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Statistical methods with varying coefficient
models
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The varying coefficient models are very important tool to
explore the dynamic pattern in many scientific areas, such as
economics, finance, politics, epidemiology, medical science,
ecology and so on. They are natural extensions of classical
parametric models with good interpretability and are be-
coming more and more popular in data analysis. Thanks to
their flexibility and interpretability, in the past ten years,
the varying coefficient models have experienced deep and
exciting developments on methodological, theoretical and
applied sides. This paper gives a selective overview on the
major methodological and theoretical developments on the
varying coefficient models.
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1. WHY VARYING COEFFICIENT MODELS?

1.1 Theoretical background

Parametric statistical inference always necessitates some
model assumptions, linearity being among the most conve-
nient. Although their properties are very well established,
linear models are often unrealistic in applications. More-
over, mis-specification of the data generation mechanism by
a linear model could lead to large bias. To achieve greater
realism, many other parametric models as well as transfor-
mation methods have been proposed, each with its own lim-
itations.

Nonparametric modelling makes no assumption on the
specification of the model, but it may fail to incorporate
some prior information and the resulting estimator of the
unknown function tends to incur greater variance. Worse
still is the so-called ‘curse of dimensionality’, which renders
the standard nonparametric method practically impotent
when the dimension of the covariate is high. To amelio-
rate the ‘curse of dimensionality’, many methods have been
∗The work is supported by the NSF grants DMS-0532370 and NIH
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proposed to reduce dimension, which includes the projec-
tion pursuit (Huber, 1985), the sliced inverse regression (Li,
1991), the single index models (Härdle and Stoker, 1990)
and others. There, the model takes the following basic form

(1.1) y = f(XTβ1, . . . , X
Tβq, ε),

where y is a response variable, X a p dimensional covari-
ate, ε a random error, and q an integer, which, it is hoped,
is much smaller than p. However, model (1.1) has its own
limitations. When q is large, the ‘curse of dimensionality’
remains. Actually, (1.1) is not very practical if the sample
size is moderate and q is larger than 2. The interpretability
of the model can also arise.

An alternative approach is to relax the conditions im-
posed on traditional parametric models and explore the hid-
den structure. Examples include additive models (Breiman
and Friedman, 1985; Hastie and Tibshirani, 1990), varying
coefficient models (Hastie and Tibshirani, 1993; Fan and
Zhang, 1999, 2000; Chiang et al. 2001), low-dimensional in-
teraction models (Friedman 1991, Gu and Wahba, 1992,
Stone et al. 1997), partially linear models (Wahba 1984;
Green and Silverman 1994), and their hybrids (Carroll et al.
1997, Fan et al. 1998, Heckman et al. 1998, Fan et al. 2003),
among others.

Among the above semiparametric models, the varying co-
efficient models arise in many contexts. They have been suc-
cessfully applied to multi-dimensional nonparametric regres-
sion, generalized linear models, nonlinear time series models,
analysis of longitudinal, functional, and survival data, and
financial and economic data.

1.2 Practical meaning

The varying coefficient models are not stimulated by the
desire of purely mathematical extension, rather they come
from the need in practice. In many scientific areas where
statistics is needed, there are some commonly used tradi-
tional parametric models found by the people in the area
in the light of their experience. Those models are rational
in some sense. However, most of them ignore the dynamic
feature which may exist in the data set, although the ex-
ploration of such dynamic feature sometimes can be very
compelling. To explore the dynamic feature and make the
model fit the data better, we need to reconsider the mod-
elling strategy. It would not be wise to completely abandon
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the existing models. It would probably be more sensible to
just let the constant parameters evolve with certain charac-
teristics, which leads to the varying coefficient models. For
example, to analyse cross-country growth, linear model as-
sumptions are made in the standard growth analyses. How-
ever, these assumptions are not supported by the data since
the relationship between a set of controls and a particular
country’s growth rate will depend on its state of develop-
ment, and the dynamical pattern of this relationship is of
importance. It would make much more sense to treat the
parameters of growth equations as functions of the state of
development, which leads to a standard varying coefficient
model. Another example is the analysis of infant mortal-
ity in China. The commonly-used model for the analysis of
mortality is logistic regression model. Yet, the impacts of
the factors on mortality remain constant over time in the
model. It is well known that China has been changing dra-
matically since 1949. It would be implausible to assume the
impacts of the factors are constant. They must vary with
time, and the dynamic patterns of these impacts are of im-
portance to social studies. Cheng and Zhang (2007) studied
the infant mortality data in China, and found the impacts
were indeed varying with time. So, it is more sensible to
change the constant coefficients in the logistic regression to
functional coefficients, which leads to generalized varying co-
efficient models. The final example is about the circulatory
and respiratory problems in Hong Kong. What is interesting
is how some environmental factors affect the circulatory and
respiratory problems, how the impacts of these factors vary
with time. Fan and Zhang (1999) studied this problem very
carefully. Applying varying coefficient models, they found
the dynamic patterns of the impacts. We will give more de-
tailed description on this effect later.

1.3 Role in the development of statistical
methodology

Varying coefficient models are basically locally paramet-
ric models. The computation involved in the estimation
is cheap and simple: Any existing software for parametric
models can easily be adapted to the need of fitting vary-
ing coefficient models. They can be used as trial models
to test the efficiency or validity of new statistical method-
ology developed. For example, for parametric setting, it is
well known that in hypothesis test the asymptotic distri-
bution of the maximum likelihood ratio test statistic under
null hypothesis does not depend on the nuisance parame-
ters involved in the null hypothesis. This is the so called
Wilks phenomenon. Naturally, people would ask whether
the Wilks phenomenon still holds for nonparametric setting.
Fan et al. (2001) have systematically studied this question.
They found maximum likelihood ratio test statistics in gen-
eral may not exist in nonparametric setting. Even if they
exist, they would not be optimal. They then introduced the
generalized likelihood ratio statistics to overcome the draw-
backs of nonparametric maximum likelihood ratio test. They

proved that the Wilks phenomenon holds for their gener-
alized likelihood ratio statistics in nonparametric setting.
This is a very important finding. The importance lies not
only on the elegance of its mathematical beauty but also
the practical usage. One straightforward application of this
finding is to estimate the distributions of the test statis-
tics under null hypothesis. When sample size is moderate
bootstrap method usually outperforms the asymptotic dis-
tribution based method. However, the nuisance parameters
involved in the null hypothesis have to be evaluated when
generating bootstrap samples. How to evaluate the nuisance
parameters is the first question one would come up against
when using bootstrap. Thanks the Wilks phenomenon, peo-
ple can just simply assign some reasonable values to the
nuisance parameters when generating bootstrap sample to
estimate the distribution of the generalized likelihood ra-
tio statistic under null hypothesis. The varying coefficient
models as trial models play a very important part in the de-
velopment of the generalized maximum likelihood ratio test,
see Fan et al. (2001).

From Sections 1.1, 1.2 and 1.3, we can see that on ap-
plication side the varying coefficient models are very useful
tool to explore the dynamic pattern in many scientific areas,
such as economics, finance, politics, epidemiology, medical
science, ecology and so on. On theoretical side, they are
very useful semiparametric models to get around ‘curse of
dimensionality’. They are also very nice trial models for the
development of new statistical methodology. In the past ten
years, the varying coefficient models have seen deep and ex-
citing development. In this paper, we are going to review
the major developments on the methodological side of the
varying coefficient models.

2. VARYING COEFFICIENT MODELS

The varying coefficient models are introduced by Cleve-
land, Grosse and Shyu (1991) to extend the applications of
local regression techniques from one-dimensional to multi-
dimensional setting. Consider multivariate predictor vari-
ables, containing a scalar U and a vector X = (x1, . . . , xp)T.
The varying-coefficient models assume the form of multi-
variate regression function as

(2.1) m(U, X) = XTa(U),

for unknown functional coefficient a(U) = (a1(U), . . . ,
ap(U))T , where m(U, X) = E(y|U, X) is the regression
function. An extension of the local regression was given by
Hastie and Tibshirani (1993).

In addition to the importance, mentioned in Sections 1.1,
1.2, 1.3, of the varying coefficient models, from statistical
modelling point of view, another advantage of the varying
coefficient models is that they allow the coefficients to vary
smoothly over the group stratified by U and hence permits
nonlinear interactions between U and X.
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From statistical modelling point of view, the variable U
in the varying coefficient models (2.1) may not necessarily
be a single variable. Fan, Yao and Cai (2003) proposed an
adaptive varying-coefficient model in which U = XTβ, and
β was selected by a data driven algorithm.

