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Impact of Data Tsunami Gives Rise to Data Science

System: storage, communication, security, computation architectures

Analysis: statistics, computation, optimization, privacy

Acquisition 
& Storage

Data Science

Computing

Analysis

Applications Applications

Big Data =⇒ =⇒Smart Data
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What can big data do?

Hold great promises for understanding

⋆ Heterogeneity: personalized medicine or services

⋆ Commonality: in presence of large variations (noises)

from large pools of variables, factors, genes, environments and their

interactions as well as latent factors.

Aims of Data Science:

■ Prediction: To construct as effective a method as possible to predict

future observations.(correlation)

■ Inference and Prediction: To gain insight into relationship between

features and response for scientific purposes and to construct an

improved prediction method. (causation)
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Common Features and Techniques

Common Features of Big Data:

⋆ Dependence, heavy tails, endogeneity, spurious corr, heterogeneity,

♠ Missing data, measurement errors, survivor, sampling biases

♣ Computation, communication, privacy, ownership

Common Techniques for Data Science:

⋆ Statistical Techniques: Least-Squares, MLE, M-estimation

♠ Regression: Parametric, Nonparametric, Sparse, Factor(PCR)

♣ Principal Component Analysis: Supervised, unsupervised.
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1. Multiple and Nonparametric

Regression

1.1. Least-Square Theory 1.2. Arts of Model Building

1.3. Ridge Regression 1.4. Regression in RKHS

1.5. Cross-validation
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1.1. Multiple Regression

■Read materials and R-implementations here

https://fan.princeton.edu/fan/classes/245/chap11.pdf
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Purpose of Multiple regression

⋆ Study assocations between dependent & independent variables

⋆ Screen irrelevant and select useful variables

⋆ Prediction

Example: Zillow is an online real estate database company founded in 2006. An important task for Zillow is

to predict the house price. (Training data: 15129 cases, testing data: 6484 cases)

Interest: Associations between housing and its attributes.

Response Y = Housing prices

Covariates

▶ No. of bathrooms X1; No. of bedrooms X2

▶ sqft-living room X3; sqft-lot X4

▶ zipcode X5 (70 zipcodes); view X6 (5 categories)

▶ · · ·
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Multiple linear regression model

Y = β1X1 +β2X2 + · · ·+βpXp + ε

Y : response / dependent variable

Xj ’s: explanatory / independent variables or covariates

ε: random error not explained / predicted by covariates

include intercept by setting X1 = 1

Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.

x1 x2 x3

0 1y xβ β= +
0 1 1xβ β+

0 1 2xβ β+

0 1 3xβ β+
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Method of Least-squares

Data:
{(

xi1,xi2, · · ·xip,yi
)}

1≤i≤n

Model: yi = ∑
p
j=1 βjxij + εi

Matrix form: y = Xβ+ ε

Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.

x1 x2 x3

0 1y xβ β= +
0 1 1xβ β+

0 1 2xβ β+

0 1 3xβ β+
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Method of Least-Squares:

minβ∈Rp RSS
(

β

)
≜

n

∑
i=1

(
yi −

p

∑
j=1

xijβj
)2

= ∥y−Xβ∥2

RSS stands for residual sum-of-squares
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Closed-form solution

Least-squares: Minimize wrt β ∈ Rp

∥y−Xβ∥2 = (y−Xβ)T (y−Xβ)

Setting gradients to zero yields normal equations:

XT y = XT Xβ

Least-squares estimator: (assume X has full column rank)

β̂ = (XT X)−1XT y

Multiple R2: R2 = 1− RSS(β̂)
var(y) , proportion of variance of y explained by

regression. It measures the goodness-of-fit. ♦var(y) = RSS(1)
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Geometric interpretation of least-squares

Fitted value: ŷ = Xβ̂ = X(XT X)−1XT︸ ︷︷ ︸
≜P∈Rn×n

y

Theorem 2.1 [Property of projection matrix]

⋆ Pxj = xj , j = 1,2, · · · ,p
⋆ P2 = P or P(In −P) = 0

⋆ Eigenvalues of P are 0 or 1, with number of 1’s = rank(P)

X1

X2

y

ŷ

y − ŷ

■project response vector y onto linear space spanned by X
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Statistical properties of least-squares estimator

Assumption:

Exogeneity: E(ε|X) = 0;

Homoscedasticity: var(ε|X) = σ2.

