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Abstract The advance of technology facilitates the collection of statistical data.
Flexible and refined statistical models are widely sought in a large array of statisti-
cal problems. The question arises frequently whether or not a family of parametric
or nonparametric models fit adequately the given data. In this paper we give a
selective overview on nonparametric inferences using generalized likelihood ratio
(GLR) statistics. We introduce generalized likelihood ratio statistics to test vari-
ous null hypotheses against nonparametric alternatives. The trade-off between the
flexibility of alternative models and the power of the statistical tests is empha-
sized. Well-established Wilks’ phenomena are discussed for a variety of semi- and
non- parametric models, which sheds light on other research using GLR tests. A
number of open topics worthy of further study are given in a discussion section.
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1 Introduction

Thanks to the efforts by many statisticians, led by Ronald A. Fisher, Jerzy Ney-
man, Egon S. Pearson and Samuel S. Wilks, there are several general applicable
principles for parametric estimation and inferences. For example, in parametric es-
timation, one would use the maximum likelihood method when the full likelihood
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function is available and use the least-squares, generalized method of moments
(Hansen, 1982) or generalized estimation equations (Liang and Zeger, 1986) when
only generalized moment functions are specified. In parametric inferences such as
hypothesis testing and construction of confidence regions, the likelihood ratio tests,
jackknife, and bootstrap methods (Hall, 1993; Efron and Tibshirani, 1995; Shao
and Tu, 1996) are widely used. The likelihood principle appeared in literature as
a term in 1962 (Barnard et al., 1962; Birnbaum, 1962), but the idea goes back to
the works of R.A. Fisher in the 1920s (Fisher, 1922). Since Edwards (1972) cham-
pioned the likelihood principle as a general principle of inference for parametric
models (see also Edwards, 1974), it has been applied to many fields in statistics
(see Berger and Wolpert, 1988) and even in the philosophy of science (see Royall,
1997).

For nonparametric models, there are also generally applicable methods for
nonparametric estimation and modeling. These include local polynomial (Wand
and Jones, 1995; Fan and Gijbels, 1996), spline (Wahba, 1990; Eubank, 1999; Gu,
2002) and orthogonal series methods (Efromovich, 1999; Vidakovic, 1999), and
dimensionality reduction techniques that deal with the issues of the curse of di-
mensionality (e.g Fan and Yao, 2003, Chapter 8). On the other hand, while there
are many customized methods for constructing confidence intervals and conduct-
ing hypothesis testing (Hart, 1997), there are few generally applicable principles
for nonparametric inferences. An effort in this direction is Fan, Zhang and Zhang
(2001), which extends the likelihood principle by using generalized likelihood ratio
(GLR) tests. However, compared with parametric likelihood inference, the GLR
method is not well developed, and corresponding theory and applications are avail-
able only for some models in regression contexts. Therefore, there is a great po-
tential for developing the GLR tests, and a review of the idea of GLR inference is
meaningful for encouraging further research on this topic.

Before setting foot in nonparametric inference, we review the basic idea of
parametric inference using the likelihood principle.

1.1 Parametric inference

Suppose that the data generating process is governed by the underlying density
f(x; θ), with unknown θ in a parametric space Θ. The statistical interest lies in
testing:

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ −Θ0

based on a random sample {xi}n
i=1, where Θ0 is a subspace of Θ. The null hypoth-

esis is typically well formulated. For example, in the population genetics, sampling
from an equilibrium population with respect to a gene with two alleles (“a” and
“A”), three genotypes “AA”, “Aa”, and “aa” can be observed. According to the
Hardy-Weinberg formula, their proportions are respectively

θ1 = ξ2, θ2 = 2ξ(1− ξ), θ3 = (1− ξ)2.

To test the Hardy-Weinberg formula based on a random sample, the null hypoth-
esis is

Θ0 = {(θ1, θ2, θ3) : θ1 = ξ2, θ2 = 2ξ(1− ξ), θ3 = (1− ξ)2, 0 ≤ ξ ≤ 1}. (1.1)
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For this problem, we have

Θ = {(θ1, θ2, θ3) : θ1 + θ2 + θ3 = 1, 0 ≤ θi ≤ 1}.

For such a well formulated question, one can use the well-known maximum
likelihood ratio statistic

λn = 2{max
θ∈Θ

`(θ)− max
θ∈Θ0

`(θ)},

where `(θ) is the log-likelihood function for getting the given sample under the
model f(x; θ). This is indeed a very intuitive procedure: If the alternative models
are far more likely to generate the given data, the null models should be rejected.
The following folklore theorem facilitates the choice of the critical region: Under H0

and regular conditions, λn is asymptotically chi-square distributed with k degrees
of freedom, where k is the difference of dimensions between Θ and Θ0.

An important fundamental property of the likelihood ratio tests is that their
asymptotic null distributions are independent of nuisance parameters in the null
hypothesis such as ξ in (1.1). With this property, one can simulate the null distri-
bution by fixing the nuisance parameters at a reasonable value or estimate. This
property is referred to as the Wilk phenomenon in Fan, Zhang and Zhang (2001)
and is fundamental to all hypothesis testing problems. It has been a folk theorem
in the theory and practice of statistics and has contributed tremendously to the
success of the likelihood inference.

In other examples, even though the null hypothesis is well formulated, the al-
ternative hypotheses are not. Take the famous model for short-term interest rates
as an example. Under certain assumptions, Cox, Ingersoll and Ross (1985) showed
that the dynamic of short-term rates should follow the stochastic differential equa-
tion:

dXt = κ(µ−Xt) dt + σX
1/2
t dWt, (1.2)

where Wt is a Wiener process on [0,∞), and κ, µ and σ are unknown parameters.
This Feller process is called the CIR model in finance. The question arises naturally
whether or not the model is consistent with empirical data. In this case, the null
model is well formulated. However, the alternative model is not. To employ the
parametric likelihood ratio technique, one needs to embed the CIR model into
a larger family of parametric models such as the following constant elasticity of
variance model (Chan et al., 1992):

dXt = κ(µ−Xt) dt + σXρ
t dWt, (1.3)

and test H0 : ρ = 1/2. The drawback of this approach is that the models (1.3)
have to include the true data generating process. This is the problem associated
with all parametric testing problems where it is implicitly assumed that the family
of models {f(x; θ) : θ ∈ Θ} contains the true one.

To see this more clearly, consider the question if variable X (e.g. age) and Y
(salary) are related. If we embed the problem in the linear model

Y = α + βX + ε, (1.4)
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then the problem becomes testing H0 : β = 0. If unknown to us, the data gener-
ating process is govern by

Y = 60− 0.1(X − 45)2 + ε, ε ∼ N(0, 52), (1.5)

with X uniformly distributed on the interval [25, 65], the null hypothesis will be
accepted very often since slope β in (1.4) is not statistically significant. Figure 1
presents a random sample of size 100 from model (1.5). The erroneous conclusion
of accepting the null hypothesis is due to the fact that the family of models (1.4)
does not contain the true one.
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Y

A hypothetical data set

Fig. 1 A simulated data set from (1.5) with sample size 100. When the alternative hypothesis
does not contain the true model, the fit from the null model (dashed line) is statistically
indistinguishable from the fit (solid line) from the alternative model (1.4). Erroneous conclusion
is drawn from this analysis.

1.2 Nonparametric alternatives

The above discussion reveals that the family of alternative models should be large
enough in order to make sensible inferences. In many hypothesis testing problems,
while the null hypothesis is well formulated, the alternative one is vague. These two
considerations make nonparametric models as attractive alternative hypothesis.
In the hypothetical example presented in Figure 1, without knowing the data
generating process, a natural alternative model is

Y = m(X) + ε, (1.6)

where m(·) is smooth, while the null hypothesis is Y = µ + ε. This is a paramet-
ric null hypothesis against a nonparametric alternative hypothesis. With such a
flexible alternative family of models, the aforementioned pitfall is avoided.
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For the interest rate modeling, a natural alternative to the CIR model (1.2) is
the following one-factor model

dXt = µ(Xt) dt + σ(Xt) dWt,

where µ(·) and σ(·) are unspecified, but smooth functions. This is again the prob-
lem of testing a parametric family of models against a nonparametric family of
alternative models. See Fan and Zhang (2003) for a study based on the GLR test.

The problems of nonparametric null against nonparametric alternative hypoth-
esis also arise frequently. One may ask if the returns of stock contain jumps or if a
discretely observed process is Markovian. In these cases, both the null and alter-
native hypotheses are nonparametric.

The problems of testing nonparametric null against nonparametric alternative
hypotheses arise also frequently in statistical inferences. Consider, for example,
the additive model (Hastie and Tibshirani, 1990):

Y = α +
D∑

d=1

md(Xd) + ε (1.7)

where α is an unknown constant, and md are unknown functions, satisfying E[md(Xdi)]
= 0 for identifiability. This nonparametric model includes common multivariate
linear regression models. The question such as if the covariates X1 and X2 are
related to the response Y arises naturally, which amounts to testing

H0 : m1(·) = m2(·) = 0. (1.8)

This is a nonparametric null versus nonparametric alternative hypothesis testing
problem, since under the null hypothesis (1.8), the model is still a nonparametric
additive model:

Y = α +
D∑

d=3

md(Xd) + ε (1.9)

There are many techniques designed to solve this kind of problems. Many of
them focused on an intuitive approach using discrepancy measures (such as the
L2 and L∞ distances) between the estimators under null and alternative mod-
els. See early seminal work by Bickel and Rosenblatt (1973), Azzalini, Bowman
and Härdle (1989), and Härdle and Mammen (1993). They are generalizations of
the Kolmogorov-Smirnov and Cramér-von Mises types of statistics. However, the
approach suffers some drawbacks. First, choices of measures and weights can be
arbitrary. Consider, for example, the null hypothesis (1.8) again. The test statistic
based on discrepancy method is T =

∑2
d=1 cd‖m̂d‖. One has to choose not only

the norm ‖ · ‖ but the weights cd. Second, the null distribution of the test statistic
T is unknown and depends critically on the nuisance functions m3, . . . , mD. This
hampers the applicability of the discrepancy based methods. Naturally, one would
like to develop some test methods along the line of parametric likelihood ratio
tests that possess Wilks’ phenomenon to facilitate the computation of p-values.

