̂j0 −

λ

‖Zj‖2
)
+
=
(XT

j Y

nβ̂j
− λ

nβ̂2
j

)
+
.
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In particular, if β̂ = n−1XTY is the ordinary least-squares estimate, then

θ̂j =
(
1− λ

nβ̂2
j

)
+
.

Model selection of the negative garrote now becomes clear. When |β̂j | ≤√
λ/n, it is shrunk to zero. The larger the original estimate, the smaller the

shrinkage. Furthermore, the shrinkage rule is continuous. This is in the same
spirit as the folded concave PLS such as SCAD introduced in the last section.

3.3.2 Lasso

Lasso, the term coined by Tibshirani (1996), estimates the sparse regres-
sion coefficient vector β by minimizing

1

2n
‖Y −Xβ‖2 + λ‖β‖1. (3.29)

This corresponds to (3.9) by taking pλ(θ) = λθ for θ ≥ 0. Comparing (3.29)
and (3.28), we see that the Lasso does not need to use a preliminary estimator
of β, although both use the L1-norm to achieve variable selection.

The KKT conditions (3.22)–(3.24) now become

n−1XT
1 (Y −X1β̂1)− λ sgn(β̂1) = 0, (3.30)

and
‖(nλ)−1XT

2 (Y −X1β̂1)‖∞ ≤ 1, (3.31)

since (3.24) is satisfied automatically. This first condition says that the signs of
nonzero components of Lasso are the same as the correlations of the covariates
with the current residual. The equations (3.30) and (3.31) imply that

‖n−1XT (Y −Xβ̂)‖∞ ≤ λ. (3.32)

Note that condition (3.31) holds for β̂ = 0 when

λ > ‖n−1XTY‖∞. (3.33)

Since the condition is imposed with a strict inequality, it is a sufficient con-
dition (Theorem 3.1). In other words, when λ > ‖n−1XTY‖∞, β̂ = 0 is the
unique solution and hence Lasso selects no variables. Therefore, we need only
to consider λ in the interval [0, ‖n−1XTY‖∞].

We now look at the model selection consistency of Lasso. Assuming the
invertibility of XT

1 X1, solving equation (3.30) gives

β̂1 = (XT
1 X1)

−1(XT
1 Y − nλ sgn(β̂1)), (3.34)

and substituting this into equation (3.31) yields

‖(nλ)−1XT
2 (In −PX1

)Y +XT
2 X1(X

T
1 X1)

−1 sgn(β̂1)‖∞ ≤ 1, (3.35)
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where PX1
= X1(X

T
1 X1)

−1XT
1 is the projection matrix onto the linear space

spanned by the columns of X1. For the true parameter, let supp(β0) = S0 so
that

Y = XS0
β0 + ε. (3.36)

If supp(β̂) = S0, i.e., model selection consistency holds, then XS0 = X1 and
(In −PX1

)XS0
= 0. By substituting (3.36) into (3.35), we have

‖(nλ)−1XT
2 (In −PX1

)ε+XT
2 X1(X

T
1 X1)

−1 sgn(β̂1)‖∞ ≤ 1. (3.37)

Note that this condition is also sufficient if the inequality is replaced with the
strict one (see Theorem 3.1).

Typically, the first term in (3.37) is negligible. This will be formally shown
in Chapter 4. A specific example is the case ε = 0 as in the compressed sensing
problem. In this case, condition (3.37) becomes

‖XT
2 X1(X

T
1 X1)

−1 sgn(β̂1)‖∞ ≤ 1.

This condition involves sgn(β̂1). If we require a stronger consistency sgn(β̂) =
sgn(β0), called the sign consistency, then the condition becomes

‖XT
2 X1(X

T
1 X1)

−1 sgn(βS0
)‖∞ ≤ 1. (3.38)

The above condition does not depend on λ. It appeared in Zou (2006) and
Zhao and Yu (2006) who coined the name the irrepresentable condition.

Note that (XT
1 X1)

−1XT
1 X2 in (3.38) is the matrix of the regression coeffi-

cients of each ‘unimportant’ variable Xj (j �∈ S0) regressed on the important
variables X1 = XS0 . The irrepresentable condition is a condition on how
strongly the important and unimportant variables can be correlated. Condi-
tion (3.38) states that the sum of the signed regression coefficients of each
unimportant variable Xj for j �∈ S0 on the important variables XS0

cannot
exceed 1. The more the unimportant variables, the harder the condition is to
meet. The irrepresentable condition is in general very restrictive. Using the
regression intuition, one can easily construct an example when it fails. For
example, if an unimportant variable is generated by

Xj = ρs−1/2
∑
k∈S0

sgn(βk)Xk +
√

1− ρ2εk, s = |S0|,

for some given |ρ| ≤ 1 (all normalization is to make Var(Xj) = 1), where
all other random variables are independent and standardized, then the L1-
norm of the signed regression coefficients of this variable is |ρ|s1/2, which can
easily exceed 1. The larger the ‘important variable’ set S0, the easier the ir-
representable condition fails. In addition, we need only one such unimportant
predictor that has such a non-negligible correlation with important variables
to make the condition fail. See also Corollary 1 in Zou (2006) for a counterex-
ample.
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The moral of the above story is that Lasso can have sign consistency, but
this happens only in very specific cases. The irrepresentable condition (3.38)
is independent of λ. When it fails, Lasso does not have sign consistency and
this cannot be rescued by using a different value of λ.

We now look at the risk property of Lasso. It is easier to explain it under
the constrained form:

min
‖β‖1≤c

‖Y −Xβ‖2 (3.39)

for some constant c, as in Tibshirani (1996). Define the theoretical risk and
empirical risk respectively as

R(β) = E(Y −XTβ)2 and Rn(β) = n−1
n∑

i=1

(Yi −XT
i β)

2,

which are prediction errors using the parameter β. The best prediction error
is R(β0). Note that

R(β) = γTΣ∗γ and Rn(β) = γTS∗
nγ,

where γ = (−1,βT )T , Σ∗ = Var((Y,XT )T ), and S∗
n is the sample covari-

ance matrix based on the data {(Yi,XT
i )

T }ni=1. Thus, for any β, we have the
following risk approximation:

|R(β)−Rn(β)| = |γT (Σ∗ − S∗
n)γ|

≤ ‖Σ∗ − S∗
n‖∞‖γ‖21

= (1 + ‖β‖1)2‖Σ∗ − S∗
n‖∞. (3.40)

On the other hand, if the true parameter β0 is in the feasible set, namely,

‖β0‖1 ≤ c, then Rn(β̂)−Rn(β0) ≤ 0. Using this,

0 ≤ R(β̂)−R(β0) ≤ {R(β̂)−Rn(β̂)}+ {Rn(β0)−R(β0)}.

By (3.40) along with ‖β̂‖1 ≤ c and ‖β0‖1 ≤ c, we conclude that

|R(β̂)−R(β0)| ≤ 2(1 + c)2‖Σ∗ − S∗
n‖∞. (3.41)

When ‖Σ∗ − S∗
n‖∞ → 0, the risk converges. Such a property is called per-

sistency by Greenshtein and Ritov (2004). Further details on the rates of
convergence for estimating large covariance matrices can be found in Chap-
ter 11. The rate is of order O(

√
(log p)/n) for the data with Gaussian tails.

The above discussion also reveals the relationship between covariance matrix
estimation and sparse regression. A robust covariance matrix estimation can
also reveal a robust sparse regression.

Persistency requires that the risk based on β̂ is approximately the same
as that of the optimal parameter β0, i.e.,

R(β̂)−R(β0) = oP (1).



LASSO AND L1 REGULARIZATION 73

By (3.41), this requires only β0 sparse in the sense that ‖β0‖1 does not grow
too quickly (recalling ‖β0‖1 ≤ c) and the large covariance matrix Σ∗ can be
uniformly consistently estimated. For data with Gaussian tails, since ‖Σ∗ −
S∗
n‖∞ = OP (

√
(log p)/n) (see Chapter 11), we require

‖β0‖1 ≤ c = o((n/ log p)1/4)

for Lasso to possess persistency. Furthermore, the result (3.41) does not require
to have a true underlying linear model. As long as we define

β0 = argmin‖β‖1≤cR(β),

the risk approximation inequality (3.41) holds by using the same argument
above. In conclusion, Lasso has a good risk property when β0 is sufficiently
sparse.

3.3.3 Adaptive Lasso

The irrepresentable condition indicates restrictions on the use of the Lasso
as a model/variable selection method. Another drawback of the Lasso is its
lack of unbiasedness for large coefficients, as explained in Fan and Li (2001).

This can be seen from (3.34). Even when the signal is strong so that supp(β̂) =
S0, by substituting (3.36) into (3.34), we have

β̂1 = β0 + (XT
1 X1)

−1XT
1 ε− nλ(XT

1 X1)
−1 sgn(β̂1).

The last term is the bias due to the L1 penalty. Unless λ goes to 0 sufficiently
fast, the bias term is not negligible. However, λ ≈ 1√

n
is needed in order to

make the Lasso estimate root-n consistent under the fixed p large n setting.
For p � n, the Lasso estimator uses λ ≈

√
log(p)/n to achieve the optimal

rate
√
|S0| log(p)/n. See Chapter 4 for more details. So now, it is clear that

the optimal Lasso estimator has non-negligible biases.
Is there a nice fix to these two problems? Zou (2006) proposes to use

the adaptively weighted L1 penalty (a.k.a. adaptive Lasso) to replace the L1

penalty in penalized linear regression and penalized generalized linear models.
With the weighted L1 penalty, (3.9) becomes

1

2n
‖Y −Xβ‖2 + λ

p∑
j=1

wj |βj |. (3.42)

To keep the convexity property of the Lasso, wj should be nonnegative. It is
important to note that if the weights are deterministic, then they cannot fix
the aforementioned two problems of the Lasso. Suppose that some determin-
istic weights can make the Lasso gain sign consistency. Then no wj should be
zero, otherwise the variable Xj is always included, which will violate the sign
consistency of the Lasso if the underlying model does not include Xj , i.e. Xj
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is not an important variable. Hence, all wjs are positive. Then we redefine
the regressors as Xw

j = Xj/wj and θj = wjβ, 1 ≤ j ≤ p. The underlying
regression model can be rewritten as

Y =

p∑
j=1

Xw
j θj + ε

and (3.42) becomes

1

2n
‖Y −Xwθ‖2 + λ

p∑
j=1

|θj |.

Its corresponding irrepresentable condition is

‖(Xw
2 )

TXw
1 [(X

w
1 )

TXw
1 ]

−1 sgn(βS0
)‖∞ ≤ 1.

We write W = (w1, . . . , wp)
T = (W1,W2)

T . and express the irrepresentable
conditions using the original variables, we have

‖[XT
2 X1(X

T
1 X1)

−1W1 ◦ sgn(βS0
)] ◦W−1

2 ‖ ≤ 1

Observe that if maxW1/ infW2 → 0, then this representable condition can be
satisfied for general X1,X2 and sgn(βS0

). This condition can only be achieved
using a data-driven scheme, as we do not know the set S0.

Zou (2006) proposes to use a preliminary estimate β̂j to construct wj .

For example, wj = |β̂j |−γ for some γ > 0, and γ = 0.5, 1 or 2. In the
case of fixed p large n, the preliminary estimate can be the least-squares
estimate. When p � n, the preliminary estimate can be the lasso estimate
and wj = p′λ(|β̂lasso

j |)/λ with a folded concave penalty pλ(·).
As will be seen in Section 3.5.5, the adaptive lasso is connected to the

penalized least-squares estimator (3.9) via the local linear approximation with
p′λ(θ) = λθ−γ or L1−γ penalty. Since the derivative function is decreasing, the
spirit of the adaptive Lasso is the same as the folded-concave PLS. Hence,
the adaptive Lasso is able to fix the bias caused by the L1 penalty. In partic-
ular, the adaptive lasso estimator for βS0

shares the asymptotical normality

property of the oracle OLS estimator for βS0
, i.e.. β̂

oracle

S0
= (XT

1 X1)
−1XT

1 Y.

3.3.4 Elastic Net

In the early 2000s, the Lasso was applied to regression with micrarrays
to do gene selection. The results were concerning because of high variability.
This is mainly caused by the spurious correlation in high-dimensional data, as
illustrated in Section 1.3.3 of Chapter 1. How to handle the strong (empirical)
correlations among high-dimensional variables while keeping the continuous
shrinkage and selection property of the Lasso? Zou and Hastie (2005) propose
the elastic net regularization that uses a convex combination of L1 and L2
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penalties. For the penalized least squares, the elastic net estimator is defined
as

argmin
β

{
1

n
‖Y −Xβ‖2 + λ2‖β‖2 + λ1‖β‖1

}
, (3.43)

where pλ1,λ2
(t) = λ1|t| + λ2t

2 is called the elastic net penalty. Another form
of the elastic net penalty is

pλ,α(t) = λJ(t) = λ[(1− α)t2 + α|t|],

with λ = λ1 + λ2 and α = λ1

λ1+λ2
. The elastic net is a pure ridge regression

when α = 0 and a pure Lasso when α = 1. The advantage of using (λ, α)
parametrization is that α has a natural range [0, 1]. In practice, we can use
CV to choose α over a grid such as 0.1k, k = 1, . . . , 10. For the penalized least
squares problem, using (λ2, λ1) parametrization is interesting because it can
be shown that for a fixed λ2 the solution path is piecewise linear with respect
to λ1. Zou and Hastie (2005) exploit this property to derive an efficient path-
following algorithm named LARS-EN for computing the entire solution path
of the Elastic Net penalized least squares (for each fixed λ2).

β1

β2
Ridge
Lasso
Elastic Net

Figure 3.4: Geometric comparison of Lasso, Ridge and Elastic Net in two-
dimensions. α = 0.5 in the elastic net penalty. The Lasso and Elastic Net
share four sharp vertices–sparsity. Similar to Ridge, Elastic Net has ‘round’
edges–strict convexity.

It is well known that L2 regularization gracefully handles collinearity and
achieves a good bias-variance tradeoff for prediction. The Elastic Net inher-
its the ability to handle collinearity from its L2 component and keeps the
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sparsity property of the Lasso through its L1 component. Figure 3.4 shows a
geometric comparison of the two penalty functions in two-dimensions. With
high-dimensional data the Elastic Net often generates a more accurate pre-
dictive model than the Lasso. Zou and Hastie (2005) also reveal the group
effect of the Elastic Net in the sense that highly correlated variables tend to
enter or exit the model together, while the Lasso tends to randomly pick one
variable and ignore the rest.

