
1

Introduction to R, and Descriptive Data Analysis

What is R: an environment for data analysis and graphics based on S language

• a full-featured programming language

• freely available to everyone (with complete source code)

• easier access to the means of handling BigData such as parallel computation, Hadoop,

distributed computation.

• official homepage: http://www.R-project.org

1.1 Installation

Installing R: R consists of two major parts: the base system and a collection of (over 8.5K) user

contributed add-on packages, all available from the above website.

To install the base system, Windows users may follow the link

http://CRAN.R-project.org/bin/windows/base/release.htm

Note. The base distribution comes with some high-priority add-on packages such as graphic systems,

linear models etc.

2

After the installation, one may start R in a PC by doubt-click the logo ‘R’ on your desktop. An

R-console will pops up with a prompt character like ‘>’. R may be used as a calculators. Of course

it can do much more. Try out

> sqrt(9)/3 -1

To quit R, type at the prompt ‘q()’.
To define a vector x consisting of integers 1, 2, · · · , 100

> x <- 1:100

> x

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

[55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

[73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

[91] 91 92 93 94 95 96 97 98 99 100

> sum(x)

> [1] 5050

Or we may also try

> y <- (1:100)^2

> y

[1] 1 4 9 16 25 36 49 64 81 100 121 144

3

[13] 169 196 225 256 289 324 361 400 441 484 529 576

[25] 625 676 729 784 841 900 961 1024 1089 1156 1225 1296

[37] 1369 1444 1521 1600 1681 1764 1849 1936 2025 2116 2209 2304

[49] 2401 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481 3600

[61] 3721 3844 3969 4096 4225 4356 4489 4624 4761 4900 5041 5184

[73] 5329 5476 5625 5776 5929 6084 6241 6400 6561 6724 6889 7056

[85] 7225 7396 7569 7744 7921 8100 8281 8464 8649 8836 9025 9216

[97] 9409 9604 9801 10000

> y[14] # print out the 14-th element of vector y

[1] 196

One may also try x+y, (x+y)/(x+y), help(log), log(x) etc.

Additional packages can be installed directly from the R prompt or from Packages in the R

toolbar. Information on the available packages is available at

http://cran.r-project.org/web/views/ http://cran.r-project.org/web/packages/

For example, one may install HSAUR2 – A Handbook of Statistical Analysis Using R (2nd

edition):

> install.packages("HSAUR2")

> library("HSAUR2") # To load all the objects in the package\\

into the current session

4

You may start an R help manual using command help.start(). By clicking Packages in the

manual, you will see HSAUR2 is listed among the installed packages.

1.2 Help and documentation

To start a manual page of R: help.start()

Alternatively we may access online manual at

http://cran.r-project.org/manuals.html

To access a manual for function ‘mean’: help(mean), or ?mean

To access the info on an added-on package: help(package="HSAUR2")

To access the info on a data set or a function in the installed package: help(package="HSAUR2",

men1500m)

To load all the functions in an added-on package: library("HSAUR2")

To load a data set from the installed package into the current session: data(men1500m, package="HSAUR2")

Type men1500m to print out all the info in the data set ‘men1500m’.

Two other useful sites:

R Newsletter: http://cran.r-project.org/doc/Rnews/

5

R FAQ: http://cran.r-project.org/faqs.html

You may also simply follow the links on the main page of the R project

http://www.R-project.org

Last but not least, google whatever questions often leads to most helpful answers

1.3 Data Import/Export

The easiest form of data to import into R is a simple text file. The primary function to import

from a text file is scan. You may check out what ‘scan’ can do: > ?scan

Create a plain text file ‘simpleData’, in the folder ‘st425’ in your Drive D, as follow:
This is a simple data file, created for illustration

of importing data in text files into R

1 2 3 4

5 6 7 8

9 10 11 12

It has two lines of explanation and 3 lines numbers. The R session below imports it into R as a

vector x and 3× 4 matrix y, perform some simple operations. Note the flag skip=2 instructs R to

ignore the first two lines in the file.

6

Note. R ignores anything after ‘#’ in a command line.

