Chapter 1

Statistical Modeling

1.1 Statistical Models

Example 1: (Sampling inspection). A lot contains N products with defective rate

6. Take a sample without replacement of n products and get x defective products.
What are the defective rates?

Possible outcomes: GGDGGGDD - - - | realization of outcomes.

How do we connect the sample with the population?

Modelling — think of data as a realization of a the random experiment.




ORF 524: Statistical Modeling — J.Fan 2

ey

n w/o replacement
x defectives

Figure 1.1: Tlustration of the sampling scheme.

Observe that a "D” = 0 is large,
a”’G” = 0 is small.
Probability Law: Under this physical experiment
NO\ (N—NY

for max(0,n — N(1 —0)) < z < min(n, N@). Convention: () =1, (") =0 if

m > n.

For example, X/n = 6 and
Vvn(X/n—60)— N(0,0(1 —0)).
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Parameter: # — unknown, fixed.
Parameter space O: the possible value of : © = {0/N,1/N,---, N/N } or
[0, 1].

For this specific example, the model comes from physical experiment. Now sup-
pose that N = 10,000, n = 100 and x = 2. Our problem becomes an inverse
problem: What is the value of 67

Logically, if 8 = 1%, it is possible to get x = 2. If 8 = 2%, it is also possible
to get © = 2. If § = 3.5%, it is also possible to get x = 2. So, given © = 2,
we can not tell exactly which 6 it is. Our conclusion can not be drawn without
uncertainty. However, we do know some are more likely than the others and the
degree of uncertainty gets smaller, as n gets large, whatever N is.

Summary:

— Statisticians think data as realizations from a stochastic model; this connects
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the sample and parameters.

— Statistical conclusions can not be drawn without uncertainty, as we have only a

finite sample.
— Probability is from a box to sample, while statistics is from a sample to a box.

Example 2: A measurement model (e.g. molecular weight, RNA /protein expres-

sion level, fat-free weight). An object is weighed n times, with outcomes xy, - - - , x,.

Let 1 be the true weight. We think the observed data as realizations of random

variables X, --- , X, modeled as
Xi=p+e

where ¢; 1s error of measurement noise.

Assumptions

i) €; is independent of p.

ii) €,1=1,2,--+ ,n are independent.
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Figure 1.2: Illustration of the idea of modeling.

i) g;,4 = 1,2,--- ,n are identically distributed.

iv) the distribution of € is continuous, with E(g) = 0; or specifically symmetric
about 0: f(y) = f(—y) for any y.

Often, we assume further that &; ~ N(0,0?). Parameters in the model 0 =

2

(1, 0%), where ¢ is a nuisance parameter.

Given a realization x = (x1, -+ ,x,) of X = (X1, -+, X,,), what is the value of

17
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Logically, if i = 100, it is possible to observe x. If © = 1, it is also possible to
observe x. So we can not absolutely tell what value of p is. But from the square-root

law:

0.2

var(X) = B(X — p)* = P

Thus, x is likely close to u when n is large.

K I

Figure 1.3: Distributions of individual observation versus that of average

Example 3: Drug evaluation (Hypertension drug)

Drug A — m patiets Drug B — n patiets
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Measurement: blood pressure.

To eliminate confounding factors, use randomized controlled experiment.

are the hypothetical outcomes:

Drug A Drug B
150 110 160 187 153 120 140 160 180 133 136
xr1 T2 x3 T4 Ts 1 Y2 Y3 Y4 Ys Ye

To model the outcomes, a possible idealization is the following box-model.

m draws

Potential: X ..., X, I 5

/ . . e B

Drug A Realization: ..., Xx Vg

Figure 1.4: Ilustration of a two-sample problem

Drug A Drug B

random outcomes Xi,---,X,, Yi---.Y,

realizations Ty s Tm Yly " 5 Yn

Here
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Further, we might assume that

1.4.d 1.0.d
Xl,"’,XmNN(,uA,O'i) }/17"°7Y71NN(/L370-%>'

We sometimes assume turther o4 = o = 0.
Parameters in the model: 0 = (ua, up,04,08).
Parameters of interest: @ = pu4 — pup and possibly o.
Connection sample with population: data are realizations from a population,
whose distribution depends on 6.