Throughout this paper, we use f(u) to denote the density
function of U , ek,m the unit vector of length m with the k-
th component being 1. For any function/functional vector
g(u), we use g(k)(u) to denote the kth, k ≥ 2, derivative of
g(u) with respect to u, and ġ(u) the first derivative. We also
use 0p×q to denote a p × q matrix with each entry being 0,

and set μi =
∫

uiK(u)du and νi =
∫

uiK2(u)du.

2.1 Estimation methods

There are three approaches to estimate the a(·) in model
(2.1). One is kernel-local polynomial smoothing, see Wu
et al. (1998), Hoover et al. (1998), Fan and Zhang (1999),
Kauermann and Tutz (1999). One is polynomial spline, see
Huang et al. (2002, 2004) and Huang and Shen (2004).
The last one is smoothing spline, see Hastie and Tibshirani
(1993), Hoover et al. (1998) and Chiang et al. (2001). The
varying coefficient models, as they stand, are locally linear
models. It is more reasonable to use the kernel smoothing
method to estimate. In the following, we are going to outline
the kernel-local polynomial smoothing method.

2.1.1. Estimation of the functional coefficient

Suppose that we have a sample (Ui, XT
i , yi), i = 1, . . . , n,

from (U, XT, y).

y = XTa(U) + ε,

with E(ε) = 0, and var(ε) = σ2(U). For each given u, the
local linear estimator â(u) of a(u) is the part corresponding
to a of the minimizer of

(2.2) L(a, b) =
n∑

i=1

{
yi−XT

i a−XT
i b(Ui−u)

}2

Kh(Ui−u),

where Kh(t) = K(t/h)/h, K(t) is a kernel function, usually
taken to be the Epanechnikov kernel K(t) = 0.75(1 − t2)+
and h is bandwidth.

Let

X = (X1, . . . , Xn)T, Uu = diag (U1 − u, . . . , Un − u) ,

Γu = (X, UuX), Y = (y1, . . . , yn)T,

Wu = diag
(
Kh(U1 − u), . . . , Kh(Un − u)

)
.

Then, we have

(2.3) â(u) = (Ip, 0p)
(
ΓT

uWuΓu

)−1
ΓT

uWuY,

where Ip is a size p identity matrix, 0p is a size p matrix
with each entry being 0.

The estimator â(u) is a linear estimator of a(u). It is
asymptotically normally distributed.

Theorem 1. Under the conditions in Zhang and Lee
(2000), we have

cov−1/2(â(u))
{
â(u) − a(u) − bias(â(u))

}
D−→ N(0, Ip),

with

bias(â(u)) = 2−1μ2a(2)(u)h2,

cov(â(u)) =
{
nhf(u)E(XXT|U = u)

}−1
ν0σ

2(u).

The conditional bias and variance of the estimators are
also derived in Carroll et al. (1998) and Fan and Zhang
(1999). Furthermore, the distribution of the maximum dis-
crepancy between the estimated coefficients and true coef-
ficients is given by Xia and Li (1999) and Fan and Zhang
(2000).

It is very interesting to look into the asymptotic bias and
covariance matrix of â(u). If we ignore μ2 in the asymptotic
bias of â(u), the asymptotic bias would be the remainder
of the first-order Taylor’s expansion of a(U) at u. This sug-
gests the bias of â(u) purely comes from the approximation
error of the linear approximation of a(U). In the asymptotic
covariance matrix of â(u), the 2hf(u) is approximately the
probability of U falling into the neighbourhood of u with
radius h, and 2nhf(u) is approximately the expected num-
ber of Ui in the neighbourhood of u. If the kernel function
is taken to be the uniform kernel K(t) = 0.5I(|t| < 1),
ν0 would be 0.5, and asymptotic covariance matrix of â(u)
would be exactly the covariance matrix of the least squares
estimator of the linear model fitting the data in the neigh-
bourhood of u only.

2.1.2. Estimation of bias and variance

Bandwidth selection is an important issue in kernel
smoothing. The basic idea of a data driven bandwidth se-
lection procedure is to find an estimator of mean squared
error (MSE) of â(u) first, then minimize MSE with respect
to bandwidth. The optimal bandwidth is the one minimiz-
ing the MSE. To get the estimator of the MSE of â(u), we
only need to get the estimator of the bias of â(u) and co-
variance matrix of â(u). So, it is of importance to estimate
the bias and covariance matrix of â(u). In addition to the
estimation of MSE, the estimation of bias and covariance
matrix are also very important in many other aspects such
as hypothesis test and confidence band. In the following, we
will briefly describe how to estimate the bias and covariance
matrix. It follows the pre-asymptotic substitution idea of
Fan and Gijbels (1995).

Let D = (U1, XT
1 , . . . , Un, XT

n). By Taylor’s expansion
and simple calculation, we have

E(â(u)|D) − a(u) ≈ (Ip, 0p)
(
ΓT

uWuΓu

)−1
ΓT

uWuτ ,

where the ith element of τ is

2−1XT
i

{
a(2)(u)(Ui − u)2 + 3−1a(3)(u)(Ui − u)3

}
.
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This naturally leads to the estimator of the conditional bias
of â(u) given D

b̂ias(â(u)|D) = (Ip, 0p)
(
ΓT

uWuΓu

)−1
ΓT

uWuτ̂ ,

where τ̂ is τ with a(k)(u) being replaced by its estimator
â(k)(u), k = 2, 3. The estimator â(k)(u), k = 2, 3, can be ob-
tained by local cubic fitting with an appropriate pilot band-
width h∗.

From (2.3), it can be seen

cov(â(u)|D) = (Ip, 0p)
(
ΓT

uWuΓu

)−1 (
ΓT

uW 2
uΓu

)
×
(
ΓT

uWuΓu

)−1
(Ip, 0p)Tσ2(u),

which leads to the estimator of the conditional covariance
matrix of â(u) given D

ĉov(â(u)|D) ≈ (Ip, 0p)
(
ΓT

uWuΓu

)−1 (
ΓT

uW 2
uΓu

)
×
(
ΓT

uWuΓu

)−1
(Ip, 0p)Tσ̂2(u).

The estimator σ̂2(u) can be obtained as a byproduct when
we use local cubic fitting with a pilot bandwidth h∗ to esti-
mate a(k)(u), k = 2, 3. It is

σ̂2(u) =
YT
{

W ∗
u − W ∗

uΓ∗
u

(
Γ∗T

u W ∗
uΓ∗

u

)−1 Γ∗T
u W ∗

u

}
Y

tr
{

W ∗
u − (Γ∗T

u W ∗
uΓ∗

u)−1 (Γ∗T
u W ∗2

u Γ∗
u)
} ,

where W ∗
u is Wu with h replaced by h∗, and

Γ∗
u = (X, UuX, U2

uX, U3
uX).

Please refer to Zhang and Lee (2000) for more detail about
the estimation of bias and covariance matrix.

2.1.3. Bandwidth selection

For kernel smoothing approach, bandwidth selection is
an important issue. Larger bandwidth may gain on vari-
ance side, but loses on bias side. Smaller bandwidth may
gain on bias side, but loses on variance side. How to choose
an optimal bandwidth is of importance. Wu et al. (1998),
Hoover et al. (1998) proposed to use cross-validation to se-
lect the bandwidth. Zhang and Lee (2000) systematically
investigated both variable bandwidth and constant band-
width selection.

Based on the form of varying coefficient models, it is rea-
sonable to define the mean squared error of â(·) as

MSE(h) = E
{
XTâ(U) − XTa(U)

}2
,

where (U, XT) is a random vector which shares the same
distribution with (U1, XT

1 ), and is independent of D. It can
be viewed as the future values of the covariates in the sense
of prediction. By a simple calculation, we have

MSE(h) = E
[
BT(U)Ω(U)B(U) + tr {Ω(U)V (U)}

]
,

where

B(U) = bias(â(U)|U, D), Ω(U) = E(XXT|U),
V (U) = cov(â(U)|U, D).

Note that

bias(â(U)|U, D) = bias(â(u)|D)|u=U ,

cov(â(U)|U, D) = cov(â(u)|D)|u=U .