> x <- scan("D:/st425/simpleData.txt", skip=2)

> x # print out vector x

[1] 1 2 3 4 5 6 7 8 9 10 11 12

> length(x)

[1] 12

> mean(x); range(x) # write 2 commands in one line to save space

[1] 6.5

[1] 1 12

> summary(x) # a very useful command!

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 3.75 6.50 6.50 9.25 12.00

7

> y <- matrix(scan("D:/st425/simpleData.txt", skip=2), byrow=T,

ncol=4)

> y # print out matrix y

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

> dim(y) # size of matrix y

[1] 3 4

> y[1,] # 1st row of y

[1] 1 2 3 4

> y[,2] # 2nd column of y

[1] 2 6 10

> y[2,4] # the (2,4)-th element of matrix y

[1] 8

8

A business school at UK sent, in 2010, a questionnaire to its graduates in past 5 years and received

253 returns. The data are stored in a plain text file ‘Jobs’ which has 6 columns:

C1: ID number

C2: Job type, 1 - accounting, 2 - finance, 3 - management, 4 - marketing and sales, 5 -others

C3: Sex, 1 - male, 2 - female

C4: Job satisfaction, 1 - very satisfied, 2 - satisfied, 3 - not satisfied

C5: Salary (in thousand pounds)

C6: No. of jobs after graduation

IDNo. JobType Sex Satisfaction Salary Search

1 1 1 3 51 1

2 4 1 3 38 2

3 5 1 3 51 4

4 1 2 2 52 5

... ...

We import data into R using command read.table. You can see where the working directory

is and set the working directory to the place you like as follows and then read the data.

9

> getwd() #to see where is the working directory

> setwd("C:/Users/jqfan/245")

> jobs <- read.table("Jobs.txt",skip=9,header=T)

Alternatively, you can specify the full path of the file and read it:

> jobs <- read.table("C:/Users/jqfan/245/Jobs.txt",skip=9, header=T);

> jobs

1 IDNo. JobType Sex Satisfaction Salary Search

2 1 1 1 3 51 1

3 2 4 1 3 38 2

4 3 5 1 3 51 4

... ...

> dim(jobs)

[1] 254 6

> jobs[1,]

V1 V2 V3 V4 V5 V6

10

1 IDNo. JobType Sex Satisfaction Salary Search

We repeat the above again by taking the 1st row as the names of variables (header=T) and the

entries in 1st column as the names of the rows (row.names =1).

> dim(jobs)

[1] 253 5

> names(jobs)

[1] "JobType" "Sex" "Satisfaction" "Salary" "Search"

> class(jobs)

[1] "data.frame"

> class(jobs[,1]); class(jobs[,2]); class(jobs[,3]);

class(jobs[,4]); class(jobs[,5])

[1] "integer"

[1] "integer"

[1] "integer"

[1] "integer"

11

[1] "integer"

Since the first three variables are nominal, we may specify them as ‘factor’, while ”Salary” can be

specified as ‘numeric’:

> jobs <- read.table("C:/Users/jqfan/245/Jobs.txt", skip=9, header=T, row.names=1,

colClasses = c("integer", "factor", "factor", "factor",

"numeric", "integer"))

> class(jobs[,1]); class(jobs[,2]); class(jobs[,3]);

class(jobs[,4]); class(jobs[,5])

[1] "factor"

[1] "factor"

[1] "factor"

[1] "numeric"

[1] "integer"

Note. we need to specify the class for the row name variable (i.e. 1st column) as well.

12

Now we do some simple descriptive statistical analysis for this data.

> table(jobs[,1])

1 2 3 4 5

73 52 36 64 28 # No. of graduates with 5 different JobTypes

> t <-table(jobs[,2], jobs[,1], deparse.level=2) # store table in t

> t

jobs[, 1]

jobs[, 2] 1 2 3 4 5

1 35 30 18 39 13 # No. of males with 5 different JobTypes

2 38 22 18 25 15 # No. of females with 5 different JobTypes

> 100*t[1,]/sum(t[1,])

1 2 3 4 5

25.92593 22.22222 13.33333 28.88889 9.62963

Percentages of males with 5 different JobTypes

> 100*t[2,]/sum(t[2,])

13

1 2 3 4 5

32.20339 18.64407 15.25424 21.18644 12.71186

Percentages of females with 5 different JobTypes

> barplot(t, main="No. of graduates in 5 different job categories",

legend.text=c("male", "female"), names.arg=c("accounting",

"finance", "management", "marketing", "others")) # draw a bar-plot

accounting finance management marketing others

female
male

No. of graduates in 5 different job categories

0
10

20
30

40
50

60
70

Figure 1: Number of Graduates in 5 different job categories.

