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Option Pricing with Model-guided Nonparametric Methods

Abstract

Parametric option pricing models are largely used in Finance. These models capture several

features of asset price dynamics. However, their pricing performance can be significantly en-

hanced when they are combined with nonparametric learning approaches that learn and correct

empirically the pricing errors. In this paper, we propose a new nonparametric method for pricing

derivatives assets. Our method relies on the state price distribution instead of the state price

density because the former is easier to estimate nonparametrically than the latter. A parametric

model is used as an initial estimate of the state price distribution. Then the pricing errors induced

by the parametric model are fitted nonparametrically. This model-guided method estimates the

state price distribution nonparametrically and is called Automatic Correction of Errors (ACE).

The method is easy to implement and can be combined with any model-based pricing formula to

correct the systematic biases of pricing errors. We also develop a nonparametric test based on

the generalized likelihood ratio to document the efficacy of the ACE method. Empirical studies

based on S&P 500 index options show that our method outperforms several competing pricing

models in terms of predictive and hedging abilities.

Keywords: Nonparametric regression, state price distribution, model misspecification, out-of-

sample analysis, generalized likelihood ratio test.

JEL Classifications: C14, G13.
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1 Introduction

Over the last three decades, there have been substantial efforts in extending the Black and Scholes

(1973) model along several directions. These efforts aim at developing more flexible dynamics of

asset prices leading to more accurate option pricing formulae. Examples include the jump-diffusion

models of Bates (1991), and Madan, Carr, and Chang (1998); the stochastic volatility models of

Hull and White (1987), and Heston (1993); the stochastic volatility and stochastic interest rates

models of Amin and Ng (1993), Bakshi and Chen (1997); the stochastic volatility jump-diffusion

models of Bates (1996), and Scott (1997), among others. These models have substantially relaxed

the restrictions in the seminal work of Black and Scholes and made the assumptions of the price

movements more plausible. However, these models are not derived from comprehensive economic

theories, often rely on different assumptions concerning the risk neutral asset dynamics, and need to

be simple and convenient to allow for the derivation of pricing formulae. Hence these models cannot

be expected to capture all the relevant features of the involved pricing mechanisms. In fact, there are

always limitations on the performance of parametric modeling techniques and model misspecification

is a major concern that can lead to erroneous valuations and hedging strategies.

In this paper, instead of attempting to improve option pricing models by introducing even more

flexible models, we propose a method of improvement in an orthogonal direction. Our approach is

based on the nonparametric correction of pricing errors induced by a given parametric model. We

calibrate the chosen parametric model to best fit the observed option prices. Then we estimate and

correct nonparametrically the pricing errors induced by the given model. Precisely, we estimate

the state price survivor function, i.e., one minus the state price distribution, using a model-guided

nonparametric procedure. We do so because European option prices can be easily expressed in terms

of the state price survivor function. This function is always decreasing, has a water fall shape, and is

in a neighborhood of a model-based distribution. We exploit this prior knowledge by estimating the

main shape of the survivor function using a sensible parametric model. Then we correct the pricing

errors induced by the model using a nonparametric approach. This method, called the Automatic
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Correction of Errors (ACE) of a pricing formula, can be combined with any model-based pricing

formula and reduces the pricing errors substantially. It does not depend sensitively on the initial

model-based calibration, as the nonparametric method in the second step corrects the modeling biases

in the initial step. In addition, compared to direct nonparametric methods, the guidance of model-

based pricing formulae provides reliable initial options prices and exploits the rich developments in

option pricing modeling, resulting in more accurate pricing methods.

Overall our method departs from the existing option pricing literature in two directions. Most

existing studies focus on the state price density to price options. This density can be estimated

nonparametrically by taking the second derivative of call prices but this procedure is numerically

challenging. We rely on the state price distribution which is related to the first derivative of call

prices and hence is easier to estimate. Then we fit nonparametrically pricing errors, or deviations

from parametric option prices, instead of fitting option prices directly.

We use a nonparametric method to correct the pricing errors as functional forms of pricing

errors are difficult to determine, varying over time and time to maturities. Nonparametric methods

have the flexibility to discover the nonlinear relation between pricing errors and moneyness. In the

nonparametric literature (e.g., Fan and Yao (2003)), it is well-known that survivor functions are

easier to estimate, admitting a faster rate of convergence, than density functions. Hence we estimate

the state price survivor function instead of the state price density. This is another important aspect

of our methodological contribution to option pricing. The nonparametric learning and correction

of pricing errors are easy to implement and fast to compute. The overall procedure is much faster

than calibration based approaches such as Duan (1995), Bakshi, Cao, and Chen (1997), Heston and

Nandi (2000), and Barone-Adesi, Engle, and Mancini (2008).

In the empirical analysis we consider European options on the S&P 500 index from January 2002

to December 2004. We compare our ACE method to (i) the benchmark ad hoc Black–Scholes model

of Dumas, Fleming, and Whaley (1998), (ii) the parametric GARCH option pricing model of Heston

and Nandi (2000), (iii) the semiparametric Black–Scholes model developed in this paper and inspired

by Aı̈t-Sahalia and Lo (1998), and (iv) the nonparametric regression approach applied directly to
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estimate the state price survivor function. We find that our ACE method outperforms both para-

metric models (ad hoc Black–Scholes and GARCH models) and semiparametric and nonparametric

methods, in terms of fitting and prediction of option prices as well as hedging performance. Finally,

we develop a nonparametric test based on the generalized likelihood ratio test of Fan, Zhang, and

Zhang (2001) to document the efficacy of the ACE method. The test results show that the nonpara-

metric correction of the ACE approach is very effective in reducing the pricing errors. These two

pieces of empirical results provide stark evidence on the power of nonparametric learning of pricing

errors for pricing options.

The paper is organized as follows. Section 2 introduces our ACE pricing method. Section 3

develops the nonparametric validation test. Section 4 recalls the semiparametric Black–Scholes and

the GARCH pricing models. Section 5 presents the empirical results. Section 6 concludes.

2 Estimation of the state price survivor function

The basic idea in our approach is to estimate the state price survivor function using portfolios of

traded options. Let St be the underlying asset price at time t and f∗(·) the state price (or risk

neutral) conditional density of ST given information at time t; e.g., Harrison and Kreps (1979). The

dependence of the density f∗(·) on time t, time to maturity τ = T − t, and other parameters are

suppressed. Let Ct denote the price of the call option at time t, written on the asset S, with strike

price X and time to maturity τ , whose payoff function is ψ(ST ) = max(ST −X, 0). Then, Ct is the

discounted expected payoff in the risk neutral world:

Ct = e−rt,τ τE[ψ(ST )] = e−rt,τ τ

∫ ∞

X
(y −X)f∗(y) dy,

where rt,τ is the risk-free rate at time t for the maturity T = t + τ . Let F ∗(x) be the cumulative

state price distribution of ST under the risk neutral measure, i.e., F ∗(x) =
∫ x
0 f∗(y) dy. Integration

by parts yields

Ct = e−rt,τ τ

∫ ∞

X
F̄ ∗(y) dy, (1)
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where F̄ ∗(x) = 1−F ∗(x), is the state price survivor function of ST .1 Equation (1) has an interesting

economic interpretation. Suppose n digital call options are available with strike prices X + δ,X +

2δ, · · · , X + nδ. Each of the digital options pays $1 if the stock price at time T is larger than its

corresponding strike price and zero otherwise. The forward price (before discounting) of each digital

call option is F̄ ∗(X + iδ), i = 1, · · · , n. When δ is small and n is large, the portfolio Π of long

positions δ in each of the digital call options has nearly the same payoff as the original call option,

max(ST −X, 0). Hence, in terms of forward prices,

E[Π] =
n∑

i=1

F̄ ∗(X + iδ) δ ≈
∫ ∞

X
F̄ ∗(y) dy = ert,τ τCt.

This approximation suggests that the integral of the state price survivor function is indeed a portfolio

of digital call options. In general, the price of any derivative contract with pay-off function ψ(ST )

can be easily expressed in terms of the state price survivor function,

∫ ∞

0
ψ(y)f∗(y) dy = ψ(0) +

∫ ∞

0
F̄ ∗(y)ψ′(y) dy,

where ψ′ is the first derivative of ψ. The pay-off function, ψ, needs to satisfy some mild regularity

conditions that are usually verified by derivative contracts traded on the market.2 Hence, for pricing

purposes, knowing the state price survivor function is equivalent to know the state price density. Of

course, if the final target is to price call options only, the call pricing function should be modeled

directly. Our approach can be adapted also to this goal by using model-guided nonparametric

techniques to estimate the call pricing function improving pricing accuracy. However, our method

based on the state price survivor function is more general and can be used to price also other

derivative contracts or less liquid options.

Let Ft,τ = Ste
(rt,τ−δt,τ )τ be the forward price of the asset at time t, and δt,τ the dividend yield

paid by the asset between t and T = t + τ . To avoid any confusions with state price distributions,
1Recently, Giacomini, Gottschling, Haefke, and White (2008) exploited this equality to price options with mixtures

of t-distributions.
2The pay-off function, ψ, needs to be bounded at zero, i.e., ψ(0) < ∞; not increasing too rapidly, i.e.,

limy→+∞ ψ(y)F̄ ∗(y) = 0; and the integral in the right hand side has to be well-defined.
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we denote the forward price always using both subscripts, Ft,τ . By the change of variable

Ct = e−rt,τ τFt,τ

∫ ∞

m
F̄ (u) du, (2)

where m = X/Ft,τ is called the moneyness and F̄ (u) = 1 − F ∗(Ft,τu) is the state price survivor

function in the normalized scale, i.e., Ft,τ is normalized to $1. For example the Black and Scholes

(1973) model is characterized by the log-normal state price survivor function,

F̄ (m) =
∫ ∞

m

1

u
√

2πσ2τ
exp

[
−

[
log(u) + σ2τ/2

]2

2σ2τ

]
du = 1− Φ

[
log(m) + σ2τ/2

σ
√

τ

]
, (3)

where σ is the constant volatility and Φ the standard Gaussian distribution function. Under this

model, the option price in (2) can be explicitly calculated, resulting in the celebrated Black–Scholes

pricing formula:

Ct = CBS(σ) = e−rt,τ τ (Ft,τΦ(d1)−XΦ(d2)) , (4)

where d1 =
(
log(Ft,τ/X) + σ2τ/2

)
/(σ

√
τ) and d2 = d1 − σ

√
τ . In equation (4) we emphasize the

dependence of the Black–Scholes option price on the volatility σ. In general, state price distributions

have no closed-form expressions and numerical procedures are usually adopted in computations.

For example, in jump diffusion models with nonparametric Lévy measure, Cont and Tankov (2004)

suggest to approximate the state price density by using a mixture of log-normal distributions.