For each i, we delete the ith observation, and apply the
estimation procedures in Sections 2.1.1 and 2.1.2 to estimate
a(Ui) and the bias and covariance matrix of the estimator of
a(Ui) based on the rest observations. Denote the resulting
estimators of bias and covariance matrix of the estimator of
a(Ui) by

B̂(Ui) = b̂ias(â\i(Ui)|D), V̂ (Ui) = ĉov(â\i(Ui)|D).

Let

Ω̂(Ui) =

∑
1≤j≤n, j �=i

XjX
T
j Kh∗(Uj − Ui)∑

1≤j≤n, j �=i

Kh∗(Uj − Ui)
.

MSE(h) can be estimated by

M̂SE(h)= n−1
n∑

i=1

[
B̂

T
(Ui)Ω̂(Ui)B̂(Ui) + tr

{
Ω̂(Ui)V̂ (Ui)

}]
.

The pilot bandwidth h∗ for estimating bias and covari-
ance matrix can be chosen by the residual squares criterion
(RSC) proposed by Fan and Gijbels (1995). The optimal
bandwidth is the one minimizing M̂SE(h).

For longitudinal data, it is better to delete the whole ith
subject rather than just ith observation when estimating
MSE(h).

The selection of smoothing parameter issue remains for
the other two approaches. For polynomial spline approach,
the number of knots can be chosen by some commonly used
criteria such as CV, AIC, AICc, BIC and MCV, see Huang
et al. (2002, 2004), and Huang and Shen (2004). Huang
and Shen (2004) also studied how to place the knots. The
smoothing parameter with the smoothing spline approach
can be selected by cross-validation, see Hoover et al. (1998),
Chiang et al. (2001).

2.1.4. Two-steps estimation

There is an interesting issue arising from the estima-
tion. When the components of a(·) have different degrees of
smoothness, how to estimate a(·)? Intuitively, the smoother
components need larger bandwidth whilst the less smooth
components need smaller bandwidth. This means it is im-
possible to optimally estimate all components simultane-
ously with a single choice of the bandwidth. Indeed, Fan
and Zhang (1999) have proved the estimation introduced in
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Section 2.1.1 (one-step estimation) can not optimally esti-
mate the smoother components no matter how to choose the
bandwidth. They then proposed a two-steps idea to estimate
the smoother components of a(·). They have shown that
their proposed two-steps estimation always outperforms one
step estimation when estimating the smoother components.
They have also shown that two-steps estimation and one-
step estimation work equally well when estimating the less
smooth components. There is no harm to appeal two-steps
estimation scheme.

The idea behind Fan and Zhang’s two-steps estimation
is to use a smaller bandwidth first to get an initial estima-
tor of the functional coefficient a(·). This initial estimator
would have larger variance but smaller bias. We then replace
the less smooth components of a(·) by their initial estima-
tors, and apply higher order smoothing with a slightly larger
bandwidth to get the final estimator of the smoother compo-
nents. The core idea here is that the variance can be reduced
by further smoothing, but bias can not be reduced by any
kind of smoothing. This is why we have to use a smaller
bandwidth in the first step to get an initial estimator with
smaller bias.

The two-steps estimation can be sketched as follows. Let
Xi = (xi1, . . . , xip)T and a(·) = (a1(·), . . . , ap(·))T. With-
out loss of generality, we assume ap(·) is smoother than
any aj(·), j = 1, . . . , p − 1, which have the same degree
of smoothness. To mathematically formulate it, we assume
aj(·), j = 1, . . . , p− 1, have second derivative, and ap(·) has
fourth derivative. We are aiming to estimate ap(·). To make
the description more clear, we write the varying coefficient
models as

(2.4) yi =
p−1∑
j=1

aj(Ui)xij + ap(Ui)xip + εi, i = 1, . . . , n.

Applying the estimation introduced in Section 2.1.1 with
a smaller bandwidth h, for any given u, we have the initial
estimator of a(u)

ã(u) = (Ip, 0p)
(
ΓT

uWuΓu

)−1
ΓT

uWuY.

For j = 1, . . . , p − 1, replacing aj(Ui) in model (2.4) by
ãj(Ui), the jth component of ã(Ui), we have the synthetic
model

(2.5) yi −
p−1∑
j=1

ãj(Ui)xij = ap(Ui)xip + εi, i = 1, . . . , n.

As ap(·) has a fourth derivative, by Taylor’s expansion, we
have

ap(Ui) ≈
3∑

k=0

(k!)−1a(k)
p (u)(Ui − u)k

when Ui is in a neighbourhood of u with length 2h1. This
leads to the following local cubic estimation procedure with

bandwidth h1

n∑
i=1

⎧⎨⎩yi −
p−1∑
j=1

ãj(Ui)xij − xip

3∑
k=0

ap,k(Ui − u)k

⎫⎬⎭
2

(2.6)

× Kh1(Ui − u).

Minimize (2.6) with respect to (ap,0, ap,1, ap,2, ap,3) to get
the minimizer. The final estimator of ap(u) is the part cor-
responding to ap,0 of the minimizer of (2.6), which is

âp(u) = eT1,4(G
TW1G)−1GTW1Ỹ ,

where Ỹ = (ỹ1, . . . , ỹn)T, and

ỹi = yi −
p−1∑
j=1

ãj(Ui)xij ,

W1 = diag
(
Kh1(U1 − u), . . . , Kh1(Un − u)

)
,

G = diag(x1p, . . . , xnp)Q,(2.7)

Q =

⎛⎜⎝ 1 U1 − u (U1 − u)2 (U1 − u)3
...

...
...

...
1 Un − u (Un − u)2 (Un − u)3

⎞⎟⎠ .

Based on the two-steps idea, ap(·) can also be estimated
in another way which is slightly easier to implement. The
first step is the same as above, however, in the second step,
we just simply smooth ãp(Ui) against Ui by local cubic mod-
elling with bandwidth h1. For any given u, the resulting final
estimator of ap(u) is

ǎp(u) = eT1,4(Q
TW1Q)−1QTW1Y̌ ,

where Q is defined in (2.7), Y̌ = (ãp(U1), . . . , ãp(Un))T.
The two-steps idea can be widely used in the development

of statistical estimation for various models, some complex
models in particular. For instance, based on the two-steps
idea, Fan and Zhang (2000) developed a novel estimation for
longitudinal data analysis. Cheng and Zhang (2007) devel-
oped an efficient and easily implemented two-steps estima-
tion for generalized multiparameter likelihood models, and
successfully applied it to the analysis of the infant mortality
data in China.

2.1.5. Data driven choice of the varying variable

So far, we have assumed that the variable U is known and
observable. In an effort to remove this assumption, Fan et al.
(2003) introduced the following adaptive varying-coefficient
model

(2.8) E(Y |X) =
p∑

j=1

gj(βT X)xj ,
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where β ∈ �p is an unknown direction, X = (x1, . . . , xp)T .
Comparing with the varying coefficient model, U = βT X is
an unknown index, including all situations U = x1, . . . , U =
xp as specific examples. The identifiably conditions are given
in Fan et al. (2003). Basically, they shown that the model is
identifiably unless

E(Y |x) = αT X βT X + γT X + c,

They proposed an iterative scheme to estimate β and the
functional coefficients {gj(·)}. Given β, the model (2.8) is
really a varying-coefficient model and the functional coeffi-
cients can be estimated by using the method in Section 2.1.1,
resulting in the estimates {ĝ(·, β)}. Now, substituting this
into (2.8) yields a synthetic parametric model:

E(Y |X) =
p∑

j=1

ĝj(βT X, β))xj .

The least-squares method can then be applied to estimate
β. Fan et al. (2003) gave details on how to implement the
estimator, how to select bandwidths, and how to select sig-
nificant variables in (2.8). They also gave the details on how
to extend the techniques to the two-index situations.