To help visualize the fundamental differences between Lasso and Elastic
Net, let us consider a synthetic model as follows. Let Z1 and Z2 be two inde-
pendent unif(0, 20) variables. Response Y is generated by Y = Z1+0.1·Z2+ε,
with ε ∼ N(0, 1) and the observed regressors are generated by

X1 = Z1 + ε1, X2 = −Z1 + ε2, X3 = Z1 + ε3,

X4 = Z2 + ε4, X5 = −Z2 + ε5, X6 = Z2 + ε6,

where εi are iid N(0, 1
16 ). X1, X2, X3 form a group whose underlying factor is

Z1, and X4, X5, X6 form the other group whose underlying factor is Z2. The
within group correlations are almost 1 and the between group correlations are
almost 0. Ideally, we would want to only identify the Z1 group (X1, X2, X3) as
the important variables. We generated two independent datasets with sample
size 100 from this model. Figure 3.5 displays the solution paths of Lasso and
Elastic Net; see Section 3.5 for details. The two Lasso solution paths are very
different, suggesting the high instability of the Lasso under strong correlations.
On the other hand, the two Elastic Net solution paths are almost identical.
Moreover, the Elastic Net identifies the corrected variables.

The Elastic Net relies on its L1 component for sparsity and variable se-
lection. Similar to the Lasso case, the Elastic Net also requires a restrictive
condition on the design matrix for selection consistency (Jia and Yu, 2010). To
bypass this restriction, Zou and Zhang (2009) follow the adaptive Lasso idea
and introduce the adaptive Elastic Net penalty p(|βj |) = λ1wj |βj | + λ2|βj |2
where wj = |β̂enet+1/n|−γ . The numeric studies therein shows the very com-
petitive performance of the adaptive Elastic Net in terms of variable selection
and model estimation.

3.3.5 Dantzig selector

The Dantzig selector, introduced by Candés and Tao (2007), is a novel idea
of casting the regularization problem into a linear program. Recall that Lasso
satisfies (3.32), but it might not have the smallest L1 norm. One can find the
estimator to minimize its L1-norm:

min
β∈Rp

‖β‖1, subject to ‖n−1XT (Y −Xβ)‖∞ ≤ λ. (3.44)

The target function and constraints in (3.44) are linear. The problem can be
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Figure 3.5: A toy example to illustrate the instability of the Lasso and how
this is improved by the elastic net. Left two panels show the Lasso solution
path on two independent dataset generated from the same model; right two
panels are the elastic net solution path on the same two datasets. The Lasso
paths are very different, but the Elastic Net paths are almost the same. The
x-axis is the fraction of L1 norm defined as ‖β̂(λ)‖1/maxλ≤λmax

‖β̂(λ)‖1.

formulated as a linear program by expressing it as

min
u

p∑
i=1

ui, u ≥ 0, −u ≤ β ≤ u, −λ1 ≤ n−1XT (Y −Xβ) ≤ λ1.

The name “Dantzig selector” was coined by Emmanuel Candès and Ter-
ence Tao to pay tribute to George Dantzig, the father of linear programming
who passed away while their manuscript was finalized.

Let β̂DZ be the solution. A necessary condition for β̂DZ to have model
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selection consistency is that β0 is in the feasible set of (3.44), with probability
tending to one. Using model (3.36), this implies that λ ≥ n−1‖XTε‖∞. For
example, in the case when ε ∼ N(0, σ2In) and columns {Xj}pj=1 ofX are stan-

dardized so that n−1‖Xj‖2 = 1, then XT
j ε ∼ N(0, σ2/n). Then, it can easily

be shown (see Section 3.3.7) that it suffices to take λ as σ
√
2(1 + δ)n−1 log p

for any δ > 0, by using the union bound and the tail probability of normal
distribution.

The Dantzig selector opens a new chapter for sparse regularization. Since
the value λ is chosen so that the true parameter β0 falls in the constraint:

P{‖n−1XT (Y −Xβ0)‖∞ ≤ λ} → 1, (3.45)

Fan (2014) interprets the set {β : ‖n−1XT (Y − Xβ)‖∞ ≤ λ} as the high
confidence set and this high confidence set summarizes the information on
the parameter β0 provided by the data. He argues that this set is too big
to be useful in high-dimensional spaces and that we need some additional
prior about β0. If the prior is that β0 is sparse, one naturally combines these
two pieces of information. This leads to finding the sparsest solution in high-
confidence set as a natural solution to the sparse regulation. This idea applies
to quasi-likelihood based models and includes the Dantzig selector as a specific
case. See Fan (2014) for details. The idea is reproduced by Fan, Han, and Liu
(2014).

To see how norm-minimization plays a role, let us assume that β0 is in
the feasible set by taking a large enough value λ, i.e., λ ≥ n−1‖XTε‖∞ as

noted above. This is usually achieved by a probabilistic statement. Let Δ̂ =
β̂DZ − β0. From the norm minimization, we have

‖β0‖1 ≥ ‖β̂DZ‖1 = ‖β0 + Δ̂‖1. (3.46)

Noticing S0 = supp(β0), we have

‖β0 + Δ̂‖1 = ‖(β0 + Δ̂)S0‖1 + ‖(0+ Δ̂)Sc
0
‖1

≥ ‖β0‖1 − ‖Δ̂S0
‖1 + ‖Δ̂Sc

0
‖1. (3.47)

This together with (3.46) entails that

‖Δ̂S0
‖1 ≥ ‖Δ̂Sc

0
‖1, (3.48)

or that Δ̂ is sparse (the L1-norm of Δ̂ on a much bigger set is controlled by
that on a much smaller set) or ‘restricted’. For example, with s = |S0|,

‖Δ̂‖2 ≥ ‖Δ̂S0
‖2 ≥ ‖Δ̂S0

‖1/
√
s ≥ ‖Δ̂‖1/(2

√
s), (3.49)

where the last inequality utilizes (3.48). At the same time, since β̂ and β0 are

in the feasible set (3.44), we have ‖n−1XTXΔ̂‖∞ ≤ 2λ, which implies further
that

‖XΔ̂‖22 = Δ̂
T
(XTXΔ̂) ≤ ‖XTXΔ̂‖∞‖Δ̂‖1 ≤ 2nλ‖Δ̂‖1.
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Using (3.49), we have

‖XΔ̂‖22 ≤ 4nλ
√
s‖Δ̂‖2. (3.50)

The regularity condition on X such as the restricted eigenvalue condition
(Bickel, Ritov and Tsybakov, 2009)

min
‖ ̂ΔS0

‖1≥‖ ̂ΔSc
0
‖1

n−1‖XΔ̂‖22/‖Δ̂‖22 ≥ a

implies a convergence in L2. Indeed, from (3.50), we have

a‖Δ̂‖22 ≤ 4λ
√
s‖Δ̂‖2, or ‖Δ̂‖22 ≤ 16a−2λ2s,

which is of order O(sn−1 log p) by choosing the smallest feasible λ =

O(
√
2n−1 log p) as noted above. Note that the squared error of each nonsparse

term is O(n−1) and we have to estimate at least s terms of nonsparse param-

eters. Therefore, ‖Δ̂‖22 should be at least of order O(s/n). The price that we
pay for searching the unknown locations of nonsparse elements is merely a
factor of log p. In addition, Bickel, Ritov and Tsybakov (2009) show that the
Dantzig selector and Lasso are asymptotically equivalent. James, Radchenko
and Lv (2009) develop the explicit condition under which the Dantzig selector
and Lasso will give identical fits.

The restricted eigenvalue condition basically imposes that the condition
number (the ratio of the largest to the smallest eigenvalue) is bounded for
any matrix n−1XT

SXS with |S| = s. This requires that the variables in X are
weakly correlated. It does not allow covariates to share common factors and
can be very restrictive. A method to weaken this requirement and to adjust
for latent factors is given by Kneip and Sarda (2011) and Fan, Ke and Wang
(2016).

3.3.6 SLOPE and Sorted Penalties

The Sorted L-One (�1) Penalized Estimation (SLOPE) iss introduced in
Bogdan et al. (2015) to control the false discovery rate in variable selection.
Given a sequence of penalty levels λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, it finds the
solution to the sorted �1 penalized least squares problem

1

2n
‖Y −Xβ‖2 +

p∑
j=1

λj |β|(j) (3.51)

where |β|(1) ≥ · · · ≥ |β|(p) are the order statistics of {|β|j}pj=1, namely the
decreasing sequence of {|β|j}pj=1.

For orthogonal design as in Section 3.2.1 with ε ∼ N(0, σ2Ip), Bogdan
et al. (2015) show that the false discovery rate for variable selection is con-
trolled at level q if λj = Φ−1(1 − jq/2p)σ/

√
n, the rescaled critical values

used by Benjamini and Hochberg (1995) for multiple testing. They also pro-
vide a fast computational algorithm. Su and Candés (2016) demonstrate



80 INTRODUCTION TO PENALIZED LEAST-SQUARES

that it achieves adaptive minimaxity in prediction and coefficient estima-
tion for high-dimensional linear regression. Note that using the tail property
of the standard normal distribution (see (3.53)), it is not hard to see that
λj ≈ σ

√
(2/n) log(p/j).

From the bias reduction point of view, the SLOPE is not satisfactory as it
is still �1-based penalty. This motivates Feng and Zhang (2017) to introduce
sorted folded concave penalties that combine the strengths of concave and
sorted penalties. Given a family of univariate penalty functions pλ(t) indexed
by λ, the associated estimator is defined as

1

2n
‖Y −Xβ‖2 +

p∑
j=1

pλj

(
|β|(j)

)
.

This is a direct extension of (3.51) as it automatically reproduces it with
pλ(t) = λ|t|. The properties of SLOPE and its generalization will be thor-
oughly investigated in Section 4.5 under a unified framework.

3.3.7 Concentration inequalities and uniform convergence

The uniform convergence appears in a number of occasions for establish-
ing consistency of regularized estimators. See, for example, (3.32), (3.37) and
(3.45). It is fundamental to high-dimensional analysis. Let us illustrate the
technique to prove (3.45), which is equivalent to showing

P
{
‖n−1Xε‖∞ ≤ λ

}
= P

{
max
1≤j≤p

|n−1
n∑

i=1

Xijεi| ≥ λ
}
→ 1. (3.52)

If we assume εi ∼ N(0, σ2), the conditional distribution of n−1
∑n

i=1Xijεi ∼
N(0, σ2/n) under the standardization n−1‖Xj‖2 = 1. Therefore, for any t > 0,
we have

P
{
|n−1

n∑
i=1

Xijεi| ≥ tσ/
√
n
}

= 2

∫ ∞

t

1√
2π

exp(−x2/2)dx

≤ 2√
2π

∫ ∞

t

x

t
exp(−x2/2)dx

=
2√
2π

exp(−t2/2)/t. (3.53)

In other words, the probability of the average of random variables at least t
standard deviation from its mean converges to zero as t goes to ∞ exponen-
tially fast. It is highly concentrated, and such a kind of inequality is called a
concentration inequality.
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Now, by the union bound, (3.52) and (3.53), we have

P
{
‖n−1Xε‖∞ >

tσ√
n

}
≤

p∑
j=1

P
{
|n−1

n∑
i=1

Xijεi| >
tσ√
n

}
≤ p

2√
2π

exp(−t2/2)/t.

Taking t =
√
2(1 + δ) log p, the above probability is o(p−δ). In other words,

with probability at least 1− o(p−δ),

‖n−1Xε‖∞ ≤
√

2(1 + δ)σ

√
log p

n
. (3.54)

The essence of the above proof relies on the concentration inequality (3.53)
and the union bound. Note that the concentration inequalities in general hold
for sum of independent random variables with sub-Gaussian tails or weaker
conditions (see Lemma 4.2). They will appear in later chapters. See Boucheron,
Lugosi and Massart (2013) and Tropp (2015) for general treatments. Below,
we give a few of them so that readers can get an idea on these inequalities.
These types of inequality began with Hoeffding’s work in 1963.

Theorem 3.2 (Concentration inequalities) Assume that Y1, · · · , Yn are
independent random variables with mean zero (without loss of generality). Let
Sn =

∑n
i=1 Yi be the sum of the random variables.

a) Hoeffding’s inequality: If Yi ∈ [ai, bi], then

P (|Sn| ≥ t) ≤ 2 exp
(
− 2t2∑n

i=1(bi − ai)2
)
.

b) Berstein’s inequality. If E|Yi|m ≤ m!Mm−2vi/2 for every m ≥ 2 and all i
and some positive constants M and vi, then

P (|Sn| ≥ t) ≤ 2 exp
(
− t2

2(v1 + · · ·+ vn +Mt)

)
.

See Lemma 2.2.11 of van der Vaart and Wellner (1996).

c) Sub-Gaussian case: If E exp(aYi) ≤ exp(via
2/2) for all a > 0 and some

vi > 0, then, for any t > 0,

P (|Sn| ≥ t) ≤ 2 exp
(
− t2

2(v1 + · · ·+ vn)

)
.

d) Bounded second moment–Truncated loss: Assume that Yi are i.i.d. with
mean μ and variance σ2. Let

μ̂τ = argmin

n∑
i=1

ρτ (Yi − μ), ρτ (x) =

{
x2, if |x| ≤ τ
τ(2|x| − τ), if |x| > τ



82 INTRODUCTION TO PENALIZED LEAST-SQUARES

be the adaptive Huber estimator. Then, for τ =
√
nc/t with c ≥ SD(Y )

(standard deviation of Y ), we have (Fan, Li, and Wang, 2017)

P (|μ̂τ − μ| ≥ t
c√
n
) ≤ 2 exp(−t2/16), ∀t ≤

√
n/8,

e) Bounded second moment – Truncated data: Set Ỹi = sgn(Yi)min(|Yi|, τ).
When τ � √nσ, then

P
(∣∣∣ 1
n

n∑
i=1

Ỹi − μ
∣∣∣ ≥ t

σ√
n
) ≤ 2 exp

(
− ct2

)
for some universal constant c. See Fan, Wang, and Zhu (2016).

Proof. We give a proof of the sub-Gaussian case to illustrate the simple idea.
By Makov’s inequality, independence, sub-Gaussianity, we have for any a > 0

P (Sn ≥ t) ≤ exp(−at)E exp(aSn) ≤ exp(−at)
n∏

i=1

exp(via
2/2).

By taking the optimal a = t/(v1 + · · ·+ vn), we obtain

P (Sn ≥ t) ≤ exp
(
− t2

2(v1 + · · ·+ vn)

)
.

This way of obtaining the inequality is called Chernoff bound. Now, applying
the above inequality to {−Yi}, we obtain that

P (Sn ≤ −t) ≤ exp
(
− t2

2(v1 + · · ·+ vn)

)
.

Combining the last two-inequalities, we obtain the result. �

The common theme of the above results is that the probability of Sn

deviating from its mean more than t times of its standard deviation converges
to zero in the rate exp(−ct2) for some positive constant c. Theorem 3.2(a)
is for bounded random variables, whereas Cases b) and c) extend it to the
case with sub-Gaussian moments or tails out. They all yield the same rate
of convergence. Cases d) and e) extend the results further to the case only
with bounded second moment. This line of work began with Catoni (2012).
See also Devroye, Lerasle, Lugosi and Oliveira (2016).