Model diagnostics: Statistical models are idealizations, postulated by statisti-

cians — needed to be verified. For example, the data histograms should look like
theoretical distributions. Two sample variances are about the same, etc.

General formulation

Data: x = (1, -+ ,x,) are thought of the realization of a random vector X =

<X17 e 7Xn>
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Model: The distribution of X is assumed in P = {F : § € O}, O is the parametric
space.

Objectives: Inferences about 6.

— In Example 1: o NN

where © = {0,1/N,--- ,N/N} or [0, 1].

— In Example 2:

_ Lj —
Py(x) = 07 (S F)

o
where ¢(+) is the normal density, © = {(u, o), u > 0,0 > 0}.

— In Example 3:

m Li = LA\ +n _— Yi — KB
P9<X>:Hi:10A190< & ) i103190( a ),

0A 0B

where ¢(+) is the normal density, © = {(ua, up,04,08) : pia, b, 04, o > 0}.
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— Data x or its random variable X can include both z- and y-component.

The parameter @ doesn’t have to be in R¥. In Example 2, without the normality

assumption,
Py(x) = IL, f (@i — p),
assuming that {e;,4 = 1,--- ,n} are i.i.d random variables with density f. Then,
©={(u, f): p>0,f issymmetric}.
Since no form of f has been imposed, i.e. f has not been parameterized, the

parameter space © is called nonparametric or semiparametric.

Basic assumption: Throughout this class, we will assume that

(i) Continuous variables: All Py are continuous with densities p(x, 6) or

(ii) Discrete variable:All Py are discrete with frequency functions p(zx, 8). Further,
there exists a set {x1, X, -, } such that

> 2 p(x;,0) = 1,where ; is independent of 6.
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For convenience, we will call p(x, #) as density in both cases.

Identifiability of parameters: There are sometimes more than one way of

parameterization. In Example 3: write
Xla"' 7Xm ZrZ\Jd N(/’L—i_al?gz) }/17 7YTL ZrZ\Jd N(/’L—I_&Q?Oj)'

0 = (u, a1, as, o). Hence,

mo— Ti— U — Qg no_— Yi — 1 — Qo
p9<xay79>:Hi:10 190( )Hz’—lo- 1@( )7

0 0

If0, =(0,1,2,1) and 6, = (0.5,0.5,1.5,1), then Py, = Fp,. Thus, the parameters
0 are not identifiable.

Identifiability: The model { Py, § € ©} isidentifiable if 6, # 6, implies Py, # Pp,.

Example 4: (Regression Problem). Suppose a sample of data

{(@i, -+, Tip, yi) }iy are collected e.g.

y =salary, x; =age, xo = year of experience,

x3 = job grade, x4 = gender, x5 = PC job.
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We wish to study the association between Y and Xiy,---,X,. How to predict
Y based on X7 Any gender discrimination? (Note: the data x in the general

formulation now include all {(z;1, -, Zip, ¥i) }1q).
— Model I: linear model
Y = Bo+ 51Xy + BoXo + - -+ B X5 + €, e~ G,

where € is the part that can not be explained by X. Thus the parameter space
s © = {(607 /617 e 7557 G)}

— Model II: semiparametric model
YV = p( X1, Xo, X3) + 5uXy + 55X + ¢
The parameter space is © = {(u(+), B4, 35, G) }.
— Model III: nonparametric model

Y = u(Xy, -, X5) +e.
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The parameter space is © = {(u(-), G)}.

Modeling: Data are thought of a realization from (Y, Xy, -, X5) with the rela-

tionship between X and Y described above.
From this example, the model is a convenient assumption made by data analysts.
Indeed, statistical models are frequently useful fictions. There are trade-offs among

the choice of statistical models:
larger model =- reducing model biases

= Increasing estimation variance.
The decision depends also available sample size n.

Statistics: a function of data only, e.g.
X1+ + X,
n

y:

. X, X12+\/X22+X§+3,
but
X1+ o, y—l—,u

are not.
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Estimator: an estimating procedure for certain parameters, e.g. X for p.

Estimate: numerical value of an estimator when data are observed, e.g.

2+6+4
=

n=31= 3.

Estimator — for all potential realizations, estimate — for a realized result.

Note: An estimator is an estimating procedure. The performance criteria for a

method is based on estimator, while statistical decisions are based on estimate in

real applications.