We would like to note that it is possible to design some test statistics that
tailored for some specific problems with good power. The question also arises
naturally if we can come with a generally applicable principle for testing against
nonparametric alternative models. The development of GLR statistics aims at a
unified principle for nonparametric hypothesis testing problems.
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1.3 Flexibility of models and power of tests

There are many ways to embed the family of null models into the alternative ones.
Considering again testing if the CIR model (1.2) holds, in addition to the alterna-
tive parametric models (1.3) and nonparametric one-factor model (1.6), one can
also consider an even larger family of nonparametric models such as the stationary
Markovian model as the alternative models (Hong and Li, 2005; Aı̈t-Sahalia, Fan
and Peng, 2005). Figure 2 schematically illustrates the relationship among these
three families of alternative models. In general, the larger the family of the alter-
native models, the more likely it includes the true model. On the other hand, the
lower the power of omnibus tests. Therefore, it should not be surprised that the
test in Fan and Zhang (2003) based on alternative models (1.6) is more power-
ful than the test constructed based only on the stationary Markovian assumption
(Hong and Li, 2005; Aı̈t-Sahalia, Fan and Peng, 2005), when the data are indeed
generated from the one-factor model.

Stationary Markovian

Parametric

One-factor NP

Fig. 2 Schematic illustration of different families of alternative models for testing the theory
of short-term interest model (1.2). The larger the family, the more omnibus the test and the
less power in a particular direction.

A similar example is to test whether the covariates X1 and X2 are related to
the response Y as in (1.8). In this case, one can choose the alternative models
such as the multiple regression model Y = β0 +

∑D
i=1 βiXi +ε, the additive model

(1.7), and the saturated nonparametric regression model Y = f(X1, · · · , XD) + ε.
The tests designated for the saturated nonparametric model necessarily have low
power, while the tests with the multiple regression model as alternative can have
no power when the true model is indeed nonlinear as illustrated in Figure 1.
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1.4 Organization of the paper

In Section 2, we discuss some drawbacks of the naive extension of classical maxi-
mum likelihood ratio tests to nonparametric setting. Section 3 outlines the frame-
work for the GLR tests. Several established Wilk’s type of results for various
nonparametric models are summarized in Section 4. In Section 5, we conclude this
paper and set forth some open problems.

2 Naive extension of maximum likelihood ratio tests

Although likelihood ratio theory contributes tremendous success to parametric in-
ference, there are few general applicable approaches for nonparametric inferences
based on function estimation. A naive extension is the nonparametric maximum
likelihood ratio test. However, nonparametric maximum likelihood estimation usu-
ally does not exist. Even if it exists, it is hard to compute. Furthermore, the
resulting maximum likelihood ratio tests are not optimal.

The following example from Fan, Zhang and Zhang (2001) illustrates the above
points and provides additional insights.

2.1 Problems with nonparametric maximum likelihood ratio tests

Suppose that there are n data points {(Xi, Yi)} sampled from the following model:

Yi = m(Xi) + εi, i = 1, . . . , n, (2.10)

where {εi} is a sequence of i.i.d. random variables from N (0, σ2) and Xi has a
density with compact support, say [0, 1]. Assume that the parametric space is

Fk =
{
m ∈ L2[0, 1] :

∫ 1

0
[m(k)(x)]2 dx ≤ C

}
,

for a given constant C. Consider the testing problem:

H0 : m(x) = α0 + α1x versus H1 : m(x) 6= α0 + α1x. (2.11)

Then the conditional log-likelihood function is

`(m, σ) = −n log(
√

2πσ)− 1

2σ2

n∑

i=1

(Yi −m(Xi))
2. (2.12)

Denote by (α̂0, α̂1) the maximum likelihood estimator (MLE) under H0, and
m̂MLE(·) the MLE under Fk which solves the following minimization problem:

min
n∑

i=1

(Yi −m(Xi))
2, subject to

∫ 1

0
m(k)(x)2 dx ≤ C.

Then m̂MLE is a smoothing spline (Wahba, 1990; Eubank, 1999) with the smooth-

ing parameter chosen to satisfy ||m̂(k)
MLE||22 = C. Define the residual sum of squares

under the null and alternative as follows:

RSS0 =
n∑

i=1

(Yi − α̂0 − α̂1Xi)
2, RSS1 =

n∑

i=1

(Yi − m̂MLE(Xi))
2.
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Then the logarithm of the conditional maximum likelihood ratio statistic for the
testing problem (2.11) is given by

λn = `(m̂MLE, σ̂)− `(m̂0, σ̂0) =
n

2
log

RSS0

RSS1
,

where σ̂2 = n−1RSS1, m̂0(x) = α̂0 + α̂1x, and σ̂2
0 = n−1RSS0.

Even in this simple situation where the nonparametric maximum likelihood
exists, we need to know the constant C in the parametric space Fk in order to
compute the MLE. This is unrealistic in practice. Even if the value C is granted,
Fan, Zhang and Zhang (2001) demonstrated (see also §2.2) that the nonparametric
maximum likelihood ratio test is not optimal. This is due to the limited choice of

smoothing parameter in m̂MLE, which makes it satisfy ||m̂(k)
MLE||22 = C. In this

case, the essence of the testing problem is to estimate the functional ‖m‖2 (we
assume that α0 = α1 = 0 in (2.11) without loss of generality as they can be
estimated faster than nonparametric rates). It is well-known that one smoothing
parameter can not optimize simultaneously the estimate of the functional ‖m‖2
and the function m(·). See for example, Bickel and Ritov (1988); Hall and Marron
(1988); Donoho and Nussbaum (1990); Fan (1991).

Now, if the parameter space is F ′k = {m ∈ L2[0, 1] : sup0≤x≤1 |m(k)(x)| ≤
C} or more complicated space, it is not clear whether the maximum likelihood
estimator exists and even if it exists, how to compute it efficiently.

The above example reveals that the nonparametric MLE may not exist and
hence cannot serve as a generally applicable method. It illustrates further that,
even when it exists, the nonparametric MLE chooses smoothing parameters au-
tomatically. This is too restrictive for the procedure to possess the optimality of
testing problems. Further, we need to know the nonparametric space exactly. For
example, the constant C in Fk needs to be specified. The GLR statistics in Fan,
Zhang and Zhang (2001), which replaces the nonparametric maximum likelihood
estimator by any reasonable nonparametric estimator, attenuate these difficulties
and enhances the flexibility of the test statistic by varying the smoothing pa-
rameter. By proper choices of the smoothing parameter, the GLR tests achieve
the optimal rates of convergence in the sense of Ingster (1993) and Lepski and
Spokoiny (1999).

2.2 Inefficiency of nonparametric maximum likelihood ratio tests

To demonstrate the inefficiency of nonparametric maximum likelihood ratio tests,
let us consider a simpler mathematical model, the Gaussian white noise model, to
simplify the technicality of mathematical proofs. The model keeps all important
features of nonparametric regression model, as demonstrated by Brown and Low
(1996) and Grama and Nussbaum (2002). Suppose that we have observed the
whole process Y (t) from the following Gaussian white noise model:

dY (t) = φ(t) dt + n−1/2 dW (t), t ∈ (0, 1), (2.13)

where φ is an unknown function and W (t) is the Brownian process. By using an
orthogonal series (e.g. the Fourier series) transformation, model (2.13) is equivalent
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to the following white noise model:

Yi = θi + n−1/2εi, εi
iid∼ N (0, 1), i = 1, 2, . . .

where Yi, θi and εi are the i-th Fourier coefficients of Y (t), φ(t) and W (t), respec-
tively. Now let us consider testing the simple hypothesis:

H0 : θ1 = θ2 = · · · = 0, (2.14)

which is equivalent to testing H0 : φ = 0 under model (2.13).
Consider the parametric space F∗k = {θ :

∑∞
j=1 j2kθ2

j ≤ 1} where k ≥ 0.
When k is a positive integer, this set in the frequency domain is equivalent to the
Sobolev class of periodic functions {φ : ||φ(k)|| ≤ c} for a constant c. Then under
the parameter space F∗k , the maximum likelihood estimator is

θ̂j = (1 + ξ̂j2k)−1Yj ,

where ξ̂ is the Lagrange multiplier satisfying

∞∑

j=1

j2kθ̂2
j = 1. (2.15)

Under the null hypothesis (2.14), Lemma 2.1 of Fan, Zhang and Zhang (2001)
shows that

ξ̂ = n−2k/(2k+1)
{∫ ∞

0

y2k

(1 + y2k)2
dy

}2k/(2k+1)
{1 + op(1)}.

The maximum likelihood ratio statistic for the problem (2.14) is

λ∗n =
n

2

∞∑

j=1

(
1− j4kξ̂2

(1 + j2kξ̂)2

)
Y 2

j .