The barplot shows the difference in job distribution due to gender. We may also draw pie-charts,

which are regarded as less effective.

14

> pie(t[1,]+t[2,],label=c("accounting","finance","management",

"marketing","others")); text(0,1, "Total", cex=2)

> pie(t[1,],label=c("accounting","finance","management",

"marketing","others")); text(0,1, "Male", cex=2)

> pie(t[2,],label=c("accounting","finance","management",

"marketing","others")); text(0,1, "Female", cex=2)

accounting

finance

management

marketing

others

Total

accountingfinance

management

marketing

others

Male
accounting

finance

management

marketing

others

Female

Figure 2: Distributions of jobs in 5 job categories.

15

Now let look at the salary (jobs[,5]) distribution, and the impact due to gender.

> mSalary <- jobs[,5][jobs[,2]==1]

extract the salary data from male

> fSalary <- jobs[,5][jobs[,2]==2]

extract the salary data from female

> summary(jobs[,5]); summary(mSalary); summary(fSalary)

Min. 1st Qu. Median Mean 3rd Qu. Max.

26.00 43.00 47.00 47.13 52.00 65.00

Min. 1st Qu. Median Mean 3rd Qu. Max.

34.00 44.00 48.00 48.11 53.00 65.00

Min. 1st Qu. Median Mean 3rd Qu. Max.

26.00 42.25 46.00 46.00 51.00 61.00

> hist(jobs[,5], col="gray", nclass=15, xlim=c(25,66),

main="Histogram of Salaries (Total)")

plot the histogram of salary data

16

> hist(mSalary, col="blue", nclass=15, xlim=c(25,66),

main="Histogram of Salaries (Male)")

> hist(fSalary, col="red", nclass=15, xlim=c(25,66),

main="Histogram of Salaries (Female)")

You may also try stem-and-leaf plot: stem(jobs[,5])

Histogram of Salaries (Total)

jobs[, 4]

30 40 50 60

0
10

20
30

Histogram of Salaries (Male)

mSalary

30 40 50 60

0
5

10
15

Histogram of Salaries (Female)

30 40 50 60

0
5

10
15

Figure 3: Distributions of jobs in 5 job categories.

17

To export data from R, use write.table or write.

To write jobs into a plain text file ‘Jobs1.txt’:

> write.table(jobs, "Jobs1.txt")

which retains both the row and column names. Note the different entries in the file are separated

by spaces.

We may also use

> write.table(jobs, "Jobs2.txt", row.names=F, col.names=F),

> write.table(jobs, "Jobs3.txt", sep=",")

Compare the three output files.

Note that the values of factor variables are recorded with “ ”. To record all the levels of factor

variables as numerical values, we need to define a pure numerical data.frame first:

> t <- data.frame(as.numeric(jobs[,1]), as.numeric(jobs[,2]),

as.numeric(jobs[,3]), jobs[,4], jobs[,5])

> write.table(t, "Jobs4.txt")

18

The file ”Jobs4.txt” contains purely numerical values.

Note. (i) Working directory — all exported files are saved in ‘My Documents’ by default. You

may change your working directory by clicking
File -> Change dir...

in the RGui window.

(ii) Saving a session — when you quit an R session q(), you will be offered an option to ‘save

workspace image’. By clicking on ”yes”, you will save all the objects (including data sets, loaded

functions from added-on packages etc) in your R session. You may continue to work on this session

by directly double-clicking on the image file in your working directory.

A useful tip: Create a separate working directory for each of your R projects.