Using equation (2), pricing European options reduces to the estimation of the state price survivor

function, F̄ . The parametric approach assumes a risk neutral dynamic for the underlying asset, and

then derives the state price survivor function. For example, assuming that St follows a geometric

Brownian motion implies the state price survivor function in equation (3). Then the parametric

approach infers the model parameters from traded options. Our approach is nonparametric. We

infer the state price survivor function directly from traded options. The key advantage of this

method is that we need neither to assume a parametric model under the risk neutral measure, nor

to derive an analytic form for the pricing formula. This eliminates model misspecification risk and

allows fast estimation of the state price survivor function.
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2.1 Traded options and state price survivor function

In this section, we discuss how to infer the state price survivor function from traded options. Let

X1 < X2 be two consecutive strike prices of traded options with the same maturity. The portfolio

of long positions in (X2 − X1)−1 call options with strike X1 and short positions in (X2 − X1)−1

call options with strike X2 has a pay-off function close to a digital call option with pay-off function

I(ST > (X1 + X2)/2), where I takes values one if ST exceeds (X1 + X2)/2, and zero otherwise; see

Figure 1. Hence

ert,τ τ Ct(X1)− Ct(X2)
X2 −X1

≈ E[I(ST > (X1 + X2)/2)] = F̄ ∗((X1 + X2)/2),

where Ct(Xi) is the price of the call option with strike Xi at time t. As derived in Appendix A, the

mid-point approximation gives the best accuracy in terms of the order of the approximation error.

We summarize the theoretical findings in the following proposition.

Proposition 1 Let Ct(X) be the price of the European call option with strike price X at time t.

For two consecutive strike prices X1 < X2, we have

ert,τ τ Ct(X1)− Ct(X2)
X2 −X1

= F̄ (m̄t,1) + O
(
(mt,1 −mt,2)3

)
, (5)

where mt,i = Xi/Ft,τ , (i = 1, 2), is the moneyness and m̄t,1 = (mt,1 + mt,2)/2. The approximation

error is bounded by

− 1
24
{ min

mt,1≤ξ≤mt,2

f ′(ξ)} (mt,2 −mt,1)3,

where f ′(ξ) is the derivative of the normalized state price density, i.e., f ′(x) = F ′′(x).

The proof is given in Appendix A. Proposition 1 provides a theoretical basis for inferring state

price survivor functions from traded call options. State price distribution can be similarly recovered

from the corresponding portfolio of traded put options. Equation (5) suggests that the state price

survivor function can be recovered nonparametrically by taking the first derivative of the call price

with respect to the strike price. To simplify the notation, let Ct,i denote the call option price with

moneyness mt,i = Xi/Ft,τ at time t. Order the moneyness {mt,i} of traded call options at time t in
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an ascending order and denote by

m̄t,i = (mt,i + mt,i+1)/2, and Yt,i = ert,τ τ Ct,i − Ct,i+1

Xi+1 −Xi
.

Then according to equation (5) we have

Yt,i = F̄ (m̄t,i) + εt,i, (6)

where εt,i is the idiosyncratic noise. This approach reduces the pricing of options to a nonparametric

estimation of the function F̄ , based on the observable data {(m̄t,i, Yt,i), i = 1, · · · , Nt}, where Nt + 1

is the number of options traded at time t for a given maturity. In contrast to other nonparametric

methods such as those in Aı̈t-Sahalia and Lo (1998) and Aı̈t-Sahalia and Duarte (2003), our method

estimates nonparametrically the state price survivor function rather than the state price density.

Equation (5) shows that the former, F̄ (m), is easily derived from options data. In contrast, the state

price density is usually recovered by taking the second derivative of the call option function with

respect to the strike price, which is a numerically challenging procedure; Breeden and Litzenberger

(1978). Moreover, the state price distribution is much easier to estimate, admitting a faster rate of

convergence than the state price density; e.g., Fan and Yao (2003).

The nonparametric method adopted here is the local linear regression. It has several advantages,

including automatic boundary correction, high statistical efficiency, and easy bandwidth selection, as

demonstrated in Fan (1992) and Fan and Gijbels (1995). For an overview of the local linear estimator

and other related techniques, we refer the reader to Fan and Yao (2003). On a given day t0, the

nonparametric estimator of F̄ is given by the time-weighted local linear regression

min
β0,β1∈R2

t0+d∑

t=t0−d

λ|t0−t|
Nt∑

i=1

(Yt,i − β0 − β1 (m̄t,i −m))2 Kh (m̄t,i −m) , (7)

where λ ∈ (0, 1] is the smoothing parameter in time, K is the kernel function, h is the bandwidth

used to fit the local linear model, and Kh(u) = h−1K(u/h). Denoting by β̂0 and β̂1 the resulting

minimizers, ˆ̄F (m) = β̂0 is the nonparametric estimate of the state price survivor function at money-

ness m. With the estimated ˆ̄F , for example call option prices are computed via equation (2). The

first summation in (7) aggregates options data on consecutive dates exploiting the time continuity
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of the state price survivor function. Without this time aggregation, the sample data available on

t0 only are likely not enough for an accurate estimation of F̄ . In our empirical application, we set

d = 2, i.e., one trading week, achieving a sample size of 150–200 data points. Options traded on

consecutive days have slightly different time to maturities and the time-weight, λ|t0−t|, accounts for

this effect. The second summation in (7) is the standard local linear regression that approximates

the function F̄ (x) locally around a given point, m, by the linear function

F̄ (x) ≈ F̄ (m) + F̄ ′(m)(x−m) = β0 + β1(x−m)

for x in a neighborhood of m. The kernel weights Kh(m̄t,i−m) are used to ensure that the regression

is run locally. For instance, using the Epanechnikov kernel, K(x) = 3
4(1−x2)I(|x| ≤ 1) that vanishes

outside the interval (−1, 1), the local linear regression in (7) uses only options data with moneyness

m̄t,i in the interval m ± h. Hence the bandwidth controls the effective sample size. For example,

Figure 2 shows the nonparametric estimate of the survivor function F̄ on December 29, 2004, using

Yt,is observed on December 27–31, 2004 with time maturities from 173 to 169 days. Visual inspection

of the fitting would suggest that the nonparametric method performs well. Unfortunately, small errors

in estimating the state price survivor function can translate into large pricing errors. Figure 3 shows

that this is the case for the options traded on December 29, 2004.

2.2 Ad hoc Black–Scholes model

The implied volatility, σBS
t,i = C−1

BS (Ct,i), is a common measure to represent the call price Ct,i. A well

documented empirical feature of implied volatilities is the so-called volatility smile; e.g., Renault and

Touzi (1996). For example, Figure 4 shows the implied volatilities of the call option prices analyzed

in the previous section and observed on December 27–31, 2004. To account for this phenomenon

and provide a benchmark option pricing model, Dumas, Fleming, and Whaley (1998) introduce an

ad hoc Black–Scholes model where the implied volatilities are smoothed across moneyness by fitting

a parabolic function:

σBS
t,i = a0 + a1 mt,i + a2 m2

t,i + errort,i, (8)

9



where σBS
t,i denotes the implied volatility observed on day t for a given maturity T and moneyness

mt,i, t ∈ [t0 − d, t0 + d], and i = 1, · · · , Nt + 1. Implied volatilities observed on different days have

slightly different time to maturities, τ = T − t, for t ∈ [t0 − d, t0 + d]. In our empirical application,

for each day t0 and each maturity T , the quadratic function (8) is estimated using the least-squares

regression with time-weight λ|t0−t|, as in the nonparametric regression (7). To price an option with

moneyness m and time to maturity τ , the fitted value, σ̂(m) = â0 + â1m + â2m
2, is plugged in the

Black–Scholes formula (4), obtaining an ad hoc Black–Scholes pricing formula CBS(m) = CBS(σ̂(m)).

Figure 4 shows the quadratic fit to the implied volatility. Some lack of fit is evidenced due to the

inflexibility of the quadratic form. This translates into systematic pricing errors, as demonstrated in

Figure 3.

Although theoretically inconsistent, ad hoc Black–Scholes methods are routinely used in the

option pricing industry. They represent a challenging benchmark because they allow for different

implied volatilities to price different options, and in our empirical applications they are separately

fitted to each maturity. Moreover, Dumas, Fleming, and Whaley (1998) show that this model

outperforms deterministic volatility function models introduced by Derman and Kani (1994), Dupire

(1994), and Rubinstein (1994).

2.3 Model-guided nonparametric methods

The direct nonparametric approach (7) does not perform well because does not exploit the prior

knowledge on the shape of the state price survivor function, uses a constant bandwidth h over the

whole domain of F̄ , and does not account for the implied volatility smile explicitly. We propose

to address these aspects by the following model-guided nonparametric estimation of the state price

survivor function, F̄ .

To estimate the main shape of the survivor function, we combine the state price distribution (3)

and the ad hoc Black–Scholes model (8). This results in the following preliminary estimator of the

survivor function:

F̄LN(m; ϑt) = 1− Φ

[
log(m) + (σ̂(m) ϑt)

2 /2
σ̂(m) ϑt

]
, (9)
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where â0, â1, â2 in σ̂(m) are estimated using the implied volatilities observed on 2d + 1 consecutive

days as in equation (8). The parameter ϑt accounts for the slightly different time to maturities and

is determined by minimizing the following distance:

ϑ̂t = arg min
ϑ∈R

Nt∑

i=1

(
Yt,i − F̄LN(m̄t,i; ϑ)

)2
. (10)

Notice that F̄LN(m;ϑt) reduces to the Black–Scholes log-normal survivor function (3) when a1 =

a2 = 0, and ϑt =
√

T − t. The main shape of the survivor curve is now captured by our preliminary

estimate F̄LN(m; ϑ̂t). The accuracy of this estimate is not so important because it will be corrected

by a nonparametric estimation in the second stage. Indeed, any state price survivor function, F̄t(m),

can be represented as

F̄t(m) = F̄LN(m; ϑ̂t) + F̄t,c(m), (11)

where F̄LN(m; ϑ̂t) is the parametric leading term of the state price survivor function and F̄t,c(m) is

the nonparametric correction term. Equations (6) and (11) give

Yt,i = F̄LN(m̄t,i; ϑ̂t) + F̄t,c(m̄t,i) + εt,i. (12)

This equation shows that F̄t,c(m) is the regression function for the data Ỹt,i = Yt,i − F̄LN(m̄t,i; ϑ̂t)

on the moneyness m̄t,i. Ỹt,is are the pricing errors on the digital call options induced by the

parametric model F̄LN(m; ϑ̂t). These pricing errors are estimated and corrected by the nonpara-

metric correction term F̄t,c(m). This term can be estimated by the local linear fit to the data

{(m̄t,i, Ỹt,i), i = 1, · · · , Nt; t ∈ [t0 − d, t0 + d]} using the time-weighted nonparametric regression

min
β0,β1∈R2

t0+d∑

t=t0−d

λ|t0−t|
Nt∑

i=1

(
Ỹt,i − β0 − β1 (m̄t,i −m)

)2
Kh (m̄t,i −m) . (13)

Denoting by β̃0 and β̃1 the resulting minimizers, the nonparametric correction term is ˆ̄Ft,c(m) = β̃0.

