
Chapter 2

Linear Time Series

2.1 Moving Average Model

MA(q)-model: Xt = µ +
q∑

j=1
ajεt−j + εt, {εt} ∼ WN(0, σ2).

⋆Always stationary

Example: (k-period log-return) rt[k] = rt+ rt−1+ · · ·+ rt−k.

37
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Its ACF is very simple to compute. e.g. MA(2) model:

Xt = µ + εt + a1εt−1 + a2εt−2

Xt−3 = µ + εt−3 + a1εt−4 + a2εt−5

Hence, ρ(3) = ρ(4) = · · · = 0. But the sample ACF will not be

exactly zero. What is the confidence limit?

Theorem 1 : Let Xt follow an MA(q) model. Then

√
T ρ̂(j)

D−→ N
(
0, 1 + 2

q∑
i=1

ρ2(i)
)
, j > q

Thus, for j > q, about 95% of sample correlations ρ̂(j) fall in the

interval

±1.96√
T
{1 + 2

q∑
i=1

ρ̂2(i)}1/2.
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Figure 2.1: ACF and PACV for a simulated white noise series with T=100.

2.2 Autoregressive model

⋆a simple and useful class of models for forecasting returns.
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AR(p)-model: Xt = b0 + b1Xt−1 + · · · + bpXt−p + εt

Suppose that Xt is stationary with mean µ. Then

µ = b0 + (b1 + · · · + bp)µ =⇒ µ =
b0

1− b1 − · · · − bp
.

Stationarity: Let b(z) = 1− b1z− · · · − bpz
p be the characteristic

function. Then b(B)Xt = b0 + εt, where B is a

Backshift operator: BkXt = Xt−k, k = ±1,±2, · · · .

The invertibilityXt = b(B)−1(b0+εt) requires technical conditions:

b(z) has roots outside the unit circle.

In this case, b(z)−1 =
∞∑
j=0

cjz
j and

Xt =
∞∑
j=0

cjB
j(b0 + εt) =

∞∑
j=0

cj(b0 + εt−j)
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ARMA 

White noise 

i.i.d 
Stationary GARCH 

Figure 2.2: Relationship among different processes: Stationary processes are the largest set, followed by ARMA, GARCH, and white
noises processes.

is stationary and causal.
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Theorem 2 : An AR(p) process is stationary and causal if

inf
|z|≤1

|b(z)| > 0.

Example 2. For the AR(1)-model: Xt = bXt−1+εt, the character-

istic function is b(z) = 1−bz and has a root 1/b. Thus, when |b| < 1,

the series is stationary. Now consider the following AR(3) model:

Xt = 0.8Xt−1 − 0.5Xt−2 + 0.4Xt−3 + εt.

The characteristic function

b(z) = 1− 0.8z + 0.5z2 − 0.4z3

= (1− 0.8z)(1 + 0.5z2),

which has all roots outside the unit circle. Thus, it is stationary.
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Autocorrelation of AR(p): Since Xt−k is causal, depending

only on εt−k and its past,

Cov(b(B)Xt, Xt−k) = Cov(b0 + εt, Xt−k) = 0, for k > 0

=⇒ γ(k)− b1γ(k − 1)− · · · − bpγ(k − p) = 0 ∀k > 0.

For k = 0, RHS = σ2.

Solution: admits the form (homeowrk)

γ(k) = α1z
−k
1 + · · · + αpz

−k
p = O({min

j
|zj|}−k),

where z1, · · · , zp are the roots of b(z) and {αj}kj=1 are constants.

Hence, ρ(k) → 0 exponentially fast (short memories). For exam-

ple, for AR(1): Xt = bXt−1 + εt, ρ(k) = b|k|.

ACF helps us identify a model. Fig 2.3 shows ACF for AR(1) with
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Figure 2.3: Simulated time series and their ACFs and PACFs, T= 100.
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Figure 2.4: Simulated time series and their ACFs and PACFs, T= 100.
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b = 0.7 or −0.7. Fig 2.4 shows ACF for

• AR(4): Xt = 0.5Xt−1 + 0.3Xt−2 − 0.7Xt−3 + 0.2Xt−4 + εt,

•MA(4): Xt = εt + 0.6εt−1 + 0.6εt−2 + 0.3εt−3 + 0.7εt−4,

• ARMA(2,2): Xt = 0.8Xt−1 − 0.6Xt−2 + εt + 0.7εt−1 + 0.4εt−2.