Fan, Zhang and Zhang (2001) proved that the maximum likelihood ratio test,
λ∗n, can test consistently alternatives with a rate no faster than n−(k+d)/(2k+1)

for any d > 1/8. Theorefore, when k > 1/4, by taking d sufficiently close to 1/8,
the test λ∗n cannot be optimal according to the formulations of Ingster (1993) for
hypothesis testing where an optimal test can detect alternatives converging to the
null with rate n−2k/(4k+1). This is due to the restrictive choice of the smoothing
parameter ξ̂ of the MLE, which has to satisfy (2.15). GLR tests remove this re-
strictive requirement and allow one to tune optimally the smoothing parameter.
By taking ξn = cn−4k/(4k+1) for some c > 0, the GLR test statistic defined by

λn =
n

2

∞∑

j=1

(
1− j4kξ2

n

(1 + j2kξn)2

)
Y 2

j ,

achieves the optimal rate of convergence for hypothesis testing (Theorem 3 of Fan,
Zhang and Zhang, 2001).

The GLR test allows one to use any reasonable nonparametric estimator to
construct the test. For the Sobolev class F∗k , another popular class of nonpara-
metric estimator is the truncation estimator (see Efromovich, 1999):

θ̂j = Yj , for j = 1, · · · , m, θ̂j = 0, for j > m,
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for a given m. Then, the twice log-likelihood ratio [between this nonparametric
estimator and the null estimator (2.14)] test statistic is the Neyman (1937) test

TN =
m∑

i=1

nY 2
i .

In this sense, the Neyman test can be regarded as a GLR test. Note that the
Neyman test is indeed the maximum likelihood ratio test for the problem (2.14)
against the alternative hypothesis with constraints

F = {θ : θm+1 = θm+2 = · · · = 0}.

With the choice of m = cn2/(4k+1), the Neyman test, which is a GLR test, can
also achieve the optimal rate n−2k/(4k+1). This shows the versatility of the GLR
tests.

2.3 Adaptive choice of smoothing parameter

There are many studies on the practical choice of the smoothing parameter m
for the Neyman test. See, for example, Eubank and Hart (1992), Eubank and
LaRiccia (1992), Inglot and Ledwina (1996), and Kallenberg and Ledwina (1997).
Fan (1996) introduced the following adaptive version of the Neyman test, called
the adaptive Neyman test,

T ∗AN = max
1≤m≤n

m∑

i=1

(nY 2
i − 1)/

√
2m, (2.16)

and normalized it as

TAN =
√

2 log log nT ∗AN − {2 log log n + 0.5 log log log n− 0.5 log(4π)}.

The adaptive choice of m is indeed m̂ that maximizes (2.16).
It was shown by Fan (1996) that under the null hypothesis (2.14),

P (TAN < x) → exp(− exp(−x)), as n →∞,

and by Fan and Huang (2001) and Fan, Zhang and Zhang (2001) that the adaptive
Neyman test can detect adaptively, in the sense of Spokoiny (1996), the alternatives
with the optimal rate

(n−2 log log n)k/(4k+1)

when the parameter space is Fk with unknown k.

3 Generalized likelihood ratio tests

Section 2 demonstrates convincingly that for testing against nonparametric al-
ternatives, it is necessary to have flexible and good nonparametric estimators for
computing the likelihood of generating the underlying data. We now describe a
general framework for the generalized likelihood ratio tests.
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3.1 GLR statistic

The basic idea of the GLR test can be transparently illustrated in terms of likeli-
hood as follows. Let f be the vector of functions and η be the parameters in non-
parametric or semiparametric models. Suppose that the logarithm of the likelihood
of a given data set is `(f , η). Given η, one has a good nonparametric estimator f̂η
of f . The nuisance parameters η can be estimated by the profile likelihood, that is,
to find η maximizing `(f̂η , η) with respect to η. This gives the maximum profile

likelihood `(f̂η̂ , η̂), which is not the maximum likelihood since f̂η is not an MLE.
Suppose we are interested in testing whether a parametric family fθ fits a given

set of data with sample size n. Then the null hypothesis is

H0 : f = fθ, θ ∈ Θ. (3.17)

As argued before, we use the nonparametric model f as the alternative. Let (θ̂0, η̂0)
be the maximum likelihood estimator under the above null model, maximizing the
likelihood function `(fθ, η). Then `(fθ̂0

, η̂0) is the maximum likelihood under the
null. The GLR test statistic is simply defined as

λn = `(f̂η̂ , η̂)− `(fθ̂0
, η̂0), (3.18)

which calibrates the difference of log-likelihoods of producing the given data under
the null and alternative models. Large values of λn suggest rejection of the null
hypothesis since the alternative family of models are far more likely to generate
the data.

In general, the GLR test does not have to use the true likelihood. Like para-
metric inference, nonparametric inference generally does not assume underlying
distributions are known. For example, in a parametric regression setting one can
estimate the unknown parameters by maximizing a negative loss function or quasi-
likelihood function Q(fθ, η). Then the GLR test statistic can be defined as

λn = Q(f̂η̂ , η̂)−Q(fθ̂0
, η̂0).

In addition, the approach is also applicable to the cases with part unknown func-
tions as nuisance parameters such as (1.8) or (1.9). The essence is to replace fθ̂0

by a nonparametric estimate. We omit details.
Note that the GLR test does not require the concise knowledge of the non-

parametric space. This relaxation extends the scope of applications and removes
the impractical assumptions such as constant C in (2.11) being known. Further,
the smoothing parameter can be selected to optimize the performance of the GLR
test.

3.2 What is Wilks’ phenomenon?

A nice feature of the GLR tests is that for a host of statistical problems, they share
Wilks’ phenomenon as the traditional maximum likelihood ratio tests in testing
problems with parametric nulls and alternatives. These are demonstrated in a
number of papers such as the univariate nonparametric regression models and the
varying-coefficient models in Fan, Zhang and Zhang (2001), the linear Gaussian
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process in Fan and Zhang (2004) for spectral density estimation, the varying-
coefficient partly linear models in Fan and Huang (2005), the additive models in
Fan and Jiang (2005), the diffusion models in Aı̈t-Sahalia, Fan and Peng (2005),
and the partly linear additive models in Jiang et al (2007). Corresponding results in
depth will be given in Section 4. These results indicate that the Wilks phenomena
exist in general.

By Wilks’ phenomenon, we mean that the asymptotic null distributions of
test statistics are independent of nuisance parameters and functions. Typically,
the asymptotic null distribution of the GLR statistic λn is nearly χ2 with large
degrees of freedom in the sense that

rλn
d' χ2

µn
(3.19)

for a sequence µn →∞ and a constant r, namely,

(2µn)−1/2(rλn − µn)
L→ N (0, 1),

where µn and r are independent of nuisance parameters/functions. They may
depend on the methods of nonparametric estimation and smoothing parameters.
Therefore, the asymptotic null distribution is independent of the nuisance pa-
rameters/functions. With this Wilks phenomenon, the advantages of the classical
likelihood ratio tests are fully inherited: one makes a statistical decision by com-
paring likelihoods of generating the given data under two competing classes of
models and the critical value can easily be found based on the known null distri-
bution N (µn, 2µn) or χ2

µn
. Another important consequence of the results is that

one does not have to derive theoretically the constant µn and r in order to use the
GLR tests, since as long as there is such a Wilks type of phenomenon, one can
simply simulate the null distributions by setting nuisance parameters under the
null hypothesis at reasonable values or estimates.

The above Wilks phenomenon is not a coincidence for the nonparametric
model. In the exponential family of models with growing number of parameters,
Portnoy (1988) showed the Wilks type of result in the same sense as (3.19), and
Murphy (1993) revealed a similar type of result for Cox’s proportional hazards
model using a simple sieve method (piecewise constant approximation to a smooth
function). While there is no general theory on the GLR tests, various authors have
demonstrated that Wilks’ phenomenon holds for many nonparametric models (see
Section 4).

In order to better understand Wilks’ phenomenon of GLR tests, we illustrate
it numerically using a variant of the bivariate additive model from Fan and Jiang
(2005).

A random sample {X1i, X2i, Yi}n
i=1 is generated from the bivariate model

Y = m1(X1) + m2(X2) + ε, (3.20)

where m1(X1) = 1 − 12X2
1 + 5X3

1 , m2(X2) = sin(πX2), and the error ε is dis-
tributed as N (0, 1). The covariates are generated by the following transformation
to create correlation:

(
X1

X2

)
=

(
1 0.4

0.4 1

) (
U1

U2

)
,
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Fig. 3 Results for Example 1. Estimated densities for the GLR statistics among 1000 simula-
tions. Top Panel: with fixed h2 = h2,opt, but different bandwidths for h1 ( solid – h1 = 2

3
h1,opt;

dashed – h1 = h1,opt; dash-dotted – h1 = 3
2
h1,opt); Middle Panel: with different nuisance

functions and optimal bandwidths hd = hd,opt ( solid – β = −1.5; dashed – β = 0; dotted –
β = 1.5); Bottom Panel: estimated densities for the GLR statistics under different errors (solid
– normal; dashed – t(5) ; dotted – χ2(5); dash-dotted – χ2(10));

where Ui
iid∼ U(−0.5, 0.5).
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Consider the testing problem:

H0 : m2(x2) = 0 versus H1 : m2(x2) 6= 0.

Since m1(·) is an unknown nuisance function, this testing problem is actually
a nonparametric null hypothesis against a nonparametric alternative hypothesis.
Frequently, the backfitting algorithm with a smoothing method (Hastie and Tib-
shirani, 1990) is employed to estimate the additive components in (3.20). We here
employ the backfitting algorithm with the local linear smoother using bandwidth
h1 for estimating m1 and h2 for estimating m2 to construct a GLR statistic. See
Section 4.5 for additional details.