Statistical Properties:

⋆ bias: E(β̂|X) = β

⋆ variance: var(β̂|X) = σ2(XT X)−1

often dropped

■Recall cov(U,V) = E(U−µu)(V−µv )
T and var(U) = cov(U,U)

cov(AU,BV) = Acov(U,V)BT , var(aT U) = aT var(U)a;
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Gauss-Markov Theorem

■How large is variance? ■Compared with other estimators?

Theorem 2.2 [Gauss-Markov Theorem]

LSE β̂ is best linear unbiased estimator (BLUE):

aT β̂ is a linear unbiased estimator of parameter θ = aT β

for any linear unbiased estimator bT y of θ,

var(bT y|X)≥ var(aT
β̂|X)

Estimation of σ2: σ̂2 = RSS
n−p = ∥y−Xβ̂∥2

n−p

σ̂2 is is an unbiased estimator of σ2
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Statistical inference

Additional assumption: ε ∼ N (0,σ2In)

Under fixed design or conditioning on X,

β̂ = β+(XT X)−1XT
ε =⇒ β̂ ∼ N (β,(XT X)−1

σ
2)

⋆ β̂j ∼ N (βj ,vjσ
2) where vj is j th diag of (XT X)−1

⋆ (n−p)σ̂2 ∼ σ2χ2
n−p and σ̂2 is indep. of β̂.

⋆ 1−α CI for βj : β̂j ± tn−p(1−α/2)
√

vj σ̂ (homework)

⋆ H0 : βj = 0: test statistics tj =
β̂j√
vj σ̂

∼H0 tn−p.
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Proof of the classical result

1 RSS = yT (In −P)y = εT (In −P)ε

2 By eigendecomposition, P = Γdiag(

p︷ ︸︸ ︷
1, · · · ,1,0, · · · ,0)ΓT .

3 RSS = ZT diag(

p︷ ︸︸ ︷
0, · · · ,0,1, · · · ,1)Z ∼ σ2χ2

n−p, where Z = Γε ∼ N(0,σ2In)

4 RSS depends only on (In −P)ε and β̂ depends on (XT X)−1XT ε. They

are joint normal and uncorrelated =⇒ indep.

5
β̂j−βj√

vj σ̂
=

β̂j−βj√
vj σ

/
√

RSS
σ2(n−p) ∼ tn−p, by definition.
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Zillow Data Analysis: Regression outputs

Out-of-sample R2 = 1− PE of a model
PE of naive

= 1− ∑i∈TEST(yi − ŷi)
2

∑i∈TEST(yi − ȳ)2 = Normalized test error︸ ︷︷ ︸
ȳ = in-sample ave

R2 = 1− ∑i∈TRAIN(yi − ŷi)
2

∑i∈TRAIN(yi − ȳ)2 , Adjusted R2 = 1−
1

n−p ∑i∈TRAIN(yi − ŷi)
2

1
n−1 ∑i∈TRAIN(yi − ȳ)2)

,

Model 1: lm(price ∼ bathrooms + bedrooms + sqft living + sqft lot)

R2-values: In sample = 0.5101, adjusted = 0.5100, Out-sample = 0.5051

fit.lm1 = lm(price˜bathrooms + bedrooms + sqft_living + sqft_lot, data = train_data)
#fit linear model
summary(fit.lm1) #summarize the fit

Call:
lm(formula = price ˜ bathrooms + bedrooms + sqft_living
+ sqft_lot, data = train_data)

Residuals:
Min 1Q Median 3Q Max
-1571803 -143678 -22595 103133 4141210

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.083e+04 8.208e+03 9.848 < 2e-16 ***
bathrooms 3.682e+03 4.178e+03 0.881 0.378
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bedrooms -5.930e+04 2.753e+03 -21.537 < 2e-16 ***
sqft_living 3.167e+02 3.750e+00 84.442 < 2e-16 ***
sqft_lot -4.267e-01 5.504e-02 -7.753 9.52e-15 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 257200 on 15124 degrees of freedom
Multiple R-squared: 0.5101,Adjusted R-squared: 0.51
F-statistic: 3937 on 4 and 15124 DF, p-value: < 2.2e-16