1.2 Bayesian Models

Probability: Two view points:

long run relative frequency — Frequentist

prior knowledge w/brief — Bayesian
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So far, we have assumed no information about 6 beyond that provided by data.

Often, we can have some (vague) knowledge about 6. For example,
— defective rate is 1%

— the distribution of DNA nucleotides is uniform,

— the intensity of an image is locally corrected.

Example 1. (Continued) Based on past records, one can construct a distribution

of defective rate w(6):
P(O=i/N)=m, i=1,2---, N.

This provides as a prior distribution. The defective rate 6y of the current lot is

thought of as a realization from 7 (0). Given 6,
(N@()) (N—Nﬁo)

T n—x

)

P(X — $|(9()> —

Basic element of Baysian models
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1]

Prior r(8) 1-6,
| | H e

Figure 1.5: Bayesian Framework

(i) The knowledge about 8 is summarized by 7(8) — prior dist.
(ii) A realization € from () serves as the parameter of X.

(iii) Given 6, the observed data x are a realization of pg. The joint density of (6, X)
is m(0)p(x|0).

(iv) The goal of the Bayesian analysis is to modify the prior of 6 after observing x:

m(0)p(X|0) .
X =x)=<{ J ﬂggipgi:g 7> 0 continuous,
m(6)p .
S, 7 (O)p(X]0) 0 discrete

e.g. summarizing the distribution by posterior mean, median and SD, etc.
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Prior distribution Posterior distribution

12

10

dhetaix, 2, 18)
dbetalx, 40, 120}

T T T T T T T T T T T T
0.0 0.z 0.4 0.6 0.8 1.0 0o 0.z 0.4 0.6 0.8 1.0

Figure 1.6: Prior versus Posterior distributions

Example 5 (Quality inspection) Suppose that from the past experience, the de-

fective rate is about 10%. Suppose that a lot consists of 100 products, whose quality

is independent of each other.
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10%0

A
20% /_\

n= 100

Figure 1.

7: Prior knowledge of the defects

The prior distribution about the lot’s defective rate is

Prior mean and variance are

100\ | '
. :( >0.1@o.9100—2, f, — —

i ~ 100

_ X _
Eg = BX = 0.1
var(6) = —pvar(X) = 100x09x0.

SD(6) = 0.03.

18
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Now suppose that n = 19 products are sampled and x = 10 are defective. Then

TN =10 =TT S0 T S (0, P(X = 100 = 6,)

e.g.

P(6>02|X =10) = P(1000 — X > 10/X = 10)
10— 81 x 0.1

~ 1—-@
(\/81 x 0.9 x ().1)
~ 30%.

(1000 — X is the number of defective left after 19 draws, having distribution Bernoulli(81, 0.1)). Compared with the prior probability

P(0>02) = P(1000 > 20)

19 20 — 100 x 0.1
4v/100 x 0.9 x 0.1
~ 0.1%,

where 1000 ~ Bernoulli(100,0.1).

Example 6. Suppose that X1, -+, X, arei.i.d. random variables with Bernoulli()

and 6 has a prior distribution 7(#). Then
W(@)@Z?ﬂxi(l — 9)”—2?:1 T
oy m(tEi (1 — =it

m(0|x) =
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20

density
1.5

density

1.0

0.o

Figure 1.8: Beta distributions with shape parameters: Left panel: (4, 10), (5, 2), (
If @ ~ Beta(r,s), i.e.
93—1(1 . 8)7“—1

7(0)

2, 5), (.7, 3); right panel: (5, 5), (2, 2), (1, 1), (0.5, 0.5)

20
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then

m(0)x) ox 5F=TH(1 — 9)"~ 2%t Beta(s + in, n — Z T+ 7).

Thus,
> g Tt e
s+ S g el o s=r=1
E<(9|X> _ Zz_l L n-+2
n+s+r ~n YNy, nois large

Conjugate prior: Note that the prior and posterior in this example belong to the

same family. Such a prior is called “conjugate prior”. It was introduced to facilitate

the computation.
1.3 Sufficiency

Commonly-used principles for data reduction

1° Sufficiency

2° Invariant /equivariant
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Purpose:

)
1 simplify probability structure, less obscure than the whole data

¢ 2 understand whether a loss in reduction

3 useful technical tools

\

Example 7. A machine produces n items in secession with probability € of pro-

ducing defective product. Suppose that there is no dependence between the quality

of products.