3.3.8 A brief history of model selection

Figure 3.6 summarizes the important developments in model selection
techniques. Particular emphasis is given to the development of the penalized
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Figure 3.6: A snapshot of history on the major developments of the model
selection techniques.

least-squares methods. The list is by far from complete. For example, Bayesian
model selection is not even included. It intends only to give readers a snapshot
on the some historical developments. For example, the SCAD penalty function
was actually introduced by Fan (1997) but its systematic developments were
given by Fan and Li (2001), who studied the properties and computation of
the whole class of the folded-concave penalized least-squares, not just SCAD.
As discussed in Section 3.1.2, AIC and BIC criteria can be regarded as penal-
ized L0 regression. The idea of the ridge regression and the subset selection
appear long before the 1970s (see, e.g., Tikhonov, 1943; Hoerl, 1962).

Sure independence screening, which selects variables based on marginal
utilities such as their marginal correlations with the response variable, is not
a penalized method. It was introduced by Fan and Lv (2008) to reduce the
dimensionality for high-dimensional problems with massive data. It will be
systematically introduced in Chapter 8. Because of its importance in analysis
of big data and that it can be combined with PLS, we include it here for
completeness.

Debiased Lasso was proposed by Zhang and Zhang (2014), which is fur-
ther extended by van de Geer, Bühlmann, Ritov, and Dezeure (2014) and
improved by Javanmard and Montanari (2014). For distributed estimation
of high-dimensional problem, see Chen and Xie (2014), Shamir, Srebro and
Zhang (2014), Lee, Liu, Sun and Taylor (2017), Battey, Fan, Liu, Lu and Zhu
(2018), Jordan, Lee and Yang (2018), among others.

3.4 Bayesian Variable Selection

3.4.1 Bayesian view of the PLS

Sparse penalized regression can be put in the Bayesian framework. One
can regard the parameters {βj}pj=1 as a realization from a prior distribution
having a density π(·) with the mode at the origin. If the observed data Y has
a density pY (Y|Xβ) (conditioned on X), then the joint density of the data
and parameters is given by

f(Y;β) = pY (Y|Xβ)π(β).
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The posterior distribution of β givenY is f(Y;β)/g(Y), which is proportional
to f(Y;β) as a function of β, where g(Y) is the marginal distribution of Y.
Bayesian inference is based on the posterior distribution of β given X and Y.

One possible estimator is to use the posterior mean E(β|X,Y) to estimate
β. Another is the posterior mode, which finds

β̂ = argmaxβ∈Rp log pY (Y|Xβ) + log π(β).

It is frequently taken as a Bayesian estimator. In particular, when Y ∼
N(Xβ, In) (the standard deviation is taken to be one for convenience), then

log pY (Y|Xβ) = −n
2
log(2π)− 1

2
‖Y −Xβ‖2.

Thus, finding the posterior mode reduces to minimizing

1

2
‖Y −Xβ‖2 − log π(β).

Typically, the prior distributions are taken to be independent: π(β) =∏p
j=1 πj(βj) where πj(·) is the marginal prior for βj , though this is not manda-

tory. In this case, the problem becomes the penalized least-squares

1

2
‖Y −Xβ‖2 −

p∑
j=1

log πj(βj). (3.55)

When βj ∼i.i.d. exp(−pλ(|βj |)) where we hide the normalization constant,
(3.55) becomes the penalized least-squares (3.9). In particular, when βj ∼i.i.d.

λ exp(−λ|βj |)/2, the double exponential distribution with scale parameter λ,
the above minimization problem becomes the Lasso problem (3.29). Note that
when pλ(|βj |) is flat (constant) at the tails, the function exp(−pλ(|βj |)) cannot
be scaled to be a density function as it is not integrable. Such a prior is called
an improper prior, one with very heavy tails. SCAD penalty corresponds to
an improper prior.

The prior πj(θ) typically involves some parameters γ, called hyper param-
eters. An example is the scale parameter λ in the double exponential distri-
bution. One can regard them as the parameters generated from some other
prior distributions. Such methods are called hierarchical Bayes. They can also
be regarded as fixed parameters and are estimated through maximum likeli-
hood, maximizing the marginal density g(Y) of Y with respect to γ. In other
words, one estimates γ by the maximum likelihood and employs a Bayes rule
to estimate parameters β for the given estimated γ. This procedure is referred
to as empirical Bayes. Park and Casella (2008) discuss the use of empirical
Bayes in the Bayesian Lasso by exploiting a hierarchical representation of the
double exponential distribution as a scale mixture of normals (Andrews and
Mallows 1974):

a

2
e−a|z| =

∫ ∞

0

e−z2/(2s)

√
2πs

a2

2
e−a2s/2ds, a > 0.
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They develop a nice Gibbs sampler for sampling the posterior distribution.
As demonstrated in Efron (2010), the empirical Bayes plays a very prominent
role in large-scale statistical inference.

3.4.2 A Bayesian framework for selection

Bayesian inference of β and model selection are related but not identical
problems. Bayesian model selection can be more complex. To understand this,
let us denote {S} as all possible models, each model has a prior probability
p(S). For example, S is equally likely among models with the same size and
assign the probability proportion to |S|−γ . We can also assign the prior prob-
ability pj to models with size j such that models of size j are all equally likely.
Within each model S, there is a parameter vector βS with prior πS(·). In this
case, the “joint density” of the models, the model parameters, and the data
is

p(S)πS(βS)pY (Y|XSβS).

There is a large amount of literature on Bayesian model selection. The poste-
rior modes are in general computed by using the Markov Chain Monte Carlo.
See for example Andrieu, De Freitas, Doucet and Jordan (2003) and Liu
(2008). Bayesian model selection techniques are very powerful in many ap-
plications, where disciplinary knowledge can be explicitly incorporated into
the prior. See, for example, Raftery (1995).

A popular Bayesian idea for variable selection is to introduce p latent
binary variables Z = (z1, . . . , zp) such that zj = 1 means variable xj should
be included in the model and zj = 0 means excluding xj . Given zj = 1, the
distribution of βj has a flat tail (slab), but the distribution of βj given zj = 0
is concentrated at zero (spike). The marginal distribution of βj is a spike and
slab prior. For example, assume that βj is generated from a mixture of the
point mass at 0 and a distribution πj(β) with probability αj :

βj ∼ αjδ0 + (1− αj)πj(β).

See Johnstone and Silverman (2005) for an interesting study of this in wavelet
regularization. For computation considerations, the spike distribution is often
chosen to be a normal distribution with mean zero and a small variance. The
slab distribution is another normal distribution with mean zero and a much
bigger variance. See, for example, George and McCulloch (1993), Ishwaran and
Rao (2005) and Narisetty and He (2014), among others. A working Bayesian
model selection model with the Gaussian spike and slab prior is given as
follows:

Y|(X,β, σ2) ∼ N(Xβ, σ2In),

βj |(Zj = 0, σ2) ∼ N(0, σ2v0),

βj |(Zj = 1, σ2) ∼ N(0, σ2v1),

P (Zj = 1) = q,

σ2 ∼ IG(α1, α2).
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where IG denotes the inverse Gamma distribution. The data generating pro-
cess is bottom up in the above representation. The joint posterior distribution
P (β, Z, σ2|Y,X) can be sampled by a neat Gibbs sampler. Model selection
is based on the marginal posterior probabilities P (Zj = 1|Y,X). According
to Barbieri and Berger (2004), xj is selected if P (Zj = 1|Y,X) ≥ 0.5. This
selection method leads to the median probability model which is shown to
be predictive optimal. For the high-dimension setting p � n, Narisetty and
He (2014) establish the frequentist selection consistency of the Bayesian ap-
proach by using dimension-varying prior parameters: v0 = v0(n, p) = o(n−1),

v1 = v1(n, p) = O(p
2+δ

n ) and q = q(n, p) ≈ p−1.

3.5 Numerical Algorithms

This section introduces some early developed algorithms to compute the
folded-concave penalized least-squares. We first present the algorithms for
computing the Lasso as it is more specific. We then develop algorithms for
more general folded concave PLS such as SCAD and MCP. In particular,
the connections between the folded-concave PLS and iteratively reweighted
adaptive Lasso are made. These algorithms provide us not only a way to
implement PLS but also statistical insights on the procedures.

In many applications, we are interested in finding the solution to PLS (3.9)

for a range of values of λ. The solutions β̂(λ) to the PLS as a function of λ
are called solution paths or coefficient paths (Efron, Hastie, Johnstone and
Tibshirani, 2004). This allows one to examine how the variables enter into the
solution as λ decreases. Figure 3.7 gives an example of coefficient paths.

Each section below is independent, where some sections are harder than
others, and can be skipped without significant impact on understanding the
other sections.

3.5.1 Quadratic programs

There are several algorithms for computing Lasso: Quadratic program-
ming, least-angle regression, and coordinate descent algorithm. The first two
algorithms are introduced in this and next sections, and the last one will be
introduced in Section 3.5.6.

First of all, as in Tibshirani (1996), a convenient alternative is to express
the penalized L1-regression (3.29) into its dual problem (3.39). Each λ de-
termines a constant c and vice versa. The relationship depends on the data
(X,Y).

The quadratic program, employed by Tibshirani (1996), is to regard the
constraints ‖β‖1 ≤ c as 2p linear constraints bT

j β ≤ c for all p-tuples bj of
form (±1,±1, · · · ,±1). A simple solution is to write (3.39) as

minβ+,β− ‖Y −X(β+ − β−)‖2
s.t.

∑p
i=1 β

+
i +

∑p
i=1 β

− ≤ c, β+
i ≥ 0, β−

i ≥ 0.
(3.56)

This is a 2p-variable convex optimization problem and the constraints are lin-
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Figure 3.7: Solution paths β̂(λ) as a function of 1/λ. For each given value of λ,
only non-vanishing coefficients are presented. As λ decreases, we can examine
how variables enter into the regression. Each curve shows β̂j(λ) as a function
of λ for an important regressor Xj .

ear in those variables. Therefore, the standard convex optimization algorithms
and solvers (Boyd and Vandenberghe, 2004) can be employed. An alternative
expression to the optimization problem (3.39) is

minβ,γ ‖Y −Xβ‖2
s.t. −γi ≤ βi ≤ γi,

∑p
i=1 γi ≤ c, γi ≥ 0.

(3.57)

This is again a 2p-variable convex optimization problem with linear con-
straints.

To find the solution paths, one needs to repeatedly solve a quadratic pro-
gramming problem for a grid values of c. This is very inefficient and does not
offer statistical insights.

Osborne, Presnell and Turlach (2000) expressed the L1 constraint as

sgn(β)Tβ ≤ c.

They treated the problem as a quadratic program with sgn(β) taken from the
previous step of the iteration and developed a “homotopy method” based on
this linearized constraint. Their homotopy method is related to the solution-
path algorithm of Efron et al. (2004).
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3.5.2 Least angle regression∗

Efron et al. (2004) introduce the Least-Angle Regression (LARS) to ex-
plain the striking but mysterious similarity between the lasso regression path
and the ε-boosting linear regression path observed by Hastie, Friedman and
Tibshirani in 2001. Efron et al. (2004) show that the lasso regression and
ε-boosting linear regression are two variants of LARS with different small
modifications, thus explaining their similarity and differences. LARS itself is
also an interesting procedure for variable selection and model estimation.

LARS is a forward stepwise selection procedure but operates in a less
greedy way than the standard forward selection does. Assuming that all vari-
ables have been standardized so that they have mean-zero and unit variance,
we now describe the LARS algorithm for the constrained least-square problem
(3.39). Let z = XTY/n and χj = XTXj/n, where Xj is the j

th column of X.
Then, necessary conditions for minimizing the Lasso problem (3.29) are [see
(3.30) and (3.31)] {

τzj − χT
j b = sgn(bj) if bj �= 0,

|τzj − χT
j b| ≤ 1 if bj = 0,

(3.58)

where τ = 1/λ and b = τ β̂. The solution path is given by b̂(τ) that solves
(3.58). When τ ≤ 1/‖n−1XTY‖∞, as noted in Section 3.3.2, the solution is

b̂(τ) = 0. We now describe the LARS algorithm for the constrained least-
square problem (3.39). First of all, when c = 0 in (3.57), no variables are

selected. This corresponds to β̂(λ) = 0 for λ > ‖n−1XTY‖∞, as noted in
Section 3.3.2.

As soon as cmoves slightly away from zero, one picks only one variable (X1,
say) that has the maximum absolute correlation (least angle) with the response

variable Y. Then, β̂c = (sgn(r1)c, 0, · · · , 0)T is the solution to problem (3.39)
for sufficiently small c, where r1 is the correlation between X1 and Y. Now,
as c increases, the absolute correlation between the current residual

Rc = Y −Xβ̂c

and X1 decreases until a (smallest) value c1 at which there exists a second
variable X2, say, that has the same absolute correlation (equal angle) with
Rc1 :

|cor(X1,Rc1)| = |cor(X2,Rc1)|.

Then, β̂c is the solution to problem (3.39) for 0 ≤ c ≤ c1 and the value c1 can
easily be determined, as in (3.62) below.

LARS then proceeds equiangularly between X1 and X2 until a third vari-
able, X3 (say), joins the rank of “most correlated variables” with the current
residuals. LARS then proceeds equiangularly between X1, X2 and X3 and so
on. As we proceed down this path, the maximum of the absolute correlation
of covariates with the current residual keeps decreasing until it becomes zero.
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The equiangular direction of a set of variables XS is given by

uS = XS(X
T
SXS)

−11/wS ≡ XS β̂S (3.59)

where 1 is a vector of 1′s and w2
S = 1T (XT

SXS)−11 is a normalization con-
stant. The equiangular property can easily be seen:

XT
SuS = 1/wS , ‖uS‖ = 1.

We now furnish some details of LARS. Assume that X is of full rank. Start
from μ0 = 0, S = ∅, the empty set, and βS = 0. Let S be the current active

set of variables and μ̂S = XS β̂S be its current fitted value of Y. Compute
the marginal correlations of covariates X with the current residual (except a
normalization constant)

ĉ = XT (Y − μ̂S). (3.60)

Define sj = sgn(ĉj) for j ∈ S. Note that the absolute correlation does not
change if the columns of X are multiplied by ±1. Update the active set of
variables by taking the most correlated set

Snew = {j : |ĉj | = ‖ĉ‖∞} (3.61)

and compute the equiangular direction uSnew
by (3.59) using variables

{sgn(ĉj)Xj , j ∈ S}. For the example in the beginning of this section, if
S = φ, an empty set, then μ̂S = 0 and Snew = {1}. If S = {1}, then

μ̂S = Xβ̂c1 = sgn(r1)c1X1 and Snew = {1, 2}.
Now compute

γS = min
j∈Sc

+

{‖c‖∞ − ĉj
w−1

S − aj
,
‖c‖∞ + ĉj

w−1
S + aj

}
, a = XTuS . (3.62)

where “min+” is the minimum taken only over positive components. It is not
hard to show that this step size γS is the smallest positive constant γ such
that some new indices will join the active set (see Efron et al., 2004). For
example, if S = {1}, this γS is c1 in the first step. Update the fitted value
along the equiangular direction by

μ̂Snew
= μ̂S + γSnewuSnew . (3.63)

The solution path for γ ∈ (0, γSnew) is

μ̂Snew,γ = μ̂S + γuSnew .

