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1. Consider the Lasso problem minβ
1
2n∥Y−Xβ∥22+λ∥β∥1, where λ > 0 is a tuning parameter.

(a) Let β̂ be a minimizer of the Lasso problem with jth componenet β̂j . Denote Xj to be

the j-th column of X. Show that
λ = n−1XT

j (Y −Xβ̂) if β̂j > 0;

λ = −n−1XT
j (Y −Xβ̂) if β̂j < 0;

λ ≥ |n−1XT
j (Y −Xβ̂)| if β̂j = 0.

(b) If λ > ∥n−1XTY∥∞, prove that β̂λ = 0, where β̂λ is the minimizer of the Lasso problem

with regularization parameter λ.

(c) If β̂1 and β̂2 are both minimizers of the Lasso problem, show that they have the same

prediction, i.e., Xβ̂1 = Xβ̂2.

Hint: Consider the vector β̂α = αβ̂1 + (1− α)β̂2 for α ∈ (0, 1). Show that Q(β̂α) does

not depend on α by using the convexity, where Q(β) = 1
2n∥Y − Xβ∥22 + λ∥β∥1. The

same convexity argument entails that the loss L(α) = 1
2n∥Y −Xβα∥22 does not depend

on α and conclude the result from here.

2. Risk properties of Lasso.

Let Rn(β) = ∥Y −Xβ∥2/n and R(β) = ERn(β) be the empirical and theoretical risks, and

β̂ = argmin∥β∥1≤cRn(β) be the Lasso estimator which estimates β0 = argmin∥β∥1≤cR(β).

(a) Consider the in-sample risk Rn(β̂) as an estimator of optimal risk R(β0). Show that

|R(β0)−Rn(β̂)| ≤ max
|β∥1≤c

|R(β)−Rn(β)| ≤ (1 + c)2∥Σ∗ − S∗
n∥max,

where Z =

(
Y

X

)
,Σ∗ = E(ZZT ) and S∗

n = n−1
∑n

i=1 ZiZ
T
i .

Hint: Deal with two sides of the inequality separately. For example, R(β0)−Rn(β̂) =

R(β0)−Rn(β0) +Rn(β0)−Rn(β̂) ≥ R(β0)−Rn(β0).

(b) Suppose that ∥X∥|∞ ≤ b and |Y | ≤ b (bounded random variables). Use Hoeffding’s

inequality to show ∥Σ∗ − S∗
n∥max = Op(

√
log p
n ).

(c) Consider the lasso of form β̂ = argmin{1
2Rn(β) + λ∥β∥1}.

If λ ≥ ∥2n−1XT (Y −Xβ0)∥∞, under the restricted eigenvalue condition

min
3∥∆S0

∥1≥∥∆Sc
0
∥1
n−1∥X∆∥22/∥∆∥22 ≥ a,

show that with ∆̂ = β̂ − β0 and s = |Supp(β0)|,

∥∆̂∥2 ≤ 8a−1√sλ and ∥∆̂∥1 ≤ 32a−1sλ.
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3. Concentration inequalities.

(a) The random vector ε ∈ Rn is called σ-sub-Gaussian if E exp
(
aTε

)
≤ exp

(
∥a∥22σ2/2

)
, ∀a ∈

Rn. Show that Eε = 0 and var(ε) ≤ σ2In.

Hint: Expand exponential functions as infinite series (actually, you only need the con-

dition for a in a small neighborhood around 0)

(b) Suppose that the random vector X−EX is σ-sub-Gaussian and Sn = 1TX =
∑n

i=1Xi.

Show that

P
(
n−1/2|Sn − ESn| ≥ t

)
≤ 2 exp

(
− t2

2σ2

)
, t > 0.

Hint: Use Chebyshev’s inequality

P
(
n−1/2(Sn − ESn) ≥ t

)
≤ exp(−xt)E exp

(
xn−1/2(Sn − ESn)

)
and optimize the choice of x after using the moment generating function of sub-Gaussian

distributions.

(c) For X ∈ Rn×p with the j-th column denoted by Xj ∈ Rn, suppose that ∥Xj∥22 = n for

all j, and ε ∈ Rn is a σ-sub-Gaussian random vector. Show that there exists a constant

C > 0 such that

P
(
∥n−1XTε∥∞ >

√
2(1 + δ)σ

√
log p

n

)
≤ Cp−δ, ∀δ > 0.

Hint: Using the same argument as part (b), we can obtain P{|bTε| ≥ t} ≤ 2 exp
(
−

t2

2σ2∥b∥2 ). You can use this without proof.

4. This problem intends to show that the gradient decent method for a convex function f(·) is
a member of majorization-minimization algorithms and has a sublinear rate of convergence

in terms of function values. From now on, assume that the function f(·) is convex and let

x∗ ∈ argminf(x). Here we implicitly assume the minimum can be attained at some point

x⋆ ∈ Rp.

(a) Suppose that f ′′(x) ≤ LIp and δ ≤ 1/L. Show that the quadratic function g(x) =

f(xi−1) + f ′(xi−1)
T (x− xi−1) +

1
2δ∥x− xi−1∥2 is a majorization of f(x) at point xi−1,

i.e., g(x) ≥ f(x) for all x and also g(xi−1) = f(xi−1).

(b) Show that gradient step xi = xi−1−δf ′(xi−1) is the minimizer of the majorized quadratic

function g(x) and hence the gradient descend method can be regarded as a member of

MM-algorithms. Use (a) to show that

f(xi) ≤ g(xi) = f(xi−1)−
1

2δ
∥xi − xi−1∥2.

(c) Show that

f(xi) ≤ f(x∗) +
1

2δ
(∥xi−1 − x∗∥2 − ∥x∗ − xi∥2).

Hint: By convexity, f(x∗) ≥ f(xi−1)+f ′(xi−1)
T (x∗−xi−1) and substitute this into the

second part of part (b).
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(d) Conclude using (c) that f(xk) − f(x∗) ≤ ∥x0 − x∗∥2/(2kδ), namely gradient descent

converges at a sublinear rate. (Note: The gradient descent method converges linearly

if f(·) is strongly convex.)

5. Let us consider the Zillow data again. We drop the first 3 columns (“(empty)”, “id”, “date”)

and treat “zipcode” as a factor variable. Now, consider the variables

(a) “bedrooms”, “bathrooms”, “sqft living”, and “sqft lot” and their interactions and the

remaining 14 variables in the data, including “zipcode”. (We can use model.matrix to

expand factors into a set of dummy variables.)

(b) Add the following additional variables to (a): X12 = I(view == 0), X13 = L2, X13+i =

(L − τi)
2
+, i = 1, · · · , 9, where τi is 10 ∗ ith percentile and L is the size of living area

(“sqft living”).

Compute and compare out-of-sample R2 using ridge regression, Lasso (using R package

glmnet) and SCAD (using R package ncvreg) with regularization parameter chosen by 10

fold cross-validation. Set a random seed by set.seed(525) before excuting Lasso.
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