\" n draws

g 1-6 X.....X,

1

possthle summary: Zx

Figure 1.9: Probability model and its summary statistic.
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Then, the probability model is
p(x,0) = [T 6%(1 — 0)1 % = g2%i(1 — §)1 -2
Any loss of information by using » _ x;?

Yes — can not examine the length of a run

No — on inference of 60

Heuristic: Consider a vector of statistics T(X), which summarizes the original
data X. Then

Full information, i.e. the information of 8 contained in X7, Xo,--- X,
= The information about # given in T'(X)(reduced information)
+ Given T'(X), the information of # remained in X, X5, - -+ X, (the rest informa-
tion).
Definition. A statistic is sufficient if given T'(X), the conditional distribution of
X is independent of # — introduced by R.A.Fisher 1922.
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Example 7 (continued). The conditional distribution of X given > " | X is

PQ{X:X|ZX1‘ = s}
) 1=1

0 if Yz # s,

= 9 P<X:X7Z?:1 X;=s) _ 05(1—-0)"* .

P> Xi=s) o <Z>98(1_g)n—s

otherwise

\

Obviously, this conditional distribution is independent of 8. Thus, > ", X; is suf-

ficient.

Theorem 1 (Factorization, Fisher-Neyman Theorem )

In a reqular model, a statistic T(X) is sufficient in 0 <=
p(x,0) = g(T(x),0)h(x),Vx € R"and § € ©
for some functions g(t,0) and h.

Proof: For simplicity to illustrate the idea, we concentrate on discrete case.
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Suppose that T'(X) is sufficient. Then
p(x,0) = Py[X =%, T(X) = T(x)
— PBIT(X) = T PX = x|T(X) = T(x)]
= 9(T(x),0)h(x).
Conversely,
PX = x|T(X) = T(x)}
PQ{X = X}
P{T(X) = T(x)}
9(T'(x), 0)h(x)

Z{y:T(y):T(X)} 9(T(y), 0)h(y)
h(x)

2o qyry)=roy MY)
Example 8. Let X, .- X, be the inter-arrival times of n customers with arrival

rate 6.

Then, under some conditions (rare; constant rate; independence) Xp, Xo, -+ X,
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Figure 1.10: Arrival times of customer

are 1.i.d. random variables with Exponential(6), i.e.

p(X,0) = I 0 exp(—0z;) = 0" exp(—0 > _ x;),Va; > 0
i=1
Hence, by taking g(t,0) = 0" exp(—6t) and h(x) = 1, we conclude that T(X) =

> X is sufficient.
Example 9.(Size of population)

1 draws with replacement

X1, ... Xn

Figure 1.11: Estimation the size of population
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Then, X;, Xy, -+ X, are i.i.d. with
1

Thus,

|
p(x,0) = o Pl <z <0 =0 T {max{x;} <6},

and the largest order statistic X(,) = max{X;} is sufficient.
Note: This is not a realistic model. More realistic one is the capture-recapture

model.

Example 10 (Linear regression model). Suppose that {(X;,Y;)} are a random

sample from

i/i:()é—i—ﬁXi—F&, EZ'NN(O,OQ).
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Then,
p(X,y,0)

1exp(—2%2<yi —a— X)) f(X)

I, f(X )eXP<1OgO ZZ i —a— fXi] )
X exp (2}‘2[2”: Y7?— ZOzZYi — QﬁZXiYiO
i=1 i=1 i=1

where f(-) is density function of X. Thus,

— <i Yi, i YiQa i XY, i Xi, i Xf)
i=1 i=1 i=1 i=1 i=1

is a sufficient statistic. This is equivalent to the fact that

n J—
x II_ 0o

T = (X,Y,0%,05,7)
is a sufficient statistic.

Sufficiency Principle: Suppose that T'(X) is sufficient. For any decision rule
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that

, we can find a decision rule §*(T(X)), depending on T'(X) and §(X) such
R(6,0) = R(0,6") for all 0,

where R(0,6) = Fyl(6, (X)) is the expected loss function — risk function. Namely,

considering the class of sufficient statistic is good enough for making statistical

decisions.