The nonparametric regression is now applied to the Ỹt,is which are more homogeneous than the

Yt,is, with approximately the same degree of smoothness as a function of m. Hence the constant

bandwidth h should be a reasonable choice for estimating the correction term F̄t,c(m). The shape

of F̄t,c(m) can vary over time and time to maturities and a nonparametric learning technique is
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particularly appealing. This procedure gives a model-guided nonparametric estimation of F̄t(m) by

plugging the nonparametric estimate of the function F̄t,c(m) into (11). Nonparametric estimation

of F̄t,c(m) is equivalent to the nonparametric estimation of F̄t(m). However, the former is easier to

estimate nonparametrically than the latter because it is a smoother function of m. We remark that

F̄t,c is not a survivor function but the correction term of the parametric function F̄LN. According to

(2), the price of a call option can be summarized as follows.

Proposition 2 The price of the European call option at time t with moneyness m and time to

maturity τ can be decomposed as

Ct = e−rt,τ τFt,τ

∫ ∞

m
F̄LN(u; ϑ̂t) du + e−rt,τ τFt,τ

∫ ∞

m
F̄t,c(u) du. (14)

The proof is simply given by substituting equation (11) into equation (2). Substituting ˆ̄Ft,c(m)

into (14), we obtain a new method for pricing derivatives instruments. The last term in (14) is the

nonparametric correction of the pricing error induced by the parametric pricing formula. The overall

procedure is still nonparametric and can be combined with any parametric approach. We refer to

this method as the Automatic Correction of Errors (ACE) approach.3

As an example, Figure 2 shows the estimated state price survivor function on December 29, 2004

using the same call options as in previous sections and applying our ACE method (11) and the

direct nonparametric method (7). Visually, both methods seem to provide a good fit to the data.

However, Figure 3 shows that the pricing errors of the two methods behave very differently. The

direct nonparametric approach does not perform well with a root mean square error (RMSE) of

$1.04. Our ACE approach reduces the pricing errors substantially and has a RMSE of only $0.21.

For completeness, Figure 3 also presents the pricing errors of the ad hoc Black–Scholes model (8).

This method does not perform well with a RMSE of $1.10, mainly because the fitted volatilities σ̂BS

in equation (8) are not very accurate around the moneyness, m ≈ 1. At-the-money options are very
3“Automatic” refers to the nonparametric fitting which does not need to impose any functional form. This type of

parametric-guided approach has been used in the statistics literature; see, for example, Press and Tukey (1956) and

Glad (1998).
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sensitive to changes in volatilities and even small errors in the volatility estimation can induce large

pricing errors. Figure 3 also shows the pricing performance of the semiparametric Black–Scholes

model, to be introduced in Section 4.1, that is quite satisfactory with a RMSE of $0.35.

2.4 Statistical properties of ACE and bandwidth selection

In this section, we show that the parametrically guided nonparametric fitting of the ACE method

has smaller bias when the true state price survivor function is in a neighborhood of the parametric

model F̄ (m; θ). The least-square calibration method gives the θ which minimizes

t0+d∑

t=t0−d

Nt∑

i=1

(
Yt,i − F̄ (m̄t,i; θ)

)2
. (15)

Let n =
∑t0+d

t=t0−d Nt be the sample size. If the true survivor function during the time period [t0 −

d, t0 + d] is F̄0(m),4 then the nonlinear least-square (15) attempts to find θ0 which minimizes

E
[
F̄0(m)− F̄ (m; θ)

]2
. (16)

The survivor function F̄ (m; θ0) is the best approximation of the true state price survivor function,

F̄0(m), in the family of functions {F̄ (m; θ)}. The following proposition summarizes the bias and

variance of the estimator ˆ̄F (m) = F̄ (m; θ̂) + ˆ̄Fc(m), where ˆ̄Fc(m) is the local linear fit to the data

{(m̄t,i, Ỹt,i)}.

Proposition 3 Under the conditions given in Appendix B, we have

√
nh{ ˆ̄F (m)− F̄0(m)− 1

2
F̄ ′′

c (m)h2

∫
u2K(u) du− o(h2)} w−→ N(0, σ2

ε(m)
∫

K2(u) du/g(m)),

where F̄c(m) = F̄0(m) − F̄ (m; θ0), g(m) is the marginal density of the moneyness at the point m,

and σ2
ε(m) is the conditional variance of εt,i given m̄t,i = m.

The proof is given in Appendix B. The bias of the parametric-guided nonparametric estimator (i.e.,

the ACE method) has a leading term of order 1
2 F̄ ′′

c (m)h2
∫

u2K(u) du, while the direct nonparametric

4Here, for ease of presentation, we assume that the true survivor function is the same from t0−d to t0 +d, or varies

very slowly in short time periods. If this assumption is violated, one needs to consider the date t0 only, i.e., d = 0.
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estimator has bias 1
2 F̄ ′′(m)h2

∫
u2K(u) du. The former is much smaller than the latter when F̄c is

smooth and small. This is particularly the case when F̄ (m; θ0) is close to the true state price

survivor function. The advantages of a parametrically guided nonparametric regression over the

direct nonparametric approach are also documented in Glad (1998) and Fan and Ullah (1999). In

our application, the curvature of F̄0(m) is large when m is around one. Exploiting the shape of the

function F̄ (m; θ0), the curvature of F̄c(m) = F̄0(m) − F̄ (m; θ0) can be significantly reduced. Hence

the ACE method performs better than the direct nonparametric approach.

Hjort and Glad (1995) propose a similar method to ACE to estimate density functions. However,

their goal is to estimate densities (not distributions) based on a random sample and they use a

multiplicative decomposition of the unknown density function given by a parametric density times

a nonparametric correction term, rather than an additive decomposition as in equation (11). Al-

though our interest is to estimate the state price distribution, our problem is indeed reduced to a

nonparametric regression problem inferred from option prices with different moneyness. We could

also use a multiplicative decomposition of the state price survivor function in (11) but it would in-

duce a less straightforward derivation of the adequacy test in Section 3. Garcia and Gençay (2000)

introduce a somehow similar approach to price options deriving a generalized Black–Scholes formula

but calibrated using neural networks.

Now we briefly discuss the issue of the bandwidth selection. Since the problem (11) is a standard

nonparametric regression problem, a wealth of data-driven bandwidths can be employed; see Fan and

Yao (2003). In particular, one can apply the pre-asymptotic substitution method of Fan and Gijbels

(1995), or the plug-in method of Ruppert, Sheather, and Wand (1995). Alternatively, one can choose

the bandwidth either subjectively or by a simple rule of thumb. The latter method takes nearly no

computational cost and the selected bandwidth tends to be stable from one day to another, which

is particularly important in practical applications. In our empirical study, we simply take h = 0.3s,

where s is the sample standard deviation of the moneyness {m̄t,i, i = 1, · · · , Nt; t ∈ [t0 − d, t0 + d]}.

The standard deviation accounts for the spreadness of the moneyness and the constant factor 0.3 is

an empirical choice from trial-and-error. Other constant factors might be required for other data sets.
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The ACE method only requires univariate nonparametric estimations. Hence it can be easily applied

using various bandwidths, selecting the bandwidth which induces the best pricing performance.

3 Adequacy of the pricing formula

Parametric pricing models are based on assumptions concerning the risk neutral dynamic of the

underlying asset. Hence an important question is whether or not these assumptions are consistent

with the observed option prices. In other words, does the pricing model induced by the parametric

state price survivor function fit traded options adequately? Statistically, this is a nonparametric

hypothesis testing problem:

H0 : F̄t(m) = F̄t(m; θ) ←→ H1 : F̄t(m) 6= F̄t(m; θ), (17)

based on the observed data from model (6), where F̄t(m) is the true state price survivor function and

F̄t(m; θ) is the state price survivor function derived from the parametric model. The null hypothesis

is parametric but the alternative hypothesis is nonparametric. Hence the classical likelihood ratio

test needs to be properly extended to deal with such a general situation. One of such extensions

is the generalized likelihood ratio (GLR) test proposed by Fan, Zhang, and Zhang (2001). See Fan

and Jiang (2007) for an overview. In the current setting, the GLR test compares the residual sum

of squares when fitting model (6) using the parametric and the ACE methods. However, a direct

application of the GLR statistic is not ideal here. Even when the null hypothesis is correct, the

nonparametric fits incur biases; see Section 2.4. To improve the testing procedure, Fan and Yao

(2003, Chapter 9) suggest to test whether or not the correction term F̄t,c(m) is statistically away

from zero. Under the null hypothesis, F̄t,c is zero, or equivalently F̄t(m) = F̄t(m; θ), and the residual

sum of squares is

RSS0 =
t0+d∑

t=t0−d

Nt∑

i=1

Ỹ 2
t,iI(a ≤ m̄t,i ≤ b)

for a given large interval [a, b]. The survivor function is tested on the interval [a, b] and the parameter

θ characterizing F̄t(m; θ) is calibrated to traded options on the dates [t0 − d, t0 + d] with moneyness

falling in [a, b]. This procedure ensures that the test results are not driven by potential difficulties
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of the nonparametric approach in fitting the tails of the survivor functions. Under the alternative

hypothesis, F̄t,c is not zero and the residual sum of squares is

RSS1 =
t0+d∑

t=t0−d

Nt∑

i=1

(
Ỹt,i − ˆ̄Ft,c(m̄t,i)

)2
I(a ≤ m̄t,i ≤ b).

Let na,b =
∑t0+d

t=t0−d

∑Nt
i=1 I(a ≤ m̄t,i ≤ b) be the number of data points used in the fitting. The GLR

test statistic is defined as

Tn =
na,b

2
log(RSS0/RSS1) (18)

and measures the inadequacy of the parametric fit. The larger the test statistics Tn, the less adequate

the fit of the parametric model to options data. When Tn is very large (or beyond the usual high

quantiles of its asymptotic null distribution), the null hypothesis that F̄t,c is zero has to be rejected.

The following proposition derives the asymptotic null distribution. We set λ = 1 for notational

simplicity.

Proposition 4 Under the conditions given in Appendix C,5 if the null hypothesis is true, then

rKTn
a∼ χ2

an
(19)

in the sense that

rKTn − an√
2an

w−→ N(0, 1),

where, with ∗ denoting the convolution operator,

rK =
K(0)− ∫

K2(t) dt/2∫
(K(t)−K ∗K(t)/2)2 dt

, an = sK(b− a)/h + 1.45, and sK =

(
K(0)− ∫

K2(t) dt/2
)2

∫
(K(t)−K ∗K(t)/2)2 dt

.

