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Although Nonlinear Time Series is the only part of the title to appear on the
spine of this new book by Fan and Yao, the word “nonparametric” in the sub-
title really deserves top billing. There are hints here and there that the authors
follow the viewpoint emphasized by Tong (1990), that there is a true underlying
nonlinear dynamic law generating the time series data. Nonparametric methods
can help uncover this dynamic law. But the book also works from a purely prag-
matic standpoint; nonparametric estimation methods are useful in constructing
effective forecasting algorithms, whatever the true dynamic law. The standard
time series modeling paradigm for building a forecast algorithm reduces an ob-
served series to approximate stationarity through removal of trend and seasonal
components, identifies the covariance structure and possible parametric models
through the estimated autocovariance function of the resulting series, selects
among competing estimated models through order-selection criteria (such as
the Akaike information criterion) and residual diagnostics, and then computes
optimal predictors for future values of the series. Autoregressive moving aver-
age (ARMA) models form a broad class of linear models that can approximate
quite general autocovariance structures arbitrarily closely. Dependence outside
the second-order moment structure, on the other hand, may require nonlinear
models.

Nonparametric methods have a long history in time series analysis and ap-
pear throughout the standard modeling paradigm, particularly in estimation of
trend and seasonal components for nonstationary time series and in estimation
of spectral density functions and marginal probability densities for stationary
time series. The authors hope to extend the use of nonparametric tools for iden-
tifying and estimating nonlinear time series models. These models may have
flexible nonparametric specifications, or the nonparametric analysis may sug-
gest parametric nonlinear models. Nonparametric methods are also useful in
constructing predictors for nonlinear processes.

The authors provide considerable background material on both time series
and nonparametrics. Introductory chapters on characteristics of time series
(Chap. 2) and ARMA modeling and forecasting (Chap. 3) borrow heavily from
texts by Brockwell and Davis (1991, 2002) and associated ITSM software.
Subsequent chapters review important classes of parametric nonlinear time se-
ries models [threshold, generalized autoregressive conditional heteroscedastic
(GARCH), and bilinear; Chap 4] and introduce nonparametric methods through
density estimation (Chap. 5) and spectral density estimation (Chap. 7). The sub-
jects of main interest—those that really set this book apart—are concentrated
in later chapters: smoothing with dependent data (Chap. 6), nonparametric time
series models (Chap. 8), model validation (Chap. 9), and nonlinear prediction
(Chap. 10).

The broad range of topics covered in this book makes for a large and awk-
ward load. It is like coming home from the grocery store and trying to get all of
the bags into the house in one trip; losing a few things on the way up the steps,
crushing a few more while pushing through the door, and cracking one or two
eggs when dropping the bags on the counter. Everything in the bags must be
examined carefully for scratches, bruises, and breaks, and some items are lost
altogether.

This book has scratches scattered throughout, in the form of abundant errors
and inconsistencies in the technical typesetting. There are quite a few bruises as
well: incorrect figure references, typos in formulas, garbled phrases, and terms
used before they are defined.

Some breaks are noticeable, especially the proof of Theorem 7.4. The maxi-
mum periodogram ordinate for an iid non-Gaussian sequence, suitably normal-
ized, does indeed converge in distribution to the standard Gumbel distribution.
The authors’ argument makes this result appear trivial, but the key approxima-
tion they use is incorrect. (See Davis and Mikosch 1999 for a valid proof, which
relies on a Gaussian approximation technique for sums of independent random
vectors.) Elsewhere, there are cracks in the exposition, with statements that are
not quite right, like the claim on page 420 that point transformations of weakly
stationary series are weakly stationary.

After taking stock of the damage, we might ask whether anything is missing.
One omission is suggested by the authors’ comments on page 16 that “the va-
lidity of a parametric model for a large real data set over a long time span is
always questionable,” and that this, among other factors, has “led to a rapid
development of computationally intensive methodologies. . . that are designed

to identify complicated data structures by exploring local lower-dimensional
structures.” These comments seem to ignore the possibility of parametric hi-
erarchical models, which often take the form of parameter-driven generalized
state-space models in the time series context. Such models can capture a variety
of nonstationary and nonlinear behaviors (e.g., Kitagawa 1987; Harvey 1989;
Durbin and Koopman 2001). The hierarchical model specifies dynamics of ob-
servations given time-dependent “local parameters” (or states) and dynamics
of local parameters given time-invariant “global parameters” (or hyperparame-
ters). Such hierarchical models can often successfully describe real datasets
over long time spans by allowing the local parameters to change smoothly
over time, suggesting that this parametric methodology has some relationship
with nonparametric methods. Indeed, certain smoothing splines can be com-
puted using the Kalman recursions, because they are the optimal fixed-interval
smoothers for an integrated random walk plus noise, a simple hierarchical time
series (see, e.g., Durbin and Koopman 2001 and references therein). Some men-
tion of this relationship, and perhaps some discussion of the authors’ perspec-
tive on the use of nonparametric methods in the identification of hierarchical
models, would have been nice to see.

