Chapter 2

Methods of Estimation

2.1 The plug-in principles

Framework: X ~ P € P, usually P = {Py : 0 € O} for parametric models.
More specifically, if Xq,---, X, ~1.1.d.Py, then Py = Fy x --- X F.
Unknown parameters: A certain aspects of population. v(P) or q(0) = v(Fy).

Empirical Dist.: P[X € A =137 I(X;€ A)or F(z) =157 (X, <)

Substitution principle: Estimate v(P) by V(ﬁ)

Note: As to be seen later, most methods of estimation can be regarded as using
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Figure 2.1: Empirical distribution of observed data
y L . . . .
substitution principle”, since the functional form v is not unique.

Example 1. Suppose that Xy, -+, X, ~ N(u, 0?). Then

n=FEX = /xdF(x) = u(F) and o= /x2 dF (z) — p*.

Hence,
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and
~ 1 — _
= dF(x) — u° = — X; — X)°.
o / r“dF(z) — - ;21( )

This is also a non-parametric estimator, as the normality assumption has not been

explicitly used.

Example 2. Let Xy, -, X, be a random sample from the following box:
3 P P g 5

Figure 2.2: Illustration of multinomial distribution

[nterested in parameters: py,--- ,pr and q(p1,- -, Dk)-

e.g. dividing the job in the population by 5 categories, interested in ps; and

(pa+p5 — p1 — p2).

The empirical distribution:
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Hence,

namely, the empirical frequency of getting 7. Hence,

q(p1, - o) = q(PU(F), -+, Pe(F))

1s estimated as

AN

qg= q(p1, cee ﬁk) — frequency substitution.

Example 3. In population genetics, sampling from a equilibrium population with

respective to a gene with two alleles
A with prob. 6
a  with prob. 1 — 6 |
three genotypes can be observed with proportions (Hardy-Weinberg formula).
AA Aa aa
p1=10%py=20(1—-0)|p3=(1—0)°
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Figure 2.3: Illustration of Hardy-Weinberg formula.

One can estimate 6 by /p; or 1 — \/p3 , etc.

Thus, the representation

q(0) = h(p1(0), - -, pi(0))

is not necessarily unique, resulting in many different procedures.

Method of Moments: Let

m;(0) = EyX? — theoretical moment
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and
o~ 1 — .
m; = / v/ dF(x) = - Zl X/ — emprirical moment
1=
By the law of average, the empirical moments are close to theoretical ones. The

method of moments is to solve the following estimating equations:
m]<9> :’f)\”),]7 ]: 17 774’
— smallest r to make enough equations. Why smallest?

inaccurate estimate of high order moment

inaccuracy of modeling of high order moment

Consequently, the method of moment estimator for

q(0) = g(ma(0), - - -, m.(6))

Y P

1S Q<X> — g<m17 T 7m7“>-

Exampel 4. Let Xi,---, X, ~ i.i.d.N(u, 0?). Then

EX =yu and EX? = u? + o
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Thus,

9 o~ o~ 1 ’
— =Ty — = —Z(XZ- — X))~
i=1
Example 5. Let Xy, -+, X, ~ i.i.d. Poisson(\). Then,

EX=X and Var(X)=A\

SO
A =M1 = M9y — m%
Thus,
/A\l — X and Xz — My — M7 = sample variance.
The method of moments is

not necessarily unique

usually crude, serving a preluminary estimator
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Generalized method of moment (GMM):

Let g1(X), -+, g-(X) be given functions. Write

1;(0) = Ep{g;(X)},

which are generalized moments. The GMM solves the equations
Iu\] — n_l Zgj<Xl> — /’L]<9>7 ] — 17 e, T
i=1

If r > the number of parameters, find € to minimize

r

> (i — py(0))?

J=1

(this has a scale problem) or more generally

(18— p(0)" S (1 — p(0)).

>, can be found to optimize the performance of the estimator (EMM).

Example 6. For any random sample {(X;,Y;), ¢ = 1,--- ,n}, define the coeffi-
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cient of the best linear prediction under the loss function d(-) by

B(P) = arg mﬁin Epd(|Y — B'X]).

0.0 0.2 04 06 08 1.0

Figure 2.4: Tllustration of best linear and nonlinear fittings.

o1
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Thus, its substitution estimator is
1 n
P) = in— Y d(|Y; — 8" X)).
P = argmin -3 d(Y; = 57X

Thus, ﬁ(ﬁ) is always a consistent estimator of G(P), whether the linear Y =
BTX + € holds or not. In this view, the least-squares estimator is a substitution

estimator.
2.2 Minimum Contrast Estimator and Estimating Equations

Let p(X, 0) be a contrast (discrepancy) function. Define
D(6y,0) = Eg,p(X,0), where 0 is the ture parameter.