The constants rK and sK are computed in Fan, Zhang, and Zhang (2001). For the Epanechnikov

kernel, rK = 2.1153 and sK = 0.9519. The constant 1.45 in an comes from the empirical formula of

Zhang (2003), who also demonstrates the adequacy of such an approximation.

In the above formulation, the parametric model F̄t(m; θ) can be any survivor function. In our

empirical application, we take the log-normal survivor function (9) under the ad hoc Black–Scholes
5Similar assumptions are made by Aı̈t-Sahalia and Lo (1998), and Gagliardini, Gourieroux, and Renault (2005),

among others.
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model (8). We apply the GLR test statistic (18) to the S&P 500 index options from January 2, 2002

to December 31, 2004, as detailed in Section 5. We set the coefficients a and b equal to the 0.05 and

0.95 quantiles of the observed moneyness for each relevant maturity. This procedure ensures that the

estimate of the correction term is based on a sufficiently large sample size. Using (19) to compute

the P-value, we find that all test statistics have a P-value no larger than 0.001, for every maturity

in this three-year period. As a robustness check we computed P-values also using the conditional

nonparametric bootstrap method in Fan and Yao (2003, Chapter 9) to better approximate the null

distribution of the GLR test statistic. In nearly all tests P-values had similar and very low values.

These results provide stark evidence that the nonparametric correction term, F̄t,c, is very effective

in reducing the pricing errors of the ad hoc Black–Scholes model, F̄LN(m; ϑ).

4 Other pricing methods

In the empirical study, we compare our ACE method also with the following two option pricing

models.

4.1 Semiparametric Black–Scholes model

As demonstrated in Figure 4, the parabola in the ad hoc Black–Scholes model might not be flexible

enough to fit the implied volatility smile. One way to overcome this difficulty is to fit the implied

volatility function nonparametrically. This approach allows for a more flexible functional dependence

of the implied volatility on moneyness, σBS(m). For each day t0 and maturity T , we use the local

linear regression to estimate the implied volatility function directly. As in the other model estima-

tions, we aggregate options data around day t0.6 The local linear estimate, σ̂BS(m) = β̂0, is given
6Aggregating the data around the date t0 increases the sample size by an approximate factor of 2d+1. Certainly, this

reduces the variance of the resulting estimate. The time continuity of the pricing function implies that this aggregation

does not introduce large estimation biases. Aggregation is really a time-domain smoothing resulting in a smoother

estimated pricing function from one day to another. This is a desirable property in practical implementation.
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by the time-weighted regression

min
β0,β1∈R2

t0+d∑

t=t0−d

λ|t0−t|
Nt∑

i=1

(
σBS

t,i − β0 − β1 (mt,i −m)
)2

Kh (mt,i −m) (20)

and β̂0, β̂1 are the resulting minimizers. As in the ad hoc Black–Scholes model (8), call option prices

are computed by plugging σ̂BS(m) in the Black–Scholes formula, CBS
t,i , and setting σ = σ̂BS(m).

This pricing method is inspired by Aı̈t-Sahalia and Lo (1998) who fit two-dimensional functions

to the implied volatilities using a different nonparametric functional form. Figure 4 shows the

nonparametric fit of the implied volatilities on December 29, 2004, using the same options as in the

previous sections. The flexibility of the nonparametric fitting is evidenced.

4.2 GARCH option pricing model

Financial asset returns exhibit variances that change thorough time; e.g., Schwert (1989), and Jones

(2003). The time varying volatility is often described using GARCH models; see Engle (1982), and

Bollerslev (1986), and for surveys see, e.g., Bollerslev, Chou, and Kroner (1992) and Ghysels, Harvey,

and Renault (1996). In our empirical analysis, we consider the parametric GARCH option pricing of

Heston and Nandi (2000), as they derive an almost closed-form pricing formula. Here we only recall

the main features of the model and we refer the reader to Heston and Nandi (2000) for a detailed

description. Under the risk neutral distribution, the log-price follows the following GARCH model:

log(St/St−1) = r − ht/2 +
√

ht zt

ht = ω + βht−1 + α(zt−1 − γ
√

ht−1)2,
(21)

where zt is a Gaussian innovation, ht is the conditional variance of the log-return between t− 1 and

t, given the information, It−1, available at time t − 1. When β + αγ2 < 1, the log-return process

is stationary with finite mean and variance. The parameters α and γ determine the kurtosis and

the asymmetry of the distribution, respectively. When γ > 0, the model accounts for the so-called

leverage effect, i.e., a negative shock zt raises the variance more than a positive shock zt of the same
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absolute magnitude. At time t = 0, the price of the call option with strike price X and maturity T is

CHN = e−rT E[max(ST −X, 0)]

= e−rT ζ(1)
(

1
2

+
1
π

∫ ∞

0
<

[
X−iφζ(iφ + 1)

iφ ζ(1)

]
dφ

)
− e−rT X

(
1
2

+
1
π

∫ ∞

0
<

[
X−iφζ(iφ)

iφ

]
dφ

)
,

(22)

where <[·] denotes the real part of a complex number, i =
√−1, and ζ(φ) is the moment generating

function at time t of the log-price, pT = log(ST ),

ζ(φ) = E[eφ pT |It] = eφ pt+At+Btht+1 .

The coefficients Ats and Bts are computed backward using recursive equations; see Heston and

Nandi (2000), and Christoffersen, Heston, and Jacobs (2006). Given the past underlying returns,

the current variance, ht+1, is known at time t. This is an important advantage of GARCH pricing

models over other stochastic volatility models, such as the Heston (1993) and the Bakshi, Cao, and

Chen (1997) models, where the instantaneous variance is not observed and requires a calibration or

a separate estimation.

5 Empirical analysis

5.1 The data

We consider closing prices of European options on the S&P 500 index (symbol SPX) from January 2,

2002 to December 31, 2004. The data are downloaded from OptionMetrics. The average of bid

and ask prices is taken as the option price.7 To retain only liquid options (e.g., Aı̈t-Sahalia and Lo

(1998)), options with implied volatility larger than 70%, prices less than or equal to 1/8, or time to

maturity (in calendar days) less than 20 days or more than 240 days are discarded, which yields a

sample of 101,036 observations.

The market for SPX options is one of the most active index options market in the world. Expi-

ration months are the three near-term months and three additional months from the March, June,
7Such mid prices are not transaction prices, which are not available in OptionMetrics, but they are all recorded at

the same time simplifying somehow the analysis.
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September, December, quarterly cycle. Strike price intervals are 5 and 25 points. The options are

European, have no wild card features, and can be hedged using the active market on the S&P 500

index futures. Consequently, SPX options have been the focus of many empirical investigations,

including Aı̈t-Sahalia and Lo (1998), Chernov and Ghysels (2000), Heston and Nandi (2000), Carr,

Geman, Madan, and Yor (2003), and Barone-Adesi, Engle, and Mancini (2008).

The term structure of default-free interest rates is also downloaded from OptionMetrics and the

riskless interest rate for each maturity, τi, is obtained by linearly interpolating the two interest rates

whose maturities straddle τi. This procedure is repeated for each contract and each day in the

sample.

The raw data presents three challenges. First, in-the-money options are not actively traded

compared to at-the-money and out-of-the-money options. For example, after the October ’87 crash,

the daily volume for out-of-the-money puts has been usually several times as large as the volume for

in-the-money puts, reflecting the strong demand by portfolio managers for protective puts. Second, it

is difficult to observe the underlying index price exactly when option prices are recorded. Temporal

mismatches between option and index price recordings can induce pricing biases; e.g., Fleming,

Ostdiek, and Whaley (1996). Third, the stocks in the S&P 500 index pay dividends and the future

rates of dividend is difficult to determine. We address these three issues following the procedure

suggested by Aı̈t-Sahalia and Lo (1998). As option prices are recorded at the same time on each

day, only one temporally matched index price per day is required to estimate a pricing model. As

the dividend yield, δt,τ , is not observable, for each maturity τ the forward price, Ft,τ , is computed

via the put-call parity which holds because of the absence of arbitrage opportunities, independently

of any option pricing model,

Ct + Xe−rt,τ τ = Pt + Ft,τe
−rt,τ τ ,

where Pt denotes the put price. The forward price is computed using liquid calls and puts closest

to at-the-money. The procedure is repeated for all dates and time to maturities. Then the prices of

illiquid in-the-money calls are replaced by the corresponding prices implied by the put-call parity,

Pt + Ft,τe
−rt,τ τ −Xe−rt,τ τ , where the put price is out-of-the-money and therefore liquid. After this
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procedure the information in liquid out-of-the-money put prices translates into implied in-the-money

call prices via the put-call parity. Hence put prices may be discarded without any loss of additional

information. Some empirical studies investigate model pricing performances using calls and puts

separately, and the corresponding empirical findings are rather similar; e.g., Bakshi, Cao, and Chen

(1997), and Dumas, Fleming, and Whaley (1998).

We divide the call option data into several categories according to either moneyness or time to

maturity. A call option is said to be deep in-the-money (DITM) if its moneyness m < 0.8; in-

the-money (ITM) if 0.8 ≤ m < 0.94; at-the-money (ATM) if 0.94 ≤ m < 1.04; out-of-the-money

(OTM) if 1.04 ≤ m < 1.2; and deep out-of-the-money (DOTM) if m ≥ 1.2. An option contract

can be classified, by the time to maturity, as short maturity (< 60 days); medium maturity (60–160

days); and long maturity (> 160 days). Table 1 describes the 101,036 call option prices and the

implied volatilities used in the empirical analysis. The average call price ranges from $354.06 for

long maturity, DITM options to $0.28 for short maturity, DOTM options. ITM, ATM, and OTM

options account for, respectively, 20, 22, and 21 percent of the total sample. Short and long maturity

options account for, respectively, 37 and 20 percent of the total sample. The table also shows the

volatility smile and the corresponding term structure. For each set of maturities, the smile across

moneyness is evident. The longer the time to maturity, the flatter the volatility smile.

5.2 Implementing the option pricing models

All nonparametric regressions use the local linear approximation and the Epanechnikov kernel. We

set the bandwidth at h = 0.3s, where s is the sample standard deviation of the moneyness. We also

experimented other similar bandwidth values and the overall pricing results for all nonparametric

and semiparametric models were largely the same. In all time-weighted regressions, we set λ = 0.83

and measure the distance |t− t0| in calendar days. This choice assigns the weights 0.68, 0.83, 1, 0.83,

0.68 to options traded on the different week days, from Monday to Friday. We also experimented

other similar values for λ and we obtained very similar results for all the pricing models.8 As in the
8In practice the choice of λ is an empirical issue but the more options are available on day t0 the lower λ should be.
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GLR test (Section 3), the correction term F̄t,c in the ACE method (11) is estimated from the 0.05

to the 0.95 quantiles of the observed moneyness and beyond this interval F̄t,c is set to zero.