Partial autocorrelation: MA(q) model has a distinct rubric: ρ(k) =

0, ∀k > q. Do we have a similar measure? Yes, the partial autoco-

variance function π(·).

PACF: π(1) = Corr(X1, X2) = ρ(1); and for k ≥ 2,

π(k) = Corr(X1, Xk+1|X2, ..., Xk).

More precisely, it is Corr(R1, Rk+1) where Rj = residual of Xj on (X2, . . . , Xk).
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Prop:π(k) = the last regression coefficient of

min
β

E(Xt+k+1 − β0 − β1Xt+k − · · · − βkXt+1)
2.

Namely, π(k) = bkk where (bk1, . . . , bkk) is the regression coef.

Model identification: For an AR(p) model, it can easily be shown

that (homework)

π(k) = 0 ∀k > p.

Prop: If {Xt} follows an AR(p) model with i.i.d. white noise, then

T 1/2π̂(k)
D→ N(0, 1), for k > p.

Example 3. For the monthly returns of the CRSP value-weighted

index (Jan., 1926 — Dec. 1997, T = 864), it is computed that
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p 1 2 3 4 5 6 7 8 9 10

PACF 0.11 -0.02 -0.12 0.04 0.07 -0.06 0.02 0.06 0.06 -0.01

AIC -5.807 -5.805 -5.817 -5.816 -5.819 -5.821 -5.819 -5.820 -5.821 -5.818

SE = 1√
T
= 0.034, 2SE = 0.068, p̂ = 3 or 5.

Parameter estimation

The AR coefficient is estimated by the least-squares:

min
b

T∑
t=p+1

(
Xt − b0 − b1Xt−1 − · · · − bpXt−p

)2
.

This is an auto-regression problem:

min
b

T∑
t=p+1

( part that can not be predicted︷ ︸︸ ︷
Xt︸︷︷︸
Yt

−b0 − b1Xt−1︸︷︷︸
Xt,1

− · · · − bpXt−p︸︷︷︸
Xt,p

)2

.

Residuals: ε̂t = Xt − b̂0 − b̂1Xt−1 − · · · − b̂pXt−p
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♣provide raw materials for model checking;

♣ideal fit if the residual series behaves like white noise series.

Residual variance:

σ̂2 =
RSS

(T − p)− (p + 1)
=

1

T − 2p− 1

T∑
t=p+1

ε̂2t

Example 3 (Cont). For the CRSP index, an AR(3) fit results in

rt = 0.0103 + 0.104rt−1 − 0.010rt−2 − 0.120rt−3 + εt

SE 0.002 0.034 0.034 0.034

For example, to test whether H0 : b0 = 0 (or the mean return is zero),

we compute the t-statistic 0.0103/0.002 = 5 and hence its associated

P-value is 2Φ(−5) = 0. We have strong evidence against H0, namely,

the monthly returns are positive.
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— The time series is weakly dependent (small b’s).

— b0 is significantly positive. The expect return (monthly) is

µ̂ =
b̂0

1− b̂1 − b̂2 − b̂3
= 0.01 (statistically significant?)

Annualized expected return = (1 + 0.01)12 − 1 ≈ 12.6%.

Actual annualized return (1/1926—12/1997): 10.53%

— For checking the white noise of the residual series,

Q(10) = 15.8, d.f. = 10, p-value = 10.55%.

With T = 864, the null hypothesis that the white noise of residuals

is very reasonable.

—What is the SE of µ̂?
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Delta method: When b̂ is a consistent estimate of b, then

µ̂ = f (b̂) ≈ f (b) + f ′(b)T (b̂− b). Thus,

var(µ̂) ≈ f ′(b)Tvar(b̂)f ′(b).

The matrix var(b̂) is usually given by software packages.