⋆ The first part reminds us the models used;

⋆ the second part summarizes the residual statistics;

⋆ the third part depicts estimated coefficients β̂j (second column), its standard error
√

v j σ̂ (third
column), and t-statistic tj ,

⋆ the last part summarizes overall model fits: σ̂ = 257200, n−p = 15124, R2 = 0.5101, adj-R2 =
0.51, F-statistic for testing H0 : β = 0 is 3937 with degree of freedom p−1 = 4 and n−p = 15124.
Small P-value suggests that we reject H0 that these four variables are not related to the house price.

Now, let us compute the out-of-sample R2, showing roughly percentage of predicability.
##### out-of-sample Rˆ2########
fit.lm1.pred.out <- predict(fit.lm1, newdata = test_data)

SS.total <- sum((test_data$price - mean(train_data$price))ˆ2)
SS.residual <- sum( (test_data$price - fit.lm1.pred.out)ˆ2)
1 - SS.residual / SS.total
[1] 0.5051489
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Non-normal error

Appeal to asymptotic theory:

√
n(β̂−β) = (n−1XT X)−1︸ ︷︷ ︸

n−1 ∑
n
i=1 Xi XT

i

n−1/2XT
ε︸ ︷︷ ︸

n−1/2
∑

n
i=1 Xi εi

LLN CLT

Using Slutsky’s theorem, (homework)

√
n(β̂−β)

d−→ N(0,Σ−1) or β̂
d−→ N (β,(XT X)−1

σ
2) (informal)

Holds approx. for large n
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Correlated errors

y = Xβ+ ε, where var(ε|X) = σ
2W

Transform data: y∗ = W−1/2y, X∗ = W−1/2X, ε∗ = W−1/2ε. Then

y∗ = X∗
β+ ε

∗, with var(ε∗|X) = σ
2I.

General Least-Squares:

min
β∈Rp

||y∗−X∗
β||2 = (y−Xβ)T W−1(y−Xβ)

Heteroscedastic errors: Wi = σ2 diag(v1, · · · ,vn)

Weighted Least-squares: minβ ∑
n
i=1(yi −XT

i β)2/vi .
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1.2. Arts of Model Building

Nonlinear and nonparametric regression
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Nolinear regression

Polynomial regression: univariate

Y =

≈f (X)︷ ︸︸ ︷
β0 +β1X + · · ·+βd X d +ε

⋆multiple regression with X1 = X , · · · ,Xd = X d (basis function)

Drawback: not suitable for functions with varying degrees of smoothness

**** *** **** ****** ***
******
*
**
**
*
**

**
**

*
*

*

*
*
*
*
*

*

*

*
*** *

*

*

*
*

*** *

**
* **

*
*
*

*
***

*
*
*

*

*

*

*

*
*

***

*

**

*

*

*

*

** *

*

*

*

*

*

*

*

**

*

*

*

* **
**

*

*

*

*
*

*
**

* *

*
* *

*
*

*
*
*
*

*

10 20 30 40 50

−
10

0
−

50
0

50

X
0.

00
00

0

Polynomial versus cubic spline fit

motorcycle data: time vs. head acceleration (red: cubic polynomial; blue: cubic splines)
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Spline regression

⋆ piecewise polynomials with degree d and continuous (d −1)th derivative.

⋆ Knots: {τj}K
j=1 where discontinuity occurs. ⋆data quantiles

Y = SplineK (X)+ ε =
D+K

∑
j=0

Bj(X)+ ε

Basis functions: {1,x , · · · ,xd ,(x − τj)
d
+, j = 1, · · · ,K}= {Bj(x)}d+K

j=0

⋆ cubic spline: d = 3, widely used;

⋆ multiple regression with Xj = Bj(x). (feature)

Nonparametric: When K is large, Kn → ∞
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Extension to multiple covariates

■Bivariate quadratic regression model:

Y = β0 +β1X1 +β2X2 +β3X 2
1 +β4 X1X2︸︷︷︸

interaction

+β5X 2
2 + ε

■Multivariate quadratic regression: (linear in parameters)