Note that Snew is always a bigger set than S. Write μ̂S = Xβ̂S , in which

β̂S has support S so that μ̂S is in the linear space spanned by columns of
XS . By (3.59), we have

μ̂Snew,γ = X(β̂S + γβSnew
).
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Note that by (3.59), β̂S + γβSnew
has a support Snew. In terms of coefficients,

we have updated the coefficients from β̂S for variables XS to

β̂Snew,γ = β̂S + γβSnew
(3.64)

for variables XSnew
, expressed in Rp. Some modifications of the signs in the

second term in (3.64) is needed since we use the variables {sgn(ĉj)Xj , j ∈ S}
rather than XS to compute the equiangular direction uSnew

.
The LARS algorithm is summarized as follows.

• Initialization: Set S = φ, μ̂S = 0, β̂S = 0.

• Step 1: Compute the current correlation vector ĉ by (3.60), the new subset
Snew, the least angular covariates with the current residual Y − μ̂S , by
(3.61), and the stepsize γSnew , the largest stepsize along the equiangular
direction, by (3.62).

• Step 2: Update S with Snew, μ̂S with μ̂Snew
in (3.63), and β̂S with β̂Snew

in (3.64) with γ = γSnew
.

• Iterations: Iterate between Steps 1 and 2 until all variables are included
in the model and the solution reaches the OLS estimate.

The entire LARS solution path simply connects p-dimensional coefficients
linearly at each discrete step above. However, it is not necessarily the solution
to the lasso problem (3.39). The LARS model size is enlarged by one after
each step, but the Lasso may also drop a variable from the current model
as c increases. Technically speaking, (3.30) shows that Lasso and the current
correlation must have the same sign, but the LARS solution path does not
enforce this. Efron et al. (2004) show that this sign constraint can easily be
enforced in the LARS algorithm: during the ongoing LARS update step, if the
j̃th variable in S has a sign change before the new variable enters S, stop the
ongoing LARS update, drop the j̃th variable from the model and recalculate
the new equiangular direction for doing the LARS update. Efron et al. (2004)
prove that the modified LARS path is indeed the Lasso solution path under a
“one at a time” condition, which assumes that at most one variable can enter
or leave the model at any time.

Other modifications of the LARS algorithm are also possible. For example,
by modifying LARS shrinkage, James and Radchenko (2008) introduce vari-
able inclusion and shrinkage algorithms (VISA) that intend to attenuate the
over-shrinkage problem of Lasso. James, Radchenko and Lv (2009) develop
an algorithm called Dasso that allows one to fit the entire path of regression
coefficients for different values of the Dantzig selector tuning parameter.

The key argument in the LARS algorithm is the piecewise linearity prop-
erty of the Lasso solution path. This property is not unique to the Lasso PLS.
Many statistical models can be formulated as min{Loss + λPenalty}. In Ros-
set and Zhu (2007) it is shown that if the loss function is almost quadratic
and the penalty is L1 (or piecewise linear), then the solution path is piecewise
linear as a function of λ. Examples of such models include the L1 penalized
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Huber regression (Rosset and Zhu, 2007) and the L1 penalized support vec-
tor machine (Zhu, Rosset, Hastie and Tibshirani, 2004). Interestingly, if the
loss function is L1 (or piecewise linear) and the penalty function is quadratic,
we can switch their roles when computing and the solution path is piecewise
linear as a function of 1/λ. See, for example, the solution path algorithms for
the support vector machine (Hastie, Rosset, Tibshirani and Zhu, 2003) and
support vector regression (Gunter and Zhu, 2007).

3.5.3 Local quadratic approximations

Local quadratic approximation (LQA) was introduced by Fan and Li
(2001) before LARS-Lasso or other effective methods that are available in
statistics for computing Lasso. It allows statisticians to implement folded con-
cave penalized likelihood and to compute the standard error of estimated non-
zero components. Given an initial value β0, approximate the function pλ(|β|)
locally at this point by a quadratic function q(β|β0). This quadratic function
is required to be symmetric around zero, satisfying

q(β0|β0) = pλ(|β0|) and q′(β0|β0) = p′λ(|β0|).

These three conditions determine uniquely the quadratic function

q(β|β0) = pλ(|β0|) +
1

2

p′λ(|β0|)
|β0|

(β2 − β2
0). (3.65)

See Figure 3.8.
Given the current estimate β0, by approximating each folded concave func-

tion in PLS (3.9) by its LQA, our target becomes minimizing

Q(β|β0) =
1

2n
‖Y −Xβ‖2 +

p∑
j=1

q(βj |βj0). (3.66)

Minimizing (3.66) is the same as minimizing

1

2n
‖Y −Xβ‖2 +

p∑
j=1

p′λ(|βj0|)
2|βj0|

β2
j .

This is a ridge regression problem with solution computed analytically as

β̂new = (XTX+ n diag{p′λ(|βj0|)/|βj0|})−1XTY. (3.67)

The LQA is to iteratively use (3.67), starting from an initial value (e.g. uni-
variate marginal regression coefficients). Fan and Li (2001) note that the ap-
proximation (3.65) is not good when |βj0| ≤ ε0, a tolerance level. When this
happens, delete variables from the model before applying (3.67). This speeds
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Figure 3.8: Local quadratic and local linear approximations to SCAD with
λ = 1 and a = 3.7 at at point x. (a) x = 2 and (b) x = 3.

up the computation. Furthermore, they proposed to compute the standard er-
ror for surviving variables using (3.67), as if p′λ(βj0)/|βj0| were non-stochastic.
They validated the accuracy of the estimated standard error. See Fan and Peng
(2004) for a theoretical proof.

Does the algorithm converge? and if so, in what sense? Hunter and Li
(2005) realized that the local quadratic approximation is a specific case of the
majorization-minimization (MM) algorithm (Hunter and Lange, 2000). First
of all, as shown in Figure 3.8, thanks to the folded-concaveness,

q(β|β0) ≥ pλ(β) and q(β0|β0) = pλ(β0),

namely q(β|β0) is a convex majorant of pλ(·) with q(β0|β0) = pλ(|β0|). This
entails that

Q(β|β0) ≥ Q(β) and Q(β0|β0) = Q(β0), (3.68)

namely, Q(β|β0) is a convex majorization of the folded-concave PLS Q(β)
defined by (3.9). Let βnew minimize Q(β|β0). Then, it follows from (3.68)
that

Q(βnew) ≤ Q(βnew|β0) ≤ Q(β0|β0) = Q(β0), (3.69)

where the second inequality follows from the definition of the minimization.
In other words, the target function decreases after each iteration and will
converge.

3.5.4 Local linear algorithm
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With LARS and other efficient algorithms for computing Lasso, the local
linear approximation (LLA) approximates pλ(|β|) at β0 by

l(β|β0) = pλ(|β0|) + p′λ(|β0|)(|β| − |β0|),

which is the first-order Taylor expansion of pλ(|β|) at the point β0. Clearly,
as shown in Figure 3.8, l(β|β0) is a better approximation than LQA q(β|β0).
Indeed, it is the minimum convex majorant of pλ(|β|) with l(β0|β0) = pλ(|β0|).

With the local linear approximation, given the current estimate β0, the
folded concave penalized least-squares (3.9) now becomes

1

2n
‖Y −Xβ‖2 +

p∑
j=1

p′λ(|βj0|)|βj |, (3.70)

after ignoring the constant term. This is now an adaptively weighted Lasso
problem and can be solved by using algorithms in Sections 3.5.1 and 3.5.2.
The algorithm was introduced by Zou and Li (2008). As it is also a specific
MM algorithm, as shown in (3.69), the LLA algorithm also enjoys a decreasing
target value property (3.69).

Unlike LQA, if one component hits zero at a certain step, it will not always
be stuck at zero. For example, if β0 = 0, (3.70) reduces to Lasso. In this view,
even when the initial estimator is very crude, LLA gives a good one-step
estimator.

Through LLA approximation (3.70), the folded-concave PLS can be viewed
as an iteratively reweighted penalized L1 regression. The weights depend on
where the current estimates are. The larger the magnitude, the smaller the
weighted penalty. This reduces the biases for estimating large true coefficients.
Lasso is the one-step estimator of the folded concave PLS with initial estimate
β̂ = 0. Lasso puts a full stop yet the folded concave PLS iterates further to
reduce the bias due to the Lasso shrinkage.

It is now clear that the adaptive Lasso is a specific example of the LLA
implementation of the folded-concave PLS with p′λ(|β|) = |β|−γ . This func-
tion is explosive near 0 and is therefore inappropriate to use in the iterative
application of (3.70): once a component βj hits zero at certain iteration, its
weights cannot be computed or the variable Xj is eliminated forever.

The LLA implementation of folded concave PLS has a very nice theoretical
property. Fan, Xue and Zou (2014) show that with Lasso as the initial esti-
mator, with high probability, the LLA implementation (3.70) produces the
oracle estimator in one step. The result holds in a very general likelihood-
based context under some mild conditions. This gives additional endorsement
of the folded-concave PLS implemented by LLA (3.70).

The implementation of LLA is available in the R package called “SIS”
(function: scadglm), contributed by Fan, Feng, Samworth, and Wu.

3.5.5 Penalized linear unbiased selection∗
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The penalized linear unbiased selection (PLUS) algorithm, introduced by
Zhang (2010), finds multiple local minimizers of folded-concave PLS in a
branch of the graph (indexed by τ = λ−1) of critical points determined
by (3.22) and (3.23). The PLUS algorithm deals with the folded concave-
penalized functions pλ(t) = λ2ρ(t/λ), in which ρ(·) is a quadratic spline. This
includes L1, SCAD (3.14), hard-threhsolding penalty (3.15) and MCP (3.17)
as specific examples. Let t1 = 0, · · · , tm be the knots of the quadratic spline
ρ(·). Then, the derivative of ρ(·) can be expressed as

ρ′(t) =
m∑
i=1

(ui − vit)I(ti < t ≤ ti+1), (3.71)

for some constants {vi}mi=1, in which u1 = 1 (normalization), um = vm = 0
(flat tail), and tm+1 = ∞. For example, L1 penalty corresponds to m = 1;
MCP corresponds to m = 2 with t2 = a, v1 = 1/a; SCAD corresponds to
m = 3 with t2 = 1, t3 = a, v1 = 0, u2 = a/(a− 1) and v2 = 1/(a− 1).

Let z = XTY/n and χj = XTXj/n, where Xj is the jth column of X.
Then, estimating equations (3.22) and (3.23) can be written as{

τzj − χT
j b = sgn(bj)ρ

′(|bj |) if bj �= 0,
|τzj − χT

j b| ≤ 1 if bj = 0,
(3.72)

where τ = 1/λ and b = τβ. (3.72) can admit multiple solutions for each given
λ. For example, b = 0 is a local solution to (3.72), when λ ≥ ‖XTY/n‖∞.
See also (3.33). Unlike Lasso, there can be other local solutions to (3.72).

PLUS computes the main branch β̂(τ) starting from β̂(τ) = 0, where τ =
1/‖XTY/n‖∞.

Let us characterize the solution set of (3.72). The component bj of a solu-
tion b falls in one of the intervals {(ti, ti+1]}mi=1, or 0, or in one of the intervals
{[−ti+1,−ti)}mi=1. Let us use ij ∈ {−m, · · · ,m} to indicate such an interval
and i ∈ {−m, · · · ,m}p be the the vector of indicators. Then, by (3.71), (3.72)
can be written as{

τzj − χT
j b = sgn(ij)(uij − bjvij ), t̄ij ≤ bj ≤ t̄ij+1, ij �= 0,

−1 ≤ τzj − χT
j b ≤ 1, bj = 0, ij = 0,

(3.73)
where u−k = uk, v−k = vk, and t̄i = ti for 0 < i ≤ m + 1 and −t|i|+1 for
−m ≤ i ≤ 0. Let Sτ (i) be the set of (τzT ,bT )T in R2p, whose coordinates
satisfy (3.73). Note that the solution b is piecewise linear τ .

Let H = Rp represent the data z and its dual H∗ = Rp represent the
solution b, and z⊕ b be members of H ⊕H∗ = R2p. The set Sτ (i) in R2p is
more compactly expressed as

Sτ (i) = {τz⊕ b : τz and b satisfy (3.73)}.

For each given τ and i, the set Sτ (i) is a parallelepiped in R2p and Sτ = τS1.
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The solution b is the projection of Sτ (i) onto H∗, denoted by Sτ (i|z). Clearly,
all solutions to (3.72) is a p-dimensional set given by

Sτ (z) = ∪{Sτ (i|z) : i ∈ {−m,−m+ 1, · · · ,m}p}. (3.74)

Like LARS, the PLUS algorithm computes a solution β(τ) from Sτ (z).
Starting from τ0 = 1/‖n−1XTY‖∞, β̂(τ0) = 0 and i = 0, PLUS updates the
active set of variables as well as the branch i, determines the step size τ and
solution b. The solutions between two turning points are connected by lines.
We refer to Zhang (2010) for additional details. In addition, Zhang (2010)
gives the conditions under which the solution becomes the oracle estimator,
derives the risk and model selection properties of the PLUS estimators.

3.5.6 Cyclic coordinate descent algorithms

Consider the sparse penalized least squares, the computation difficulty
comes from the nonsmoothness of the penalty function. Observe that the
penalty function part is the sum of p univariate nonsmooth functions. Then,
we can employ cyclic coordinate descent algorithms (Tseng, 2001; Tseng and
Yun, 2009) that successively optimize one coefficient (coordinate) at a time.
Let

L(β1, . . . , βp) =
1

2n
‖Y −Xβ‖2 +

p∑
j=1

pλ(|βj |)

and the cyclic coordinate descent (CCD) algorithm proceeds as follows:

1. choose an initial value of β̂

2. for j = 1, 2, . . . , p, 1, 2, . . ., update β̂j by solving a univariate optimization
problem of βj :

β̂update
j ← argminβj

L(β̂1, . . . , β̂j−1, βj , β̂j+1, β̂p). (3.75)

3. Repeat (2) till convergence.

Let Rj = Y −X−jβ̂−j be the current residual, where X−j and β̂−j are

respectively X and β̂ with the jth column and jth component removed. Then,
the target function in (3.75) becomes, after ignoring a constant,

Qj(βj) ≡ 1

2n
‖Rj −Xjβj‖2 + pλ(|βj |),

Recall that ‖Xj‖2 = n by standardization and ĉj = n−1XT
j Rj is the current

covariance [c.f. (3.60)]. Then, after ignoring a constant,

Qj(βj) =
1

2
(βj − ĉj)2 + pλ(|βj |). (3.76)

This is the same problem as (3.12). For L1, SCAD and MCP penalty, (3.76)
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admits an explicit solution as in (3.18)–(3.20). In this case, the CCD algorithm
is simply an iterative thresholding method.