Proof. For better understanding, let us first assume that £(6, a) is convex in a.
Then, let 0*(T) = E{6(X)|T(X)}. By Jenssen’s inequality,
El(0,0(X)) = ELEO,0(X))|T]}
> FE{0(6,0")} = R(0,6").

In general, let §*(7'(x)) be drawn at random from the conditional distribution 6(x) given T'(X) : 6* ~ L(4|T"). Then,

R(0,0) = E{E[£(0,0)|T)} = E{E[¢(0,6")|T)} = R(0,6").

Sufficiency and Equivariant estimator
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Example 11. Suppose X, Xo, -+, X, ~ i.i.d.N(u,0?), e.g. measurement of

)

temperature.
data (in °C) data(in °F /unnamed scale)
1 ary+ b
To ars + b
T axr, + b
w: T(xy,x9, -+ ,x,) T(axy +b,axe + b, -+ ,ax, +b)

Estimate of u: T'(X1, Xo, -+, X,) in °C = aT (X1, Xo,--+ , X)) +bin °F
Hope: T(axy + b,axs + b, -+ ,ax, +b) = al (v, 29, -+ ,x,) + b

Equivariance: Such an estimator is called equivariant under linear transforma-

tion.

If we are interested in o, we hope

T(X14b,- , Xp+0) =T (X1, -, X,)
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— invariant under the translation transform or more generally
TaX1+b,---,aX,+b)=al(Xy,---,X,),

— equivariant under scale transformation /invariant under translations.

By sufficient principle, we need only to consider the estimator of form
T(X,S).
The equivariance for estimating u requires
T(aX +b,aS) =aT(X,S)+b, Vaandb
Takinga=1and b= —-X,= T(0,5) =T(X,S) - X
T(X,S)=X+T%S).

From

T(aX,aS) = aX+T"(aS)
— oK+ TH(S)]
— T*(aS) = aT*(S)
— T(S) = ST*(1).
Thus, denoting by T* = T*(1),
T(X,S)=X+T*S.

Among this invariant class,

E[T(X,S) —p> = (ET*S)? +var(X +T*S5)

= T*(ES)*+ T**var(S) + o%/n
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It attains the minimum at 7* = 0, namely, X is the best equivalent estimator.

Sufficiency and Bayesian Model

Theorem 2 (Kolmogrov) If T(X) is sufficient for 6, then for any prior w(6),

the conditional distribution
L(0|T(X)) = L(0|X)—Bayes sufficient.
According to the theorem,
E(g(0)|T) = E(g(0)|X).
This implies that given T'(X), and X and 6 are independent, since

E[f(0)g(X)|T] = E[E(f(0)9(X)|X)|T]
)

g(X)E(f(0)|T)|T!

= I

= Elg(X)[T]ELf(0)[T].
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1.4 Exponential Families

Many useful distributions admit a common structure:

Normal (continuous), Poisson (counts)

Examples Binomial (categorical), Beta

Gamma (constant Coefficient of Variation)
They form the basis of GLIM (Generalized LInear Models). Such a family is called

exponential families, discovered independently by Koopman, Pitman and Darmois.
It is nice to give them a unified mathematical treatment.

The one parameter case

Example 12. Let Py = {N(p, 0?), 0¢ is known}. Then its density

2 2
= exp {xg a (:1:‘_ + log v 27T(70> }

o 2 2
o 2(70 200

= exp (T'(x)c(0) +d(0) + S(z)) .




ORF 524: Statistical Modeling — J.Fan 34

Example 13. Let Py = { Binomzial(n,0)}. Then,

pio0) = (M)oria— oy

— exp {xlog 1 ﬁ 5 +nlog(L— ) +log (Z) }
= exp {T(z)c(0) + d(0) + S(z)}.

n

X

Definition: The family of distributions of a model {FPy : § € ©} is said to be a

one-parameter exponential one if
p(x,0) = exp{c(0)T(x) 4 d(0) + S(z)}.

Example 14. Let X ~ Unif(0, 8). Then

1

p(z,0) = 51[0,9](9?) = exp(log g g (x) — log6),

not an exponential family. Another example is

1
p(z,0) = §](x €{0.1+60,---,0.9+0}).
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By setting c(6) = 1, the exponential family can be written in the canonical form
as
p(x,n) = exp(nT(x) + do(n) + S(x)),
where dy(n) = d(c¢™1(n)), when ¢(#) is one-to-one.
n — canonical (natural) parameter and
¢(+) — canonical link,

Examples of canonical link functions:

Normal ¢(0) =6 identity
Binomial ¢(6) = log £ logit
Poisson  ¢(f) =logf  logarithm.