2.2 Confidence bands and hypothesis test

2.2.1. Confidence bands

Wu et al. (1998) and Chiang et al. (2001) studied the
pointwise confidence interval for the functional coefficients
in varying coefficient models. Wu et al. (1998) also investi-
gated the Bonferroni-type confidence bands. For nonpara-
metric inference, the pointwise confidence interval doesn’t
make much sense. This is because for an unknown function
g(·), its 1−α pointwise confidence interval (g1(·), g2(·)) only
guarantees that

P
(
ĝ1(u) ≤ g(u) ≤ ĝ2(u)

)
= 1 − α, for any give u

which does not imply

P
(
ĝ1(u) ≤ g(u) ≤ ĝ2(u), for any u ∈ D

)
= 1 − α,

where D is a compact set.
For nonparametric inference, what is really useful is con-

fidence bands. In the construction of the confidence bands
for the functional coefficients in varying coefficient models,
the most challenge and important job is to derive the distri-
bution of the maximum discrepancy between the estimated
functional coefficient and true functional coefficient. Fan and
Zhang (2000) established the following theorem:

Theorem 2. Under the conditions in Fan and Zhang
(2000), we have

P

{
(−2 log h)1/2

(
sup

u∈[0, 1]

×

∣∣∣âj(u) − aj(u) − b̂ias(âj(u)|D)
∣∣∣

{v̂ar(âj(u)|D)}1/2
− dv,n

)
< x

}
−→ exp{−2 exp(−x)},

for any given j, j = 1, . . . , p, where

dv,n = (−2 log h)1/2

+
1

(−2 log h)1/2
log
{

1
4ν0π

∫
(K ′(t))2dt

}
,

ν0 =
∫

K2(t)dt.

For any j, j = 1, . . . , p, based on Theorem 2, the 1 − α
confidence bands of aj(u) can be easily constructed as

âj(u) − b̂ias(âj(u)|D) ± Δj,α(u),

where

Δj,α(u) =
(
dv,n +

[
log 2 − log {− log(1 − α)}

]
× (−2 log h)−1/2

){
v̂ar(âj(u)|D)

}1/2

.

The estimator b̂ias(âj(u)|D) of the conditional bias of âj(u)
and the estimator v̂ar(âj(u)|D) of the conditional variance
of âj(u) can be obtained through the estimation introduced
in Section 2.1.2. Fan and Zhang (2000) have shown this con-
fidence bands works quite well.

Huang et al. (2002, 2004) investigated the pointwise con-
fidence intervals and confidence bands based on polynomial
spline approach and the Bonferroni adjustment.

2.2.2. Hypothesis test

In the varying coefficient model (2.1), the inference ques-
tions arise naturally such as whether the coefficients are re-
ally varying and if certain components of covariates X are
statistically significant. This amounts to testing

(2.9) H0 : aj(u) = Cj ←→ H1 : aj(u) 	= Cj ,

Cj is a constant.
Cai, Fan and Yao (2000) developed a bootstrap based

test for the hypothesis (2.9). The generalized likelihood ratio
(GLR) test was developed to address this kind of question.
See Fan et al. (2001) and Section 3.2. Fan and Zhang (2000)
took another approach which was based on the asymptotic
distribution of the maximum discrepancy between the esti-
mated functional coefficient and true functional coefficient.
They established the following Theorem
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Theorem 3. Under the conditions in Fan and Zhang
(2000), when aj(·) is a constant Cj we have

P (Tj < x) −→ exp{−2 exp(−x)},

where

Tj = (−2 log h)1/2

(
sup

u∈[0, 1]

∣∣∣{v̂ar(âj |D)
}−1/2

×
(
âj − Ĉj − b̂ias(âj |D)

)∣∣∣− dv,n

)
,

with

Ĉj = n−1
n∑

i=1

âj(Ui).

Based on Theorem 3, the test for the hypothesis (2.9)
can be constructed as rejecting H0 if the values of the
test statistic Tj exceeds the asymptotic critical value cα =
− log{−0.5 log(1 − α)}.

Taking polynomial spline approach, Huang et al. (2002)
proposed a goodness-of-fit test for the hypothesis (2.9) based
on the comparison of the weighted residual sum of squares.
They used the bootstrap to implement their test. It is a
specific incidence of GLR studied by Fan et al. (2001).

2.3 Semivarying coefficient models

In practice, sometimes, some of the components of a(·)
in model (2.1) are constant, while other components have
interactions with U . Without loss of generality, we can write
the model as

(2.10) y = ZT
1a1(U) + ZT

2a2 + ε,

where (ZT
1 , ZT

2 )T = X. Zi is a pi dimensional covariate,
i = 1, 2, and p1 + p2 = p. Model (2.10) cannot be treated
statistically as a special case of varying coefficient models, as
the information that a2 is a constant vector should be fully
utilized. Zhang et al. (2002) studied the semivarying coef-
ficient model (2.10). They proposed a two-steps estimation
procedure, and showed their estimator of a2 is of conver-
gence rate OP (n−1/2), and their estimator of a1(·) is as well
as when a2 is known. For model (2.10), the estimation of
a2 is of most interest. Because, a good estimator â2 of a2

should be of convergence rate OP (n−1/2). After substituting
â2 for the a2 in model (2.10), (2.10) would become a stan-
dard varying coefficient models. As â2 is of convergence rate
OP (n−1/2), the substitution â2 for a2 would have little in-
fluence on the estimation of the functional coefficient a1(·).
So, the standard estimation for standard varying coefficient
models such as the one in Section 2.1.1 can be applied to
estimate a1(·).

The estimation of a2 in Zhang et al. (2002) can be briefed
as follows: We first treat a2 as functional, and appeal the es-
timation in Section 2.1.1 to get an initial estimator of a2(Ui),

i = 1, . . . , n,

ã2(Ui) = (0p2×p1 , Ip2 , 0p2×p)
(
ΓT

Ui
WUiΓUi

)−1
ΓT

Ui
WUiY.

Then, we average ã2(Ui) over i = 1, . . . , n to get the final
estimator of a2

â2 = n−1
n∑

i=1

(0p2×p1 , Ip2 , 0p2×p)
(
ΓT

Ui
WUiΓUi

)−1
ΓT

Ui
WUiY.

Intuitively, the covariance matrix of â2 should be of order
O(n−1) because for each i, ã2(Ui) is obtained locally around
Ui and (Ui, XT

i , yi), i = 1, . . . , n, are independent with each
other. Indeed, Zhang et al. (2002) showed the conditional
bias of the estimator â2 given D is of order OP (h2), and
the conditional covariance matrix of â2 given D is of or-
der OP (n−1) under some regularity conditions. This implies
that when the bandwidth for the initial estimator ã2(Ui) in
the first step is taken to be of order O(n−1/4), the estimator
â2 would have convergence rate OP (n−1/2).

Although Zhang et al.’s estimation of a2 is easy to im-
plement and the resulting estimator has convergence rate
of order OP (n−1/2), the asymptotic variance of the estima-
tor does not reach the lower bound for the semiparametric
model.

Fan and Huang (2005) have more deeply investigated
model (2.10). They proposed a profile least-squares tech-
nique to estimate a2, and established the asymptotic nor-
mality of the estimator. They also introduced the profile
likelihood ratio test and demonstrated that the test statistic
followed asymptotically χ2 distribution under null hypoth-
esis which unveiled a new Wilks type of phenomenon.

Fan and Huang’s profile least-squares estimation can be
outlined as follows: We first pretend a2 is known, and write
the model (2.10) as

(2.11) yi − ZT
i2a2 = ZT

i1a1(Ui) + εi, i = 1, . . . , n,

where (ZT
i1, ZT

i2)
T = Xi. Applying the estimation in Sec-

tion 2.1.1, we get the estimator of a1(Ui)

ã1(Ui) = (Ip1 , 0p1)
(
Γ̃T

Ui
WUi Γ̃Ui

)−1

Γ̃T
Ui

WUi Ỹ ,

where Γ̃u is the Γu with X replaced by Z1,

Z1 = (Z11, . . . , Zn1)T, Ỹ = Y − Z2a2,

Z2 = (Z12, . . . , Zn2)T.

Substituting ã1(Ui) for a1(Ui) in model (2.11), we have the
following synthetic model

yi − (ZT
i1, 01×p1)

(
Γ̃T

Ui
WUi Γ̃Ui

)−1

Γ̃T
Ui

WUi Ỹ

= ZT
i2a2 + εi, i = 1, . . . , n,
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which can be written in matrix form as

(2.12) (In − S)Y = (In − S)Z2a2 + ε,

where

S =

⎛⎜⎜⎜⎝
(ZT

11, 01×p1)
(
Γ̃T

U1
WU1 Γ̃U1

)−1

Γ̃T
U1

WU1

...

(ZT
n1, 01×p1)

(
Γ̃T

Un
WUn Γ̃Un

)−1

Γ̃T
Un

WUn

⎞⎟⎟⎟⎠ , and

ε =

⎛⎜⎝ ε1
...

εn

⎞⎟⎠ .