Y =
p

∑
j=1

βjXj +∑
j≤k

βjk XjXk + ε

■Multivariate quadratic regression with main effect and interactions

Y =
p

∑
j=1

βjXj +∑
j<k

βjk XjXk + ε
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Model 2: (heterogeneity + interaction) Consider four variables and their interaction with zipcode. This

amounts to fit a multiple regression with the four variables for each zip code. There are 70 different zip

codes, representing different intercepts. The estimated coefficients are typically presented as the difference

(contrast) to the baseline factor (zipcode: 98001).

train_data$zipcode = as.factor(train_data$zipcode) #treat zipcode as factor

test_data$zipcode = as.factor(test_data$zipcode)

fit.lm4 = lm(price ˜ bathrooms + bedrooms + sqft_living + sqft_lot+ zipcode

+ zipcode*bathrooms + zipcode*bedrooms+zipcode*sqft_lot

+ zipcode*sqft_living, data = train_data)

summary(fit.lm4)

Residual standard error: 156900 on 14779 degrees of freedom

Multiple R-squared: 0.822, Adjusted R-squared: 0.8178

F-statistic: 195.5 on 349 and 14779 DF, p-value: < 2.2e-16

fit.lm4.pred.out <- predict(fit.lm4, newdata = test_data)

SS.residual <- sum( (test_data$price - fit.lm4.pred.out)ˆ2)

1 - SS.residual / SS.total

[1] 0.7950443
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Multivariate spline regression

Idea: Tensor products of univariate basis functions

{Bi1(x1)Bi2(x2) · · ·Bip(xp)}b1
i1=1 · · ·

bp
ip=1

Drawbacks: curse of dimensionality, namely, number of

basis functions scales exponentially with p

d nd accuracy n−
2

d+4

1 100 100

2 104 250

5 1010 4000

10 1020 40000

100 10200 4∗1041
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Structured multivariate regressions

Remedy: Add additional structure to f (·)

Example: Additive model

Y = f1(X1)+ · · ·+ fp(Xp)+ ε

■Number of basis functions scales linearly with p

Example: Bivariate interaction models:

Y = ∑
1≤i≤j≤p

fij(Xi ,Xj)+ ε

■Number of basis functions scales quadratically with p

■Implementation: Bivariate tensors
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Best predictor and nonparametric regression

Double Expectation: EZ = E{E(Z |X)}, for any X

Bias-var in prediction: Letting f ∗(X) = E(Y |X), then

E(Y − f (X))2 = E(Y − f ∗(X))2︸ ︷︷ ︸
var=Eσ2(X)

+E(f ∗(X)− f (X)︸ ︷︷ ︸
bias

)2.

Best prediction: E(Y |X) = argminf E(Y − f (X))2

Nonparametric reg.: Estimating f ∗(·) directly
history

ave of futures 
X_T(m)

Future paths

Time T Time T+m
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Bias variance decomposition

Bias-var in estimation: letting f̄ (x) = Ef̂n(x), then

E (̂fn(X)− f ∗(X))2 = E (̂fn(X)− f̄ (X))2︸ ︷︷ ︸
var

+E (̄f (X)− f ∗(X)︸ ︷︷ ︸
bias

)2.

Role of Modeling:

⋆variance is small when n large, big when no. of parameters is big

⋆biases are small when model is complex (no. of parameters is big)
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1.3. Ridge Regression
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Ridge Regression

Drawbacks of OLS: ⋆n > p

⋆large variance when collinearity: Var(β̂) = σ2(XT X)−1

Remedy: Ridge regression (Hoerl and Kennard, 1970)

β̂λ = (XT X+λI)−1XT y

⋆λ > 0 is a regularization parameter. Tikhonov (1943) regularization

Interpretation: Penalized LS ∥y−Xβ∥2 +λ∥β∥2.

—Setting the gradient to zero, we get XT (Xβ−y)+λβ = 0.
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Bias-Variance Tradeoff

Smaller variances:

Var(β̂λ) = (XT X+λI)−1XT X(XT X+λI)−1
σ

2 ≺ Var(β̂).