When implementing the GARCH pricing formula (22), the dividends paid by the stocks in the

S&P 500 index have to be taken into account. For each maturity, we compute the dividend yield

using spot-forward and put-call parities based on liquid closest at-the-money options, and then we

subtract it from the current index level. All the other pricing methods are implemented using forward

prices which already embed dividend yields.

5.3 In-sample model comparisons

Each Wednesday from January 2, 2002 to December 31, 2004, we calibrate the GARCH pricing model

(21) to the cross section of options. Aggregating data over each week, each Wednesday and for each

maturity we fit our ACE approach (11), the direct nonparametric model (7), the semiparametric

Black–Scholes model (20), and the ad hoc Black–Scholes model (8). Then we price the European

options available on each Wednesday obtaining 16,521 option price estimates for each model.

Table 2 summarizes the pricing errors of the five option pricing models across the different years

from 2002 to 2004. Overall, the ACE method has the best pricing performance. For example, the

ACE method has a RMSE 67% lower than the benchmark ad hoc Black–Scholes model. Tables 3

and 4 disaggregate dollar and relative pricing errors across the five moneyness and three maturities

categories. The ACE method has the lowest RMSE in most comparisons. It has some difficulties in

pricing deep in-the-money options and the reason is that to price options with low moneyness, such as

m ≈ 0.4, the survivor function has to be integrated for almost all the moneyness domain accumulating

the estimation errors in F̄t(m). Interestingly, the ACE method performs well in pricing at- and out-

of-the-money options, which are more actively traded than in-the-money options. These results show

that the two key characteristics of our method are very effective in producing accurate pricing results.

On the one hand, they confirm that the space of state price distributions is a better space to price

options than those of state price densities. It is so because using state price distributions avoids a

numerical differentiation (performing instead an integration by parts) which induces a more stable
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numerical procedure. On the other hand, these results show that the model-guided nonparametric

procedure allows to recover state price distributions precisely and hence pricing options accurately.

As shown in Tables 2, 3 and 4, the second best method is the semiparametric Black–Scholes model

(20) (label Semip-BS), which performs particularly well for deep in-the-money options. Although

the ad hoc Black–Scholes model (8) (label Ad Hoc BS) is estimated for each maturity, it does not

perform well mainly because volatility smiles are not well approximated by parabolic functions. The

semiparametric Black–Scholes model is designed to circumvent this problem and always outperforms

the ad hoc Black–Scholes model. Table 10 shows summary statistics of the parabola coefficients and

confirms that the volatility smile is a stable and persistent characteristic of implied volatilities.

The direct nonparametric model (7) (label NP) does not perform well, as anticipated, because

does not exploit the prior knowledge on the shape of the state price survivor function, and a constant

bandwidth is not adequate to estimate the survivor function over the whole domain. Comparing the

ACE and NP methods show that the proposed bias reduction technique is very effective in reducing

pricing errors. Tables 2, 3 and 4 provide stark evidence for the power of our idea of combining

model-based pricing formulae and nonparametric learning to correct pricing errors.

The GARCH pricing model (21) (label GARCH) is not flexible enough to fit options with different

maturities, when compared to the other methods. Table 11 shows the calibrated GARCH parameters

and, as in previous studies (e.g., Heston and Nandi (2000), and Barone-Adesi, Engle, and Mancini

(2008)), the parameter γ is largely positive confirming that negative shocks rise the volatility more

than positive shocks of same absolute magnitudes. The GARCH parameters change over time, but

the long run volatility and the persistency of the variance process, β + αγ2, are quite stable.

Figure 5 shows the absolute dollar and relative pricing errors across moneyness and maturities

categories for the different pricing models.9 The two proposed methods, the ACE and the semipara-

metric Black–Scholes methods, outperform all the other pricing models. In most occasions the ACE

method outperforms the semiparametric Black–Scholes method.

Nonparametric estimations of state price survivor functions in the ACE method are guided by
9Given that the direct nonparametric model is largely outperformed by the ACE method, its graph is omitted.
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the parametric model (9) which addresses the issue of volatility smile. An interesting question is how

the ACE method behaves when a simpler and less accurate model is used as a parametric start. A

naive parametric start is zero, resulting in the direct nonparametric method. This method does not

work well, as demonstrated in Figure 3 and Tables 2–4. A more interesting question, raised by the

referee, is the ACE with the Black–Scholes model as a parametric start. To answer this question, we

repeated the previous in-sample (and the subsequent out-of-sample and hedging) analysis replacing

model (9) by the log-normal survivor function as in the Black–Scholes model. To save space these

additional results are omitted but are available from the authors upon request. As expected the

overall performance of this ACE method is now less accurate as the Black–Scholes model is less

accurate. Interestingly, this ACE method still outperforms the ad hoc Black–Scholes model and

the direct nonparametric approach. This shows again that the nonparametric corrections are highly

important and outperforms the parametric method that we initially use. This also indicates that a

better parametric model puts less burden on the nonparametric correction and hence yields more

accurate pricing. In particular, if the initial pricing formula is zero, the worst parametric model, the

resulting method is direct nonparametric estimation. Hence, direct method is not expected to per-

form well. The empirical comparisons confirm the advantages of using model-guided nonparametric

estimations over direct nonparametric estimations.

In the previous analysis the nonparametric and semiparametric methods are estimated on each

Wednesday using also future information, namely options data on Thursday and Friday. This ap-

proach allows to exploit the time continuity of the pricing function, as for instance in Aı̈t-Sahalia

and Lo (1998). However, the previous methods can also be implemented using only current and

past data. As a robustness check, we repeated the in-sample (and the subsequent out-of-sample and

hedging) analysis pricing options on each Friday using data from Monday to Friday, without bor-

rowing future information. These additional results (not reported here) largely confirm the reported

findings and are available from the authors upon request. As a further robustness check, we repeated

the in-sample (and the subsequent out-of-sample and hedging) analysis of the ACE method using an

alternative kernel, namely the triweight kernel. The results are nearly the same as those based on
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the Epanechnikov kernel and are omitted but are available from the authors upon request.

5.4 Out-of-sample model comparisons

Out-of-sample pricing of options is an interesting challenge for any pricing method. It tests not only

the goodness-of-fit of the pricing formula, but also whether or not the method overfits the option

prices in the in-sample estimation. On each Wednesday and for each maturity, we use in-sample

model estimates to price the same options one week later using forward prices, time to maturities

and interest rates relevant on the next Wednesday.10 In the ACE method, the model-based pricing

formula, F̄LN(m;ϑt), accounts for the shorter time to maturity. For this purpose, we fit the following

regression model:

ϑ̂t = κ
√

T − t + errort, for t ∈ [t0 − d, t0 + d], (23)

where ϑ̂ts are given in (10). Equation (23) links time to maturities and ϑ̂ts in the state price

survivor function, F̄LN(m; ϑ̂t). Using in-sample data observed over one trading week, the least-

squares estimate gives

κ̂ =
∑5

i=1 ϑ̂i
√

τi∑5
i=1 τi

.

The coefficient ϑ̂t1 = κ̂
√

T − t1 reflects the shorter time to maturity at the future date t1. In our

application t1 = t0 + 7 days.11

The out-of-sample pricing performances are summarized in Table 5 and disaggregated by mon-

eyness and maturity in Tables 6 and 7; see also Figure 6. Interestingly, these results share the same

pattern as in the in-sample analysis. The ACE method outperforms all the other pricing methods in

terms of dollar and relative pricing errors, sometimes even by a larger extent. These results demon-

strate that the automatic bias correction in the ACE is very effective. Without this part, the ACE

method is essentially the same as the ad hoc Black–Scholes method, which does not perform well.
10The one week ahead forecast horizon is also adopted by Dumas, Fleming, and Whaley (1998) and Heston and

Nandi (2000), among others.
11The coefficient ϑ̂t1 could be easily estimated by solving the minimization problem (10) using options data on time t1

but this would invalidate the out-of-sample analysis.
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These results also show that the second best method is our semiparametric Black–Scholes model,

although the relative pricing errors increase when time to maturities decrease. Tables 5, 6 and 7

show that the GARCH model12 has larger prediction errors than the ACE and the semiparametric

Black–Scholes methods. These findings confirm the power of nonparametric approaches. The di-

rect nonparametric model is omitted since it was largely outperformed by the ACE method in the

in-sample analysis.

As a robustness check we repeated the previous out-of-sample analysis using one month horizon.

The results share the same pattern as those reported in Tables 5, 6 and 7 and are omitted but are

available from the authors upon request. In this out-of-sample analysis, the GARCH model becomes

slightly more competitive, tends to outperform the ad hoc Black–Scholes model more often, but is

still outperformed by our ACE method.

5.5 Hedging results

An important motivation for developing option pricing models is to provide better risk management

of the derivatives assets. Setting hedge ratios based on accurate and reliable valuation model should

induce an improvement in the hedging performance. Following Dumas, Fleming, and Whaley (1998),

we evaluate the performance of a hedge portfolio formed on day t and liquidated one week later on

day t + 7. The return on such a discretely adjusted hedge portfolio has three components: (i)

the risk-free return on investment, (ii) the return from the discrete adjustment of the hedge, and

(iii) the return from the difference between the change in the actual option price and the change

in the theoretical option price over the week horizon; see Galai (1983), and Dumas, Fleming, and

Whaley (1998). We use forward option prices, and hence the risk-free return component of the hedge

portfolio is zero. As the focus is on model performance and not on the issues raised by discrete time

rebalancing, we assume that the hedge portfolio is continuously rebalanced through time.13 Hence
12In the out-of-sample pricing, the conditional variance, ht, is updated using the risk neutral parameters calibrated

at t0 and the actual S&P 500 daily log-returns from t0 to t0 + 7 days.
13See, e.g., Bossaerts and Hillion (1997), and Bossaerts and Hillion (2003) for a hedging analysis in discrete time.
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the hedging error is defined as

εt = ∆Cactual,t −∆Cmodel,t, (24)

where ∆Cactual,t is the observed change in the market option price from date t to date t + 7, and

∆Cmodel,t is the change in the model theoretical price. The proof of equation (24) is provided by

Dumas, Fleming, and Whaley (1998, Section VI), but for completeness we recall it here as well. The

hedging error resulting from the continuous time recalibration using the hedge ratio, ρ, is

∆Cactual,t −
∫ t+7

t
ρ(Su, u) dSu. (25)

If the valuation model gives the correct hedge ratio, ρ, to continuously rebalance the hedge, the two

terms in (25) would be equal with probability one and the hedging error, εt, would be zero.