The CCD algorithm for the Lasso regression is the same as the shooting
algorithm introduced by Fu (1998). Friedman, Hastie, Höfling and Tibshirani
(2007) implement the CCD algorithm by using several tricks such as warm
start, active set update, etc. As a result, they were able to show that the
coordinate descent algorithm is actually very effective in computing the Lasso
solution path, proving to be even faster than the LARS algorithm. Fan and
Lv (2011) extend the CCD algorithm to the penalized likelihood.

The user needs to be careful when applying the coordinate descent algo-
rithm to solve the concave penalized problems because the algorithm converges
to a local minima but this solution may not be the statistical optimal one. The
choice of initial value becomes very important. In Fan, Xue and Zou (2014)
there are simulation examples showing that the solution by CCD is subopti-
mal compared with the LLA solution in SCAD and MCP penalized regression
and logistic regression. It is beneficial to try multiple initial values when using
CCD to solve nonconvex problems.

3.5.7 Iterative shrinkage-thresholding algorithms

The iterative shrinkage-thresholding algorithm (ISTA, Daubechies et al.,
2004) is developed to optimize the functions of form Q(β) = f(β) + g(β), in
which f is smooth whereas g(β) is non-smooth. Note that the gradient descent
algorithm

βk = βk−1 − skf ′(βk−1),

for a suitable stepsize sk is the minimizer to the local isotropic quadratic
approximation of f at βk−1:

fA(β|βk−1, sk) = f(βk−1)+f
′(βk−1)

T (β−βk−1)+
1

2sk
‖β−βk−1‖2. (3.77)

The local isotropic approximation avoids computing the Hessian matrix, which
is expensive and requires a lot of storage for high-dimensional optimization.
Adapting this idea to minimizing Q(·) yields the algorithm

βk = argmin{fA(β|βk−1, sk) + g(β)}.
In particular, when g(β) =

∑p
j=1 pλ(|βj |), the problem becomes a componen-

twise optimization after ignoring a constant

βk = argmin

⎧⎨⎩ 1

2sk
‖β − (βk−1 − skf ′(βk−1))‖2 +

p∑
j=1

pλ(|βj |)

⎫⎬⎭ ,

for each component of the form (3.12). Let us denote

θs(z) = argminθ
{1
2
(z − θ)2 + spλ(|θ|)

}
.
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Then, ISTA is to iteratively apply

βk = θsk
(
βk−1 − skf ′(βk−1)

)
. (3.78)

In particular, for the Lasso problem (3.29), the ISTA becomes

βk =
(
βk−1 − skn−1XT (Y −Xβk−1)− skλ

)
+
. (3.79)

Similar iterative formulas can be obtained for SCAD and MCP. This kind of
algorithm is called a proximal gradient method in the optimization literature.

Note that when ‖f ′(β) − f ′(θ)‖ ≤ ‖β − θ‖/sk for all β and θ, we have
fA(β|βk−1, sk) ≥ f(β). This holds when the largest eigenvalue of the Hessian
matrix f ′′(β) is bounded by 1/sk. Therefore, the ISTA algorithm is also a
specific implementation of the MM algorithm, when the condition is met.

The above isotropic quadratic majorization requires strong conditions re-
garding to the function f . Inspecting the proof in (3.69) for the MM algo-
rithm, we indeed do not require majorization but only the local majorization
Q(βnew) ≤ Q(βnew|β0). This can be achieved by using the backtracking rule
to choose the step size sk as follows. Take an initial step size s0 > 0, δ < 1,
and the initial value β0. Find the smallest nonnegative integer ik such that
with s = δiksk−1,

Q(βk,s) ≤ QA(βk,s) ≡ fA(βk,s|βk−1, s) + g(βk,s), (3.80)

where βk,s = θs
(
βk−1 − sf ′(βk−1)

)
is the same as the above with emphasis

on its dependence on s. Set sk = δiksk−1 and compute

βk = θsk
(
βk−1 − skf ′(βk−1)

)
.

Note that the requirement (3.80) is really the local majorization require-
ment. It can easily hold since sk → 0 exponentially fast as ik →∞. According
to (3.69), the sequence of objective values {Q(βk)} is non-increasing. The
above choice of the step size of sk can be very small as k gets large. An-
other possible scheme is to use s = δiks0 rather than s = δiksk−1 in (3.80) in
choosing sk.

The fast iterative shrinkage-thresholding algorithm (FISTA, Beck and
Teboulle, 2009) is proposed to improve the convergence rate of ISTA. It em-
ploys Nesterov acceleration idea (Nesterov, 1983). The algorithm runs as fol-
lows. Input the step size s such that s−1 is the upper bound of the Lipchitz
constant of f ′(·). Take x1 = β0 and t1 = 1. Compute iteratively for k ≥ 1

βk = θs(xk − sf ′(xk)), tk+1 = (1 +
√
1 + 4t2k )/2,

xk+1 = βk +
tk − 1

tk+1
(βk − βk−1).

The algorithm utilizes a constant “stepsize” s. The backtracking rule can also
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be employed to make the algorithm more practical. Beck and Teboulle (2009)
show that the FISTA has a quadratic convergence rate whereas the ISTA has
only linear convergence rate.

3.5.8 Projected proximal gradient method

Agarwal, Negahban and Wainwright (2012) propose a projected proximal
gradient descent algorithm to solve the problem

min
R(β)≤c

{f(β) + g(β)}. (3.81)

Given the current value βk−1, approximate the smooth function f by isotropic
quadratic (3.77). The resulting unconstrained solution is given by (3.78). Now,
project βk onto the set {β : R(β) ≤ c} and continue with the next iteration
by taking the projected value as the initial value. When ‖R(β)‖ = ‖β‖1, the
projection admits an analytical solution. If ‖βk‖1 ≤ c, then the projection
is just itself; otherwise, it is the soft-thresholding at level λn so that the
constraint ‖βk‖1 = c. The threshold level λn can be computed as follows:
(1) sort {|βk,j |}pj=1 into b1 ≥ b2 ≥ . . . ≥ bp; (2) find J = max{1 ≤ j ≤ p :

bj − (
∑j

r=1 br − c)/j > 0} and let λn = (
∑J

r=1 bj − c)/J .

3.5.9 ADMM

The alternating direction method of multipliers (ADMM) (Douglas and
Rachford (1956), Eckstein and Bertsekas (1992)) has a number of successful
applications in modern statistical machine learning. Boyd et al. (2011) give a
comprehensive review on ADMM. Solving the Lasso regression problem is a
classical application of ADMM. Consider the Lasso penalized least square

min
β

1

2n
‖Y −Xβ‖2 + λ‖β‖1

which is equivalent to

min
β,z

1

2n
‖Y −Xβ‖2 + λ‖z‖1 subject to z = β.

The augmented Lagrangian is

Lη(β, z,θ) =
1

2n
‖Y −Xβ‖2 + λ‖z‖1 − θT (z− β) +

η

2
‖z− β‖22,

where η can be a fixed positive constant set by the user, e.g. η = 1. The
term θT (z − β) is the Lagrange multiplier and the term η

2‖z − β‖22 is its
augmentation. The choice of η can affect the convergence speed. ADMM is an
iterative procedure. Let (βk, zk,θk) denote the kth iteration of the ADMM
algorithm for k = 0, 1, 2, . . .. Then the algorithm proceeds as follows:

βk+1 = argminβ Lη(β, z
k,θk),

zk+1 = argminz Lη(β
k+1, z,θk),

θk+1 = θk − (zk+1 − βk+1).
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It is easy to see that βk+1 has a close form expression and zk+1 is obtained
by solving p univariate L1 penalized problems. More specifically, we have

βk+1 = (XTX/n+ ηI)−1(XTY/n+ ηzk − ηθk),

zk+1
j = sgn(βk+1

j + θkj )(|βk+1
j + θkj | − λ/η), j = 1, . . . , p.

3.5.10 Iterative Local Adaptive Majorization and Minimization

Iterative local adaptive majorization and minimization is an algorithmic
approach to solve the folded concave penalized least-squares problem (3.9) or
more generally the penalized quasi-likelihood of the form:

f(β) +

p∑
j=1

pλ(|βj |) (3.82)

with both algorithmic and statistical guaranteed, proposed and studied by
Fan, Liu, Sun, and Zhang (2018). It combines the local linear approximation
(3.70) and the proximal gradient method (3.78) to solve the problem (3.82).

More specifically, starting from the initial value β(0) = 0, we use LLA to case
problem (3.82) into the sequence of problems:

β̂
(1)

= argmin
{
f(β) +

d∑
j=1

λ
(0)
j |βj |

}
, with λ

(0)
j = p′λ(|β̂

(0)
j |) (3.83)

..............................................

β̂
(t)

= argmin
{
f(β) +

d∑
j=1

λ
(t−1)
j |βj |

}
, with λ

(t−1)
j = p′λ(|β̂

(t−1)
j |) (3.84)

Within each problem (3.83) or (3.84) above, we apply proximal gradient

method. More specifically, by (3.79), starting from the initial value β̂t,0 =

β̂t−1, the algorithm used to solve (3.84) utilizes the iterations

β̂t,k =
(
β̂t,k−1 − st,kn−1XT (Y −Xβ̂t,k−1)− st,kλ

)
+
, (3.85)

for k = 1, · · · , kt, where the step size is computed by using s = δiks0 to
check (3.80) in choosing sk. The flowchat of the algorithm can be summarized
in Figure 3.9. This algorithmic approach of statistical estimator is called I-
LAMM by Fan et al. (2018).

Note that the problem (3.83) is convex but not strongly convex. It con-
verges only at a sublinear rate. Hence, it takes longer to get to a consistent
neighborhood. Once the estimate is in a consistent neighborhood, from step 2
and on, the solutions are sparse and therefore the function (3.84) is strongly
convex in this restricted neighborhood and the algorithmic convergence is
exponentially fast (at a linear rate). This leads Fan et al. (2018) to take
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λ(0) : β(1,1)

λ(1) :

β(1,k1) = β̃(1),

β(2,0)= β̃(1)

β(1,0)=0

...

. . .

. . .

...

β(2,1) β(2,k2) = β̃(2),

k1 � ε−2
c ;

β(T,0)= β̃(T−1) β(T,1) . . . β(T,kT ) = β̃(T ), kT � log(ε−1
t ).

k2 � log(ε−1
t );

LAMM LAMM LAMM

LAMM LAMM LAMM

LAMMLAMMLAMM
...

λ(T−1) :

Figure 3.9: Flowchart of iterative local majorization and minorization algo-
rithm. For Guassian noise, εc �

√
n−1 log p and εt �

√
n−1. Taken from Fan,

Liu, Sun, and Zhang (2018)

k1 � n/ log p and k2 � log n. In addition, they show that when the number
of outer loop T � log(log(p)), the estimator achieves statistical optimal rates
and further iteration will not improve nor deteriorate the statistical errors.

3.5.11 Other Methods and Timeline

There are many other algorithms for computing penalized least-squares
problem. For example, matching pursuit, introduced by Mallot and Zhang
(1993), is similar to the forward selection algorithm for subset selection. As in
the forward selection and LARS, the most correlated variable Xj (say) with
the current residual R is selected and the univariate regression

R = βjXj + ε

is fitted. This is an important deviation from the forward selection in high-
dimensional regression as the matching pursuit does not compute multiple re-
gression. It is similar but more greedy than the coordinate decent algorithm,
as only the most correlated coordinate is chosen. With fitted univariate coef-
ficient β̂j , we update the current residual by R− β̂jXj . The variables selected
as well as coefficients used to compute R can be recorded along the fit.

Iterated SIS(sure independence screening) introduced in Fan and Lv (2008)
and extended by Fan, Samworth and Wu (2009) can be regarded as another
greedy algorithm for computing folded concave PLS. The basic idea is to
iteratively use large scale screening (e.g. marginal screening) and moderate
scale selection by using the penalized least-squares. Details will be introduced
in Chapter 8.

The DC algorithm (An and Tao, 1997) is a general algorithm for mini-
mizing the difference of two convex functions. Suppose that Q(β) = Q1(β)−
Q2(β), where Q1 and Q2 are convex. Given the current value β0, linearize
Q2(β) by

Q2,L(β) = Q2(β0) +Q′
2(β0)

T (β − β0).

Now update the minimizer by the convex optimization problem

β̂ = argminβ{Q1(β)−Q2,L(β)}.
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Note that for any convex function

Q2(β) ≥ Q2,L(β) with Q2(β0) = Q2,L(β0).

Thus, the DC algorithm is a special case of the MM-algorithm. Hence, its
target value should be non-increasing Q(βnew) ≤ Q(β0) [c.f. (3.69)]. The
algorithm has been implemented to support vector machine classifications by
Liu, Shen and Doss (2005) and Wu and Liu (2007). It was used by Kim, Choi
and Oh (2008) to compute SCAD in which the SCAD penalty function is
decomposed as

pλ(|β|) = λ|β| − [λ|β| − pλ(|β|)].
Agarwal, Negahban and Wainwright (2012) propose the composite gradi-
ent descent algorithm. Liu, Yao and Li (2016) propose a mixed integer
programming-based global optimization (MIPGO) to solve the class of folded
concave penalized least-squares that find a provably global optimal solution.
Fan, Liu, Sun and Zhang (2018) propose I-LAMM to simultaneously control
of algorithmic complexity and statistical error.

Figure 3.10: A snapshot of the history of the algorithms for computing penal-
ized least-squares.

3.6 Regularization parameters for PLS

In applications of the folded concave PLS (3.9), one needs to determine
the regularization parameter λ. The solution paths such as in Figure 3.7 can
help us to choose a model. For example, it is not unreasonable to select a
model with 1/λ somewhat larger than 40 in Figure 3.7. After that point, the
model complexity increases substantially and there will be no more variables
with large coefficients.

In many situations, one would also like to have data-driven choice of λ. The
choice of λ for the L0-penalty was addressed in Section 3.1.3. The basic idea of
choosing regularization parameters to minimize the estimated prediction error
continues to apply. For example, one can choose λ in the folded concave PLS
by using cross-validation (3.5). However, other criteria such as AIC and BIC
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utilize the model size m that is specific to L0-penalty. We need to generalize
this concept of model size, which will be called the degrees of freedom.

3.6.1 Degrees of freedom

To help motivate the definition of degrees of freedom, following Efron
(1986) and Efron et al. (2004), we assume that given the covariates X, Y
has the conditional mean vector μ(X) (also called regression function) that
depends on X and homoscedastic variance σ2. The conditional mean vector
μ (whose dependence on X is suppressed) is unknown and estimated by μ̂, a
function of the data (X,Y). Note that

‖μ− μ̂‖2 = ‖Y − μ̂‖2 − ‖Y − μ‖2 + 2(μ̂− μ)T (Y − μ). (3.86)

Thus, we have Stein’s identity: the mean squared error

E ‖μ− μ̂‖2 = E
{
‖Y − μ̂‖2 − nσ2

}
+ 2

n∑
i=1

cov(μ̂i, Yi). (3.87)

and the prediction error

E ‖Ynew − μ̂‖2 = nσ2 + E ‖μ− μ̂‖2 = E
{
‖Y − μ̂‖2

}
+ 2dfμ̂σ

2 (3.88)

with

dfμ̂ = σ−2
n∑

i=1

cov(μ̂i, Yi) (3.89)

as the degrees of freedom.
If dfμ̂ is known and σ2 is given, a Cp-type of unbiased risk estimation is

given by
Cp(μ̂) = ‖Y − μ̂‖2 + 2σ2 dfμ̂. (3.90)

The above formula shows that dfμ̂ plays the same role as the number of
parameters in (3.3).