To demonstrate Wilks’ phenomenon for the GLR test, we use (i) three levels of
bandwidth h1 = 2

3h1,opt, h1,opt, or 3
2h1,opt with h2 fixed at its optimal value h2,opt,

where hd,opt is the optimal bandwidth for the smoother on md(·) (see Opsomer,
2000); and (ii) three levels of nuisance function m1(X1):

m1,β(X1) =

[
1 + β

√
var(0.5− 6X2

1 + 3X3
1 )

]
(0.5− 6X2

1 + 3X3
1 ),

where β = −1.5, 0, 1.5. For the GLR test, we drew 1000 samples of 200 obser-
vations. Based on the 1000 samples, we obtained 1000 GLR test statistics. Their
distribution is obtained via a kernel estimate with a rule of thumb bandwidth:
h = 1.06sn−0.2, where s is the standard deviation of the normalized GLR statis-
tics.

Figure 3 shows the estimated densities of the normalized GLR statistics, rλn,
where r is the normalization constant given in Section 4.5. As expected, they look
like densities from χ2-distributions. The top panel of Figure 3 shows that the
null distributions follow χ2-distributions over a wide range of bandwidth h1. Note
that different bandwidths h1 gives different complexity of modeling the nuisance
function m1 and the results show that the null distributions are nearly independent
of the different model complexity of the nuisance function m1. This demonstrates
numerically Wilks’ phenomenon. Note that the degree of freedom depends on
bandwidth h2 but not on h1, which reflects the difference of the complexity of m2

under the null model and the alternative model.
The middle panel demonstrates also the Wilks type of phenomenon from a

different angle: for the three very different choices of nuisance functions, the null
distributions are nearly the same.

To investigate the influence of different noise distributions on the GLR tests,
we now consider model (3.20) with different error distributions of ε. In addition
to the standard normal distribution, the standardized t(5) and the standardized
χ2(5) and χ2(10) are also used to assess the stability of the null distribution
of the GLR test for different error distributions. The bottom panel of Figure 3
reports the estimated densities of the normalized GLR statistics under the above
four different error distributions. It shows that the null distributions of the tests
are approximately the same for different error distributions, which again endorses
Wilks’ phenomenon.

3.3 Choice of smoothing parameter

The GLR statistic involves at least a parameter h in smoothing the function f .
For each given smoothing parameter h, the GLR statistic λn(h) is a test statistic.
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This forms a family of test statistics indexed by h. In general, a larger choice of
bandwidth is more powerful for testing smoother alternatives, and a smaller choice
of bandwidth is more powerful for testing less smooth alternatives. Questions arise
about how to choose a bandwidth for nonparametric testing and what criteria
should be used.

Assume that the Wilks type of result (3.19) holds with degree of freedom
µn(h). Inspired by the adaptive Neyman test (2.16) of Fan (1996), which achieves
the adaptive optimal rate, an adaptive choice of bandwidth is to maximize the
normalized test statistic

ĥ = arg max
h∈[n−a,n−b]

{rλn(h)− µn(h)}/
√

2µn(h),

for some a, b > 0. This results in the following multiscale GLR test statistic in
Fan, Zhang and Zhang (2001),

max
h∈[n−a,n−b]

{rλn(h)− µn(h)}/
√

2µn(h). (3.21)

Like the adaptive optimality of the adaptive Neyman test, it is expected that the
multi-scale GLR test possesses a similar optimality property. Indeed, Horowitz and
Spokoiny (2001, 2002) demonstrated this kind of property for two specific models.

In practical implementations, one needs only to find the maximum in the mul-
tiscale GLR test (3.21) over a grid of bandwidths. Zhang (2003a) calculated the
correlation between λn(h) and λn(ch) for some inflation factor c. The correlation
is quite large when c = 1.3. Thus, a simple implementation is to choose a grid
of points h = h01.5j for j = −1, 0, 1, representing “small”, “right”, and “large”
bandwidths. A natural choice of h0 is the optimal bandwidth in the function esti-
mation.

Another choice of bandwidth is to choose an optimal bandwidth to maximize
the power of the GLR test over some specific family of alternative models. This
problem has not been seriously explored in the literature. For practical implemen-
tations, the bandwidth used for curve fitting provides a reasonable starting point
for the GLR tests, although it may not optimize the power. In general, there is no
big difference in rates for the optimal bandwidths for estimation and testing. In
fact, the optimal bandwidth for the local linear estimation of a univariate f is of or-
der O(n−1/5), and that for the GLR test is of order O(n−2/9) = O(n−1/5×n−1/45).
Therefore, with the estimated optimal bandwidth ĥ for estimation, one can employ
the ad hoc bandwidth, ĥ× n−1/45, for the GLR test.

3.4 Bias correction

When fθ in the null hypothesis in (3.17) is not linear/polynomial, a local linear/polyno-
mial fit will result in a biased estimate under the null hypothesis. Similarly, when
the function fθ is not a spline function, the spline based smoothing results in the
bias of the estimate under the null hypothesis. These affect the precision of null
distribution of the GLR statistic and hence the reliability of statistical conclusion.

The aforementioned bias problem can be significantly attenuated as follows.
Reparameterize the unknown functions as f∗ = f − fθ̂0

. Then the test problem
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(3.17) becomes testing

H0 : f∗ = 0 versus f∗ 6= 0

with the likelihood or more generally the quasi-likelihood function Q∗(f∗, η) =
Q(f∗ + fθ̂0

, η). Applying the GLR test to this reparameterized problem with the
new quasi-likelihood function Q∗(f∗, η), one can eliminate the bias problem in
the null distribution, since any reasonable nonparametric estimator will not have
biases when the true function is zero. Let (̂f

∗
η̂ , η̂) be a profile estimator based on

Q∗(f∗, η). Then the bias-corrected version of the GLR test is

T ∗ = Q∗(̂f
∗
η̂ , η̂)−Q∗(0, η̂0) = Q(̂f

∗
η̂ + fθ̂0

, η̂)−Q(fθ̂0
, η̂0)

The above idea is inspired by the prewhitening technique of Press and Tukey
(1956) in spectral density estimation and the technique that was employed by
Härdle and Mammen (1993) for univariate nonparametric testing. Indeed, for the
univariate regression setting, our general method coincides with the test in Härdle
and Mammen (1993). Our method is also related to the nonparametric estimator
that uses a parametric start of Hjort and Glad (1995) and Glad (1998). Recently,
Fan and Zhang (2004) and Fan and Jiang (2005) advocated the use of the bias
reduction method in the study of testing problems for spectral density and additive
models, respectively, when the null hypothesis is a parametric family.

3.5 Bootstrap

To implement a GLR test, we need to obtain the null distribution of the test statis-
tic. Theoretically the asymptotic null distribution in (3.19) can be used in deter-
mining the p-value of a GLR statistic. However, this needs to derive its asymptotic
null distribution. In addition, the asymptotic distribution does not necessarily give
a good approximation for finite sample sizes. For example, from the asymptotic
point of view, the χ2

µn+100-distribution and the χ2
µn

-distribution are approximately
the same since µn →∞, but for moderate µn, they are quite different. This means
that a second order term is needed. Assume that the appropriate degree of freedom
is µn + c for a constant c. Then when the bandwidth is large (h → ∞), the local
linear fit becomes a global linear fit, and the GLR test becomes the parametric
maximum likelihood ratio test. Hence, λn → χ2

2p in distribution according to the
classic Wilks type of result, where 2p denotes the difference of the degree of free-
dom difference under the null and alternative hypothesis. It is reasonable to expect
that the degree of freedom µn + c → 2p as h →∞. Since typically µn depends on
h in such a way that µn → 0 as h → ∞, we have c = 2p. This is the calibration
idea in Zhang (2003b). However, it also may not lead to a good approximation to
the null distribution of λn, since in most of cases the bandwidth h is not so big
and the above calibration method may fail.

Thanks to Wilks’ phenomenon for the GLR test statistic, the asymptotic null
distribution is independent of nuisance parameters/functions under the null hy-
pothesis. For a finite sample, this means that the null distribution does not sensi-
tively depend on the nuisance parameters/functions. Therefore, the null distribu-
tion can be approximated by simulations, via fixing nuisance parameters/functions
at their reasonable estimates. Since the resampling approximation is generally wild
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bootstrap, the resulting estimator of the null distribution is consistent. For dif-
ferent settings, some bootstrap approximations to the null distributions of GLR
statistics have been studied. For details, see Section 4.

An additional advantage of the bootstrap method is that one does not need
to derive the asymptotic null distribution first. As long as Wilks’ phenomenon is
believed to be true, it provides a consistent estimate of the null distribution.

3.6 Power

In various settings, it has been shown that the GLR tests are asymptotically
optimal in the sense that they can detect alternatives with optimal rates for non-
parametric hypothesis testing according to the formulation of Ingster (1993) and
Lepski and Spokoiny (1999). The optimality here is not the same as the uniformly
most powerful (UMP) test in the classic sense. In fact, for problems as complex
as ours, no UMP test exists.

For the testing problem in (3.17), one may consider the following contiguous
alternatives

H1n : f = fθ + n−γgn,

where γ > 0 and gn is an unspecified vector sequence of smooth functions in a
large class of functions. The power of the GLR test under the above alternative
has been investigated by several authors for different models, see for example Fan,
Zhang and Zhang (2001) and Fan and Jiang (2005) among others. In general, it
can be shown that when the local linear smoother is employed for estimating f and
the bandwidth is of order n−2/9, the GLR test can detect alternatives with the
rate γ = 4/9 which is optimal according to Ingster (1993). Thus, the generalized
likelihood method is not only intuitive to use, but also powerful to apply. This
lends further support for the use of the generalized likelihood method.

4 Wilks’ phenomena

In the last section, we introduced a general framework of the GLR test and its
various implementation. The approach is general and can be used in many non-
parametric testing problems. In the following, we present some established Wilks
type of results for various models. This provides a stark evidence for the versatility
of the results, which in terms supports the methodology.