Table 8 summarizes the hedging errors of the four pricing models, and Table 9 disaggregates the

hedging results across moneyness and maturity. These hedging results largely confirm the previous

in- and out-of-sample pricing results. Our ACE approach tends to outperform all the other methods

sometimes by a large extent. The overall second best method is our semiparametric Black–Scholes

model. The ad hoc Black–Scholes model tends to dominate the GARCH model. Figure 7 shows the

absolute hedging errors of the pricing models and visually confirms the previous results.

A further interesting exercise is to use the different models to hedge calendar spread portfolios.

The rationale of this hedging analysis is that on each day t the ACE, semiparametric, and ad hoc

Black–Scholes models are separately fitted to each time to maturity while the GARCH model is

calibrated to the entire cross section of options, automatically imposing a time consistency across

the estimated state price survivor functions. For each day t, we consider a calendar spread portfolio

consisting of a long position in a call option with the longest time to maturity available in our

database and a short position in a call option with same strike price and shortest available time to

maturity. Then we assume that the portfolio can be continuously hedged over time and is liquidated

one week later at time t + 7. We compute hedging errors for all calendar spread portfolios available

in our database and for each option pricing model. Overall these findings confirm the previous

hedging results and are not reported but are available from the authors upon request. The hedging
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performance of the GARCH model seems to improve somehow when compared to previous hedging

results but the flexibility of separately fitting options with different maturity outweighs the time

consistency of the GARCH model.

6 Conclusions

We propose a new nonparametric method for estimating state price distributions and pricing financial

derivatives. This method is called the Automatic Correction of Errors (ACE) in a pricing formula.

The ACE approach is based on a model-guided nonparametric estimate of the state price survivor

function. Given any parametric pricing model, the induced pricing errors are nonparametrically

learned and corrected thorough the estimate of the survivor function, improving the model pricing

performance. The ACE method is easy to implement and can be combined with any model-based

pricing formula to correct the systematic biases of pricing errors. We also propose a semiparametric

Black–Scholes method for option pricing, simplifying the method introduced by Aı̈t-Sahalia and Lo

(1998). Empirical studies based on S&P 500 index options show that the ACE approach outperforms,

in terms of predictive and hedging abilities, the ad hoc Black–Scholes, the semiparametric Black–

Scholes, the direct nonparametric, and the GARCH option pricing models. The proposed generalized

likelihood ratio test show that the ACE method is very effective in reducing the pricing errors. Our

ACE approach could be applied also in other contexts. For example, in credit risk modeling, accurate

estimation of the default survivor function is essential in the pricing of credit risk sensitive contingent

claims. This accuracy could be achieved by applying the ACE method.
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A Proof of Proposition 1

Let m̄ = (m1 + m2)/2. By (2), omitting subscripts t, the left hand side of (5) can be expressed as

1
m2 −m1

∫ m2

m1

F̄ (u) du = F̄ (m̄) +
1

m2 −m1

∫ m2

m1

(
F̄ (u)− F̄ (m̄)

)
du.

We now evaluate the approximation error. As F̄ = 1 − F , F̄ ′ = −f and F̄ ′′ = −f ′, by Taylor

expansion to the second order, the second integral can be expressed as

∫ m2

m1

(
−f(m̄)(u− m̄)− 1

2
f ′(ξ)(u− m̄)2

)
du,

where ξ is a point lying between m1 and m2. The first term is zero, which is the advantage of using

the mid-point, m̄, and the second integral is bounded by

1
2
{ max

m1≤ξ≤m2

−f ′(ξ)}
∫ m2

m1

(u− m̄)2du = − 1
24
{ min

m1≤ξ≤m2

f ′(ξ)}(m2 −m1)3.

This completes the derivation of Proposition 1.

B Conditions and Proof of Proposition 3

To simplify the derivations, we make several idealizations. We assume that the data

{(m̄t,i, Yt,i), i = 1, · · · , Nt; t ∈ [t0 − d, t0 + d]}

are a sequence of i.i.d. random variables, satisfying model (6) with i.i.d. homoscedastic random noise,

εt,i. In addition, we make the following technical assumptions.

(B1) The marginal density g(·) of the moneyness {mt,i} is continuous at the point m. The conditional

variance σ2
ε(·) of εt,i is continuous at the point m.

(B2) F0(·) has a continuous second derivative at the point m.

(B3) E|ε|2+δ < ∞ for some δ > 0.

(B4) The function K(t) is symmetric and has bounded support.
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(B5) The bandwidth h tends to zero in such a way that nh →∞.

(B6) The function F (x; θ) is Lipschitz continuous in θ: |F (x; θ1) − F (x; θ2)| ≤ C(x)|θ1 − θ2|, with

C(x) bounded in a neighborhood of m. In addition, the calibrated θ̂ is root-n consistent.

From the definition of ˆ̄F and F̄c, we have

ˆ̄F (m)− F̄0(m) = F̄ (m; θ̂)− F̄ (m; θ0) + ˆ̄Fc(m)− F̄c(m).

By condition (B6), the first difference term in the right hand side is of order OP (n−1/2). Hence,

ˆ̄F (m)− F̄0(m) = ˆ̄Fc(m)− F̄c(m) + OP (n−1/2). (26)

We now deal with the main term in (26). Write the local linear regression smoother as

ˆ̄Fc(m) =
t0+d∑

t=t0−d

Nt∑

i=1

Wt,i(m) Ỹt,i, (27)

where Wt,i(m) is the weight induced by the local linear regression; see, for example, Fan and Yao

(2003, §6.3.3). The local linear weights satisfy (Fan and Yao (2003, §6.3.3)),

t0+d∑

t=t0−d

Nt∑

i=1

Wt,i(m) = 1,

t0+d∑

t=t0−d

Nt∑

i=1

|Wt,i(m)| ≤ 2 + o(1). (28)

Then using (6) the data Ỹt,i can be written as

Ỹt,i = F̄c(m̄t,i) + εt,i + Zt,i, (29)

where Zt,i = F̄ (m̄t,i; θ0)− F̄ (m̄t,i; θ̂). By condition (B6), it follows that for a small neighborhood N

around the point m,

sup
m̄t,i∈N

|Zt,i| = OP (n−1/2). (30)

Since K has a bounded support, all data points that contribute to computing (27) fall in N . There-

fore, in (27) replacing Ỹt,i by (29) and using (28) and (30), we have

ˆ̄Fc(m) =
t0+d∑

t=t0−d

Nt∑

i=1

Wt,i(m)Z̃t,i + OP (n−1/2),

30



where Z̃t,i = F̄c(m̄t,i) + εt,i. It follows from (26) that

ˆ̄F (m)− F̄0(m) = ˆ̄F ∗
c (m)− F̄c(m) + OP (n−1/2),

where ˆ̄F ∗
c (m) =

∑t0+d
t=t0−d

∑Nt
i=1 Wt,i(m)Z̃t,i is the local linear regression smoother for the pseudo-data

{(m̄t,i, Z̃t,i), i = 1, · · · , Nt; t ∈ [t0 − d, t0 + d]}.

The result follows from the asymptotic normality theory of the local linear regression (Fan and Yao

(2003)).

C Conditions and Proof of Proposition 4

We make the same idealized assumption as in Appendix B, that is

{(m̄t,i, Yt,i), i = 1, · · · , Nt; t ∈ [t0 − d, t0 + d]}

are a sequence of i.i.d. random variables, satisfying model (6) with i.i.d. homoscedastic random noise,

εt,i. We assume further that

(A1) The marginal density of moneyness {mt,i} is bounded away from zero in the interval [a, b].

(A2) F (·) has a continuous second derivative.

(A3) E|ε|4 < ∞.

(A4) The function K(t) is symmetric and bounded. Further the functions t3K(t) and t3K ′(t) are

bounded and
∫

t4K(t) dt < ∞.

(A5) The bandwidth h satisfies h → 0 and nh3/2 →∞.

(A6) The function F (x; θ) has a continuous derivative with respect to θ and the calibrated θ̂ is root-n

consistent.

Under the above conditions, the number of observations in the interval [a, b], na,b, by the Central

Limit Theorem, is

n−1na,b = P (m ∈ [a, b]) + OP (n−1/2),
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where n is the total number of sample observations, i.e., n =
∑t0+d

t=t0−d Nt. Let T ′n = n
2 log(RSS0/RSS1),

we have

Tn = n−1na,b T ′n = P (m ∈ [a, b])T ′n + OP (n−1/2T ′n). (31)

Now we can apply the result of Fan, Zhang, and Zhang (2001) to T ′n, noting that the null hypothesis

in our setting is F̄t,c = 0. In particular, according to the Remark 4.2 of Fan, Zhang, and Zhang

(2001), we have r′KT ′n
a∼ χ2

a′n
, where r′K = rKP (m ∈ [a, b]) and a′n = sK(b − a)/h. The last result

and equation (31) imply that

rKTn = r′KT ′n + OP (n−1/2h−1) a∼ χ2
an

.
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Maturity

Less than 60 60 to 160 More than 160

Mean Std. Mean Std. Mean Std.