1.4 Organising an Analysis

An R analysis typically consists of executing several commands. Instead of typing each of those

commands on the R prompt, we may collect them into a plain text file. For example, the file

”jobsAnalysis.r” in my working directory reads like:

jobs <- read.table("Jobs.txt", header=T, row.names=1)

File "Jobs.txt" is in the working directory now

19

mSalary <- jobs[,4][jobs[,2]==1]

fSalary <- jobs[,4][jobs[,2]==2]

summary(jobs[,4])

summary(mSalary)

summary(fSalary)

par(mfrow=c(3,1)) # display 3 figures in one column

hist(jobs[,4], col="gray", nclass=15, xlim=c(25,66),

main="Histogram of Salaries (Total)")

hist(mSalary, col="blue", nclass=15, xlim=c(25,66),

main="Histogram of Salaries (Male)")

hist(fSalary, col="red", nclass=15, xlim=c(25,66),

main="Histogram of Salaries (Female)")

You may carry out the project by sourcing the file into an R session:
> source("jobAnalysis.r", echo=T)

Also try source("jobAnalysis.r").

1.5 Writing functions in R

20

For some repeated task, it is convenient to define a function in R. We illustrate this idea by an

example.

Consider the famous ‘Birthday Coincidences’ problem: In a class of k students, what is the

probability that at least two students have the same birthday?

Let us make some assumptions to simplify the problems:

(i) only 365 days in every year,

(ii) every day is equally likely to be a birthday,

(iii) students’ birthdays are independent with each other.

With k people, the total possibilities is (365)k.

Consider the complementary event: all k birthdays are different. The total such possibility is

365× 364× 363× · · · × (365− k + 1) =
365!

(365− k)!

So the probability that at least two students have the same birthday is

p(k) = 1− 365!

(365− k)!(365)k
.

We may use R to compute p(k). Unfortunately factorials are often too large, e.g. 52! = 8.065525e+

21

67, and often cause overflow in computer. We adopt the alternative formula

p(k) = 1− exp{log(365!)− log((365− k)!)− k log(365)}.

We define a R-function pBirthday to perform this calculation for different k.

> pBirthday <- function(k)

+ 1 - exp(lfactorial(365) - lfactorial(365-k) - k*log(365))

lfactorial(n) returns log(n!)

> pBirthday(100)

[1] 0.9999997 # probability with a class of 100 students

> x <- c(20, 30, 40, 50, 60)

> pBirthday(x)

[1] 0.4114384 0.7063162 0.8912318 0.9703736 0.9941227

With 20 students in class, the probability of having overlapping birthdays is about 0.41. But with

60 students, the probability is almost 1, i.e. it is almost always true that at least 2 out of 60

students have the same birthday.

22

Note. The expression in a function may have several lines. In this case the expression is enclosed

in curly braces { }, and the final line determines the return value.

Another Example — The capture and recapture problem

To estimate the number of whitefish in a lake, 50 whitefish are caught, tagged and returned to the

lake. Some time later another 50 are caught and only 3 are tagged ones. Find a reasonable estimate

for the number of whitefish in the lake.

Suppose there are n whitefish in the lack. Catching 50 fish can be done in

 n

50

 = n!
50!(n−50)!

ways, while catching 3 tagged ones and 47 untagged can be done in

 50

3

 n− 50

47

 ways.

Therefore the probability for the latter event to occur is

Pn =

 50

3

 n− 50

47

/ n

50

 .

Therefore, a reasonable estimate for n should be the value at which Pn obtains its maximum. We

use R to compute Pn and to find the estimate.

> Pn <- function(n) {

23

+ tmp <- choose(50,3)*choose(n-50,47)

+ tmp/choose(n,50)

+ } # Definition for function Pn ends here

> n <- 97:2000 # as there are at least 97 fish in the lake

> plot(n, Pn(n), type=’l’)

It produces the plot of Pn against n:

500 1000 1500 2000

0.
00

0.
05

0.
10

0.
15

0.
20

n

P
n

To find the maximum:

> m <- max(Pn(n)); m

[1] 0.2382917

> n[Pn(n)==m]

[1] 833

Hence the estimated

number of fish in the

lake is 833.

24

1.6 Control structure: loops and conditionals

An if statement has the form

if (condition) expression1 else expression2

It executes ‘expression1’ if ‘condition’ is true, and ‘expression2’ otherwise.