4.1 Nonparametric regression

Consider the following nonparametric model

Yi = m(Xi) + εi, i = 1 . . . , n, (4.22)

where εi are iid random variables such that E(εi) = 0 and var(εi) = σ2. The uni-
variate nonparametric regression model (4.22) is one of the simplest nonparametric
models for understanding nonparametric techniques. It has been exhaustedly stud-
ied in the literature. Enormous papers have been devoted to the estimation and
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inference of the univariate regression model and it is impossible to mention all of
the related references. See the references in the books mentioned in the second
paragraph of the introduction for further details.

We now apply the GLR test to the testing problem

H0 : m(x) = α0 + α1x versus H1 : m(x) 6= α0 + α1x,

where α0 and α1 are unknown parameters. Using the local linear fit with a kernel
K and a bandwidth h, one can obtain the estimator m̂h(·) of the unknown function
m(·) under the full model. If the error is normal, then the log-likelihood function
`(m, σ) is given by (2.12). Substituting the nonparametric estimator m̂h(·) into
the likelihood function, we obtain the likelihood of generating the collected sample
under the nonparametric model as

`(m̂h, σ) = −n log(
√

2πσ)− 1

2σ2
RSS1, (4.23)

where RSS1 =
∑n

i=1(Yi − m̂h(Xi))
2. Maximizing the above likelihood with re-

spect to σ2 yields σ̂2 = n−1RSS1. Substituting the estimate into (4.23) gives the
likelihood,

`(m̂h, σ̂) = −n

2
log(RSS1)− n

2
[1 + log(2π/n)].

Denote by (â0, α̂1) the least squares estimator of (α0, α1), and define RSS0 =∑n
i=1(Yi − α̂0 − α̂1Xi)

2. Using a similar argument as above, we get the likelihood
under H0 as

`(m̂0, σ̂0) = −n

2
log(RSS0)− n

2
[1 + log(2π/n)].

Thus, the GLR statistic in (3.18) for the above testing problem is

λn,1 = `(m̂h, σ̂)− `(m̂0, σ̂0) =
n

2
log(RSS0/RSS1). (4.24)

Under the null hypothesis and certain conditions, if nh3/2 → ∞, the Wilks
type of result holds (Fan, Zhang and Zhang, 2001, Section 4.1)

rKλn,1
a∼ χ2

µn
, (4.25)

where µn = rKcK |Ω|/h with |Ω| denoting the Lebesgue’s measure of the support
of X, rK = cK/dK with cK = K(0)− 0.5‖K‖2 and dK = ‖K − 0.5K ∗K‖2.

The above result demonstrates that the GLR statistic obeys Wilks’ phenomenon
in this simple setup — the asymptotic null distribution is independent of any nui-
sance parameters, such as σ2 and the density function of the covariate X. The
normalization factor is rK rather than 2 in the parametric maximum likelihood
ratio test. The degrees of freedom depend on |Ω|/h, the difference of the effec-
tive number of parameters used under the null and alternative hypotheses. This
can be understood as follows. Suppose that we partition the support of X into
equispaced intervals, each with length h. This results in |Ω|/h intervals. Hence,
the difference of the number of parameters between the null and the alternative
is approximately proportional to |Ω/h|. Since the local linear smoother uses over-
lapping intervals, the effect number of parameters is slightly different from |Ω/h|.
The constant factor rKcK reflects this difference.

Based on Wilks’ phenomenon, the null distribution of the GLR statistic can
be estimated by using the following conditional bootstrap method:



19

(1) Obtain the parametric estimates α̂0 and α̂1 and nonparametric estimate m̂(x)
under both the null and the alternative models. Fix the bandwidth at its
estimated value ĥ in the estimation stage.

(2) Compute the GLR test statistic λn,1 and the residuals ε̂i from the nonpara-
metric model (for a given data set, we are not certain whether the null model
holds, so we use the fits from the larger alternative model, which is consistent
under both classes of models).

(3) For each Xi, draw a bootstrap residual ε̂∗i from the centered empirical dis-
tribution of ε̂i and compute Y ∗i = α̂0 + α̂1Xi + ε̂∗i . This forms a conditional
bootstrap sample {Xi, Y

∗
i }n

i=1.
(4) Use the above bootstrap sample to construct the GLR statistic λ∗n,1.
(5) Repeat Steps 3 and 4 B times (say B=1,000) and obtain B values of the statistic

λ∗n,1.
(6) Use the B values in Step 5 to determine the quantiles of the test statistic under

H0. The p-value is simply the percentage of λ∗n,1 values greater than λn,1.

The above resampling approximation method is the wild bootstrap. Using the
same argument as in Fan and Jiang (2005), one can establish the consistency of
the above conditional bootstrap estimation.

Consider now more generally the testing problem

H0 : m(x) = m(x; θ) versus H1 : m(x) 6= m(x; θ). (4.26)

When m(x; θ) is non-linear, the local linear estimate is biased. The result (4.25)
does not hold unless the bandwidth h is small enough (e.g., h = o(n−2/9); see
Fan, Zhang and Zhang, 2001). The bias correction method in §3.4 is to apply the
local linear smoother to the data {(Xi, Yi −m(Xi; θ̂)), i = 1, · · · , n} to obtain the
estimator m̂∗

h(·) using a kernel K with the bandwidth h. When the null hypothesis
in (4.26) holds, the conditional mean function of Yi−m(Xi; θ̂) given Xi is approx-
imately zero and hence the local linear estimator does not introduce much biases.
With the transformation outlined in §3.4, the log-likelihoods under the null and
alternative models are the same as before, except RSS0 and RSS1 now replaced
by

RSS∗0 =
n∑

i=1

(Yi −m(Xi; θ̂))
2, RSS∗1 =

n∑

i=1

(Yi −m(Xi; θ̂)− m̂∗
h(Xi))

2.

The GLR statistic with bias correction now becomes (see also (4.24)) λ∗n,1

= n
2 log(RSS∗0/RSS∗1). The result (4.25) continues to hold for the bias-corrected

GLR statistic λ∗n,1. The procedure is in the same spirit as that used in Härdle and
Mammen (1993).

4.2 Varying-coefficient models

The varying-coefficient models arise in many statistical problems. They have been
successfully applied to nonlinear time series models (Haggan and Ozaki, 1981;
Chen and Tsay, 1993; Fan, Yao and Cai, 2003; Fan and Yao, 2003), the multi-
dimensional nonparametric regression (Cleveland, Grosse and Shyu, 1991; Hastie
and Tibshirani, 1993; Fan and Zhang, 1999) and generalized linear models (Kauer-
mann and Tutz, 1999; Cai, Fan and Li, 2000). They have also been widely used in
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the analysis of longitudinal and functional data (Brumback and Rice, 1998; Car-
rol, Ruppert and Welsh, 1998; Hoover et al., 1998; Huang, Wu and Zhou, 2002;
Fan and Li, 2004) and financial modeling (Härdle, Herwartz and Spokoiny, 2003;
Mercurio and Spokoiny, 2004).

In the multiple nonparametric regression, the varying-coefficient model as-
sumes

Y = a1(U)X1 + · · ·+ ap(U)Xp + ε,

where ε is independent of covariates (U, X1, . . . , Xp) and has mean zero and vari-
ance σ2. It provides a useful tool for capturing possible nonlinear interactions
among covariates X and U and allows us to examine the extent to which the re-
gression coefficients changes over the level of U . It effectively avoids the issue of
the curse of dimensionality for multi-dimensional nonparametric regression.

Suppose we have a random sample {(Ui, Xi1, . . . , Xip, Yi)}n
i=1 from the above

model. Let Xi = (Xi1, . . . , Xip)T and A(U) = (a1(U), . . . , ap(U))T . Then the
model can be rewritten as

Yi = A(Ui)
T Xi + εi. (4.27)

The unknown coefficient functions aj(·) can be estimated by using local linear
regression techniques. For any given u0 and u in a neighbourhood of u0, it follows
from the Taylor expansion that

aj(u) ≈ aj(u0) + a′j(u0)(u− u0) ≡ aj + bj(u− u0).

Using the data with Ui around u0, one can estimate the coefficient functions and
their derivatives by the solutions to the following optimization problem:

min
aj ,bj

n∑

i=1

[
Yi −

p∑

j=1

{aj + bj(Ui − u0)}Xij

]2
Kh(Ui − u0), (4.28)

where Kh(·) = h−1K(·/h), K is a kernel function, and h is a bandwidth. Let
{(âj , b̂j)} be the resulting solutions. Then the local linear regression estimator is
simply âj(u0) = âj , j = 1, . . . , n. This yields a nonparametric estimator under the
full model (4.27) and the residual sum of squares under the nonparametric model

RSS1 =
n∑

i=1

(Yi − Â(Ui)
T Xi)

2,

where Â(U) = (â1(U), . . . âp(U))T .
In fitting the varying coefficient model (4.27), one asks naturally if the coeffi-

cients in A(u) vary really with u and if certain covariates in X are related to the
response Y . The former null hypothesis is parametric: A(u) = β, while the latter
null hypothesis is nonparametric such as

H0 : a1(·) = · · · = ad(·) = 0, (4.29)

in which the covariates X1, · · · , Xd are not related to the regression function.
Let us consider testing the following parametric null hypothesis:

H0 : A(u) = A(u, β),
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which is a generalization of null hypothesis A(u) = β. Following the framework in
§3.1 which yields λn,1, we obtain the GLR test statistic

λn,2 =
n

2
log(RSS0/RSS1),

where RSS0 =
∑n

i=1(Yi −A(Ui, β̂)T Xi)
2 with β̂ being any root-n consistent esti-

mator of β under H0.
As unveiled in Fan, Zhang and Zhang (2001), under certain conditions, if

A(u, β) is linear in u or nh9/2 → 0, then as nh3/2 →∞,

rKλn,2
d' χ2

µn
, (4.30)

where µn = p rKcK |Ω|/h with |Ω| being the length of the support of U , and rK

and cK defined in (4.25). This Wilks’ type of result allows one again to approximate
the null distribution of λn,2 using a conditional bootstrap method similar to that
for λn,1.