Suppose that D(6y, 6) has a unique mimimum 6y. Then, the minimum contrast

estimator for a random sample is defined as the minimizer of

Do) = > p(X..0)
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Under some regularity conditions, the estimator satisfies the estimating equations
. 1 —
D'(9) = - 2 0 (X;,0) = 0.
1=

Minimum contrast estimator. In general, the method applies to general sit-

uation:

AN

0 = arg mein p(X,0).

as long as 6y minimizes
D(6,0) = Eg, (X, 0).
Usually, p(X,0) =1 >""  p(X;,0) — D(0,6)) (as n — o0).

7

Similarly, estimating equation method solves the equations

%(X79>:07 ]:17 » T

as long as

Eoi(X,00) =0, j=1,---,r
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Figure 2.5: Minimum contrast estimator
Apparently, these two approaches are closely related.

Example 7 (Least-squares). Let (X;,Y;) be i.i.d. from

= XZTﬁ + &, if linear model
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Then, by letting

n

p(X,B) = Vi — g(X;, B)
i=1
be a contract function, we have

D(fo, 8) = Egp(X, B)
— nEﬁo[Y - 9<Xaﬁ>]2

— nE{g(Xa 60) o g<X7 ﬁ>}2 + n0_27

which is indeed minimized at 8 = 3. Hence, the minimum contrast estimator is

n

AN

— arg min Y, — g(X;, B)]* — least-squares.
B = argmi ;[ 9(X;, B) q

[t satisfies the system of equations

> (Y- g(X%B»E?g(;Z )

i=1
under some mild regularity conditions. One can easily check that 1;(6) = (Vi —

207 j:]-:"'vda
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g(Xi, 5))69(55?’6 ) satisfies
J

09(Xi, Bo)
03

Thus, it is also an estimator based on the estimating equations.

Egi(8)|5=5, = E19(X, Bo) — 9(Xi, o)} = 0.

Weighted least-squares: Suppose that var(e;) = w;o?. The OLS continues to

apply. However, it is not efficient. Through the transform
Yi _ g(Xia 5) 4+ €

or

~

Y; = §(Xi, B) + &, & ~ N(0,0%),

we apply the OLS
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Obviously;,
Ezp(X,3) = E}WWM+Xp4E:Xﬁ 9(X, Bo))?

is minimized at 3 = [3. Thus,WLS is a minimum contrast estimator.

Example 8 (L;-regression) Let Y = X? 3y 4+ ¢, X and e. Consider

p(X,Y, ) = |Y — XT3
Then,
DB, B) = Eg|Y — X" = EIX"(8 — () +el.

For any a, define

fla) = Els +al.
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Then,

f'(a) = Esgn(e + a)
= Ple+a>0)—Ple+a<0)
= 2P(e+a>0)— 1.

If med(e) = 0, then f/(0) = 0. In other words, f(a) is minimized at a = 0, or
D(By, #) is minimized at 8 = Gy! Thus, if med(e) = 0, then

1 n
=N Y- XI5,
n 1=1

1S a minimum contrast estimator.
2.3 The maximum likelihood estimator

Suppose that X has joint density p(x, #). This shows the “probability” of observing

“X = x” under the parameter 6. Given X = x, there are many #’s that can have
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observed value X = x. We pick the one that is most probable to produce the

observed x:

0= max L(6),

where L(0) = p(x,6)= “likelihood of observing x under #”. This corresponds to

the minimum contrast estimator with
,U(X, 9) - = 1ng(X, 9)

In particular, if Xy,---, X, ~id.0.d. f(-,8), then

p(X,0) = =) log f(X;,0).
1=1
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To justify this, observe that

D(6y,0) = —Ey,log f(X,0)

f(X,0)
= — Fy, 1

D000 = En s X )
f(X,0)
> D(0y, 0y) — log By 227
00 = low B )

= D(0y, 0y).

Thus, 6y minimizes D(6, #) or equivalently
f(X,0)

D(QQ, 9) — D(eo, (90) — _E90 10g

f(Xa 0)

— Kullback-Leibler information divergence. Thus, the MLE is a minimum contrast
estimator.

The MLE is usually found by solving the likelihood equations:

0log L(6)
00

:Oa j:17"'7d7
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or

CO)=0,  £0) =log L(H).

For a given 6, that is close to 5, then

AN

0=0'(6) = £(6) + £"(6)(6 — 6)

or

Newton-Raphson algorithm:

AN AN

enew — 90ld - gﬁ<é\old>_1€/(é\old>-

One-step estimator: With a good initial estimator Ao,

B, = By — £"(6y) "0 (y).