Appealing least squares estimation to model (2.12), we get
the estimator of a2

(2.13)

â2 =
{
ZT

2(In − S)T(In − S)Z2

}−1

ZT
2(In − S)T(In − S)Y.

Fan and Huang (2005) have shown the covariance matrix
of â2 given in (2.13) reaches the lower bound for semipara-
metric models.

Theorem 4. Under the conditions in Fan and Huang
(2005), the estimator â2 given in (2.13) is asymptotic nor-
mal, i.e.

n1/2 (â2 − a2)
D−→ N(0, Σ),

where

Σ =
(
E(Z2ZT

2) − E
[
E(Z2ZT

1 |U)
{

E(Z1ZT
1 |U)

}−1

× E(Z1ZT
2 |U)

])−1

σ2(u).

It can be shown Σ is a semiparametric efficient bound for
semivarying coefficient models when ε ∼ N(0, σ2). Hence
the profile least squares estimator of a2 is semiparametri-
cally efficient.

Ahmad et al. (2005) used a general series method to es-
timate the semivarying coefficient model (2.10). Xia, Zhang
and Tong (2004) proposed a cross-validation based model
selection procedure to find which components are constant
and which are functional in practice. This can also be done
by the GLR test of Fan et al. (2001). Li and Liang (2007)
studied the variable selection issue with the semivarying co-
efficient models, and Fan and Huang (2005) studied the in-
ference of parametric part a2 in the semi-varying modeling
using GLR test.

2.4 The circulatory and respiratory problems
in Hong Kong

We now briefly illustrate the standard varying coefficient
models via an application to an environmental data set.

The data set used here consists of a collection of daily mea-
surements of pollutants and other environmental factors in
Hong Kong between January 1, 1994 and December 31, 1995
(Courtesy of Professor T. S. Lau). Three pollutants, Sulphur
Dioxide (in μg/m3), Nitrogen Dioxide (in μg/m3) and Dust
(in μg/m3), are considered here.

An objective of the study is to understand the association
between level of the pollutants and number of daily total
hospital admissions for circulatory and respiratory problems
and to examine the extent to which the association varies
over time.

We consider relationship among the number of daily hos-
pital admission (y) and level of pollutants Sulphur Dioxide,
Nitrogen Dioxide and Dust, which are denoted by x2, x3

and x4, respectively. We took x1 = 1 – the intercept term,
and U = time. The varying-coefficient model

(2.14) y = a1(U) + a2(U)x2 + a3(U)x3 + a4(U)x4 + ε

is used to fit the data set.
As the two-steps estimation procedure stated in Sec-

tion 2.1.4 is better than one-step estimation, the two-steps
estimation procedure is employed to estimate the functional
coefficients in (2.14). Indeed, from the estimated functional
coefficients, see Fig. 1, we can see the functional coefficients
have different degrees of smoothness, the two-steps estima-
tion is necessary for this data set.

Figure 1 depicts the estimated functional coefficients.
They describe the extent to which the coefficients vary with
time. Two short dashed curves indicate 95% confidence in-
tervals with bias ignored. The standard errors are computed
based on the local cubic regression in the second step. See
Section 4.3 of Fan and Gijbels (1996) on how to compute
the estimated standard errors for the univariate local poly-
nomial regression. The figure shows that there is strong time
effect on the coefficients, which suggests the impacts of the
three pollutants concerned on the circulatory and respira-
tory problems do vary with time.

Given the type of this paper, we have not gone the details
of the analysis for this data set. For rigorous analysis for this
data set, please refer to Fan and Zhang (1999).

3. GENERALIZED VARYING-COEFFICIENT
MODELS

The varying-coefficient models can readily be extended
to the exponential-family of conditional distributions. This
allows us to more effectively deal with various types of re-
sponse variables. Via the canonical link function g(·), the
regression function is modeled as

(3.1) g(m(U, X)) = θ(U, X) = XTa(U).

Here, X is still a p dimensional covariate, and U a covariate
of scalar.

186 J. Fan and W. Zhang



1/1994 8/1995

16
0

18
0

20
0

22
0

24
0

26
0

28
0

time

nu
m

be
r 

of
 a

dm
is

si
on

s

The Trend

1/1994 8/1995

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

time

Im
pa

ct

Impact of Sulphur Dioxide

1/1994 8/1995

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

Im
pa

ct

Impact of Nitrogen Dioxide

1/1994 8/1995

−0
.2

0.
0

0.
2

0.
4

0.
6

time

Im
pa

ct

Impact of Dust

Figure 1. The Impacts of Sulphur Dioxide, Nitrogen Dioxide and Dust on the Number of Daily Total Hospital Admissions for
Circulationary and Respirationary Problems.

To make our methodology and theory more general, we do
not confine our discussion in the exponential-family. Rather
we only assume the log conditional density function (we de-
fine density function as the probability function when y is
discrete) of y given (U, XT) is 
(m(U, X), y).

3.1 Estimation procedure

Among various estimation methods, the local maximum
likelihood estimation seems more natural and reasonable to
estimate the functional coefficient a(·) in the generalized
varying coefficient models. The local maximum likelihood
estimation can be briefly described as follows.

Denote ȧ(u) by b(u). For any given u, the local maximum

likelihood estimator (âT(u), b̂
T
(u)) of (aT(u), bT(u)) is the

maximizer of the local log-likelihood function

L(a, b) =
n∑

i=1



(
g−1

[
XT

i

{
a + b(Ui − u)

}]
, yi

)
Kh(Ui − u).

(3.2)

Cai et al. (2000) have established the asymptotic normal-
ity of the local maximum likelihood estimator of a(u).

Theorem 5. Under the conditions in Cai et al. (2000), we
have

(nhf(u)/ν0)1/2
{
â(u) − a(u) − 2−1μ2a(2)(u)h2

}
D−→ N(0p×1, Σ),

where

Σ =

(
E

[
E

{
∂2�(g−1(XTa(u)), y)

∂(XTa(u))2

∣∣∣∣X, U

}
XXT

∣∣∣∣U = u

])−1

.

From Theorem 5, we can see, the bias of â(u) is the same
as that in standard varying coefficient models. As we see
before, the nhf(u)/ν0 in the asymptotic covariance matrix
is the expected number of data in the neighbourhood of u
with the length 2h, and the Σ in the asymptotic covariance
matrix is like the Fisher information matrix in parametric
setting. Theorem 5 is like the local version of the asymp-
totic normality of maximum likelihood estimator in para-
metric setting. Base on Theorem 5, it is obvious that the
local maximum likelihood estimation is efficient.

If the conditional distribution of y given U and X be-
longs to the exponential-family, and the link function g(·)
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is canonical link, the Σ in Theorem 5 can be simplified to
E{XXTvar(y|U, X)|U = u}.

Although the local maximum likelihood estimation is
efficient, it could be difficult to implement as the local
maximum likelihood estimator in general does not have a
closed form. It is often computationally expensive to max-
imize (3.2). Instead of maximizing (3.2), Cai et al. (2000)
proposed a one-step Newton-Raphson estimation of a(u) to
ease the computational burden.

Let L̇(a, b) and L̈(a, b) be the first and second deriva-
tive of L(a, b) respectively. Denote (aT(u), bT(u))T by β(u).
Let (aT0 , bT

0)T be the initial estimator of β(u). The one-step
Newton-Raphson estimator of β(u) is

(3.3) β̂os(u) = (aT0 , bT
0)T − L̈(a0, b0)−1L̇(a0, b0).

The one-step Newton-Raphson estimation can be imple-
mented in the following way: Suppose we wish to evalu-
ate the function â(·) at grid points uj , j = 1, . . . , m. Pinch
the central point ui0 , i0 = m/2, compute the local maxi-
mum likelihood estimator β̂(ui0), use this estimator as ini-
tial estimator at ui0+1, and apply (3.3) to get the estimator
β̂os(ui0+1). Now use β̂os(ui0+1) as initial estimator at point
ui0+2, and apply (3.3) to get β̂os(ui0+2) and so on. Likewise,
we can compute β̂os(ui0−1), β̂os(ui0−2) and so on. In this
way, we obtain our estimates at all grid points.

Cai et al. (2000) showed that the one-step Newton-
Raphson estimator can save computational cost in an order
of tens without deteriorating its performance.