Now, let us consider the nonparametric null hypothesis (4.29). Under the null
hypothesis, (4.27) is still a varying coefficient model: Y = ad+1(U)Xd+1 + · · · +
ap(U)Xp + ε. Let â0

d+1(·), · · · , â0
d+1(·) be the local linear fit using the same kernel

K and the same bandwidth h as those in fitting the full model (4.27). Denote by
RSS∗0 the resulting sum of the squares, defined similarly to RSS1. Then, following
the same derivation as before, the GLR test statistic for (4.29) is

λn,3 =
n

2
log(RSS∗0/RSS1).

For this nonparametric null hypothesis against nonparametric alternative hy-
pothesis, Fan, Zhang and Zhang (2001) also demonstrated Wilks’s phenomenon
(Theorem 6 of the paper). If h → 0 and nh3/2 →∞, then

rKλn,3
d' χ2

d rKcK |Ω|/h.

Comparing it with (4.30), the degrees of freedom here are similar to the classical
Wilks Theorem, in which each nonparametric function in H1 is regarded as a
parametric function with the number of parameters rKcK |Ω|/h. This agrees with
our intuition on the model complexity in nonparametric modeling. We would like to
stress that the same kernel K and the same bandwidth h have to be used for fitting
the null model and alternative model in order to have the Wilks phenomenon. In
this way, the nuisance functions md+1(·), · · · , mp(·) are modeled with the same
complexity under both the null and the alternative hypotheses, as in the parametric
models.

We would also like to note that even though we use the normal error to derive
the GLR statistic. The above results do not depend on the normality assumption
of ε. In this case, one can regard the normal likelihood as the quasi-likelihood.
Furthermore, Fan, Zhang and Zhang (2001) showed that the GLR test achieves
the optimal rate of convergence for hypothesis testing, as formulated in Ingster
(1993) and Lepski and Spokoiny (1999).

Note that when p = 1 and X1 ≡ 1, model (4.27) becomes the nonparametric
regression model. Therefore, the above remarks are applicable to the univariate
nonparametric model discussed in §4.1.
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4.3 Generalized varying-coefficient models

The generalized varying-coefficient models expand the scope of the applications
from the normal-like of distributions to the exponential family of distributions,
including the Binomial and Poisson distributions (Cai, Fan and Li, 2000). For
example, one may wish to examine the extent to which the regression coefficients
in the logistic regression vary with a covariate such as age or other exposure
variables. The problem can be better handled by generalized varying-coefficient
models, which enlarges the scope of applicability of the generalized linear models
(McCullough and Nelder, 1989) by allowing the coefficients to depend on certain
covariates.

Cai, Fan and Li (2000) proposed a local likelihood estimator to fit the non-
parametric coefficients. Unlike the varying-coefficient model (4.27), the estimator
of coefficient functions is implicit for generalized varying-coefficient models. Nev-
ertheless, Fan, Zhang and Zhang (2001, Theorem 10) were able to demonstrate
that the Wilks phenomenon for the GLR test continues to hold.

4.4 Varying-coefficient partially linear models

The GLR test has been successfully applied to various nonparametric inferences in
Fan, Zhang and Zhang (2001). A natural question is if the approach is applicable
to the semiparametric models with the focus on the hypotheses on parameter com-
ponents instead of nonparametric functions. To address this issue, Fan and Huang
(2005) appealed to the varying-coefficient partially linear models to illustrate the
applicability of the GLR test to semiparametric inferences.

The varying-coefficient partially linear model admits the following form

Y = αT (U)X + βT Z + ε, (4.31)

where εi is independent of (U,X,Z) and satisfies that E(ε) = 0 and var(ε) = σ2,
β = (β1, . . . , βq)

T is a q-dimensional vector of unknown parameters, and α(·) =
(α1(·), . . . , αp(·))T is a p-dimensional vector of unknown coefficient functions. It
allows one to explore the partial nonlinear interactions with U and maintain the
interpretability and explanatory power of parametric regression. The model has
been studied by Zhang, Lee and Song (2002) and Li et al. (2002) in regression
setting and by Lin and Carroll (2001a,b), Lin and Ying (2001), and Fan and
Li (2004) for the analysis of longitudinal data. It is an extension of the varying
coefficient model in §4.2 and a generalization of the partial linear model (see
Härdle, Liang and Gao, 2000, and references therein).

There are many estimation methods for the above model. A semiparametrically
efficient estimation is the profile least-squares approach in Fan and Huang (2005),
which we now describe.

Assume that we have a random sample of size n, {(Uk, Xk1, . . . , Xkp, Zk1 . . . , Zkq,
Yk), k = 1, . . . , n}, from model (4.31). For any given β, we can rewrite model (4.31)
as

Y ∗k =

p∑

i=1

αi(Uk)Xki + εk, k = 1, . . . , n,
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where Y ∗k = Yk −
∑q

j=1 βjZkj . This is the varying-coefficient model considered
in the previous section. Then the coefficient functions αi can be estimated using
(4.28) with Yi replaced by Y ∗i . After obtaining the estimate of α(·), say α̂(·; β),
we substitute α̂ into (4.31) and get the following synthetic regression problem:

Y = α̂T (U ; β)X + βT Z + ε.

Using the least squares to solve the above problem leads to the profile least-squares
estimator β̂ of β. The estimate of α(·) is simply α̂(·; β̂). For fast implementation,
Fan and Huang (2005) used an iterative procedure to compute the profile estimator
β̂.

We now consider testing significance of some of the parametric components in
model (4.31), which leads to testing H0 : β1 = · · · = βl = 0, for l ≤ q. More
generally, one may consider the linear hypothesis

H0 : Aβ = 0 versus H1 : Aβ 6= 0,

where A is a given l×q full rank matrix. This is a semiparametric hypothesis versus
another semiparametric hypothesis testing problem, and the conventional maxi-
mum likelihood ratio test cannot be applied, because the nonparametric MLEs for
functions α(·) do not exist. A natural alternative is to relax the requirement on
the estimate of function α(·) and use any reasonable nonparametric estimates to
construct the GLR test in (3.18).

Suppose the error ε
d
= N (0, σ2). Then under model (4.31), the log-likelihood

function is

`(α, β, σ) = −n log(
√

2πσ)− RSS1/(2σ2),

where RSS1 =
∑n

i=1[Yi−α(Ui)
T Xi−βT Zi]

2. Substituting α̂(·; β) into the above
likelihood function, we get

`(α̂(·; β), β, σ) = −n log(
√

2πσ)− RSS(β)/(2σ2), (4.32)

where RSS(β) =
∑n

i=1[Yi−α̂(Ui; β)T Xi−βT Zi]
2. Maximizing (4.32) with respect

to β and σ produces the profile likelihood estimators β̂ and σ̂2 = n−1RSS1, where
RSS1 = RSS(β̂) is the residual sum of squares. Substituting these estimators into
(4.32) yields the generalized likelihood under H1

`(H1) = −n

2
log(2π/n)− n

2
log(RSS1)− n

2
.

Similarly, maximizing (4.32) subject to constraint in H0 yields the profile likelihood
estimator for the null model. Denote by β̂0 and α̂0 the resulting estimators of β
and α, respectively. Then the generalized likelihood under H0 is

`(H0) = −n

2
log(2π/n)− n

2
log(RSS0)− n

2
,

where RSS0 = RSS(β̂0). According to the definition in (3.18), the GLR statistic
is

λn,4 = `(H1)− `(H0) =
n

2
log

RSS0

RSS1
.
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Under certain conditions, Fan and Huang (2005) proved that the asymptotic
null distribution of λn,4 is the Chi-square distribution with l degrees of freedom.
This shows that the asymptotic null distribution is independent of the design
density and the nuisance parameters σ2, β, and α(·). Hence, the critical value
can be computed either by the asymptotic distribution or by simulations with
nuisance parameters’ values taken to be reasonable estimates under H0. It is also
demonstrated that one can proceed to the likelihood ratio test as if the model were
parametric.

In addition to the above parametric testing problem, one may also be interested
in inference on nonparametric components. For example, consider the hypothesis
testing problem

H0 : α1(·) = α1, . . . , αp(·) = αp,

where the functions αk (k = 1, . . . , p) are unknown parameters. Since the para-
metric component can be estimated at a root-n rate and regarded as known in
nonparametric inference, the techniques and the results in the last section can be
extended to the current model. In fact, let α̃1, . . . , α̃p and β̃ be the least-squares
estimators under H0, then the GLR statistic is defined as

λn,5 =
n

2
log

RSS(H0)

RSS(H1)
,

where RSS(H0) =
∑n

i=1[Yi − ∑p
j=1 α̃jXij − β̃

T
Zi]

2, and RSS(H1) = RSS1 is
the same as that for λn,4. As revealed in Fan and Huang (2005), under certain
conditions, the Wilks type of result in (4.30) still holds for λn,5.

It is worthwhile to note again that the normality assumption is used merely to
derive the GLR statistic. It is not needed for deriving the asymptotic properties.
In other words, the GLR statistic can be regarded as that based on the normal
quasi-likelihood when the error distribution is not normal.

4.5 Additive models

Additive models are an important family of structured multivariate nonparametric
models. They model a random sample {(Yi,Xi)}n

i=1 by

Yi = α +
D∑

d=1

md(Xdi) + εi, i = 1, · · · , n, (4.33)

where {εi} is a sequence of independent and identically distributed random vari-
ables with mean zero and finite variance σ2. For identifiability of md(xd), it is
usually assumed that E[md(Xdi)] = 0 for all d.