When ‘condition’ contains several lines, they should be enclosed in curly braces { }. The same

applies to expressions.

The above statement can be compactly written in the form

ifelse(condition, expression1, expression2)

When the else-part is not present:

if (condition) expression

It executes ‘expression’ if ‘condition’ is true, and does nothing otherwise.

A for loop allows a statement to be iterated as a variables assumes values in a specified sequence.

It has the form:

for(variable in sequence) statement

A while loop does not use an explicit loop variable:

25

while (condition) expression

It repeats ‘expression’ as long as ‘condition’ holds. This makes it differently from the “if-statement”

above.

We illustrate those control commands by examining a simple ‘doubling’ strategy in gambling.

You go to a casino to play a simple 0-1 game: you bet x dollars and flip a coin. You win 2x dollars

and keep your bet if ‘Head’, and lose x dollars if ‘Tail’. You start 1 dollar in first game, and double

your bet in each new games, i.e. you bet 2i−1 dollars in the i-th game, i = 1, 2, · · · .

With this strategy, once you win, say, at the (k + 1)-th game, you will recover all your losses in

your previous games plus a profit of 2k + 1 dollars, as

2× 2k − (

k∑
i=1

2i−1) = 2k + 1.

Hence as long as (i) the probability p of the occurrence of ‘Head’ is positive (no matter how small),

and (ii) you have enough capital to keep you in the games, you may win handsomely at the end —

is it really true?

Condition (ii) is not trivial, as the maximum loss in 20 games is 220 − 1 = 1, 048, 575 dollars!

Plan A: Suppose you could afford to lose maximum n games and, therefore, decide to play n

26

games. We define the R-function nGames below to simulate your final earning/loss (after n games).

nGames <- function(n,p) {

n is the No. of games to play

p is the prob of winning each game

x <- 0 # earning after each game

for(i in 1:n) ifelse(runif(1)<p, x <- x+2^i, x <- x-2^(i-1))

runif(1) returns a random number from uniform dist on (0, 1)

x # print out your final earning/loss

}

To play n = 20 games with p = 0.1:

> nGames(20, 0.1)

[1] -999411

> nGames(20, 0.1)

[1] -1048575

> nGames(20, 0.1)

27

[1] 524289

> nGames(20, 0.1)

[1] -655263

> nGames(20, 0.1)

[1] -1016895

We repeated the experience 5 times above, with 5 different results.

One way to assess this gameplan is to repeat a large number of times and look at the average

earning/loss:

> x = vector(length=5000)

> for(i in 1:5000) x[i] <- nGames(20, 0.1)

> mean(x)

[1] -733915

In fact, this mean -733915 is stable measure reflecting the average loss of this gameplan.

28

Plan B: Play the maximum n, but quit as soon as winning one game. The R-function winStop

simulates the earning/loss.

winStop <- function(n,p) {

n -- maximum No. of games, p -- prob of winning each game

i <- 1

ifelse((runif(1)<p), x<- 2, x<- -1) # play 1st game

while((x<0)&(i<n)){ i <- i+1 # i records the no. of games played

ifelse(runif(1)<p, x <- x+2^i, x <- x-2^(i-1))

}

x

}

Set n = 20, p = 0.1, we repeat the experience a few times:

>winStop(20, 0.1)

[1] 2

> winStop(20, 0.1)

29

[1] 17

> winStop(20, 0.1)

[1] 129

> winStop(20, 0.1)

[1] -1048575

> winStop(20, 0.1)

[1] 16385

To assess the gameplan:

> x<- 1:5000

> for(i in 1:5000) x[i] <- winStop(20, 0.1)

> mean(x)

[1] -112672.9 # This indicates "Plan B" is better than "Plan A"

> for(i in 1:5000) x[i] <- winStop(80, 0.1)

the maximum no. of games is 80 now

> mean(x)

30

[1] -7.22886e+20

> for(i in 1:5000) x[i] <- winStop(90, 0.1)

the maximum no. of games is 90 now

> mean(x)

3.790896e+18

With p as small as 0.1, you need a huge capital in order to play about 90 games to generate the

positive returns in average.

The best and the most effective way to learn R: use it!

Hands-on experience is the most illuminating.