Despite these problems, this book has much that is interesting and useful.
The discussions of ergodicity in Section 2.1.4 and of mixing conditions in
Section 2.6 are handy. The presentation of ARCH and GARCH models in Sec-
tion 4.2 is a concise introduction to this vast literature from a statistics stand-
point, and Chapter 5 gives a nice overview of nonparametric density estimation,
with particular emphasis on results and references for density estimation with
dependent data. In fact, most chapters end with extensive bibliographical notes.
These will certainly be valuable resources for researchers, particularly in the
later chapters that describe evolving areas.

These later chapters, notably Chapters 6 and 8–10, constitute the book’s
main contribution—topics not found in typical time series or nonparametrics
texts. Chapter 6 covers smoothing with dependent data, in both the time domain
(a standard topic in traditional time series analysis) and the state domain (not so
standard). Chapter 8, on nonparametric time series models, includes functional
coefficient autoregressions, additive autoregressions, and index models, among
others. Model validation, in Chapter 9, focuses on generalized likelihood ra-
tios for testing against nonparametric alternatives (for which the nonparamet-
ric maximum likelihood estimator may not exist or may be too constrained to
be of use). Chapter 10 covers nonlinear prediction, including point predictors,
minimum-length prediction intervals, and predictive distributions.

Many of the interesting ideas presented in these chapters are highlighted
through examples worked out in detail. These include both classic datasets
(Canadian lynx and Wolf’s sunspots, naturally), and new examples. Chapter 8
provides some informative examples of financial applications (a technical trad-
ing rule applied to pound/dollar exchange rates, and a value-at-risk analysis for
the Standard and Poor’s 500 index).

The material presented in these chapters includes techniques that anyone
with a solid background in time series analysis could appreciate and could im-
plement immediately with standard software. Even so, as the authors point out,
there are plenty of open questions about these techniques. This makes the mate-
rial in these chapters appealing to practitioners and researchers alike, although
the practitioner would need to pick through lots of technical detail to extract
the useful applied bits. Nonlinear Time Series: Nonparametric and Parametric
Methods is best suited as a stimulating research monograph. It is not a text-
book (in particular, it has no exercises), but it has sufficient breadth that it could
serve as the focus of a graduate reading course or as a source of supplemental
teaching materials for an advanced time series class.

Jay BREIDT

Colorado State University
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Statistical Inference and Simulation for Spatial Point Processes.

Jesper MØLLER and Rasmus P. WAAGEPETERSEN. Boca Raton: Chap-
man & Hall/CRC, 2004. ISBN 1-5848-8265-4. xv + 237 pp. $69.95.

This book is an extremely well-written summary of important topics in the
analysis of spatial point processes. The text is an agreeable blend of technical
and heuristic approaches, containing a thorough presentation of spatial point
process models and a detailed survey of methods for their simulation and in-
ference. The authors do an excellent job focusing on those theoretical concepts
and methods that are most important in applied research. Although other good
books on spatial point processes are available, this is the first text to tackle dif-
ficult issues of simulation and simulation-based inference for such processes,
including methods based on Markov chain Monte Carlo and related techniques.
As the authors correctly note, as computer power and speed increase, and
because analytic expressions for expectations of statistics for complex point
process models are often unavailable, simulation-based approaches for spatial
point processes should become increasingly important and widespread.

Readers may find the text moderately difficult to read. The level of exposi-
tion is about halfway between Brian Ripley’s (1981) brilliantly simplistic Spa-
tial Statistics and the far more theoretical text by Daley and Vere-Jones (1988),
which deals little with spatial point processes but is widely (and correctly) con-
sidered the indispensable book on point processes in general. While Møller and
Waagepetersen’s book focuses on important practical topics, such as simula-
tion and inference, it is less a manual for applied statistics than a description of
key concepts and mathematical results justifying important techniques used in
applied research. Considering that the text states most results in their full math-
ematical precision and includes proofs of key theorems, it is remarkably easy
to follow.

The book has appeal far beyond the realm indicated by its title. Following
a brief introduction featuring some examples of spatial point process datasets,
the book provides a terrific summary of a wide variety of spatial point process
models, and in fact hardly even mentions simulation and related topics until the
seventh of its eleven chapters. Basic methods for the description, estimation,
and display of key features of point processes, which are subjects described in
great length in other texts such as those by Ripley (1981), Diggle (1983), and
Cressie (1993), are all packed into Chapter 4 under the heading “Summary Sta-
tistics,” which makes this 27-page chapter an appealing dense summary of such
resources. The later chapters delve meticulously into simulation procedures for
various models, even including detailed algorithms for simulation methods and
their use in likelihood inference.