The additive models, proposed by Friedman and Stuetzle (1981) and Hastie and
Tibshirani (1990), have been widely used in multivariate nonparametric modeling.
As all unknown functions are one-dimensional, the difficulty associated with the
so-called “curse of dimensionality” is substantially reduced (see Stone (1985) and
Hastie and Tibshirani (1990)). In fact, Fan, Härdle and Mammen (1998) showed
that an additive component can be estimated as well as in the case where the rest
of the components are known. This phenomenon was also revealed in Horowitz
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and Mammen (2004) and Jiang and Li (2007) using two-step estimation methods
based on the least squares and the M-estimation, respectively. Various methods
for estimating the additive functions have been proposed, including the marginal
integration estimation method, the backfitting algorithm, the estimating equation
method, Fourier, spline, and wavelet approaches, among others. Some additional
references can be found in Fan and Jiang (2005) and Jiang et al (2007).

The backfitting algorithm is frequently used to estimate the unknown com-
ponents in model (4.33) due to its intuitive and mathematical appeal and the
availability of software. See, for example, Buja, Hastie and Tibshirani (1989) and
Opsomer and Ruppert (1998). As the backfitting algorithm is frequently employed,
determined efforts were made by Fan and Jiang (2005) to study the GLR test for
the following hypothesis testing problem using the backfitting algorithm with the
local polynomial smoothing technique to estimate nonparametric components:

H0 : mD−d0(xD−d0) = · · · = mD(xD) = 0

versus H1 : mD−d0(xD−d0) 6= 0, · · · , or mD(xD) 6= 0, (4.34)

for some integer d0 ∈ {0, 1, . . . , D− 1}. This amounts to testing the significance of
the variables XD−d0 , · · · , XD in presence of nuisance functions m1(·), · · · , mD−d0−1(·),
which is a nonparametric null hypothesis against a nonparametric alternative hy-
pothesis.

Since the distribution of εi is unknown, we do not have a known likelihood
function. Pretending that error distribution is normal, N (0, σ2), the log-likelihood
under model (4.33) is

−n

2
log(2πσ2)− 1

2σ2

n∑

k=1

(
Yk − α−

D∑

d=1

md(Xdk)
)2

.

The unknown constant α can be estimated by the sample mean Ȳ of Yi. Under the
alternative model H1, based on the backfitting algorithm using the local polyno-
mial smoothing technique as a building block, the additive components md can be
estimated. Denote by m̂d the resulting estimator of md. Replacing the intercept α
and the unknown function md(·) by α̂ and m̂d(·) respectively leads to

−n

2
log(2πσ2)− 1

2σ2
RSS1,

where RSS1 =
∑n

k=1(Yk − α̂−∑D
d=1 m̂d(Xdk))2. Maximizing over the parameter

σ2, we obtain a likelihood of the alternative model:

−n

2
log(2π/n)− n

2
log(RSS1)− n

2
.

Therefore, up to a constant term, the log-likelihood of model (4.33) is taken as
`(H1)
= −n

2 log(RSS1). Similarly, the log-likelihood for H0 can be taken as `(H0)

= −n
2 log(RSS0), with RSS0 =

∑n
k=1(Yk − α̂ − ∑D−1

d=1 m̃d(Xdk))2, and m̃d(xd)
the estimator of md(xd) under H0, using the same backfitting algorithm. Then
the GLR test statistic in (3.18) is

λn,6 = `(H1)− `(H0) =
n

2
log

RSS0

RSS1
,
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which compares the likelihood of the nearly best fitting in the alternative models
with that under the null models if the error is normal.

Let hd be the bandwidth in smoothing md using a local linear fit and K be the
kernel function. Let |Ωd| be the Lebesgue measure of the support of the density
fd(·) of the covariate Xd. Put

µn = cK

D∑

d=D−d0

|Ωd|
hd

, σ2
n = dK

D∑

d=D−d0

|Ωd|
hd

, rK = µn/σ2
n,

where the constant cK and dK are the same as in (4.25). Under regularity condi-
tions, Fan and Jiang (2005) established that

rKλn,6
d' χ2

rKµn
. (4.35)

Indeed, they showed a more general result with different order of local polynomial
fit pd for the d-th component. The result (4.35) does not depend also on the
normality assumption, which motivates the procedure.

The above result shows that Wilk phenomenon continues to hold. It also holds
for testing the parametric null hypothesis. In this case, the bias correction method
can be applied. See Fan and Jiang (2005). The asymptotic null distribution of-
fers a method for determining approximately the p-value of the GLR test, even
though one does not know how accurate it is. Fortunately, the Wilks phenomenon
permits us to simulate the null distribution of the GLR test over a large range of
bandwidths with nuisance functions/parameters fixed at their estimated values.
See Fan and Jiang (2005) and §3.5 for the conditional bootstrap method.

It is worthwhile to note that unlike the degrees of freedom in (4.30) for the
varying-coefficient models, the degrees of freedom for (4.35) are not additive,
though the parameters µn and dn are. This is another difference from the classical
likelihood ratio test.

In (4.34) one may check the significance of those components or if a family of
parametric models (e.g. multiple linear regression models) fit the data. These two
problems can be generalized as the following testing problems, validating if the
md’s have parametric forms (for d = D − d0, . . . , D):

H ′
0 : mD−d0(xD−d0) ∈MΘ,D−d0 , . . . , mD(xD) ∈MΘ,D versus

H ′
1 : mD−d0(xD−d0) /∈MΘ,D−d0 , . . . , or mD(xD) /∈MΘ,D

where MΘ,d = {mθ(xd), θ ∈ Θd} (for d = D − d0, . . . , D) are sets of functions of
parametric forms, and the parameter space Θd contains the true parameter value
θ0,d. In particular, if d0 = D − 1, the problem is validating if a parametric family
fits adequately the data. As shown in Jiang et al (2007), the Wilks type of result
in (4.35) continues to hold for the above testing problem.

For the following partly linear additive model

Yi = ZT
i β +

D∑

d=1

md(Xdi) + εi, i = 1, · · · , n,

as in Section 4.4, one may also test if H0 : Aβ = 0. A GLR test statistic similar
to λn,4 can be developed using profile likelihood estimation, but it would involve
much more complicated techniques to establish Wilks’ phenomenon.
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4.6 Spectral density estimation

Let Xt, for t = 0,±1,±2, . . ., be a stationary time series with mean zero and
autocovariance function γ(u) = E(XtXt+u) (u = 0,±1,±2, . . .). Then its spectral
density is

g(x) = (2π)−1
∞∑

u=−∞
γ(u) exp(−iux), x ∈ [0, π].

Based on the observed time series X1, . . . , XT , one can construct the periodogram

IT (wk) = T−1
T∑

t=1

|Xt exp(−itwk)|2, wk = 2πk/T (k = 1, . . . , n, n = [(T−1)/2]).

The periodogram is an asymptotically unbiased estimator of g(x). However, it is
not a consistent estimator of the spectral density (Brillinger, 1981, Chapter 5;
Brockwell and Davis, 1991, Chapter 10). A consistent estimator of g(x) can be
obtained by locally averaging the periodograms. Most traditional methods are
based on this approach; see for example Brillinger (1981).

Alternative estimators, such as the smoothed (log-)periodogram and Whittle
likelihood-based estimator, have received much attention in the literature. For
example, Wahba (1980) considered spline approximations to the log-periodogram
using the least-square method; Pawitan and O’Sullivan (1994) and Kooperberg et
al. (1995a,b) used Whittle’s likelihood to estimate parameters in the spline models;
Fan and Kreutzberger (1998) studied automatic procedures for estimating spectral
densities, using the local linear fit and the local Whittle’s likelihood; Jiang and
Hui (2004) proposed a generalized periodogram and smoothed it using local linear
approximations when missing data appeared.

Consider testing whether or not the spectral density of the observed time series
{Xt}T

t=1 belongs to a specific parametric family gθ(·) : θ ∈ Θ. The problem can
be formulated as testing the hypothesis H0 : g(·) = gθ(·) versus H1 : g(·) /∈ gθ(·),
which is equivalent to testing

H0 : m(·) = mθ(·) versus H1 : m(·) /∈ mθ(·),

where mθ(·) = log gθ(·).
There are several approaches to testing the above hypotheses for the spec-

tral density. For example, the testing procedure in Paparoditis (2000) using the
Priestley-Chao estimator and an L2-distance, the testing approach without smooth-
ing, as with Dzhaparidze’s (1986, p. 273) test statistic based on a cumulative
rescaled spectral density, and the Kolmogorov-Smirnov and Cramér-von Mises
tests in Anderson (1993). These test methods directly compared various spectral
estimation under the null and alternative hypotheses. As illustrated in Section 1,
such discrepancy-based tests suffer from disadvantages over the GLR test.

Note that periodograms IT (wk) are asymptotically exponentially distributed
with mean g(wk) and asymptotically independent (see Fan and Yao, 2003):

(2π)−1IT (wk) = g(wk)Vk + Rn(wk) (k = 1, . . . , n),

where Vk (k = 1, . . . , n) are independently and identically distributed with the
standard exponential distribution and Rn(wk) is a term that is asymptotically
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negligible. If we let Yk = log{IT (wk)/(2π)} and m(·) = log g(·), then

Yk = m(wk) + zk + rk (k = 1, . . . , n), (4.36)

where rk = log[1 + Rn(wk)/g(wk)Vk] and zk = log Vk. Therefore, {zk}n
k=1 are

independently and identically distributed random variables with density function
fz(x) = exp{− exp(x)+x}, and rk is an asymptotically negligible term; see Lemma
A1 of Fan and Zhang (2004). As shown in Davis and Jones (1968), the mean of
zk is the Euler constant, which is E(zk) = C0 = −0∆57721, and the variance is
var(zk) = π2/6. Let Y ∗k = Yk−C0 and z∗k = zk−C0. Using (4.36) and ignoring the
term rk, we have the standard nonparametric regression model similar to (2.10)

Y ∗k = m(wk) + z∗k (k = 1, . . . , n).