For many linear smoothers, their degrees of freedom are indeed known
quantities. A linear estimator has the form μ̂ = SY with S being a smoother
matrix that only depends onX. See examples given in Section 2.8 of Chapter 2.
By independence among Yis, cov(μ̂i,Yi) = Siiσ

2. From (3.86), it follows that

dfμ̂ =
1

σ2

n∑
i=1

Siiσ
2 = tr(S).

We mentioned tr(S) as the degrees of freedom of the linear smoother S in
Chapter 2. Here, a formal justification is provided. In particular, when S =
X1(X

T
1 X1)

−1XT
1 , the projection matrix using m variables of the full model,

we have
dfμ̂ = tr(X1(X

T
1 X1)

−1XT
1 ) = m.



REGULARIZATION PARAMETERS FOR PLS 103

Therefore, the degrees of freedom formula is an extension of the number of
variables used in the classical linear model.

Degrees of freedom can be much more complex for nonlinear model fitting
procedures. For example, let us consider the best subset selection. For a given
subset size m, the final model always has m variables and one may naively
think the degrees of freedom is m. This is in general wrong unless m = 0 or
m = p. This is because the final subset is obtained by exclusively searching
over

(
p
m

)
many candidate models. We can not ignore the stochastic nature

of the search unless m = 0 or m = p. A simulation study in Lucas, Fithian
and Hastie (2015) shows that the degree of freedom is larger than m and
can be even larger than p. Another interesting and counter-intuitive finding
is that the degrees of freedom is not a monotonic increasing function of m,
which again reflects the complexity due to the stochastic search over

(
p
m

)
many

submodels. The same phenomenon is also observed for the degrees of freedom
of forward selection.

For least angle regression, Efron et al. (2004) show that under the orthog-
onal design assumption, the degree of freedom in the mth step of the LARS
algorithm is m. This matches our intuition, as at the mth step of the LARS al-
gorithm, m variables are effectively recruited. For a general design matrix, let

β̂
lasso

λ be the Lasso penalized least square estimator with penalization param-
eter λ. Let df lassoλ denote its degrees of freedom. Zou, Hastie and Tibshirani
(2007) prove a surprising result:

df lassoλ = E[‖β̂lasso

λ ‖0]. (3.91)

Therefore, the number of nonzero estimated coefficients is an exact unbiased
estimator of the degrees freedom of the Lasso. The estimation consistency
is also established. In theory we view the L1 PLS as a convex relaxation of
L0 PLS, but their degrees of freedom (model complexity) has very different
properties. For the L0 PLS, the number of nonzero estimated coefficients can
severely underestimate the true degrees of freedom. The final model of L1 PLS
is also obtained via a stochastic search, but (3.91) implies that on average the
complexity due to stochastic search is zero.

The unbiasedness result is good enough for constructing a Cp type statistic
for the Lasso:

C lasso
p = ‖Y −Xβ̂

lasso

λ ‖2 + 2σ2‖β̂lasso

λ ‖0, (3.92)

which is an exact unbiased estimator of the prediction risk of the Lasso.

3.6.2 Extension of information criteria

Suppose that μ̂(λ) is constructed by using a regularization parameter λ.
An extension of the Cp criterion (3.3) and the information criterion (3.4) is

Cp(λ) = ‖Y − μ̂(λ)‖2 + γσ2 dfμ̂(λ), (3.93)
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and
IC(λ) = log(‖Y − μ̂(λ)‖2/n) + γ dfμ̂(λ)/n. (3.94)

As shown in (3.87), Cp(λ) with γ = 2 is an unbiased estimation of the risk
E‖μ̂(λ)−μ‖2 except a constant term −nσ2. When γ = 2, log(n) and 2 log(p),
the criteria (3.93) will be called respectively the AIC, BIC, and RIC criterion.
With an estimate of σ2 (see Section 3.7), one can choose λ to minimize (3.93).
Similarly, we can choose λ to minimize (3.94).

Similarly, one can extend the generalized cross-validation criterion (3.7) to
this framework by

GCV(λ) =
‖Y − μ̂(λ)‖2
(1− dfμ̂(λ)/n)2

. (3.95)

In particular, when the linear estimator μ̂(λ) = H(λ)Y is used, by (3.90), we
have

Cp(λ) = ‖Y − μ̂(λ)‖2 + γσ2 tr(H(λ)), (3.96)

IC(λ) = log(‖Y − μ̂(λ)‖2/n) + γ tr(H(λ))/n. (3.97)

and

GCV(λ) =
‖Y − μ̂(λ)‖2

[1− tr(H(λ))/n]2
. (3.98)

As mentioned in Section 3.1.3, an advantage of the information criterion and
GCV is that no estimation of σ2 is needed, but this can lead to inaccurate
estimation of prediction error.

3.6.3 Application to PLS estimators

For PLS estimator (3.9), μ̂(λ) is not linear in Y. Some approximations
are needed. For example, using the LQA approximation, Fan and Li (2001)

regard (3.67) as a linear smoother with (recalling μ(λ) = Xβ̂(λ))

H(λ) = X(XTX+ n diag{p′λ(β̂j(λ))/|β̂j(λ)|})−1XT ,

and choose λ by GCV (3.98).
For the LARS-Lasso algorithm, as mentioned at the end of Section 3.6.1,

Zou, Hastie and Tibshirani (2007) demonstrate that the degree of freedom
is the same as the number of variables used in the LARS algorithm. This
motivates Wang, Li and Tsai (2007) and Wang and Leng (2007) to use di-

rectly ‖β̂‖0 as the degree of freedom. This leads to the definition of modified
information criterion as

IC∗(λ) = log(‖Y −Xβ̂λ‖2/n) + γ
‖β̂λ‖0
n

Cn (3.99)

for a sequence of constants Cn. It has been shown by Wang, Li and Tsai (2007)
that SCAD with AIC (γ = 2, Cn = 1) yields an inconsistent model (too many
false positives) while BIC (γ = log n, Cn = 1) yields a consistent estimation
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of the model when p is fixed. See also Wang and Leng (2007) for similar
model selection results. Wang, Li and Leng (2009) show that the modified
BIC (3.99) with γ = log n and Cn → ∞ produces consistent model selection
when SCAD is used. For high-dimensional model selection, Chen and Chen
(2008) propose an extended BIC, which adds a multiple of the logarithm of
the prior probability of a submodel to BIC. Here, they successfully establish
its model selection consistency.

3.7 Residual variance and refitted cross-validation

Estimation of noise variance σ2 is fundamental in statistical inference. It is
prominently featured in the statistical inference of regression coefficients. It is
also important for variable selection using the Cp criterion (3.96). It provides a
benchmark for forecasting error when an oracle actually knows the underlying
regression function. It also arises from genomewise association studies (see
Fan, Han and Gu, 2012). In the classical linear model as in Chapter 2, the
noise variance is estimated by the residual sum of squares divided by n − p.
This is not applicable to the high-dimensional situations in which p > n. In
fact, as demonstrated in Section 1.3.3 (see Figure 1.9 there), the impact of
spurious correlation on residual variance estimation can be very large. This
leads us to introducing the refitted cross-validation.

In this section, we introduce methods for estimating σ2 in the high-
dimensional framework. Throughout this section, we assume the linear model
(2.2) with homoscedastic variance σ2.

3.7.1 Residual variance of Lasso

A natural estimator of σ2 is the residual variance of penalized least-squares
estimators. As demonstrated in Section 3.3.2, Lasso has a good risk property.
We therefore examine when its residual variance gives a consistent estimator
of σ2.

Recall that the theoretical risk and empirical risk are defined by

R(β) = E(Y −XTβ)2 and Rn(β) = n−1
n∑

i=1

(Yi −XT
i β)

2,

Let β̂ be the solution to the Lasso problem (3.39) and c be sufficiently large

so that ‖β0‖1 ≤ c. Then, Rn(β0) ≥ Rn(β̂). Using this, we have

R(β0)−Rn(β̂) = [R(β0)−Rn(β0)] + [Rn(β0)−Rn(β̂)]

≥ R(β0)−Rn(β0)

≥ − sup
‖β‖1≤c

|R(β)−Rn(β)|.

On the other hand, by using R(β0) ≤ R(β̂), we have

R(β0)−Rn(β̂) ≤ R(β̂)−Rn(β̂) ≤ sup
‖β‖1≤c

|R(β)−Rn(β)|.
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Therefore,
|R(β0)−Rn(β̂)| ≤ sup

‖β‖1≤c

|R(β)−Rn(β)|.

By (3.40), we conclude that

|R(β0)−Rn(β̂)| ≤ (1 + c)2‖Σ∗ − S∗
n‖∞, (3.100)

provided that ‖β0‖1 ≤ c. In other words, the average residual sum of squares
of Lasso

σ̂2
Lasso = n−1‖Y −Xβ̂‖2

provides a consistent estimation of σ2, if the righthand side of (3.100) goes to
zero and ‖β0‖1 ≤ c

R(β0) = σ2 and Rn(β̂) = σ̂2
Lasso.

As shown in Chapter 11, ‖Σ − Ŝn‖∞ = OP (
√
(log p)/n) for the data with

Gaussian tails. That means that σ̂2
Lasso is consistent when

‖β0‖1 ≤ c = o
(
(n/ log p)1/4

)
. (3.101)

Condition (3.101) is actually very restrictive. It requires the number of
significantly nonzero components to be an order of magnitude smaller than
(n/ log p)1/4. Even when that condition holds, σ̂2

Lasso is only a consistent es-
timator and can be biased or not optimal. This leads us to consider refitted
cross-validation.

3.7.2 Refitted cross-validation

Refitted cross-validation (RCV) was introduced by Fan, Guo and Hao
(2012) to deal with the spurious correlation induced by data-driven model
selection. In high-dimensional regression models, model selection consistency
is very hard to achieve. When some important variables are missed in the se-
lected model, they create a non-negligible bias in estimating σ2. When spuri-
ous variables are selected into the model, they are likely to predict the realized
but unobserved noise ε. Hence, the residual variance will seriously underesti-
mate σ2 as shown in Section 1.3.3.

Note that our observed data follow

Y = Xβ + ε, and Var(ε) = σ2In.

Even though we only observe (X,Y), ε is a realized vector in Rn. It can have
a spurious correlation with a subgroup of variables XS , namely, there exists a
vector βS such that XSβS and ε are highly correlated. This can occur easily
when the number of predictors p is large as shown in Section 1.3.3. In this case,
XS can be seen by a model selection technique as important variables. A way
to validate the model is to collect new data to see whether the variables in the
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set S still correlated highly with the newly observed Y . But this is infeasible
in many studies and is often replaced by the data splitting technique.

RCV splits data evenly at random into two halves, where we use the first
half of the data along with a model selection technique to get a submodel.
Then, we fit this submodel to the second half of the data using the ordinary
least-squares and get the residual variance. Next we switch the role of the
first and the second half of the data and take the average of the two residual
variance estimates. The idea differs importantly from cross-validation in that
the refitting in the second stage reduces the influence of the spurious variables
selected in the first stage.

We now describe the procedure in detail. Let datasets (Y(1),X(1)) and

(Y(2),X(2)) be two randomly split data. Let Ŝ1 be the set of selected variables
using data (Y(1),X(1)). The variance σ2 is then estimated by the residual
variance of the least-squares estimate using the second dataset along with
variables in Ŝ1 (only the selected model, not the data, from the first stage is
carried to the fit in the second stage), namely,

σ̂2
1 =

(Y(2))T (In/2 −P
(2)
̂S1
)Y(2)

n/2− |Ŝ1|
, P

(2)
̂S1

= X
(2)
̂S1
(X

(2)T
̂S1

X
(2)
̂S1
)−1X

(2)T
̂S1

.

(3.102)
Compare residual variance estimation in (2.7). Switching the role of the first
and second half, we get a second estimate

σ̂2
2 =

(Y
(1)

)T (In/2 −P
(1)
̂S2
)Y(1)

n/2− |Ŝ2|
.

We define the final estimator as the simple average

σ̂2
RCV = (σ̂2

1 + σ̂2
2)/2,

or the weighted average defined by

σ̂2
wRCV =

(Y(2))T (In/2 −P
(2)
̂S1
)Y(2) + (Y

(1)
)T (In/2 −P

(1)
̂S2
)Y(1)

n− |Ŝ1| − |Ŝ2|
. (3.103)

The latter takes into account the degrees of freedom used in fitting the linear
model in the second stage. We can now randomly divide the data multiple
times and take the average of the resulting RCV estimates.

The point of refitting is that even though Ŝ1 may contain some unimpor-
tant variables that are highly correlated with ε(1), they play minor roles in
estimating σ2 in the second stage since they are unrelated with the realized
noise vector ε(2) in the second half of data set. Furthermore, even when some
important variables are missed in Ŝ1, they still have a good chance of being
well approximated by the other variables in Ŝ1. Thanks to the refitting in the
second stage, the best linear approximation of those selected variables is used
to reduce the biases in (3.102).
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Unlike cross-validation, the second half of data also plays an important
role in fitting. Therefore, its size can not be too small. For example, it should
be bigger than |Ŝ1|. Yet, larger set S1 gives a better chance of sure screening
(no false negatives) and hence reduces the bias of estimator (3.102). RCV
is applicable to any variable selection rule, including the marginal screening
procedure in Chapter 8. Fan, Guo and Hao (2012) show that under some
mild conditions, the method yields an asymptotic efficient estimator of σ̂2.
In particular, it can handle intrinsic model size s = o(n), much higher than
(3.101), when folded concave PLS is used. They verified the theoretical results
by numerous simulations. See Section 8.7 for further developments.

3.8 Extensions to Nonparametric Modeling

The fundamental ideas of the penalized least squares can be easily ex-
tended to the more flexible nonparametric models. This section illustrates the
versatility of high-dimensional linear techniques.