More rigorously, if
√
T (b̂− b)

L−→ N(0,Σ), then

√
T[f(b̂)− f(b)]

L−→ N(0, f ′(b)TΣf ′(b)).

Namely, AVar(f (b̂)) = f ′(b̂)TAVar(b̂)f ′(b̂).

Example 3 (Cont). µ = f (b) = b0
1−b1−b2−b3

. Thus,

f ′(b) = (a, b0, b0, b0)
T/a2, a = 1− b1 − b2 − b3.

Evaluation of the gradient at the estimates gives

f ′(b̂) = (0.9746, 0.0098, 0.0098, 0.0098)T .
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Suppose that the estimated variance of b̂ is (from software output)

S = 1000−2


22 34 0 0

34 342 0 0

0 0 342 0

0 0 0 342

 .

Then, the asymptotic variance is given by f ′(b̂)TSf ′(b̂) = 4.7804 ∗

10−6. Hence, SE(µ̂) =
√
4.7804 ∗ 10−6 = 0.2186%. Therefore, 95%

confidence interval for the monthly return is

1%± 1.96 ∗ 0.2186% = 1%± .4285%.

Order Selection

Aim: To select p to minimize an estimated PE. Let L be the maxi-
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mum order to be fitted

Akaike information Criterion:

— AIC(p)= −2 (max log-likelihood )+ 2(No. parameters)

= (T − L) log(σ̂2p) + 2(p + 1) + constant, for p = 0, 1, . . . , L,

where σ̂2p is the estimated residual variance. The first part measures

the lack of fit and the second part penalizes the complexity of

the model.

— AICC(p) = (T − L) log(σ̂2p) +
2(T−L)

T−L−p−2(p + 1), a correction of

AIC.

Bayesian information criterion:

BIC(p) = (T − L) log(σ̂2p) + (p + 1)log(T− L).
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Figure 2.5: order versus AIC for the CRSP value weighted data

For CRSP value-weighted index,

p̂ = 3 — the point where AIC stops deceasing dramatically;

p̂ = 6 or 9 — minimum.

Remarks:

— AIC usually selects too many parameters;
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— BIC can select too few parameters;

— BIC and AICC penalize more heavily on complexity than AIC;

2.3 Prediction

Best prediction: find f to minimize the prediction error:

XT (m) = arg inf
f
E(XT+m − f (XT , XT−1, · · · ))2 = ETXT+m.

For the AR(p) model, the best one-step predictor

XT (1) = ET (b0 + b1XT + · · · + bpXT+1−p + εT+1)

= b0 + b1XT + · · · + bpXT+1−p,
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history

ave of futures 
X_T(m)

Future paths

Time T Time T+m

Figure 2.6: Illustration of the best prediction of XT+m given X1, · · · , XT , which is the average of possible values.

which coincides with the best linear predictor. In practice, one step-

forecasting is

X̂T (1) = b̂0 + b̂1XT + · · · + b̂pXT+1−p.

Size of prediction error: Ignoring error in estimated coefficients,
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it is σ. There are statistical methods to account for that.

2-step ahead prediction: Note that

XT+2 = b0 + b1XT+1 + · · · + bpXT+2−p + εT+2.

Hence, the two-step prediction is

XT (2) = b0 + b1XT (1) + · · · + bpXT+2−p,

which is linear predictor and hence coincides with the best linear pre-

diction. The 2-step prediction error is the part involving future

noises:

eT (2) = XT+2 −XT (2) = εT+2 + b1εT+1.

The size of the two-step prediction error is√
var(eT (2)) =

√
(1 + b21)σ

2,
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which is larger than one-step.

Multi-step forecast: ⋆Iterated AR(p); ⋆direct LS (better)

(equivalent under AR(p) models, better for other stationary models)

Example 4: Consider the CRSP data (Jan. 26 – Dec. 97), the

following AR(5) model is used to predict the monthly log-return

rt = 0.0075+0.103rt−1+0.002rt−2−0.114rt−3+0.032rt−4+0.084rt−5+εt

with σ = 0.054, T = 858.