An interesting and important issue with generalized vary-
ing coefficient models is how to estimate the covariance ma-
trix of the local maximum likelihood estimator. Cai et al.
(2000) proposed a sandwich method to estimate the covari-
ance matrix of â(u). According to the sandwich method, the
covariance matrix of â(u) can be estimated by,

(3.4) ĉov (â(u)) = (Ip, 0p)Λ̂−1
2 Λ̂1Λ̂−1

2 (Ip, 0p)T,

with

Λ̂2 =
n∑

i=1

q2

[
XT

i

(
â(u) + b̂(u)(Ui − u)

)
, yi

]
Hi

⊗ (XiX
T
i )Kh(Ui − u),

Λ̂1 =
n∑

i=1

q2
1

[
XT

i

(
â(u) + b̂(u)(Ui − u)

)
, yi

]
Hi

⊗ (XiX
T
i )K2

h(Ui − u),

where

Hi = (1, Ui − u)T(1, Ui − u),

qk(t, y) = (∂k/∂tk)

{
g−1(t), y

}
.

Cai et al. (2000) showed the sandwich method worked
quite well by extensive simulation studies. Fan and Peng

(2004) have proved the consistency of the sandwich estima-
tor.

The bias and variance of the local maximum likelihood
estimator can be estimated by using the general method
outlined in Fan et al. (1998). In general, it is difficult to
accurately estimate the bias of â(u) due to poor estimation
of higher order derivative of a(u). In the construction of
confidence bands, an alternative approach to deal with the
bias is to use a slightly smaller bandwidth to make the bias
ignorable.

Like the standard varying coefficient models, the band-
width plays a very important role in the local maximum like-
lihood estimation for generalized varying coefficient models.
A natural approach to select the bandwidth is to appeal the
cross-validation idea. For each i, we delete the ith observa-
tion, and estimate a(Ui) based on the rest of the observa-
tions. Let â\i(Ui) be the obtained estimator. The sum of
cross-validation is defined as

CV = −
n∑

i=1



{
g−1

(
XT

i â\i(Ui)
)
, yi

}
.

We compute the CVs for different bandwidths in a reason-
able range. The selected bandwidth is the one minimizing
the CV.

3.2 Hypothesis test

Like standard varying coefficient models, whether some
certain coefficients are really varying with U or whether
some certain coefficients are significantly different from 0
is of interest and importance. These questions can be for-
mulated to the hypotheses

(3.5) H0 : ak(·) = ak, k = 1, . . . , p,

and

H0 : ak(·) = 0, for certain k.

While these two problems look alike, there are very different
statistically. The former tests the parametric null hypothe-
sis against the nonparametric alternative hypothesis, while
the latter tests against the nonparametric null hypothesis as
the null hypothesis contains unknown nonparametric com-
ponents aj(·) for j 	= k. Cai et al. (2000) discussed how to
construct the hypothesis test for these hypotheses based on
the generalized maximum likelihood ratio test developed by
Fan et al. (2001). The generalized maximum likelihood ra-
tio test is easy to implement and has good power. Taking
the hypothesis (3.5) as an example, the generalized maxi-
mum likelihood ratio test statistic is the difference between
the log likelihood functions under the alternative and null
hypotheses, which is

T =
n∑

i=1

(


[
g−1

{
XT

i â(Ui)
}

, yi

]
− 


{
g−1

(
XT

i â
)
, yi

})
,
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where â(·) is the local maximum likelihood estimator of
functional coefficient a(·) under alternative hypothesis, and
â is the maximum likelihood estimator of the constant vec-
tor a = (a1, . . . , ap)T under null hypothesis. The test is that
we reject the null hypothesis when T > cα, where cα is the
critical value which can be computed by either asymptotic
distribution of T or bootstrap under null hypothesis.

The asymptotic distribution of T under null hypothesis
is normal distribution and free of the value of a. This is
the so called Wilks phenomenon. For more rigorous justifi-
cation, we refer to the article by Fan et al. (2001). When
sample size is moderate, it is better to use bootstrap under
null hypothesis to estimate the critical value cα. We have
to evaluate a when generating bootstrap samples under null
hypothesis. Thanks the Wilks phenomenon, the distribution
of T under null hypothesis is free of the value of a, so we can
just simply assign a reasonable value to a. We recommend
to evaluate a by the maximum likelihood estimator â of a
under the null hypothesis.

Finally, we would like to point out that the local maxi-
mum likelihood method can be regarded as a specific case
of the local estimation equation method of Carroll et al.
(1998). Kauermann and Tutz (1999) proposed a graphical
technique for checking the discrepancy between a paramet-
ric model and a varying coefficient model. Qu and Li (2006)
investigated a nonparametric goodness of fit test for the gen-
eralized varying coefficient models.

4. ANALYSIS OF LONGITUDINAL AND
FUNCTIONAL DATA

In many applications, data for different individuals are
collected over a period of time. The number of data points
for different individuals can be different and so is the loca-
tion of time. Such a kind of data are called longitudinal data.
Often, interest lies in studying the association between the
covariates and the response variable. To this end, a linear
model is often employed:

(4.1) Y (t) = β0 + X(t)Tβ + ε(t),

for covariates and response variable collected at time t. See
for example Diggle et al. (2002) and Hand and Crowder
(1996).

Despite of its success in many applications, model (4.1)
does not allow the association to vary over time, even though
the covariates and the response variable change over time
and environment. To account for this, Zeger and Diggle
(1994) proposed a semiparametric model, by allowing the
intercept term β0 to depend on the time, but not the other
coefficients. To genuinely examine whether the association
changes over time, Brumback and Rice (1998) and Hoover
et al. (1998) propose the following varying coefficient model

(4.2) Y (t) = β0(t) + X(t)Tβ(t) + ε(t),

where the functional coefficients are assumed to be smooth.
The functional coefficients can also be a function of other
covariates instead of the time variable. This is a specific case
of the functional linear model discussed in Ramsay and Sil-
verman (1997) for functional data analysis. When covariates
are absent, model (4.2) was studied by Rice and Silverman
(1991) and Hart and Wehrly (1993) for functional data.

The coefficients in model (4.2) can be estimated by the
kernel, polynomial and smoothing spline methods (Brum-
back and Rice, 1998; Hoover et al. 1998, Huang et al. 2002,
2004). Fan and Zhang (2000) proposed a two-steps method
to overcome the computational burden of the smoothing
spline methods. The approaches for constructing confidence
regions based on the kernel method can be found in Wu and
Chiang (2000) and Chiang et al. (2001). The construction
of confidence bands based on polynomial spline method can
be found in Huang et al. (2002, 2004).

One important issue with longitudinal data analysis is
how to incorporate the within subject correlation structure
into the estimation procedure. For parametric setting, this
issue has been thoroughly investigated, and the methodol-
ogy has been well established; see e.g. Diggle et al. (2002)
and the references therein. The situation with nonparamet-
ric based longitudinal data analysis is quite different, see Lin
and Carroll (2001).

Various studies have been made on the partial linear
model in which the coefficients β(t) in (4.2) are constant.
Lin and Ying (2001) employed a counting process approach
which is ameliorated by Fan and Li (2004). An impor-
tant discovery made by Lin and Carroll (2001) is that the
commonly-used forms of the kernel method are local and
can not incorporate the within subject correlation. An in-
novative kernel method is proposed by Wang (2003), which
incorporates the true covariance structure. The idea has
been successfully extended to the partial linear model by
Wang et al. (2003), which achieves the semiparametric effi-
cient bound computed in Lin and Carroll (2001). Qu and Li
(2006) proposed an estimation procedure for the varying co-
efficient models based on the penalized spline and quadratic
inference function approaches. The advantage of Qu and
Li’s estimation is it can directly incorporate within subject
correlation into the estimation without any need to estimate
the nuisance parameters associated with the correlation. De-
spite the need of within subject covariance for longitudinal
studies, few studies have been made.

Missing data such as dropout are common in long term
longitudinal studies. Hogan et al. (2004) studied the mix-
tures of varying coefficient models for longitudinal data with
discrete or continuous nonignorable dropout.

The within subject correlation structure plays a very im-
portant role in longitudinal data analysis. This is because
not only an estimator can be improved by incorporating the
within subject correlation structure into the estimation pro-
cedure, but also the within subject correlation structure can
sometimes shed valuable insights in practical problems, see
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Sun et al. (2007). Fan et al. (2007) and Sun et al. (2007) have
systematically studied the estimation of the within subject
correlation structure. In the following, we shall briefly intro-
duce the estimation of the within subject covariance matrix.