Larger biases:

E(β̂λ)−β = (XT X+λI)−1XT Xβ−β =−λ(XT X+λI)−1
β.

Overall error:

MSE(β̂λ) = E∥β̂λ −β∥2 = tr{(XT X+λI)−2[λ2
ββ

T +σ
2XT X]}.
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Generalization: ℓq Penalized Least Squares

ℓq penalized least-squares estimate:

min
β

= ∥y−Xβ∥2 +λ∥β∥q
q, q ≥ 0.

λ tuning parameter, ∥β∥q
q = |β1|q + · · ·+ |βp|q

q = 0 is the best subset selection ∥β∥0 =#{j : βj ̸= 0}
Only q = 2 admits a closed-form solution.

Known as Bridge estimator (Frank and Friedman, 1993);

When q = 1, called Lasso estimator (Tibshirani, 1996);

Folded concave when 0 < q < 1 and convex when q > 1;
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Prediction by similarity

Theorem 2.4. Alternative expression β̂λ = XT (XXT +λI)−1y

Prediction at x is ŷ = xT β̂λ = xT XT (XXT +λI)−1y.

Note that (XXT )ij = ⟨xi ,xj⟩ and xT XT = (⟨x,x1⟩, · · · ,⟨x,xn⟩).

Prediction depends only pairwise inner products; similarity

Generalize to other similarity measures K (·, ·), called kernel trick.

K
(

,
)
=+10 K

(
,

)
=−10
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Kernel regression

Kernel: K = (K (xi ,xj))n×n is PSD, for any {xi}n
i=1.

Commonly used kernels: K (u,v)

⋆linear ⟨u,v⟩ ⋆polynomial (1+ ⟨u,v⟩)d, d = 2,3, · · · ;
⋆Gaussian e−γ∥u−v∥2

⋆Laplacian e−γ∥u−v∥

Basis: {K (·,xj)}n
j=1 and express f (x) = ∑

n
j=1 αjK (x,xj). Fit

minα∈Rn

{
∥y−Kα∥2 +λαT Kα

}
, K = (K (xi ,xj))

■No curse-of-dim in implementation!
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Kernel ridge regression

Kernel ridge regression

With K = (K (xi ,xj)) ∈ Rn×n, prediction at x is

ŷ = (K (x,x1), · · · ,K (x,xn))(K+λI)−1y,

⋆ ŷ =

pred︷︸︸︷
f̂ (x) = ∑

n
i=1

weight︷︸︸︷
αi K (x,xi), α̂ = (K+λI)−1y;

testing testing training

⋆ tune the parameter λ to minimize prediction errors.
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1.4 Reproducing Kernel

Hilbert Spaces

Justification of Kernel Tricks by Representer Theorem
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Hilbert Space

Hilbert space: a linear space of functions endowed with an inner product.

■X = set, H = a space of functions on X with inner product ⟨·, ·⟩.

Kernel function K (·, ·): Matrix (K (xi ,xj))n×n is PSD, for all {xi}n
i=1,

Eigen-decomposition:

K (x,x′) =
∞

∑
j=1

γjψj(x)ψj(x′),
∞

∑
j=1

γ
2
j < ∞

—{γj}∞
j=1 are eigenvalues, and {ψj}∞

j=1 are eigen-functions.
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Reproducing Hilbert Space

Hilbert space associated with K : HK = {g = ∑
∞
j=1 βjψj}, endowed with

inner product

⟨g,g′⟩HK
=

∞

∑
j=1

γ
−1
j βjβ

′
j ; ∥g∥HK

=
√
⟨g,g⟩HK

,

for any g,g′ ∈ HK with g = ∑
∞
j=1 βjψj ,g′ = ∑

∞
j=1 β′

jψj .

Reproducibility: ⟨K (·,x ′),g⟩HK
= ∑j γ

−1
j {γjψj(x′)}βj = g(x′).
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Representer Theorem

Theorem 2.6. For a loss L and increasing function Pλ(·), let

f̂ = argminf∈HK

{ n

∑
i=1

L
(
yi , f (xi)

)
+Pλ(∥f∥HK

)
}
, λ > 0,

Then (homework)

f̂ (·) =
n

∑
j=1

α̂jK (·,xj),

where α̂ = (α̂1, · · · , α̂n)
T solves

min
α

{ n

∑
i=1

L
(

yi ,
n

∑
j=1

αjK (xi ,xj)
)
+Pλ

(√
αT Kα

)}
.