Results: The actual and forecasted one are summarized in the fol-

lowing table and Fig. 2.7.
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Step 1 2 3 4 5 6

Forecast 0.0071 -0.0008 0.0086 0.0154 0.0141 0.0100

SE 0.0541 0.0545 0.0545 0.0549 0.0549 0.0550

Actual 0.0762 -0.0365 0.0580 -0.0341 0.0311 0.0183

2.4 Unit root

Fundamental question: Whether asset prices are predictable.

Consider the log-price of SP500 (Jan. 72 – Dec. 99): Xt = log(St),

where St = index at t. The autocorrelation of {Xt} features strong
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Figure 2.7: Out sample forecast

persistence. From PACF plot, it is reasonable to assume that

Xt = Xt−1 + εt, {εt} white noise.

It is an AR(1) model whose characteristic function has unit root.
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Figure 2.8: ACF and PACF for daily log-price of SP500 index.

Note that Xt = X0 +
t∑

i=1
εi, which is

— nonstationary: var(Xt) = var(X0) + tvar(ε)

— a random walk without drift.
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The random walk with a drift is defined as

Xt = µ +Xt−1 + εt

= µt +X0 +

t∑
i=1

εi.

Unit root test: Embed the random walk into the AR(1) model:

Xt = ρXt−1 + εt without drift;

Xt = µ + ρXt−1 + εt with drift.

The random walk hypothesis: H0 : ρ = 1.

Estimation of ρ by the least-squares method:
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•Model without drift: minρ
∑T

t=2(Xt − ρXt−1)
2 gives

ρ̂ =

T∑
t=2

XtXt−1

T∑
t=2

X2
t−1

.

•Model with drift: minµ,ρ
∑T

t=2(Xt − µ− ρXt−1)
2 gives

µ̃ = X̄2 − ρ̃X̄1

ρ̃ =

∑T
t=2(Xt − X̄2)(Xt−1 − X̄1)∑T

t=2(Xt−1 − X̄1)2
,

where X̄2 = (T − 1)−1
∑T

t=2Xt and X̄1 = (T − 1)−1
∑T

t=2Xt−1.

Dickey-Fuller coefficient test: Reject H0 at α = 5%, when

T (ρ̂− 1) < −8.347 without drift;

T (ρ̃− 1) < −13.96 with drift.
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Dickey-Fuller t-test: the t-statistic for ρ from the linear fit to

Xt = µ + ρXt−1 + εt (more frequently used).

Critical values fo Dickey-Fuller tests

Level α α = 0.01 α = 0.05 α = 0.10

With drift, coef-test -20.21∗ -13.96∗ -11.33∗

With drift, t-test -3.459 -2.874 -2.573

Without drift, coef-test -14.07∗ -8.347∗ -5.862∗

Without drift, t-test -2.574 -1.941 -1.616
∗ based on 10,000 simulation with T = 1000

Null distributions: Let {Wt} be a Brownian motion and W̃t = Wt −
∫ 1

0 Wtdt. Then

T (ρ̂− 1)
L−→

∫ 1

0 WtdWt∫ 1

0 W 2
t dt

, T (ρ̃− 1)
L−→

∫ 1

0 W̃tdWt∫ 1

0 W̃ 2
t dt

.

Example 5. For the S&P 500 daily log-prices, T = 5348. For testing
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against random-walk without a drift, it was computed that

ρ̂ = 1.0006, T (ρ̂− 1) = 3.2088.

The random walk hypothesis can not be rejected.

Similarly, for random walk hypothesis with a drift (reasonable),

ρ̃ = 0.9997106, T = 5348, T (ρ̃− 1) = −1.5479,

which is bigger than the critical value −13.96. We can not reject the

random walk hypothesis.

For monthly log-prices, T = 214. It can be computed that

ρ̂ = 1.0050, T (ρ̂− 1) = 0.321,
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and

ρ̃ = 0.99339, T (ρ̃− 1) = −1.4135.

Both do not provide strong evidence against H0.

White noise 

White noise 

Stationary 
AR(1) 

Stationary 
DF-test 

Ljung-Box 
  test 

Figure 2.9: In terms of returns, the null hypotheses of both Ljung-Box and Dickey-Fuller tests are the same. However, the alternative
of Ljung-Box is larger.