3.8.1 Structured nonparametric models

A popular modeling strategy is the generalized additive model (GAM):

Y = μ+ f1(X1) + · · ·+ fp(Xp) + ε, (3.104)

This model was introduced by Stone (1985) to deal with the “curse of dimen-
sionality” in multivariate nonparametric modeling and was thoroughly treated
in the book by Hastie and Tibshirani (1990). A simple way to fit the additive
model (3.104) is to expand the regression function fj(x) into a basis:

fj(x) =

Kj∑
k=1

βjkBjk(x), (3.105)

where {Bjk(x)}Kj

k=1 are the basis functions (e.g. a B-spline basis with certain
number of knots) for variableXj . See Section 2.5.2. Substituting the expansion
into (3.104) yields

Y = μ+ {β1,1B1,1(X1) + · · ·+ β1,K1
B1,K1

(X1)}+ · · ·
+{βp,1Bp,1(Xp) + · · ·+ βp,Kp

Bp,Kp
(Xp)}+ ε. (3.106)

Treating the basis functions {Bj,k(Xj) : k = 1, · · · ,Kj , j = 1, · · · , p} as pre-
dictors, (3.106) is a high-dimensional linear model. By imposing a sparsity
assumption, we assume that only a few fj functions actually enter the model.
So, many β coefficients are zero. Therefore, we can employ penalized folded
concave PLS (3.9) to solve this problem. Another selection method is via the
group penalization. See, for example, the PLASM algorithm in Baskin (1999)
and the SpAM algorithm in Ravikumar, Liu, Lafferty and Wasserman (2007).
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The varying-coefficient model is another widely-used nonparametric ex-
tension of the multiple linear regression model. Conditioning on an exposure
variable U , the response and covariates follow a linear model. In other words,

Y = β0(U) + β1(U)X1 + · · ·+ βp(U)Xp + ε. (3.107)

The model allows regression coefficients to vary with the level of exposure U ,
which is an observed covariate variable such as age, time, or gene expression.
For a survey and various applications, see Fan and Zhang (2008). Expanding
the coefficient functions similar to (3.105), we can write

Y =

p∑
j=0

{
Kj∑
k=1

βj,kBj,k(U)Xj}+ ε, (3.108)

where X0 = 1. By regarding variables {Bj,k(U)Xj , k = 1, · · · ,Kj , j =
0, · · · , p} as new predictors, model (3.108) is a high-dimensional linear model.
The sparsity assumption says that only a few variables should be in the model
(3.107) which implies many zero β coefficients in (3.108). Again, we can em-
ploy penalized folded concave PLS (3.9) to do variable selection or use the
group selection method.

3.8.2 Group penalty

The penalized least-squares estimate to the nonparametric models in Sec-
tion 3.8 results in term-by-term selection of the basis functions. In theory,
when the folded concave penalty is employed, the selection should be fine. On
the other hand, the term-by-term selection does not fully utilize the sparsity
assumption of the functions. In both additive model and varying coefficient
model, a zero function implies that the whole group of its associated coef-
ficients in the basis expansion is zero. Therefore, model selection techniques
should ideally keep or kill a group of coefficients at the same time.

Group penalty was proposed in Antoniadis and Fan (2001, page 966) to
keep or kill a block of wavelets coefficients. It was employed by Lin and Zhang
(2006) for component selection in smoothing spline regression models, includ-
ing the additive model as a special case. Their COSSO algorithm iterates
between a smoothing spline fit and a non-negative garrote shrinkage and selec-
tion. A special case of COSSO becomes a more familiar group lasso regression
formulation considered in Yuan and Lin (2006) who named the group penalty
group-lasso.

Let {xj}pj=1 be p groups of variables, each consisting of Kj variables. Con-
sider a generic linear model

Y =

p∑
j=1

xT
j βj + ε. (3.109)

Two examples of (3.109) are (3.106) and (3.108) in which xj represents Kj
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spline bases and βj represents their associated coefficients. In matrix form,
the observed data based on a sample of size n follow the model

Y =

p∑
j=1

Xjβj + ε, (3.110)

where Xj is n×Kj design matrix of variables xj .
The group penalized least-squares is to minimize

1

2n
‖Y −

p∑
j=1

Xjβj‖2 +
p∑

j=1

pλ(‖βj‖Wj
) (3.111)

where pλ(·) is a penalty function and

‖βj‖Wj
=
√

βT
j Wjβj

is a generalized norm with a semi-definite matrix Wj . In many applications,
one takes Wj = IKj

, resulting in

1

2n
‖Y −

p∑
j=1

Xjβj‖2 +
p∑

j=1

pλ(‖βj‖). (3.112)

For example, the group lasso is defined as

1

2n
‖Y −

p∑
j=1

Xjβj‖2 + λ

p∑
j=1

K
1/2
j ‖βj‖. (3.113)

The extra factor K
1/2
j is included to balance the impact of group size.

The group-lasso (3.113) was proposed by Baskin (1999) for variable se-
lection in the additive model. Turlach, Venables and Wright (2005) also used
the group-lasso for simultaneous variable selection in multiple responses linear
regression, a example of multi-task learning.

Assuming a group-wise orthogonality condition, that is, XT
j Xj = nIKj for

all j, Yuan and Lin (2006) used a group descent algorithm to solve (3.112).
Similar to coordinate descent, we update the estimate one group at a time.
Consider the coefficients of group j while holding all other coefficients fixed.
Then, by XT

j Xj = nIKj (3.112) can be written as

1

2n
‖Y−j −Xjβ̂−j‖2 +

1

2
‖β̂−j − βj‖2 +

p∑
k=1

pλ(‖βk‖), (3.114)

where Y−j = Y −∑k �=j Xkβk and β̂−j = n−1XT
j Y−j . This problem was

solved by Antoniadis and Fan (2001, page 966). They observed that

min
βj

1

2
‖β̂−j − βj‖2 + pλ(‖βj‖) = min

r

{
1

2
min

‖βj‖=r
‖β̂−j − βj‖2 + pλ(r)

}
.

(3.115)
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The inner bracket is minimized at β̂j,r = rβ̂−j/‖β̂−j‖. Substituting this into
(3.115), the problem becomes

min
r

{
1

2
(‖β̂−j‖ − r)2 + pλ(r)

}
. (3.116)

Problem (3.116) is identical to problem (3.12), whose solution is denoted by

θ̂(‖β̂−j‖). For the L1, SCAD and MCP, the explicit solutions are given re-
spectively by (3.18)–(3.20). With this notation, we have

β̂j =
θ̂(‖β̂−j‖)
‖β̂−j‖

β̂−j . (3.117)

In particular, for the L1-penalty,

β̂j =

(
1− λ

‖β̂−j‖

)
+

β̂−j ,

and for the hard-thresholding penalty

β̂j = I(‖β̂−j‖ ≥ λ)β̂−j .

These formulas were given by Antoniadis and Fan (2001, page 966). They
clearly show that the strength of the group estimates is pulled together to
decide whether or not to keep a group of coefficients.

The groupwise orthogonality condition is in fact not natural and necessary
to consider. Suppose that the condition holds for the data (Yi,Xi), 1 ≤ i ≤ n.
If we bootstrap the data or do cross-validation to selection λ, the groupwise
orthogonality condition easily fails on the perturbed dataset. For computa-
tional considerations, the groupwise orthogonality condition is not needed for
using the group descent algorithm. Several algorithms for solving the Lasso
regression, such as ISTA, FISTA and ADMM, can be readily used to solve the
group-lasso regression with a general design matrix. We omit the details here.

3.9 Applications

We now illustrate high-dimensional statistical modeling using the monthly
house price appreciations (HPA) for 352 counties in the United States. The
housing price appreciation is computed based on monthly repeated sales.
These 352 counties have the largest repeated sales and hence their measure-
ments are more reliable. The spatial correlations of these 352 HPAs, based on
the data in the period from January 2000 to December 2009, are presented in
Figure 1.4.

To take advantage of the spatial correlation in their prediction, Fan, Lv
and Qi (2011) utilize the following high-dimensional time-series regression.
Let Y i

t be the HPA in county i at time t and Xi,t be the observable factors
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that drive the market. In the application below, Xi,t will be taken as the
national HPA, the returns of the national house price index that drives the
overall housing markets. They used the following s-period ahead county-level
forecast model:

Y i
t+s =

p∑
j=1

bijY
j
t +XT

i,tβi + εit+s, i = 1, . . . , p, (3.118)

where p = 352 and bij and βi are regression coefficients. In this model, we
allow neighboring HPAs to influence the future housing price, but we do not
know which counties have such prediction power. This leads to the following
PLS problem: For each given county i,

min{bij ,j=1,...,p,βi}

T−s∑
t=1

(
Y i
t+s −XT

i,tβi −
p∑

j=1

bijY
j
t

)2
+

p∑
j=1

wijpλ(|bij |),

where the weights wij are chosen according to the geographical distances be-
tween counties i and j. The weights are used to discourage HPAs from remote
regions from being used in the prediction. The non-vanishing coefficients rep-
resent the selected neighbors that are useful for predicting HPA at county
i.

Monthly HPA data from January 2000 to December 2009 were used to
fit model (3.118) for each county with s = 1. The top panel of Figure 3.11
highlights the selected neighborhood HPAs used in the prediction. For each
county i, only 3-4 neighboring counties are chosen on average, which is reason-
able. Figure 3.11 (bottom left) presents the spatial correlations of the residuals
using model (3.118). No pattern can be found, which indicates the spatial cor-
relations have already been explained by the neighborhood HPAs. In contrast,
if we ignore the neighborhood selection (namely, setting bij = 0, ∀i �= j), which
is a lower-dimensional problem and will be referred to as the OLS estimate,
the spatial correlations of the residuals are visible (bottom right). This pro-
vides additional evidence on the effectiveness of the neighborhood selection
by PLS.

We now compare the forecasting power of the PLS with OLS. Training
sample covers the data for 2000.1-2005.12, and the test period is 2006.1-
2009.12. Fan, Lv and Qi (2011) carried out prediction throughout next 3
years in the following manner. For the short-term prediction horizons s from
1 to 6 months, each month is predicted separately using model (3.118); for
the time horizon of 7-36 months, only the average HPA over 6-month peri-
ods (e.g. months 7-12, 13-18, etc) is predicted. This increases the stability
of the prediction. More precisely, for each of the 6 consecutive months (e.g.
months 13-18), they obtained a forecast of average HPA during the 6 months
using PLS with historical 6-month average HPAs as a training sample. They
treated the (annualized) 6-month average as forecast of the middle month of
the 6-month period (e.g. month 15.5) and linearly interpolated the months in
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Figure 3.11: Top panel: Neighborhoods with non-zero regression coefficients:
for each county i in the y-axis, each row, i.e. x-axis indicates the neighbor-
hood that has impact on the HPA in county i. Bottom left: Spatial-correlation
of residuals with national HPA and neighborhood selection. Bottom right:
Spatial-correlation of residuals using only national HPA as the predictor.
Adapted from Fan, Lv and Qi (2011).
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Figure 3.12: Aggregated forecast errors (3.119) in 36 months over 352 counties.
For each dot, the x-axis represents prediction errors by OLS with only national
factor, y-axis error by PLS with additional neighborhood information. The line
indicates both methods having the same performance. From Fan, Lv and Qi
(2011).

between. The discounted aggregated squared errors were used as a measure of
overall performance of the prediction for county i:

Forecast Errori =

τ∑
s=1

ρs(Ŷ i
T+s − Y i

T+s)
2, ρ = 0.95, (3.119)

where τ is the time horizon to be predicted.
The results in Figure 3.12 show that over 352 counties, the sparse regression

model (3.118) with neighborhood information performs on average 30% better
in terms of prediction error than the model without using the neighborhood
information. Figure 1.4 compares forecasts using OLS with only the national
HPA (blue) and PLS with additional neighborhood information (red) for the
largest counties with the historical HPAs (black).

How good is a prediction method? The residual standard deviation σ pro-
vides a benchmark measure when the ideal prediction rule is used. To illustrate
this, we estimate σ for one-step forecast in San Francisco and Los Angeles,
using the HPA data from January 1998 to December 2005 (96 months). The
RCV estimates, as a function of the selected model size s, are shown in Figure
3.13. The naive estimates, which compute directly the residual variances, de-



APPLICATIONS 115

5 10 15 20 25

0.
30

0.
40

0.
50

0.
60

(a) SF:naive method

model size, s = 2 to 25

es
tim

at
ed

 s
ta

nd
ar

d 
de

vi
at

io
n 

in
 %

5 10 15 20 25

0.
30

0.
40

0.
50

0.
60

(b) SF:RCV method

model size, s = 2 to 25

es
tim

at
ed

 s
ta

nd
ar

d 
de

vi
at

io
n 

in
 %

5 10 15 20 25

0.
30

0.
40

0.
50

0.
60

(c) LA:naive method

model size, s = 2 to 25

es
tim

at
ed

 s
ta

nd
ar

d 
de

vi
at

io
n 

in
 %

5 10 15 20 25

0.
30

0.
40

0.
50

0.
60

(d) LA:RCV method

model size, s = 2 to 25

es
tim

at
ed

 s
ta

nd
ar

d 
de

vi
at

io
n 

in
 %

Figure 3.13: Estimated standard deviation σ for one-step ahead forecast as a
function of selected model size s in both San Francisco (top panel) and Los
Angeles (bottom panel) using both naive (left panel) and RCV (right panel)
methods. Taken from Fan, Lv and Qi (2011).

crease with s due to spurious correlation. On the other hand, the RCV gives
reasonably stable estimates for a range of selected models. The benchmarks
of prediction errors for both San Francisco and Los Angeles regions are about
.53%, comparing the standard deviations of month over month variations of
HPAs 1.08% and 1.69%, respectively. In contrast, the rolling one-step predic-
tion errors over 12 months in 2006 are .67% and .86% for San Francisco and
Los Angeles areas, respectively. They are clearly larger than the benchmark as
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expected, but considerably smaller than the standard deviations, which used
no variables to forecast. They also show that some small room of improvements
is the PLS are possible.

3.10 Bibliographical notes

There are many other exciting developments on variable selection. We have
no intention to give a comprehensive survey here. Instead, we focus only on
some important inventions on penalized least-squares that lead to the vast
literature today.

The idea of L2-regularization appears in the early work of Tikhonov reg-
ularization in the 1940’s (Tikhonov, 1943). It was introduced to statistics as
ridge regression by Hoerl (1962) and Hoerl and Kennard (1970). The con-
cept of sparsity and L1 penalty appeared in a series of the work by David
Donoho and Iain Johnstone (see e.g. Donoho and Johnstone, 1994). Penal-
ized L1-regression was employed by David Donoho and Shaobing Chen, in
a technical report on “basis pursuit” in 1994, to select a basis from an over
complete dictionary. It was then used by Tibshirani (1996) to conduct variable
selection. Fan and Li (2001) introduced folded concave penalized likelihood in-
cluding least-squares to reduce the biases in the Lasso shrinkage and for better
variable selection consistency. They introduced local quadratic approximation
to cast the optimization problem into a sequence of a quadratic optimiza-
tion problems and established the oracle property. LARS was introduced by
Efron et al. (2004) to efficiently compute the Lasso path. An early work on the
asymptotic study of penalized least-squares (indeed, penalized likelihood) with
diverging dimensionality was given by Fan and Peng (2004). Zou and Zhang
(2009) introduced the adaptive elastic net and studied its properties under di-
verging dimensions. Zhao and Yu (2006), Meinshausen and Bühlmann (2006)
and Zou (2006) gave irrepresentable conditions for model selection consistency
of Lasso. Candés and Tao (2007) proposed the Dantzig selector, which can be
cast as a linear program. Zhang (2010) introduced the PLUS algorithm for
computing a solution path of a specific class of folded concave PLS including
MCP and SCAD and established a strong oracle property. A family of folded
concave penalties that bridge the L0 and L1 penalties was studied by Lv and
Fan (2009). A thorough investigation on the properties of folded concave PLS
when dimensionality diverges was given by Lv and Fan (2010). Meinshausen
and Bühlmann (2010) proposed stability selection based on subsampling.