Example 9. (Hardy-Weinberg formula)
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AA Aa aa

p1:82 p2:29<1—9> p3:(1—9)2

Py Xi=37)=420(1-9), j =2
\<1_9>27 ]:3

L(9) = H Po{Xi = i} = [0°]" [20(1 — 0)]"™[(1 — 0)°]"™

Thus,
0(0) = (2n1 + ny) log 8 + (ny + 2n3) log(1 — 0) + ns log 2

£(0) = (2n1 + n9)/0 — (ny+ 2n3) /(1 — ) = 0
2(721 + Ny + ’n3> n prvp

Obviously, £”(6) < 0. Hence, 6 is the maxima.
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Example 10. Estimating Population Size:

----- n draws with replacement

H1, .., ¥n
1
L) =]] S{XG <0} = 07"1{0 > max X}
1=1
Xy 0

Figure 2.6: Likelihood function

63
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Thus, § = max; X; = X, is the MLE.
Example 11. Let Y; = g(X;, 8) + &, g; ~ N(0,0%)
Then,

(0, ) = log(— :

2T 202 4

Thus, the MLE for § is equivalent to minimize

n

Z[Y} — g(X;,3)]* — least-squares.
i=1

Let E be the minimizer. Define
n

RSS = S - g(X,

i=1
Then, after dropping a constant

AN

|
(o, ) = —g log 0” — = RSS.

- ==Y [V - g(X5, )]

64

which is maximized at 02 = RTSS In particular, if g(X;, 3) = p, then i = Y and
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RSS = 13" |[Vi — Y% Hence, the MLE is
n=Y and 0°=- Z(Y; —Y)~

Remark:

MLE — use full likelihood function = more efficient, less robust.

MM — use the first few moments = less eflicient, more robust.
2.4 The EM algorithm

(Reading assignment — read the whole section 2.4.)
Objective: Used to deal with missing data. [Dempster,Laird and Rubin(1977)
and Baum, Petrie, Soules, and Weiss(1970).]

Problem: Suppose that we have a situation in which the full likelihood X ~

p(x,0) is easy to compute and to maximize. Unfortunately, we only observe the
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partial information S = S(X) ~ q(s,0). q(s,0) itself is hard to compute and to
maximize. The algorithm is to maximize ¢(s, ).

Example 12 (Lumped Hardy-Weinberg data)

The full information is Xy, --- , X, with
log p(x, 0) = nylog 8 + nylog 20(1 — 6) + nzlog(l — 6)?
Partial information:
complete cases S; = (X1, Xio, Xi3), ¢ =1,---,m
incomplete cases S; = (X;1 + X0, Xi3), i =m—+1,--+ n.
The likelihood of the available data is
log q(s,0) = mylog 0* + mylog 20(1 — 0) + mslog(l — )
+nfylog(l — (1 — 6)%) + njlog(l — 0)?

n

ny, = Z (X + Xig), n3 = ZXiS'

1=m-+1 1=m
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The maximum likelihood can be found by maximizing the above expression. For
many other problems, this log-likelihood can be hard to compute.

Intuition for E-M algorithm: Guess the full likelihood using the available and

maximum the conjectured likelihood.

E-M algorithm: Given an initial value 6,

E-step: Compute £(0, 6y) = Ey,(¢(X, 0)]S(X) = s),
M-step: 8 = arg max £(6, 6),

and iterate.

Example 2.12. (continued) Full likelihood:

log p(x, 0) = nilog 8 + nylog 20(1 — 6) + nglog(l — 6)?
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E-step:

0(0,00) = Eg,(n1|S)log 6 + Eg,(n2|S)log20(1 — ) + nzlog(1 — ).

2
Ey(mlS) = mu + ”1393 + 29?21 ~6,)
and
Egy(no|S) = ma + nikz@% 3_902(910(1 %ﬁgo)
M-step:
G 2E4,(n1]S) + Eg,(na|S) _ ni2 + Fy,(n1|S)
2(Ey,(n1]S) + Egy(n2|S) + ns) 2n ’

where ns is the number of data points for genotypes |1]and 2. When the algorithm

converges, it solves the following equation:
2n0 = nis + my + n>1k2(9/(2 — (9)

This is indeed the maximum likelihood estimator based on the available (partial)

data, which we now justity.
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Rationale of the EM algorithm: p(x,0) = q(s,0)P(X = x|S = s)I(S(X) =

S).
Let r(x|s,0) = Py(X =x|S = s)I(S(x) = s). Then,

0(0,60y) =logq(s,8) + Ey{logr(X]s,0)|S(X) = s}.