⋆ Infinite-dimensional regression problem;

⋆ Finite-dimensional representation for the solution.
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Outline of Proof

1 Any f can be written as f = fK + r , where fK (·) = ∑
n
j=1 αjK (·,xj)

(projection) and r is in its orthogonal complement.

2 Orthogonality entails 0 = ⟨K (·,xj), r⟩HK
= r(xj) by reproducibility. Hence,

f (xi) = fK (xi) (the same loss).

3 But ∥f∥2
HK

= ∥fK∥2
HK

+∥r∥2
HK

≥ ∥fK∥2
HK

.

4 Optimality reaches only if r = 0.

5 ⟨f , f ⟩HK
= ∑

n
i=1 ∑

n
j=1 αiαj⟨K (·,xi),K (·,xj)⟩HK

= ∑
n
i=1 ∑

n
j=1 αiαjK (xi ,xj).
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Applications of Representer Theorem

Apply representer theorem to kernel ridge regression

f̂ = argminf∈HK

{ n

∑
i=1

(
yi − f (xi)

)2
+λ∥f∥2

HK

}
.

We must have f̂ = ∑
n
i=1 α̂iK (·,xi) with α̂ ∈ Rn solving

min
α∈Rn

{
∥y−Kα∥2 +λα

T Kα

}
.

It is easily seen that

α̂ = (K+λI)−1y.
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1.5 Cross-Validation
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Cross-Validation

Purpose: To estimate Prediction Error for a procedure; to select tuning

parameters, and compare multiple methods

k -fold Cross-Validation (CV)

⋆ Divide data randomly and evenly into k subsets;

⋆ Use one fold as testing set and remaining

as training set to compute testing errors;

⋆ Repeat for each of k subsets and

average testing errors.

PE for training size: (1−1/k)n

Choice of k : k = n (best, but expensive; leave-one out), 10 or 5 (5-fold).

Leave-one-out: CV = 1
n ∑

n
i=1[yi − f̂−i(xi)]

2, f̂−i(xi) = predicted value based on {(xj ,yj)}j ̸=i
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Linear smoother

■ŷ = Sy for data {(xi ,yi)}n
i=1, S depends only on X.

Self-stable if f̄ (x) = f̂ (x), where f̄ is estimated function based on data

{(xi ,yi)}n
i=1 and (x, f̂ (x)), and f̂ based on {(xi ,yi)}n

i=1

Theorem 2.7. For a self-stable linear smoother ŷ = Sy,

yi − f̂−i(xi) =
yi − ŷi

1−Sii
, ∀i ∈ [n], CV =

1
n

n

∑
i=1

( yi − ŷi

1−Sii

)2
.

Proof: By self-stability, {(xj ,yj), j ̸= i} and {(xj ,yj), j ̸= i,(xi, f̂(−i)(xi))} have the

same fit: f̂ (−i)(xi) = Sii f̂ (−i)(xi)+∑j ̸=i Sijyj or f̂ (−i)(xi) = ∑j ̸=i Sijyj/(1−Sii). The

proof follows from ŷi = Siiyi +∑j ̸=i Sijyj and a simple algebra.
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Generalized Cross-Validation

GCV (Golub et al., 1979): GCV =
1
n ∑

n
i=1(yi−ŷi)

2

[1−tr(S)/n]2 .

■tr(S) is called effective degrees of freedom.

GCV chooses λ by minimizing

GCV(λ) =
1
n yT (I−Sλ)y

[1− tr(Sλ)/n]2
.

Self-stable Method S tr(S)

Multiple Linear Regression X(XT X)−1XT p

Ridge Regression X(XT X+λI)−1XT
∑

p
j=1

d2
j

d2
j +λ

Kernel Ridge Regression in RKHS K(K+λI)−1
∑

n
j=1

γj

γj+λ

⋆{dj} and {γj} are singular values of X and K.

Jianqing Fan (Princeton University) ORF 525, S24: Statistical Foundations of Data Science 43 / 43