Belloni, Chernozhukov, and Wang (2011) proposed square-root Lasso for
sparse regression. Negahban, Ravikumar, Wainwright and Yu (2012) proposed
a unified analysis of high-dimensional M -estimators with decomposable regu-
larizers. Agarwal, Negahban and Wainwright (2012) proposed the composite
gradient descent algorithm and developed the sampling properties by tak-
ing computational error into consideration. Belloni, Chen, Chernozhukov, and
Hansen (2012) investigated optimal instruments selection. The focussed GMM
was proposed by Fan and Liao (2014) to solve endogeneity problems pandemic
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in high-dimensional sparse regression. Belloni and Chernozhukov (2013) inves-
tigated post-model selection estimators. Fan, Xue and Zou (2014) showed that
the one-step LLA algorithm produces a strong oracle solution as long as the
problem is localizable and regular. Loh and Wainwright (2014) developed sta-
tistical and algorithmic theory for local optima of regularized M-estimators
with nonconvexity penalty. They showed surprisingly that all local optima will
lie within statistical precision of the sparse true parameter vector. Support re-
covery without incoherence was investigated by Loh and Wainwright (2017)
using nonconvex regularization.

There were many developments on robust regularization methods and
quantile regression. For fixed dimensionality variable selection, see, for ex-
ample, Wang, Li and Jiang (2007), Li and Zhu (2008), Zou and Yuan (2008),
and Wu and Liu (2009). The penalized composite likelihood method was pro-
posed in Bradic, Fan, and Wang (2011) for improvement of the efficiency
of Lasso in high dimensions. Belloni and Chernozhukov (2011) showed that
the L1-penalized quantile regression admits the near-oracle rate and derived
bounds on the size of the selected model, uniformly in a compact set of quan-
tile indices. Bounds on the prediction error were derived in van de Geer and
Müller (2012) for a large class of L1 penalized estimators, including quantile
regression. Wang, Wu and Li (2012) showed that the oracle estimate belongs
to the set of local minima of the nonconvex penalized quantile regression. Fan,
Fan and Barut (2014) proposed and studied the adaptive robust variable selec-
tion. Fan, Li, and Wang (2017) considered estimating high-dimensional mean
regression using adaptive Huber loss, which assumes only the second moment
condition on the error distribution. Sun, Zhou, and Fan (2017) weakened the
second moment condition to (1+δ)-moment and unveiled optimality and phase
transition for the adaptive Lasso. Loh (2017) investigated theoretical proper-
ties of regularized robust M-estimators, applicable for data contaminated by
heavy-tailed distributions and/or outliers in the noises and covariates.

3.11 Exercises

3.1 Let g(θ|z, λ) = 1
2 (z − θ)2 + pλ(|θ|) for a given λ and z, and denote

θ̂(z|λ) = argminθ g(θ|z, λ).
(a) Let pλ(|θ|) = λ2

2 I(|θ| �= 0), the L0-penalty. Show that θ̂H(z|λ) = zI(|z| ≥
λ), the hard thresholding rule.

(b) Let pλ(|θ|) = 1
2λ

2 − 1
2 (λ − θ)2+, the hard-thresholding penalty defined

in (3.15). Show that θ̂H(z|λ) = zI(|z| ≥ λ). This implies that different
penalty functions may result in the same penalized least squares solution.

(c) Comment the advantages of the hard-thresholding penalty over the L0-
penalty.

(d) Let pλ(|θ|) = λ|θ|, the L1-penalty. Show that θ̂S(z|λ) = sgn(z)(|z|−λ)+,
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the soft-thresholding rule. Compare with L0-penalty, the regularization
parameter λs in different penalty functions may be in different scale.

(e) Let pλ(θ) = λ{(1 − α)θ2 + α|θ|} with a fixed α. Derive the close-form

solution of θ̂(z|λ), which is the elastic net thresholding rule.

3.2 Let g(θ|z, λ) = 1
2 (z − θ)2 + pλ(|θ|) for a given λ and z, and denote

θ̂(z|λ) = argminθ g(θ|z, λ). Following the convention, let p′λ(0) = p′λ(0+).
Assume that pλ(θ) is nondescreasing and continuously differentiable on
[0,∞), and the function −θ − p′λ(θ) is strictly unimodal on [0,∞).

(a) Show that if t0 = minθ≥0{θ + p′λ(θ)} > 0, then θ̂(z|λ) = 0 when z ≤ t0.

This leads the sparsity of θ̂(z|λ).
(b) Show that if p′λ(|θ|) = 0 for |θ| ≥ t1, then θ̂(z|λ) = z for |θ| ≥ t1 with

large t1. This leads the unbiasedness of θ̂(z|λ).
(c) Show that θ̂(z|λ) is continuous in z if and only if argminθ≥0{θ+p′λ(θ)} =

0. This leads to the continuity of θ̂(z|λ).

3.3 Let g(θ|z, λ, σ) = 1
2σ2 (z−θ)2+pλ(|θ|) for a given λ, z and σ, and denote

θ̂(z|λ, σ) = argminθ g(θ|z, λ, σ).
(a) Take the penalty function to be the SCAD penalty whose derivative is

given in (3.14). Derive the expressive form solution of θ̂(z|λ, σ).
(b) Take the penalty function to be the MCP whose derivative is given in

(3.17). Derive the closed form solution θ̂(z|λ, σ).
(c) Comment how λ relates to σ so that the solutions in (a) and (b) still

have sparsity, unbiasedness and continuity.

3.4 Suppose that Z ∼ N(θ, σ2). Derive the closed form of risk function

R(θ) = E(θ̂(Z) − θ)2 for the hard-thresholding rule (3.16), the soft-
thresholding rule (3.18), the SCAD thresholding rule given (3.19) and the
MCP thresholding rule (3.20), respectively. Plot R(θ) against θ with σ = 2
and 3, and compare your plot with Figure 3.3.

3.5 Consider the lasso problem minβ
1
2n‖Y−Xβ‖22 +λ‖β‖1, where λ > 0 is

a tuning parameter.

(a) If β̂1 and β̂2 are both minimizers of the lasso problem, show that they

have the same prediction, i.e., Xβ̂1 = Xβ̂2. Hint: Consider the vector

αβ̂1 + (1− α)β̂2 for α ∈ (0, 1).

(b) Let β̂ be a minimizer of the lasso problem with jth componenet β̂j .
Denote Xj to be the j-th column of X. Show that⎧⎪⎨⎪⎩

λ = n−1XT
j (Y −Xβ̂) if β̂j > 0;

λ = −n−1XT
j (Y −Xβ̂) if β̂j < 0;

λ ≥ |n−1XT
j (Y −Xβ̂)| if β̂j = 0.
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(c) If λ > ‖n−1XTY‖∞, prove that β̂λ = 0, where β̂λ is the minimizer of
the lasso problem with regularization parameter λ.

3.6 Verify the KKT conditions in (3.22), (3.23) and (3.24) for penalized least
squares.

3.7 Consider the elastic-net loss p(θ) = λ1|θ|+λ2θ2. Let β̂ be the minimizer
of 1

2n‖Y −Xβ‖22 +
∑p

j=1 p(|βj |).
(a) For λ2 > 0, show that β̂ is unique.

(b) Give the necessary and sufficient conditions for β̂ being the penalized
least-squares solution.

(c) If λ1 > ‖n−1XTY‖∞, show that β̂ = 0.

3.8 Concentration inequalities.

(a) The random vector ε ∈ R
n is called σ-sub-Gaussian if E exp

(
aTε
)
≤

exp
(
‖a‖22σ2/2

)
, ∀a ∈ R

n. Show that Eε = 0 and Var(ε) ≤ σ2In. Hint:
Expand exponential functions as infinite series.

(b) For X ∈ R
n×p with the j-th column denoted by Xj ∈ R

n, suppose that
‖Xj‖22 = n for all j, and ε ∈ R

n is a σ-sub-Gaussian random vector.
Show that there exists a constant C > 0 such that

P
(
‖n−1XTε‖∞ >

√
2(1 + δ)σ

√
log p

n

)
≤ Cp−δ, ∀δ > 0.

3.9 The goal is to show the concentration inequality for the median-of-means
estimator when the random variable only has finite second moment. We
divide the problem into three simple steps.

(a) Let X be a random variable with EX = μ <∞ and Var(X) = σ2 <∞.
Suppose that we have m i.i.d. random samples {Xi}mi=1 with the same
distribution as X. Let μ̂m = 1

m

∑m
i=1Xi. Show that

P
(
|μ̂m − μ| ≥

2σ√
m

)
≤ 1

4
.

(b) Given k i.i.d. Bernoulli random variables {Bj}kj=1 with EBj = p < 1
2 .

Use the moment generating function of Bj , i.e., E(exp(tBj)), to show
that

P
(1
k

k∑
j=1

Bj ≥
1

2

)
≤ (4p(1− p)) k

2 .

(c) Suppose that we have n i.i.d. random samples {Xi}ni=1 from a population
with mean μ <∞ and variance σ2 <∞. For any positive integer k, we
randomly and uniformly divide all the samples into k subsamples, each
having size m = n/k (for simplicity, we assume n is always divisible by
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k). Let μ̂j be the sample average of the jth subsample and m̃ be the
median of {μ̂j}kj=1. Apply the previous two results to show that

P
(
|m̃− μ| ≥ 2σ

√
k

n

)
≤
(√3

2

)k
.

Hint: Consider the Bernoulli random variable Bj = �{|μ̂j−μ| ≥ 2σ
√

k
n}

for j = 1, ..., k.

3.10 This problem intends to show that the gradient decent method for a
convex function f(·) is a member of majorization-minimization algorithms
and has a sublinear rate of convergence in terms of function values. From
now on, the function f(·) is convex and let x∗ ∈ argminf(x). Here we
implicitly assume the minimum can be attained at some point x� ∈ R

p.

(a) Suppose that f ′′(x) ≤ LIp and δ ≤ 1/L. Show that the quadratic func-
tion g(x) = f(xi−1) + f ′(xi−1)

T (x − xi−1) +
1
2δ‖x − xi−1‖2 is a ma-

jorization of f(x) at point xi−1, i.e., g(x) ≥ f(x) for all x and also
g(xi−1) = f(xi−1).

(b) Show that gradient step xi = xi−1−δf ′(xi−1) is the minimizer of the ma-
jorized quadratic function g(x) and hence the gradient descend method
can be regarded as a member of MM-algorithms.

(c) Use (a) and the convexity of f(·) to show that

f(xi) ≤ f(x∗) +
1

2δ
(‖xi−1 − x∗‖2 − ‖x∗ − xi‖2).

(d) Conclude using (c) that f(xk)− f(x∗) ≤ ‖x0−x∗‖2/(2kδ), namely gra-
dient descent converges at a sublinear rate. (Note: The gradient descent
method converges linearly if f(·) is strongly convex.)

3.11 Conduct a numerical comparison among the quadratic programming al-
gorithm (3.57), the LARS algorithm, the cyclic coordinate descent algo-
rithms and the ADMM algorithm for lasso.

3.12 Conduct a numerical comparison between the lasso and the one-step
SCAD estimator using LLA with lasso initial values.

3.13 Show that when the dimension of x is finite and fixed, the SCAD with
GCV-tuning parameter selector defined in (3.98) leads to an overfitted
model. That is, the selected model contains all important variables, but
with a positive probability, the selected model contains some unimportant
variables. See, Wang, Li and Tsai (2007).

3.14 Show that when the dimension of x is finite and fixed, the SCAD with
BIC-tuning parameter selector defined in (3.99) yields a consistent estima-
tion of the model.
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3.15 Show that σ̂2
1 defined in (3.102) is a root-n consistent estimator of σ2.

3.16 Extend the ADMM algorithm in Section 3.5.9 for group-lasso regression.

3.17 Extend the ISTA algorithm in Section 3.5.7 for penalized least squares
with group penalty, and further apply the new algorithm for variable selec-
tion in varying coefficient models in (3.107).

3.18 Let us consider the 128 macroeconomic time series from Jan. 1959 to
Dec. 2018, which can be downloaded from the book website. In this prob-
lem, we will explore what macroeconomic variables are associated with
the unemployment rate contemporarily and which macroeconomic variables
lead the unemployment rates.

(a) Extract the data from Jan. 1960 to Oct. 2018 (in total 706 months) and
remove the feature named “sasdate”. Then, remove the features with
missing entries and report their names.

(b) The column with name “UNRATE” measures the difference in unem-
ployment rate between the current month and the previous month. Take
this column as the response and take the remaining variables as predic-
tors. To conduct contemporary association studies, do the following steps
for lasso (using R package glmnet) and SCAD (using R package ncvreg):
Set a random seed by set.seed(525); Plot the regularization paths as
well as the mean squared errors estimated by 10-fold cross-validation;
Choose a model based on cross-validation, report its in-sample R2, and
point out two most important macroeconomic variables that are corre-
lated with the current change of unemployment rate and explain why
you choose them.

(c) In this sub-problem, we are going to study which macroeconomic vari-
ables are leading indicators for the changes of future unemployment rate.
To do so, we will pair each row of predictors with the next row of re-
sponse. The last row of predictors and the first element in the response
are hence discarded. After this change, do the same exercise as (b).

(d) Consider the setting of (c). Leave the last 120 months as testing data and
use the rest as training data. Set a random seed by set.seed(525). Run
lasso and SCAD on the training data using glmnet and ncvreg, respec-
tively, and choose a model based on 10-fold cross-validation. Compute
the out-of-sample R2’s for predicting the changes of the future unem-
ployment rates.

3.19 Consider the Zillow data analyzed in Exercise 2.9. We drop the first 3
columns (“(empty)”, “id”, “date”) and treat “zipcode” as a factor variable.
Now, consider the variables

(a) “bedrooms”, “bathrooms”, “sqft living”, and “sqft lot” and their inter-
actions and the remaining 15 variables in the data, including “zipcode”.
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(b) “bedrooms”, “bathrooms”, “sqft living”, “sqft lot” and “zipcode”, and
their interactions and the remaining 14 variables in the data. (We can
use model.matrix to expand factors into a set of dummy variables.)

(c) Add the following additional variables to (b): X12 = I(view == 0),
X13 = L2, X13+i = (L− τi)2+, i = 1, · · · , 9, where τi is 10 ∗ ith percentile
and L is the size of living area (“sqft living”).

Compute and compare out-of-sample R2 using ridge regression, lasso,
SCAD with regularization parameter chosen by 10 fold cross-validation.