DITM Call price $ 323.22 89.16 342.00 108.12 354.06 117.30

σBS% 43.91 9.70 35.67 7.82 30.57 5.40

Observations 6,280 9,115 4,314

ITM Call price $ 129.49 41.32 141.22 38.74 153.38 36.11

σBS% 26.99 6.84 24.79 5.44 23.19 4.21

Observations 7,969 8,609 3,840

ATM Call price $ 30.61 18.60 45.47 19.45 64.27 19.20

σBS% 18.06 5.82 19.16 5.01 19.36 4.08

Observations 10,832 8,058 3,028

OTM Call price $ 3.03 4.02 7.88 7.76 17.28 11.63

σBS% 18.86 5.79 17.20 4.74 17.13 4.04

Observations 7,395 9,175 4,302

DOTM Call price $ 0.28 0.16 0.51 0.78 1.39 2.15

σBS% 37.38 11.55 25.91 8.40 20.32 4.72

Observations 4,561 8,775 4,783

Table 1: Database description. The table shows mean, standard deviation (Std.) and number of

observations for each moneyness and maturity category of SPX call option prices from January

2, 2002 to December 31, 2004, after applying filtering criteria and replacing illiquid in-the-money

options as described in the main text. σBS is the Black–Scholes implied volatility. DITM is deep

in-the-money options with moneyness less than 0.8, ITM is in-the-money options with moneyness

between 0.8 and 0.94, ATM is at-the-money options with moneyness between 0.94 and 1.04, OTM

is out-of-the-money options with moneyness between 1.04 and 1.2, and DOTM is deep out-of-the-

money options with moneyness larger than 1.2. Moneyness is defined as strike price divided by the

forward price of the underlying asset. Maturity is measured in calendar days.
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Panel A: Aggregated valuation errors across all years

Bias RMSE MADE Min Max Err>0% Bias% RMSE% MADE%

ACE 0.02 0.38 0.27 −1.81 2.02 51.62 0.92 8.20 3.60

Semip-BS 0.07 0.48 0.30 −3.44 3.05 57.91 1.92 9.62 4.01

Ad Hoc BS 0.17 1.14 0.80 −4.05 5.31 51.08 9.24 38.54 17.20

NP 0.62 1.19 0.82 −2.57 5.61 68.99 5.51 18.66 9.63

GARCH −0.44 1.25 0.90 −7.99 6.27 27.14 −18.34 42.78 21.70

Panel B: Valuation errors by years

Bias RMSE MADE Min Max Err>0% Bias% RMSE% MADE%

2002

ACE 0.06 0.37 0.25 −1.81 2.02 54.20 1.02 9.80 4.78

Semip-BS 0.11 0.61 0.37 −3.44 3.05 58.22 2.13 11.42 5.55

Ad Hoc BS 0.10 1.15 0.77 −4.05 5.31 50.20 7.83 40.64 21.38

NP 0.83 1.35 0.89 −1.34 5.61 73.91 6.39 20.86 12.04

GARCH −0.52 1.28 0.91 −7.99 4.36 22.36 −29.60 51.84 31.69

2003

ACE 0.01 0.34 0.25 −1.69 1.43 51.44 0.91 8.27 3.64

Semip-BS −0.02 0.36 0.24 −1.74 1.17 52.39 1.37 8.20 3.32

Ad Hoc BS 0.07 0.98 0.71 −3.30 4.08 48.96 7.22 30.91 14.55

NP 0.63 1.07 0.74 −1.04 4.27 72.18 4.98 16.02 8.60

GARCH −0.39 0.93 0.72 −4.62 4.92 26.56 −20.21 42.06 21.36

2004

ACE 0.01 0.42 0.31 −1.61 1.91 49.30 0.83 6.19 2.43

Semip-BS 0.12 0.43 0.28 −1.38 2.05 62.81 2.24 8.95 3.19

Ad Hoc BS 0.33 1.27 0.90 −3.15 5.02 53.92 12.50 42.73 15.70

NP 0.42 1.13 0.83 −2.57 3.93 61.26 5.18 18.75 8.29

GARCH −0.40 1.45 1.06 −5.89 6.27 32.27 −5.78 32.65 12.45

Table 2: In-sample pricing errors. Bias, root mean square error (RMSE) and mean absolute error

(MADE) of the dollar pricing error, (model price−market price), and of the percentage relative pric-

ing error, 100× (model price−market price)/market price; Min (Max) is the minimum (maximum)

dollar pricing error; Err>0% is the percentage of positive pricing errors, for the different pricing

models and call option prices from January 2, 2002 to December 31, 2004.
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Maturity

Less than 60 60 to 160 More than 160

Bias RMSE Bias RMSE Bias RMSE

DITM ACE −0.04 0.49 −0.03 0.47 0.06 0.55

Semip-BS −0.01 0.08 0.00 0.16 0.01 0.25

Ad Hoc BS −0.06 0.17 −0.18 0.43 −0.33 0.60

NP −0.24 0.59 −0.22 0.68 0.02 0.55

GARCH −0.39 0.84 −0.72 1.37 −1.08 2.63

ITM ACE −0.08 0.44 −0.13 0.42 −0.10 0.42

Semip-BS −0.00 0.33 0.04 0.48 0.06 0.63

Ad Hoc BS −0.54 0.78 −0.99 1.26 −0.94 1.26

NP 0.15 0.72 0.32 0.91 0.59 1.01

GARCH −0.63 1.16 −1.41 1.66 −2.05 2.40

ATM ACE 0.01 0.39 −0.01 0.38 0.01 0.37

Semip-BS 0.11 0.62 0.16 0.74 0.16 0.82

Ad Hoc BS 0.80 1.56 0.36 1.43 0.20 1.33

NP 1.43 1.75 1.55 1.90 1.32 1.69

GARCH 0.75 1.40 −0.11 0.73 −0.18 1.05

OTM ACE 0.14 0.28 0.24 0.37 0.28 0.43

Semip-BS 0.11 0.39 0.14 0.50 0.19 0.66

Ad Hoc BS 0.89 1.29 1.17 1.51 0.92 1.44

NP 0.73 1.11 1.07 1.40 1.21 1.54

GARCH −0.18 0.82 −0.60 0.89 0.01 0.93

DOTM ACE −0.02 0.06 0.01 0.09 0.06 0.14

Semip-BS 0.00 0.07 0.02 0.11 0.01 0.20

Ad Hoc BS −0.06 0.19 0.12 0.37 0.16 0.35

NP −0.03 0.10 0.07 0.25 0.16 0.34

GARCH −0.29 0.32 −0.41 0.53 −0.52 0.65

Table 3: In-sample dollar pricing errors disaggregated by moneyness and maturity. Bias and root

mean square error (RMSE) of the pricing error, (model price−market price), for the different models

and call option prices from January 2, 2002 to December 31, 2004. See Table 1 for the definitions of

DITM, ITM, ATM, OTM, and DOTM. Maturity is measured in calendar days.
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Maturity

Less than 60 60 to 160 More than 160

Bias RMSE Bias RMSE Bias RMSE

DITM ACE −0.01 0.18 −0.01 0.16 0.01 0.18

Semip-BS −0.00 0.04 −0.00 0.07 0.00 0.10

Ad Hoc BS −0.03 0.08 −0.08 0.18 −0.13 0.24

NP −0.07 0.20 −0.06 0.23 0.02 0.20

GARCH −0.15 0.34 −0.28 0.51 −0.43 0.89

ITM ACE −0.08 0.39 −0.12 0.33 −0.08 0.29

Semip-BS −0.00 0.35 0.04 0.43 0.04 0.49

Ad Hoc BS −0.50 0.79 −0.77 1.04 −0.65 0.92

NP 0.20 0.72 0.30 0.78 0.44 0.78

GARCH −0.49 1.02 −1.03 1.20 −1.33 1.55

ATM ACE 0.78 2.69 0.21 1.25 0.09 0.76

Semip-BS 1.02 4.12 0.56 2.25 0.32 1.41

Ad Hoc BS 7.72 16.38 2.16 5.77 0.73 2.69

NP 8.60 13.26 4.47 6.38 2.37 3.25

GARCH 4.32 13.07 −0.00 2.18 −0.12 1.62

OTM ACE 5.77 14.48 4.95 9.54 2.48 4.49

Semip-BS 8.50 20.24 4.54 12.03 1.98 6.40

Ad Hoc BS 54.33 88.42 34.56 57.92 10.95 21.00

NP 26.02 43.59 18.18 26.86 8.96 12.51

GARCH −31.46 66.62 −24.90 38.96 −4.38 17.05

DOTM ACE −6.20 18.66 −0.74 16.20 1.84 11.62

Semip-BS 1.70 17.77 4.54 16.72 2.39 12.84

Ad Hoc BS −25.84 60.48 6.38 57.80 13.27 40.12

NP −13.58 28.18 −0.02 24.55 4.84 17.39

GARCH −97.78 100.47 −91.64 93.28 −66.10 74.60

Table 4: In-sample percentage relative pricing errors disaggregated by moneyness and maturity.

Bias and root mean square error (RMSE) of the relative pricing error, 100 × (model price −
market price)/market price, for the different models and call option prices from January 2, 2002

to December 31, 2004. See Table 1 for the definitions of DITM, ITM, ATM, OTM, and DOTM.

Maturity is measured in calendar days.
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Panel A: Aggregated valuation errors across all years

Bias RMSE MADE Min Max Err>0% Bias% RMSE% MADE%

ACE 0.01 1.01 0.64 −5.31 9.81 51.29 0.87 24.96 11.44

Semip-BS 0.03 1.48 0.90 −7.21 6.89 44.66 −2.06 25.15 12.92

Ad Hoc BS 0.11 1.77 1.15 −7.86 7.17 45.62 6.69 47.66 22.05

GARCH −0.49 2.27 1.44 −16.97 9.00 30.91 −18.69 48.20 25.66

Panel B: Valuation errors by years

Bias RMSE MADE Min Max Err>0% Bias% RMSE% MADE%

2002

ACE −0.01 1.24 0.77 −5.31 9.36 48.93 0.17 31.64 16.95

Semip-BS −0.22 1.93 1.21 −7.21 6.89 36.30 −7.90 32.68 19.97

Ad Hoc BS −0.23 2.12 1.38 −7.86 6.97 38.73 −1.25 49.25 27.53

GARCH −0.86 2.62 1.65 −14.58 8.63 22.46 −32.92 55.23 37.09

2003

ACE −0.06 0.88 0.54 −3.92 9.81 46.03 −1.69 21.63 9.64

Semip-BS 0.05 1.13 0.71 −5.55 4.14 47.52 −2.15 20.58 10.57

Ad Hoc BS 0.12 1.43 0.94 −6.21 5.09 46.42 4.77 36.87 18.00

GARCH −0.39 1.74 1.16 −9.39 9.00 28.90 −21.01 43.69 23.57

2004

ACE 0.10 0.90 0.61 −4.79 3.12 58.47 3.95 20.78 8.23

Semip-BS 0.24 1.30 0.81 −5.51 5.80 49.45 3.29 21.02 8.82

Ad Hoc BS 0.41 1.73 1.16 −4.99 7.17 51.04 15.66 54.84 21.00

GARCH −0.27 2.38 1.53 −16.97 6.51 40.45 −3.66 45.45 17.39

Table 5: Out-of-sample pricing errors. Bias, root mean square error (RMSE) and mean absolute de-

viation error (MADE) of the dollar pricing error, (model price−market price), and of the percentage

relative pricing error, 100× (model price−market price)/market price; Min (Max) is the minimum

(maximum) dollar pricing error; Err>0% is the percentage of positive pricing errors, for the different

models and call option prices from January 2, 2002 to December 31, 2004.
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Maturity