The authors have a very impressive knack for explaining complicated topics
very clearly, and readers unfamiliar with the subject matter will benefit greatly
from their expositions, some of which are quite innovative. For instance, most
other authors start by describing a point process heuristically as a random count-
able collection of points in some space, but then proceed to define it instead as
a random measure or stochastic process, so that the subject is embedded in
a more general and more theoretically developed research area. Instead, Møller
and Waagepetersen continue throughout to define a point process simply as
a set, that is, a countable collection of points. This makes things considerably
easier for the reader less familiar with measure theory, and it is remarkable how
little difficulty the authors have in explaining rather sophisticated concepts or
techniques using this definition. For instance, superpositions of point processes
are expressed as unions of random sets, and the nearest-neighbor function in
Chapter 4 is defined using set differences. The more experienced reader may
find these changes rather unconventional, but they do not cause any real prob-
lems and do often seem to simplify the exposition.

The book’s main weakness is in its use of examples. The authors draw the
inexperienced reader in with several rather nicely graphically depicted exam-
ples of spatial point process datasets, which illustrate the scope of the methods
in the text. However, these examples are less than stimulating, and it is unclear
what the questions of primary interest relating to these datasets are. Why, for
instance, should the reader be interested in the locations of 1,382 weed plants
in a Danish barley field? Perhaps in an effort not to distract attention away from

the book’s primary focus, the examples are not very thoroughly explained. The
reader is provided little information on design and sampling issues, available
covariates, and background scientific knowledge, all of which would be very
important for actual applications. These omissions are very understandable;
such information might seem tangent to the book’s main topic, and is not pro-
vided by other spatial point process books either. Unfortunately, however, the
models and summary statistics applied to these datasets fail to inform the reader
of much of profound interest, and so the reader may be left with the impression
that the main purpose of such datasets is to facilitate the understanding and
appreciation of spatial point process models, rather than the other way around.

The authors claim in the Preface (p. xiii) that the text is intended to be ac-
cessible to “senior undergraduate students and Ph.D. students in statistics, expe-
rienced statisticians, and applied probabilists.” The book’s mathematical rigor
(as well as its lack of homework exercises) make it too difficult to use for an
undergraduate course, but it could certainly be used for graduate students, es-
pecially if supplemented with a project involving some of the concepts in the
text.

Statistical Inference and Simulation for Spatial Point Processes will no
doubt prove an outstanding resource for researchers and students interested in
spatial point processes. Its excellent survey of the vast array of models is reason
enough to own it. As computer technology and speed advance and simulation
continues to play an ever-increasing role in statistical inference, the authors’
clear, detailed, and comprehensive survey of simulation methods for spatial
point processes will become increasingly important.

Frederic P. SCHOENBERG

University of California Los Angeles
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Distribution Theory of Runs and Patterns and Its Applications:
A Finite Markov Chain Imbedding Approach.

James C. FU and W. Y. LOU. River Edge, NJ: World Scientific Publishing,
2003. ISBN 981-02-4587-4. x + 162 pp. $38.00.

This book’s title gives an accurate impression of its content. The basic model
is a sequence X1,X2, . . . of independent random variables having a common
distribution on a finite set of outcomes. A simple pattern is a chosen finite string
of outcomes, and a compound pattern is a finite set of simple patterns. The
problem is to calculate the distribution of the number of times that the pattern
is observed in the finite sequence X1,X2, . . . ,Xn , using either “overlap count-
ing” or “nonoverlap counting.” For instance, in coin tossing, a simple pattern of
interest might be HH. In the finite sequence HHHH, the chosen pattern occurs
twice with nonoverlap counting and three times with overlap counting.

It might seem amazing that anything new can be said about a setting and
problems that could have been formulated in the seventeenth century. As the
book’s subtitle reveals, the authors’ aim is to present the method of “finite
Markov chain imbedding,” and although this can be seen as a reformulation
of a known technique, it does provide a helpful framework for handling the
more intricate run and pattern distributions.

Let Nn be the number of occurrences of the chosen pattern, using one or
other method of counting, within the finite sequence X1,X2, . . . ,Xn . The ran-
dom variable Nn is called finite Markov chain imbeddable if

P (Nn = x) = P (Yn ∈ Cx)

for all values x taken by Nn. Here Y0, Y1, . . . , Yn is a Markov chain on some fi-
nite state space, started with some particular initial distribution, and the sets Cx

form a partition of the state space.
To see how this can be done in a simple case, let X0,X1, . . . be independent

coin tosses, with values H and T , and let the pattern be {HH,TT}. On setting

It =
{

1 if Xt = Xt−1

0 if not,