When p2 in the semivarying coefficient models (2.10) is
0, the semivarying coefficient models becomes varying coef-
ficient models. It is reasonable to view the semivarying coef-
ficient models as an extension of varying coefficient models.
We therefore consider the semivarying coefficient models

(4.3) y(t) = ZT
1 (t)a1(t) + ZT

2 (t)a2 + ε(t),

where Zi(t), i = 1, 2, is pi dimensional covariate, p1+p2 = p,
and Eε(t) = 0, and var(ε(t)) = σ2(t) which is unknown.
Modeling the covariance matrix is intrinsically challenging
due to sparse irregular observed time points for each indi-
vidual. To take this structure into account, Fan et al. (2007)
proposed the following semiparametric model. The variance
function σ2(·) are modelled nonparametrically and the cor-
relation function parametrically: For any t and s, the corre-
lation between ε(t) and ε(s) is ρ(s, t, θ). The function form
of ρ(s, t, θ) is known, but θ is unknown to be estimated. In
this way, the variance function σ2(t) is estimable nonpara-
metrically as long as the collection of time points for all indi-
viduals are dense in a time interval of interest. On the other
hand, sparse individual observations (for those individuals
with at least two observations) can be aggregated to esti-
mate the parameters in the correlation function. The idea
is indeed powerful and takes longitudinal data structure at
heart. The modeling biases of correlation functions can be
reduced by expanding the family of parametric functions,
such as the linear combinations of the ARMA-correlation
and random-effect-correlation structure.

Suppose that a sample from (4.3) consists of n sub-
jects. For each i, i = 1, . . . , n, for the ith subject, we
have observation (ZT

i1(tij), ZT
i2(tij), yi(tij)) at time point

tij , j = 1, . . . , Ji. Let εi(tij) be the ε(t) corresponding to
(ZT

i1(tij), ZT
i2(tij), yi(tij)), and εi = (εi(ti1), . . . , εi(tiJi))

T.
Denote the covariance matrix of εi by Σi.

Of interest is estimating model parameters a1(·),a2, σ
2(·)

and θ. On one hand, the estimation of σ2 and θ depends on
the estimation of a1(·) and a2. On the other hand, the es-
timation of a1(·) and a2 can be improved by using the esti-
mate of σ2 and θ. Therefore, the estimation must be done in
steps. The initial estimators of a1(·) and a2 are constructed
by ignoring the within subject correlation. With these esti-
mators, we can estimate σ2 and θ. Finally, we can estimate
a1(·) and a2 more efficiently by using the estimators of σ2

and θ.
Applying the profile least squares estimation in Sec-

tion 2.3 with weighted least squares estimation for the syn-
thetic linear model (2.12), we have the estimator of a2

â2 =
{
ZT

2(In − S)TW (In − S)Z2

}−1

ZT
2(In−S)TW (In−S)Y,

where S, Z2 and Y are the same as that in Section 2.3 but
replacing

{(Ui, ZT
i1, ZT

i2, yi) : i = 1, . . . , n},

by

{(tij , ZT
i1(tij), Z

T
i2(tij), yi(tij)) : j =1, . . . , Ji, i=1, . . . , n},

and W is a weight matrix. When estimators θ̂ and σ̂(tij) of
θ and σ(tij) are available, it is

W = diag
(
Σ̂1, . . . , Σ̂n

)
, Σ̂i = V̂iCi(θ̂)V̂i,

V̂i = diag (σ̂(ti1), . . . , σ̂(tiJi)) ,

where Ci(θ) is the correlation matrix of εi.
After obtaining the estimator â2 of a2, we substitute

â2 for a2 in model (4.3) and apply the estimation in Sec-
tion 2.1.1 to get the estimator â1(·) of a1(·). Let

rij = yi(tij) − ZT
i1(tij)â1(tij) − ZT

i2(tij)â2, and

ri = (ri1, . . . , riJi)
T.

A natural estimator of σ2(t) is the kernel estimator

σ̂2(t) =

n∑
i=1

Ji∑
j=1

r2
ijKh(t − tij)

n∑
i=1

Ji∑
j=1

Kh(t − tij)
.

Based on ri, we can estimate θ by minimizing the quasi-
likelihood function

n∑
i=1

{
log |Ci(θ)| + rTi V̂ −1

i C−1
i (θ)V̂ −1

i ri

}
with respect to θ, and the minimizer is the estimator of θ.
We name this estimator quasi-likelihood estimator.

The quasi-likelihood estimator is a good estimator when
the correlation structure is correctly specified. However,
when the correlation structure is misspecified, the quasi-
likelihood estimator may incur a larger bias. Fan et al.
(2007) proposed another more robust estimator which is
based on minimizing the generalized variance of a2. Explic-
itly, the estimator of θ based on the generalized variance
method is the minimizer of determinant of the covariance
matrix of a2∣∣∣Ddiag

(
V̂1C1(θ)V̂1, . . . , V̂nCn(θ)V̂n

)
DT
∣∣∣ ,

where

D =
{
ZT

2(In − S)TW (In − S)Z2

}−1

ZT
2(In − S)TW.

Their philosophy is to improve the estimating parametric
component a2 even when the semiparametric model on the
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covariance structure is wrong, as long as the model includes
the current working covariance structure as a specific case.
That motivates the aforementioned optimization criterion.
Fan and Wu (2007) investigated the asymptotic properties
of the modeling parameter θ under the weaker conditions
that a1(·) can be rough and introduced a difference-based
method to reduce the bias in estimating a1(·).

5. SURVIVAL ANALYSIS

Survival analysis is an important subject in statistics. It
has been widely used in medical science, economics, finance,
social science, among others. The most popular model in
survival analysis is the Cox model proposed by Cox (1972),
which assumes the hazard function h(t|X) of the survival
time T is the following proportional hazard function

(5.1) h(t|X) = h0(t) exp
{
XTβ

}
,

where X is a p dimensional covariate, and h0(t) is the base-
line hazard function. Cox (1972) also proposed the partial
likelihood estimation to estimate β.

Whilst the Cox model is very successful in many applica-
tions, it doesn’t address any dynamical feature which may
exist in the data set. Zhang and Steele (2004) studied the
data set about the contraceptive use in the Bangladesh,
and found a very strong dynamical pattern with the data
set. From socioeconomic point of view, this kind of dy-
namical pattern is very important as it may reveal how
the society and political system change with time. To ad-
dress the dynamical feature, Zhang and Steele (2004) pro-
posed a semiparametric multilevel survival model. On the
individual level, their model can be viewed as a special
case of the varying coefficient proportional hazard function
models

(5.2) h(t|X, U) = h0(t) exp
{
XTa(U)

}
,

where U is a scalar covariate. Fan et al. (2006) systemat-
ically studied models (5.2). They proposed the local par-
tial likelihood estimation to estimate a(·), and derived the
asymptotic normality of their estimators.

The local partial likelihood estimation is outlined as
follows: Suppose we have a sample (Ui, XT

i , yi, δi), i =
1, . . . , n. yi = min(Ti, Ci), δi = I(Ti > Ci), Ti and Ci are
respectively the survival time and censoring time of the ith
sample member. The censoring mechanism is assumed to be
noninformative. Further, denote the distinct event times by
y(1) < · · · < y(L) and the number of events at time y(�) by
d�. Denote the set of indices for the individuals at risk up to
time y(�) by R�, and the set of indices for the events at y(�)

by D�. For any given u, the local partial likelihood estimator
of a(u) is the part corresponding to a of the maximizer of

the following local partial log-likelihood function

L∑
�=1

( ∑
j∈D�

Kh(Uj − u)

[
XT

j {a + b(Uj − u)}

− log

( ∑
k∈R�

exp
[
XT

k{a + b(Uj − u)}
]
Kh(Uk − u)

)])
.

Fan et al. (2006) also discussed the estimation for the
bias and variance of the local partial likelihood estimators,
as well as the variable selection issue.

Cai et al. (2007a) successfully extended the local par-
tial likelihood estimation to multivariate survival data with
partially linear hazard regression. They proposed a profile
pseudo-partial likelihood estimation. An iterative algorithm
was developed to implement the estimation. They also es-
tablished the asymptotic normality of their estimators. The
estimation for standard error as well as hypothesis test for
the parametric component are also discussed.