Regeneration properties:

1. Let X4, -+, X, ~1.1.d.Py, belonging to an exponential family. Then, the joint
density T p(x;, 0) is also in the exponential family. Further, > " , T(X;) is a

sufficient statistic.
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2. If X ~ Py which is exponential family, and {Qy} be the distribution of T'(X),
Then, {Qy} is also in the exponential family.

Theorem 3 If X ~ exp{nT(X) + do(n) + S(x)}, n is an interior of £, then
(s) = Eexp{sT(X)} = exp[do(n) — do(s + )], for s near 0

Moreover, ET(X) = —dy(n), var(T(x)) = —dj(n). (The function dy is con-

vave. )

Proof: Note that
+00
| exp(nT @)+ dut) + S(@)}do = 1,

— / h exp{nT'(x) + S(z)} dr = exp (—do(n)).
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Y(s) = Eaeip(ST@))}
— / exp{sT'(z) +nT'(x) + do(n) + S(z)} dx

= exp(do(n) — do(n + s)).
From the properties of the moment generating function,
Y(s)ls=0 = E{T(X) exp(sT(X))|s=0}
= ET(X)
= —exp(do(n) — do(n + s))dy(n + 8)]s=0-
Similarly,

ET(X) = 4/ (8)]s0 = —dj(n) + dy(n)?
— var(T(X)) = —di(n).

37
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Example 15. Xq,---, X, ~1.i.d.

p(x,0) = kO(0z)" L exp(—(0z)"), z > 0.

— Weibull distribution == model “failure time” with hazard risk: 5 1 gz 5= kO(0t)+1

k =1 = exponential distribution — constant risk

k =2 = Raleigh distribution — k62t (linear risk)
Then, the joint density

p(x,0) = II"_ kO(0x;)  exp(—0*2h)

— exp(—6F Z x¥ —nklog 6 + Z log 27~ + nlog k).

1=1 1=1

For this family of distributionm,

n=—0"

do(n) = —nlog 0" = —nlog(—n).
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Hence,

n
Z X/ — natural sufficient statistic,
i=1

- k_—n_n
BY Xi=—=g
1=1

~ . nmn
Var(ZXi)—HQ—Q%.

Direct computation of these moments are more complicated.

The k parameter case

A family of distributions {Fy : 6 € ©} is said to be k parameter exponential

family if its joint density admits the form

p(x,0) = exp Z Ci(0 )+d(0) + S(x))
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By the factorization theorem, the vector T'(x) = (T1(x), - - - , Tx(x)) is a sufficient
statistic.
Suppose that Xy, -+, X, are a random sample from Fy. Put X = (Xy,--- , X))
which is available data.

Then, the distribution of X forms a k- parametric family with

S ST St
Let ¢(s) = E exp(s! T'(x)). Then,
= exp(do(n) — do(n +s))
ET(x) = —dj(n)— mean vector

var(T(x)) = —dj(n) — variance-covariance matrix

Example 16. (Multinomial trails)
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P P B /\

1 draws

Figure 1.12: Multinomial trial. Each outcome is a k-dimensional unit vector, indicting which category is observed.

I(x;=¢
[, P, p) = 117, ?:1pg(x ) = ngzlpzw.

ny = Z I(x; = £) — ¢ of times observing /¢
i=1

The joint density is

k
p(x,p) = exp{) _n¢logpi}
(=1

k—1

= eXp{Z nelog Py log pr }-
/—1 Dk

41
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Let aj = logp; —logpr,j =1,--+-,k —1. Then

k-1
pk:1_p1_"‘_pk—1:1_pkzea‘j
=1

1
I Zf;ll e

— Dk

Hence,

k—1
p(X,p) = exp{z neay — nlog(1l + eo‘j)}.
(=1 j=1

The variance and covariance matrix of (nq, -+ ,ny) can easily be completed.

Other Examples: — Multivariate normal distributions

— Dirichlet distribution (multivariate G-distribution):

ﬁl_l ﬁp_l ﬁ +1—1
C'rl ...ij (1_x1_..._xp>p .
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