Remarks: Dickey-Fuller and Ljung-Box tests both validate some
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aspects of the efficient market hypothesis. They are based on very

different model assumptions.

— Dickey-Fuller test is a parametric test on the log-price process

{Xt}. The basic assumption is that {Xt} follows an AR(1) model.

— Ljung-Box test is a nonparametric test for uncorrelatedness

based on the returns {rt}.

The null hypotheses are the same.

2.5 ARMA Processes

Assume that the series {Xt} has zero mean (being removed).
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ARMA model: {Xt} ∼ ARMA(p, q), if

Xt = b1Xt−1 + · · · bpXt−p︸ ︷︷ ︸
obseved returns

+εt + a1εt−1 + · · · + aqεt−q︸ ︷︷ ︸
relized noises

,

where {εt} ∼ WN (0, σ2). It can be written as

b(B)Xt = a(B)εt,

where b(z) = 1− b1z − · · · − bpz
p , a(z) = 1 + a1z + · · · + aqz

q.

Why ARMA? More parsimonious representation! For example, a

simple model Xt = 0.6Xt−1+εt+0.3εt−1 would require a high order

of AR or MA process to approximate it.

Identification: The order as defined above is not identifiable:

(1− 0.7B)b(B)Xt = (1− 0.7B)a(B)εt
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is ARMA(p+ 1, q + 1). Thus, we assume a(z) and b(z) do not share

the same root.

Stationarity: When

inf
|z|≤1

|b(z)| > 0,

the ARMA model can be written as

Xt = b(B)−1a(B)εt = d0εt + d1εt−1 + · · · ,

for some coefficients {di}, an infinite order of MA and hence is sta-

tionary.

Yule-Walker equation: Note that

Cov{b(B)Xt, Xt−k} = Cov{a(B)εt, Xt−k} = 0, if k > q.
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Thus,

γ(k)− b1γ(k − 1)− · · · − bpγ(k − p) = 0, for k > q

Short memory: Stationary ARMA model has short memories. In

fact, ρ(k) → 0 exponentially fast.

Example 6. Consider the ARMA(1,1) model. For k > 1, we have

γ(k) = b1γ(k − 1) = · · · = bk−1
1 γ(1).

Using Xt = b1Xt−1 + εt + a1εt−1, we have

γ(1) = Cov(Xt, Xt−1) = Cov(b1Xt−1+a1εt−1, Xt−1) = b1γ(0)+a1σ
2.

Note that

γ(0) = var(Xt) = b21γ(0) + (1 + a21)σ
2 + 2a1b1σ

2.
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Hence,

γ(0) =
1 + a21 + 2a1b1

1− b21
σ2

and

γ(1) =
a1 + b1(1 + a21 + a1b1)

1− b21
σ2, γ(k) = γ(1)bk−1

1 , for k ≥ 1

Estimation: For given orders p and q, the parameters can be esti-

mated by the Quasi Maximum Likelihood (QML) method as-

suming that {εt} ∼ i.i.d N (0, σ2). Then, XT ≡ (X1, · · · , XT )
′ ∼

N (0,Σ). The likelihood function (the density function of XT ) is

L(a,b, σ2) ∝ |Σ|−
1
2 exp

{
−1

2
X′

TΣ
−1XT

}
.
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Order Selection: Let ℓ̂(p, q) = max
a,b,σ

logL(a,b, σ). Then

AIC(p, q) = −2ℓ̂(p, q) + 2(p + q + 1);

AICC(p, q) = −2ℓ̂(p, q) +
2T

T− p− q− 2
(p + q + 1);

BIC(p, q) = −2ℓ̂(p, q) + log(T− L)(p + q + 1).

Example 7: Consider the daily return of SP500 index. Fitting the

ARMA(1,1) model results in

(rt − 0.0399) = −0.3379(rt−1 − 0.0399) + εt − 0.359εt−1.