Cai et al. (2007b) investigated the semivarying coefficient
hazard regression models for multivariate survival data. Cai
et al. (2007c) studied the marginal varying coefficient hazard
models for multivariate survival data. The B-Splines based
estimation for model (5.2) was established by Nan et al.
(2005).

Tian et al. (2005) studied a slightly different varying co-
efficient proportional hazard function models

(5.3) h(t|X) = h0(t) exp
{
XTa(t)

}
.

The difference between (5.2) and (5.3) is the U with a(U)
in (5.2) is observable, however, the t with a(t) in (5.3) is
the survival time which may be censored. The model (5.3)
can still be estimated by local partial likelihood approach,
see Tian et al. (2005). Pointwise confidence intervals and
confidence bands of a(·) in model (5.3) are also discussed by
Tian et al. (2005).

6. NONLINEAR TIME SERIES

Varying coefficient models have been elegantly applied
to modeling and predicting time series data (Nicholls and
Quinn 1982; Chen and Tsay, 1993; Cai, et al., 2000; Huang
and Shen, 2004). They are natural extensions of the thresh-
old autoregression models, extensively discussed in Tong
(1990). Let {Xt} be a given time series. The varying co-
efficient model is of the form,

Xt = a0(Xt−p) + a1(Xt−p)Xt−1 + · · · + ak(Xt−p)Xt−k + εt,
(6.1)

for some given lags k and p. The geometric ergodicity of this
model was studied by Chen and Tsay (1993).

The local linear method applies readily to this autoregres-
sive setting. The coefficient functions can be fitted using the
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local linear technique in Section 2.1.1 by setting

Yi = Xi, Ui = Xi−p, Xi0 = 1,

Xi1 =Xi−1, . . . , Xik = Xi−k, i = max(p + 1, k + 1), . . . , n,

if the observed time series is X1, . . . , Xn. The joint asymp-
totic normality of such an estimator has been studied in Cai
et al. (2000). They proposed a method for bandwidth and a
generalized pseudo-likelihood test for testing the autoregres-
sive models and thresholded models. The method has been
successfully applied by Hong and Lee (2003) for inference
and forecast of exchange rates.

The varying variable U is taken to be Xt−p in (6.1). Fan
et al. (2003) allows the linear index β1Xt−1 + · · · + βkXt−k

to be the variable U . See (2.8) for additional details. In
particular, it allows U to be allow of the lag variables, not
just a given Xt−p.

7. TIME-VARYING DIFFUSION MODELS

Diffusion models are frequently used to describe the dy-
namics of stock prices and interest rates. Let Xt be the log
return of stock price or interest rate at time t. The one
factor model postulates that Xt satisfies a time-dependent
continuous-time stochastic differential equation:

(7.1) dXt = μ(t,Xt) dt + σ(t,Xt) dWt.

Here Wt denotes the standard Brownian motion and the
bivariate functions μ(t,Xt) and σ(t,Xt) are called the in-
stantaneous return and volatility of the process {Xt} re-
spectively. See, for example, Duffie (1996) and Hull (2003).
However, one can not estimate the bivariate functions μ and
σ nonparametrically, as we only observe a trajectory (t,Xt)
on the bivariate space, which is not dense. Therefore, further
restrictions are needed.

One specification is the time-homogenous diffusion
model:

(7.2) dXt = μ(Xt) dt + σ(Xt) dWt.

The nonparametric model has been thoroughly studied by
Stanton (1997), Fan and Yao (1998), Chapman and Pearson
(2000), and Fan and Zhang (2003), among others. It includes
many famous families of parametric models popularly used
in the finance literature such as the geometric Brownian
motion for stock prices, and interest rate models of Vasicek
(1977), Cox, Ingersoll and Ross (CIR) (1985), Chan Karolyi,
Longstaff and Sanders (CKLS) (1992), among others.

Economic conditions change from time to time. Thus,
it is reasonable to expect that the instantaneous expected
return and volatility depend on both time and price level
for a given state variable. To take this and estimability into
consideration, Fan et al. (2003) proposed the following time-
varying coefficient model:

(7.3) dXt = {α0(t) + α1(t)Xt} dt + β0(t)X
β1(t)
t dWt.

This is an extension of the CKLS model when all varying
coefficients are indeed constant. It is also an extension of
the famous CIR model with

α0(t) = α0, α1(t) = α1, β0(t) = β0, β1(t) = 1/2

for modeling the short-term interest rate. Geometric Brown
motion corresponds to

α0(t) = 0, α1(t) = μ, β0(t) = σ, β1 = 1,

in (7.3).
Suppose that the process is observed at discrete time

points with the data {Xti , i = 1, . . . , n + 1}. Denote by

Yti =Xti+1−Xti , Zti = Wti+1−Wti , and Δi = ti+1−ti.

According to the independent increment property of the
Brownian motion, {Zti} are independent and normally dis-
tributed with mean zero and variance Δi. Thus, the dis-
cretized version of (7.3) can be expressed as

Yti ≈ {α0(ti) + α1(ti)Xti}Δi(7.4)

+ β0(ti)X
β1(ti)
ti

√
Δi εti , i = 1, . . . , n,

where {εti}n
i=1 are independent and have a standard normal

distribution. This is indeed a vary coefficient model in both
the conditional mean and conditional variance.

Fan et al. (2003) employed the local constant approach to
estimate the coefficients α0(t) and α1(t) in a similar manner
to Section 2.1.1, i.e. minimizing with respect to a and b

n∑
i=1

[
Yti

Δi
− a − bXti

]2
Kh(ti − t0)

for each given t0, resulting the estimators α̂0(t) = â and
α̂1(t0) = b̂, with â and b̂ being the minimizer of the above
local linear-squares problem. The reason that the local con-
stant instead of local linear technique is used is to avoid
small arbitrary linear trend, created by the local linear fit
with a large bandwidth. After the time-varying coefficients
α0(t) and α1(t) were estimated, they employed the pseudo-
likelihood method to estimate β0(t) and β1(t).

Let Êt = {Yt−(α̂0(t)+α̂1(t)Xt)Δt}/
√

Δt. Then, by (7.4),
we have

(7.5) Êt ≈ β0(t)X
β1(t)
t εt.

At each given point t0, the following local pseudo-likelihood,
which is the local normal-likelihood if (7.5) holds exactly,


(β0, β1; t0) = −1
2

n∑
i=1

Kh(ti−t0)

(
log(β2

0X2β1
ti

) +
Ê2

ti

β2
0X2β1

ti

)

is maximized, yielding β̂0(t0) = β̂0 and β̂1(t0) = β̂1, where
β̂0 and β̂1 are the maximizer of the above local maxi-
mum likelihood estimator. Note that given β1, 
(β0, β1; t0)
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can be maximized explicitly with respect to β0 and there-
fore, the problem reduces to the univariate optimization
problem.

Fan et al. (2003) suggested using one-sided kernel so that
only past data are used. They also proposed a method to
select the bandwidth and to construct confidence intervals.
The model was also used as the alternative hypothesis for
testing the famous time homogeneous model such as the CIR
and CKLS models. It was also applied to price zero-coupon
bond.

8. CONCLUDING REMARK

In this paper, we have given a selective overview on the
developments on the varying coefficient models. There are a
vast of number of papers addressing various types of varying
coefficient models in the past ten years. Our citation in this
paper is not exhaustive. In addition to the applications to
time series, longitudinal data analysis and survival analysis,
the varying coefficient models have also seen their applica-
tions in other subjects in statistics. For example, Sentürk
and Müller (2005) applied the varying coefficient models in
covariate adjusted correlation analysis.

We only focus on the major developments on the stan-
dard varying coefficient models and their extensions in
time series, longitudinal data analysis and survival anal-
ysis. Our emphasis is placed on the methodological side.
We have not cited the papers with main contributions on
applied side. Undoubtedly, varying coefficient models have
seen their broad and exciting applications in many scientific
areas in the last ten years. Examples include that Fergu-
son et al. (2007) applied the varying coefficient models to
explore the complex ecological system at Loch Leven, and
obtained some insight into the combined effects of climate
change and eutrophication on water quality; Kauermann
et al. (2005) used the varying coefficient models to anal-
yse the survival of 1123 newly founded firms in the state of
Bavaria, Germany, and investigate the time varying effects
of risk factors. The varying coefficient models are becom-
ing more and more attractive to both applied and method-
ological statisticians. They are being more and more fre-
quently used in many scientific areas to explore the dynamic
feature.
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