Hence,

AN

0= £0,60) = (logals, 0)) 1,5 + End (05 7(X]s,0))|,_iS = s}.
If the algorithm converges to 61, then

(log q(s,61)) + Eg,{(logr(X]|s,01))'|S = s} = 0.
The second term vanishes by noticing that for any regular function f,

Ey(log (X, 0)) /fx9 f(x,0)dx

Hence

{logq(s, 1)} = 0,
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which solves the likelihood equation based on the (partial) data. In other words,

the EM algorithm converges to the true likelihood.

Theorem 1
1Og Q<57 Qnew) 2 log Q<Sa Qold)a

namely, each iteration always increases the likelihood.
Proof. Note that

0(0,,60) = logq(s,0,) + Ep,{logr(X|s, 8,)|S(X) = s}
> logq(s, 6y) + Eg,{logr(X]|s, 8y)|5(X) = s}

T(X|Sa 90)
T(X|5> en)

log q(s,0,) > logq(s,0) + Eg{log [S(X) = s}
> 10%9(3790)

Example 2.13. Let Xy, -+, X,, 14 beiid. N(u,1/2). Suppose that we observe
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Sl — Xl, v ,Sn — Xn, S?”H—l — Xn_|_1 ‘l_ 2XTL—|—27 and Sn_|_2 — XTH—S —|_ XTL—|—4' USG

the EM algorithm to find the maximum likelihood estimator based on the observed

data.
Note that the full likelihood is
n+4
logp(X, 1) = =) (X; -
i atd

— _ZX2+2“ZX (n+4)p
At the E-step, we compute
E,{logp(X, p)[S} = alpo) — QN{Zn: Xi+ Epp{Xnt1 + Xojo|Snir }
S} — (n 4

where a(pg) = (ug+1/2). To compute E,, { X,11|Sn+1}, we note that 2X,,,1— X, 10
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is uncorrelated with S,,,1. Hence, we have

Eo12X00 — Xogo| S} = o
EMO{Xn—H - 2Xn+2|sn+1} — Sn+1-

Solving the above two equations gives

B (Xni1|Sni1) = (Snr1 +200) /5, Eu(Xnsa|Sna1) = (28041 — o) /5
and that
Euo{XnH + Xn+2‘5n+1} - (3Sn+1 -+ Mo)/5-

Hence, the conditional likelihood is given by

Oy o) = a(pg) — 2@{2 X; +0.6S,11 +0.200 + Spyoy — (n +4)pu*.
i=1

At the M-step, we maximize £(u, p) with respect to u, resulting in

A=n+49"{) Xi+0.681+ 02 + Spia}.
1=1
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The EM algorithm is to iterate the above step. When the algorithm converges, the

estimate solves

A=n+49") Xi+0.68:1+ 020+ Sy}
1=1
or

A=(n+38)7""{) Xi+0.6S1+ S}
i=1
This is the maximum likelihood estimator for the “missing” data.

Example 2.14. Mixture normal distribution:

Sl) e 7Sn ~i.i.d. )\N(/“Lh 0-%) + (]‘ o A)N<:u2> U%)

Challenge: The likelihood of 51, --- .5, is easy to write down, but hard to com-

pute.
EM Algorithm: Thinking of the full information as X; = (4, .5;), in which A,

tells the population under which it is drawn from, but missing.
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Figure 2.7: Mixture of two normal distributions

N(,ul,af), if Az =1

P(Si|Ai) ~ .
N(,LLQ,O'Q), lfAZZO

74



ORF 524: Methods of Estimation — J.Fan 75

Then, the full likelihood is

p(X, 9) — )\ZAz<1 _ )\)n—ZA@'HA 1( 1 ) ( (SZ T /“)2)

V2Toq 203
1 (S ,u2)
XIIA = ex
[t follows that
log p(x, 0) Zﬁlog)\nLZl— ) log(1 — A)
Sz Nl)
—1
+ z;l{ 0g2 01 20% }
Si — ,u2)2
+Z{—log02— 202 }

To find the E-step, we need to find the conditional distribution of A\;|S.
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Note that

P{AZ’:LSZ'ESZ':EEJ}
P(SZESZﬂ:€>

)\001 1¢ (32 ulo)

10

)\00_10 (3@;5)10) + <1 L )\0)0_2—01 (&;2/320)
Di

Then,

00,60) = Y _pilogA+> (1—pi)log(l—A)
=1 —1

+sz-{—log01 (i — )

}

— 1
207
(si

- — 12)?
‘|‘Z<1 _pz' 10g0'2 o0 % }

The M-step is to maximize the above quantity with respective to A, o1, p1, 09, o,
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which can be explicitly found. e.g.

Zn:ﬂ?i anlﬂ — i)
=1 P 2 —0 = )= ==t
\ T—\ = "

The EM algorithm is to iterate these two steps.
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