Less than 60 60 to 160 More than 160

Bias RMSE Bias RMSE Bias RMSE

DITM ACE 0.08 0.40 −0.08 0.52 −0.18 0.67

Semip-BS −0.08 0.25 −0.08 0.55 −0.02 0.88

Ad Hoc BS −0.11 0.30 −0.27 0.72 −0.37 1.02

GARCH −0.28 0.75 −0.85 2.04 −1.37 4.35

ITM ACE −0.18 0.71 −0.43 1.19 −0.40 1.40

Semip-BS −0.10 1.01 −0.08 1.58 −0.04 2.18

Ad Hoc BS −0.55 1.21 −1.10 1.94 −0.98 2.36

GARCH −0.55 1.22 −1.58 2.91 −2.39 5.40

ATM ACE 0.05 1.17 0.01 1.58 −0.13 1.67

Semip-BS 0.33 1.79 0.35 2.37 0.17 2.89

Ad Hoc BS 0.87 2.26 0.44 2.59 0.20 3.08

GARCH 0.76 1.87 −0.19 2.59 −0.51 4.58

OTM ACE 0.27 0.74 0.44 1.30 0.48 1.25

Semip-BS −0.04 1.09 0.06 1.59 0.11 2.11

Ad Hoc BS 0.58 1.49 1.04 2.09 0.83 2.60

GARCH −0.24 1.06 −0.76 1.74 −0.34 2.66

DOTM ACE −0.08 0.15 −0.01 0.27 0.11 0.38

Semip-BS −0.13 0.19 −0.09 0.32 −0.17 0.62

Ad Hoc BS −0.15 0.23 0.02 0.39 −0.03 0.66

GARCH −0.27 0.31 −0.43 0.62 −0.65 1.02

Table 6: Out-of-sample dollar pricing errors disaggregated by moneyness and maturity. Bias and

root mean square error (RMSE) of the pricing error, (model price−market price), for the different

models and call option prices from January 2, 2002 to December 31, 2004. See Table 1 for the

definitions of DITM, ITM, ATM, OTM, and DOTM. Maturity is measured in calendar days.
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Maturity

Less than 60 60 to 160 More than 160

Bias RMSE Bias RMSE Bias RMSE

DITM ACE 0.02 0.16 −0.04 0.22 −0.07 0.27

Semip-BS −0.03 0.12 −0.03 0.25 −0.01 0.36

Ad Hoc BS −0.04 0.14 −0.12 0.32 −0.15 0.42

GARCH −0.11 0.31 −0.34 0.78 −0.56 1.58

ITM ACE −0.19 0.74 −0.34 1.07 −0.27 1.03

Semip-BS −0.09 1.05 −0.05 1.38 −0.03 1.63

Ad Hoc BS −0.50 1.25 −0.85 1.64 −0.67 1.75

GARCH −0.45 1.15 −1.15 2.25 −1.54 3.71

ATM ACE 2.92 11.63 0.65 4.56 −0.03 2.82

Semip-BS 4.01 14.64 1.54 6.77 0.53 4.91

Ad Hoc BS 11.12 27.70 2.82 8.82 0.89 5.44

GARCH 6.55 22.42 0.19 6.63 −0.39 7.17

OTM ACE 8.53 45.11 11.32 27.59 5.48 11.31

Semip-BS −1.19 43.20 6.58 27.59 3.52 15.59

Ad Hoc BS 46.17 99.17 36.30 71.46 12.35 28.19

GARCH −28.49 85.41 −24.21 41.23 −5.51 21.53

DOTM ACE −23.22 59.06 −6.63 48.31 4.87 24.52

Semip-BS −41.29 60.32 −14.06 42.23 −7.65 28.81

Ad Hoc BS −52.94 77.19 −8.61 67.63 2.91 49.15

GARCH −97.94 101.48 −92.26 93.98 −68.63 76.91

Table 7: Out-of-sample percentage relative pricing errors disaggregated by moneyness and matu-

rity. Bias and root mean square error (RMSE) of the relative pricing error, 100 × (model price −
market price)/market price, for the different models and call option prices from January 2, 2002

to December 31, 2004. See Table 1 for the definitions of DITM, ITM, ATM, OTM, and DOTM.

Maturity is measured in calendar days.
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Panel A: Aggregated hedging errors across all years

Mean RMSE MADE Min Max Err>0%

ACE −0.00 0.47 0.32 −3.01 2.73 51.61

Semip-BS 0.01 0.62 0.40 −4.07 3.00 53.35

Ad Hoc BS −0.02 0.67 0.45 −4.11 3.15 51.92

GARCH −0.06 1.15 0.73 −10.87 9.56 46.13

Panel B: Hedging errors by years

Mean RMSE MADE Min Max Err>0%

2002

ACE 0.01 0.49 0.31 −3.01 2.47 52.60

Semip-BS 0.03 0.77 0.49 −4.07 3.00 56.14

Ad Hoc BS −0.02 0.80 0.54 −4.11 2.75 55.82

GARCH −0.07 1.22 0.76 −10.87 9.56 45.26

2003

ACE −0.02 0.41 0.29 −1.87 1.87 51.21

Semip-BS −0.01 0.51 0.33 −2.13 2.03 50.40

Ad Hoc BS −0.04 0.57 0.40 −2.63 2.01 49.46

GARCH −0.06 0.89 0.56 −7.00 5.28 46.42

2004

ACE 0.00 0.52 0.37 −1.92 2.73 51.02

Semip-BS 0.00 0.56 0.36 −2.42 2.94 53.43

Ad Hoc BS −0.00 0.62 0.42 −2.19 3.15 50.42

GARCH −0.05 1.28 0.86 −5.96 8.22 46.73

Table 8: Hedging error. Mean, root mean square error (RMSE) and mean absolute deviation error

(MADE) of the dollar hedging error in equation (24); Min (Max) is the minimum dollar hedging

error; Err>0% is the percentage of positive hedging errors, for the different models and call option

prices from January 2, 2002 to December 31, 2004.
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Maturity

Less than 60 60 to 160 More than 160

Mean RMSE Mean RMSE Mean RMSE

DITM ACE −0.01 0.73 0.01 0.65 0.04 0.71

Semip-BS 0.00 0.13 0.01 0.23 0.03 0.37

Ad Hoc BS −0.00 0.19 0.00 0.31 0.02 0.44

GARCH −0.13 0.97 −0.02 1.30 −0.09 3.20

ITM ACE −0.02 0.64 −0.02 0.55 0.02 0.54

Semip-BS 0.04 0.50 0.03 0.64 0.05 0.84

Ad Hoc BS −0.05 0.59 −0.02 0.69 0.08 0.86

GARCH −0.20 1.29 −0.21 0.91 −0.17 1.48

ATM ACE −0.01 0.48 −0.05 0.46 0.02 0.43

Semip-BS 0.00 0.82 0.03 0.91 0.03 1.08

Ad Hoc BS −0.11 0.87 −0.03 0.87 0.05 1.02

GARCH 0.03 1.33 −0.10 0.94 0.06 0.80

OTM ACE 0.02 0.27 0.01 0.34 0.01 0.38

Semip-BS −0.05 0.52 −0.03 0.59 0.01 0.81

Ad Hoc BS 0.01 0.69 −0.04 0.72 −0.03 0.85

GARCH 0.02 0.88 0.02 0.72 0.00 1.02

DOTM ACE −0.01 0.08 −0.01 0.10 0.01 0.16

Semip-BS −0.01 0.13 −0.01 0.14 −0.00 0.24

Ad Hoc BS −0.01 0.24 −0.00 0.30 −0.01 0.29

GARCH −0.04 0.18 −0.04 0.23 −0.03 0.40

Table 9: Hedging errors disaggregated by moneyness and maturity. Mean and root mean square

error (RMSE) of the dollar hedging error in equation (24) for the different models and call option

prices from January 2, 2002 to December 31, 2004. See Table 1 for the definitions of DITM, ITM,

ATM, OTM, and DOTM. Maturity is measured in calendar days.
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a0 a1 a2

Year Mean Std. Mean Std. Mean Std.

2002 0.84 0.09 −0.99 0.15 0.38 0.07

2003 0.76 0.08 −0.90 0.18 0.34 0.10

2004 0.81 0.10 −1.06 0.21 0.41 0.11

Table 10: Ad hoc Black–Scholes model (8), mean and standard deviation (Std.) of model parameters

calibrated each Wednesday from January 2, 2002 to December 31, 2004, using call option prices.

ω × 1014 β γ α× 106
√

E[h] β + αγ2

Year Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

2002 2.53 7.60 0.67 0.14 246.15 73.27 5.79 3.66 0.23 0.04 0.96 0.03

2003 1.07 3.96 0.66 0.22 284.69 93.57 5.48 6.89 0.22 0.03 0.95 0.07

2004 0.82 3.09 0.64 0.14 563.63 361.61 2.41 2.71 0.19 0.05 0.96 0.06

Table 11: Heston and Nandi GARCH model (21), mean and standard deviation (Std.) of model para-

meters (daily base) calibrated each Wednesday from January 2, 2002 to December 31, 2004, using call

option prices. Risk neutral long run volatility (annual base)
√

E[h] =
√

365 (ω + α)/(1− β − αγ2),

and persistency of the variance process β + αγ2.
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Figure 1: Pay-off function (solid line) of the portfolio: long 0.04 shares on the call option with strike

price X1 = $1,200 and short 0.04 shares on the call option with strike price X2 = $1,225. This pay-off

function can be approximated by an indicator function (dashed line). The dotted and dash-dotted

lines are the pay-off functions of the long and short call options, respectively.
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Figure 2: Scatter plot of Yt,i = ert,τ τ (Ct,i −Ct,i+1)/(Xi+1 −Xi) versus the moneyness, m̄t,i, for the

call option prices observed on December 27–31, 2004 with maturities 169–173 days. The survivor

function is estimated by using the direct nonparametric approach (7) (NP) and the newly proposed

ACE approach (11).
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Figure 3: Pricing performance of the direct nonparametric approach (NP), the Ad Hoc Black–Scholes

model (Ad Hoc BS), the ACE approach, the semiparametric Black–Scholes (semip-BS) model. The

graph shows the dollar pricing error, (model price − market price), on December 29, 2004. All

methods are estimated using call prices on December 27–31, 2004 with maturities 169–173 days.
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Figure 4: Implied volatilities observed on December 27–31, 2004 for call option prices with maturities

169–173 days. The figure shows the fitted parabola, σ = a0 + a1m + a2m
2, (dashed line), and the

local linear estimation of the function σ(m), (solid line), where m denotes the moneyness.
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Figure 5: In-sample absolute mispricing in dollars, i.e., |model price−market price|, (left graphs),

and in percentage, i.e., 100 × |model price − market price|/market price, (right graphs), for the

different pricing models, averaged across the Wednesdays from January 2, 2002 to December 31,

2004 for the SPX call options.
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Figure 6: Out-of-sample absolute mispricing in dollars, i.e., |model price − market price|, (left

graphs), and in percentage, i.e., 100× |model price−market price|/market price, (right graphs), for

the different pricing models, averaged across the Wednesdays from January 2, 2002 to December 31,

2004 for the SPX call options.
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Figure 7: Absolute hedging error in dollars for the different pricing models, averaged across the

Wednesdays from January 2, 2002 to December 31, 2004 for the SPX call options.
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