ARMA(1,1) AR(1) AR(2) AR(3) MA(1) MA(2) MA(3)

AIC 15962 15961 15952 15945 15964 15957 15952

σ 1.159 1.159 1.157 1.156 1.159 1.157 1.156
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Plot of Standardized Residuals

0 1000 2000 3000 4000 5000

-2
0

-1
5

-1
0

-5
0

5

ACF Plot of Residuals

A
C

F

0 10 20 30-1
.0

-0
.5

0.
0

0.
5

1.
0

PACF Plot of Residuals

P
A

C
F

0 10 20 30

-0
.0

4
-0

.0
2

0.
0

0.
02

0.
04

P-values of Ljung-Box Chi-Squared Statistics

Lag

p-
va

lu
e

4 6 8 10 12 14

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

IMA Model Diagnostics:  return5

ARIMA(1,0,1) Model with Mean 0

Figure 2.10: ARMA fit to S&P500 returns.
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Prediction: Let XT (m) = ET (XT+m). Then, from

XT+m =

p∑
j=1

bjXT+m−j + εT+m +

q∑
j=1

ajεT+m−j,

we have

XT (m) =

p∑
j=1

bjXT (m− j) +

q∑
j=1

ajεT (m− j),

where

εT (i) = ET{εT+i} =

{
0 if i > 0

εT+i if i ≤ 0
.

Thus, starting from the one-step ahead prediction, we compute the

two-step ahead prediction and so on.

Example 8. Consider an ARMA(1,1) model

Xt − bXt−1 = εt − aεt−1.
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For m ≥ 2, it is easy to see

XT (m)− bXT (m− 1) = 0 =⇒ X̂T+m ≡ XT (m) = bm−1XT (1).

The long-term forecasting is nearly impossible.

Let us now consider the one-step forecasting. First of all, XT (1) = bXT − aεT . Note that

εt = (1− aB)−1(Xt − bXt−1)

=

∞∑
j=0

ajBj(Xt − bXt−1)

= Xt + a

∞∑
j=1

aj−1Xt−j − b

∞∑
j=1

aj−1Xt−j

= Xt − (b− a)

∞∑
j=1

aj−1Xt−j.

Hence,

XT (1) = (b− a){XT + aXT−1 + a2XT−2 + · · · }.

When b = 1 [nonstationary, ARIMA(0,1,1)], we have

XT (1) = (1− a){XT + aXT−1 + a2XT−2 + · · · } (exponential smoothing)
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2.6 ARIMA model

When a financial time series appears to have a slow-varying time

trend, a common practice is to remove the trend by differencing.

e.g. Let Xt be the log-price of SP500 index, and

rt = Xt −Xt−1 = (1−B)Xt

be the log-return. We hope to model rt by an ARMA(p, q) model.

Since Xt is the integration of rt, the model is called an autoregressive

integrated moving average (ARIMA) process. Note that the ARIMA

model for (d > 0) is non-stationary.

ARIMA: Let Yt = (1−B)dXt. If

b(B)Yt = a(B)εt ⇐⇒ b(B)(1−B)dXt = a(B)εt,
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{Xt} is called ARIMA model with order p, d and q, denoted by

{Xt} ∼ ARIMA(p, d, q).

The techniques for ARMA model can readily be extended.

2.7 Persistence and Long Memory Processes

For ARMA models, |ρ(k)| ≤ Crk, r < 1, k = 0, 1, 2, · · · .

There also exists a class models with

ρ(k) ∼ Ck2d−1, as k → ∞, d < 0.5.

For d ∈ (0, 0.5),
∑

|ρ(k)| = ∞. Such a process is called a long

memory process.

e.g. ACF of log-price of S&P500 appears to decay slowly;
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e.g. ACF of absolute log-return of S&P500 appears persistent.
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Figure 2.11: ACFs of the log-returns and absolute log-returns of the S&P 500 index.

A family of models with ρ(k) ∼ Ck2d−1 is given by the fractional

difference:

(1−B)dXt = εt, −0.5 < d < 0.5.
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Here,

(1−B)d = 1− dB +
d(1− d)

2!
B2 − · · · −

(−1)k
d(1− d) · · · (k − 1− d)

k!
Bk − · · · .

Thus, Xt admits an AR(∞) representation

Xt − dXt−1 + · · · + (−1)k
d(1− d) · · · (k − 1− d)

k!
Xt−k − · · · = εt.

Properties. For the process defined above,

(i) ρ(k) =
d(1 + d) · · · (k − 1 + d)

(1− d)(2− d) · · · (k − d)
∼ Ck2d−1, k → ∞.

(ii) PACF: π(k) = d/(k − d).

(iii) The Fourier transform of the ACF admits

f(ω) ∼ w−2d, as ω → 0.

— the spectral density function

— d can be estimated from log-periodogram with ω small.
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FARIMA: In general, if {Xt} satisfies

b(B)(1−B)dXt = a(B)εt,

then it is called an FARIMA(p, d, q) ⇐⇒ Fractional ARIMA model.

Note that

b(B)Xt = a(B)(1−B)−dεt ⇐⇒ b(B)Xt = a(B)ηt,

where ηt = (1 − B)−dεt is a long-memory process. Thus, FARIMA

can be viewed as an ARMA model driven by a long memory noise.

2.8 Seasonal Models
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Some financial time series exhibits periodic behavior. e.g. quarterly

earning per share of IBM and Johnson and Johnson 1984-2013. The

features of earning data include serial correlation and seasonality.
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Figure 2.12: Quarterly earnings per share of IBM (red) and Johnson and Johnson (green) from 1984– 2013. Top panel: earning per
share; bottom panel: logarithm of earings per share.
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Figure 2.13: Autocorrelation functions for the logarithm of earning per share of Johnson and Johnson from 1984-2013. (a) ACF of
the original time series {Xt}. (b) ACF of de-trend series {∇Xt}; (c) ACF of de-seasonalized series {∇4Xt}; (d) ACF of de-trend and
de-seasonalized data {(1−B4)(1−B)Xt.}
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Differencing:

— Serial correlation is weakened by a differencing: ∆Xt = Xt−Xt−1.

The ACF is given in Fig 2.13, labeled (dx).

— Seasonality is handled by a seasonal difference: ∆4 = (1 − B4).

The ACF is given in Fig 2.13, labeled (ds).

— Serial correlation and seasonality are handled by

(1−B4)(1−B)Xt = Xt −Xt−1 −Xt−4 +Xt−5.

The resulting series has ACF given in Fig 2.13(d).

After the above preprocessing, we can construct an ARMA model.
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2.9 Summary

Stationary i.i.d 

Stationary 

GARCH 
FARIMA 

Nontationary 

Unit-root 
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Walks 

Seasonality 
 

Time trend 

ARMA ARIMA 

Figure 2.14: Summary of stochastic processes introduced in the chapter.

Stochastic processes: Stationary + nonstationary. Both classes are too wide to be useful.

Specification of Stationary: ⋆Stationary ARMA (short memory)⋆FARIMA (long memory).

White Noise: is a special stationary process.

In ARMA models, the white noise process is not specified but will be further specified as the GARCH

for volatility modeling. See Figure 2.15 for further classification of white noise process.



Financial Econometrics: Linear Time Series —by Jianqing Fan, do not circulate! 85

Specification of Nonstationarity. ARIMA model (unit roots) with the random walk as a

specific example. Time series with seasonality and trend can not be stationary.

Martingales Difference 

i.i.d 

White noise 

GARCH 

Figure 2.15: Relationship among different white
noise processes: Margingales, GARCH, and i.i.d.
white noises processes.

ARIMA models: the difference of time series is ARMA

⋆ MA models are always stationary and are strong sta-

tionary if noises are independent;

⋆ ARMA models are stationary if roots outside unit circle

⋆ Yule-Walker equation for acf functions

⋆ ACF and PACF for model identification; AIC/BIC for

model selection

⋆ prediction and prediction errors; •iterative AR(p) or

ARMA versus direct least-squares

Statistics:

⋆ MLE gives the most efficient estimator, but not robust to model misspecifications

⋆ Hessian matrix gives precision matrix of parameter estimation

⋆ Delta method gives standard errors of nonlinear functionals of parameters