Then a similar GLR test statistic to λn,1 can be developed based on the least-
squares estimation of m(·). Since the distribution of z∗k is not normal, the test based
on the least-squares estimation does not fully use the likelihood information and
cannot be powerful. Furthermore, the likelihood-based approach is more appealing
as demonstrated in Fan and Zhang (2004).

For any given spectral density function, by ignoring the term rk in (4.36), we
obtain the approximated log-likelihood function

`(H1; m) =
n∑

k=1

[Yk −m(wk)− exp{Yk −m(wk)}].

For any x, approximating m(wk) by the linear function a + b(wk − x) for wk near
x, we obtain the local log-likelihood function

n∑

k=1

[Yk − a− b(wk − x) exp{Yk − a− b(wk − x)}]Kh(wk − x). (4.37)

The local maximum likelihood estimator m̂LK(x) of m(x) is â in the maximizer
(â, b̂) of (4.37). Under the null hypothesis, the log-likelihood function of (4.36)
would approximately be

`(H0; θ) =
n∑

k=1

[Yk −mθ(wk)− exp{Yk −mθ(wk)}].

Its maximizer θ̂ would be the maximum likelihood estimate of θ. Then by applying
(3.18), a GLR test statistic can be constructed as

λn,7 = `(H1; m̂LK)− `(H0; θ̂)

=
n∑

k=1

[exp{Yk −mθ̂(wk)}+ mθ̂(wk)− exp{Yk − m̂LK(wk)} − m̂LK(wk)].

Let µn = πcK/h and rK as in (4.25). Then under certain conditions, as shown
in Fan and Zhang (2004),

rKλn,7
d' χ2

rKµn
.

This means that the Wilks phenomenon exists in spectral density estimation. It
permits one to use the bootstrap to obtain the null distribution (see Section 3).
Also a bias-corrected GLR statistic can be constructed using the method in §3.4.
For details, see Fan and Zhang (2004).



29

4.7 Diffusion models with discrete jumps

Consider the following diffusion model:

dXt = µ(Xt) dt + σ(Xt) dWt + Jt dNt, (4.38)

where the drift µ and the diffusion σ are unknown. Assume that the intensity of N
and density of J are unknown functions λ(Xt) and ν(·), respectively. If we believe
that the true process is a jump-diffusion with local characteristics (µ, σ2, λ, ν), a
specification test checks whether the functions (µ, σ2, λ, ν) belong to the paramet-
ric family

P = {(µ(Xt, θ1), σ
2(Xt, θ2), λ(Xt, θ3), ν(·; θ4) | θi ∈ Θi, i = 1, . . . , 4},

where Θi’s are compact subsets of RK . This is equivalent to testing if there exist
θi ∈ Θi such that the following null model holds:

dXt = µ(Xt, θ1) dt + σ(Xt, θ2) dWt + Jt dNt. (4.39)

In the case of jump-diffusions, the parametrization P corresponds to a parametriza-
tion of the marginal and transitional densities:

{(π(·, θ), p(·|·, θ)) | (µ(·, θ1), σ
2(·, θ2), λ(·, θ3), ν(·; θ4) ∈ P, θi ∈ Θi}.

The null and alternative hypotheses are of the form

H0 : p(y|x) = p(y|x, θ) vs H1 : p(y|x) 6= p(y|x, θ),

with the inequality for some (x, y) in a subset of non-zero Lebesgue measure. The
GLR tests can be used to answer the above question. The work of Aı̈t-Sahalia, Fan
and Peng (2005) does not embed (4.39) directly into (4.38). Instead, they merely
assume that the alternative model is Markovian with a transition density p(y|x).
See Figure 2.

Suppose the observed process {Xt} is sampled at the regular time points
{i∆, i = 1, . . . , n + 1}. Let p(y|x) be the transition density of the series {Xi∆, i =
1, . . . , n + 1}. For simplicity of notation, we rewrite the observed data as {Xi, i =
1, . . . , n + 1}. Then following Fan, Yao and Tong (1996), we can estimate p(y|x)
by

p̂(y|x) =
1

nh1h2

n∑

i=1

Wn

(Xi − x

h1
; x

)
K

(Xi+1 − y

h2

)
,

where Wn is the effective kernel induced by the local linear fit.
Note that the logarithm of the likelihood function of the observed data {Xi}n+1

i=1

is

`(p) =
n∑

i=1

log p(Xi+1|Xi),

after ignoring the initial stationary density π(X1). It follows from (3.18) that
the GLR test statistic compares the likelihoods under the null and alternative
hypotheses, which leads to

λn,8 = `(p̂)− `(p(·|θ̂)) =
n∑

i=1

log p̂(Xi+1|Xi)/p(Xi+1|Xi, θ̂).
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Noticing that the conditional density cannot be estimated well at the boundary
region of X-variable, Aı̈t-Sahalia, Fan and Peng (2005) introduced a weight func-
tion, w, to reduce the influences of the unreliable estimates, leading to the test
statistic

T0 =
n∑

i=1

w(Xi, Xi+1) log p̂(Xi+1|Xi)/p(Xi+1|Xi, θ̂).

Since the parametric and nonparametric estimators are approximately the same
under H0, T0 can be approximated by a Taylor expansion:

T0 ≈
n∑

i=1

p̂(Xi+1|Xi)− p(Xi+1|Xi, θ̂)

p(Xi+1|Xi, θ̂)
w(Xi, Xi+1)

−1

2

n∑

i=1

{ p̂(Xi+1|Xi)− p(Xi+1|Xi, θ̂)

p(Xi+1|Xi, θ̂)

}2
w(Xi, Xi+1).

To avoid complicated technicalities, they proposed the following χ2-test statistic

T1 =
n∑

i=1

{ p̂(Xi+1|Xi)− p(Xi+1|Xi, θ̂)

p(Xi+1|Xi, θ̂)

}2
w(Xi, Xi+1)

and justified Wilks’ phenomenon, that is, under certain conditions,

r1T1
d' χ2

r1µ1 ,

where

r1 = Ωw‖W‖2‖K‖2/(‖w‖2‖W ∗W‖2‖K ∗K‖2),

µ1 = Ωw‖W‖2‖K‖2/(h1h2)−Ωx‖W‖2/h1,

where for any function f(·), ‖f‖2 =
∫

f2(x) dx, Ωw =
∫

w(x, y) dx dy, and Ωx =∫
E{w(X, Y )|X = x} dx. This result again enables one to simulate the null distri-

bution of the test statistic using the bootstrap method.

4.8 Others

The GLR tests are also applicable to many other situations. For example, Fan and
Zhang (2004) studied the GLR tests using sieve empirical likelihood, which aims
to construct the GLR test to adapt to unknown error distributions, including the
conditional heteroscedasticity. Jiang et al (2007) extended Wilks’ phenomenon to
semiparametric additive models and studied the optimality of the tests.
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5 Conclusion and outlook

As demonstrated above, the GLR test is a natural, powerful and generally appli-
cable inference tool. Wilks phenomenon has been unveiled for a variety of models,
which makes finite sample simulation feasible in determining the null distributions
of GLR test statistics. However, compared with wide application of the paramet-
ric likelihood inference, the GLR inference tool is still underdeveloped. The Wilks
type of results hold not only for the various problems that we have studied. They
should be valid for nearly all regular nonparametric testing problems. There are
many topics to be explored for the GLR tests, and we only scratched the surface
of this exciting field.

In the following we list several open problems to conclude this article.

– Application to other models. The GLR test is so general that it can be used
for checking if some nonparametric components in a statistical model admit
certain parametric forms. Most established Wilks phenomenon is based on
the GLR with normal quasi-likelihood. The likelihood based nonparametric
models have barely been touched (except the results in §4.3). One example
is to establish similar results to those in §4.5 for generalized additive models.
The other example is to apply it to the Cox hazard regression models with
additive nonparametric structure, or varying-coefficient form, or partially linear
components.

– Platform of smoothing. Most of the Wilks phenomena of GLR statistics are
unveiled by using the local polynomial smoothing as the platform of nonpara-
metric estimation. Intellectually, one may ask whether these phenomena are
shared by other smoothing methods, such as the polynomial splines or smooth-
ing splines.

– Choice of smoothing parameters. The powers of GLR tests depend on the choice
of smoothing parameters. It is important to develop the criteria and theoretic
results for bandwidth selection in an attempt to optimize the powers of GLR
tests, so that a data-driven selection of bandwidth can be established for opti-
mizing the powers of GLR tests.

– Optimality of multi-scale tests. The multi-scale tests in (3.21) was proposed in
Fan, Zhang and Zhang (2001). However, it is unknown if the resulting proce-
dure (3.21) possesses the adaptive optimality. For the regression problems, Fan
(1996), Spokoiny (1996), Fan and Huang (2001), Horowitz and Spokoiny (2001,
2002) established the adaptive optimality results. However, for most problems
discussed in §4, such kind of adaptive optimality results are unknown. Further
investigations are needed.

– Implementation of multi-scale tests. The multiple scale test (3.21) is hard to
compute. In addition, its null distribution is harder to approximate. This leads
Zhang (2003a) to replace the maximization by a discrete set of values. How to
set such discrete grids? Are the null distributions easier to approximate? and
how to approximate them?

– Robustness. Since the GLR test statistics {λn,k} (k = 1, . . . , 8) are constructed
using the local least squares or maximum likelihood estimation, they are not
robust against outliers in the Y -space. It is interesting to investigate robust
GLR tests, for example, with RSS0 and RSS1 replaced by their robust versions,
but whether the Wilks phenomenon still exists remains unknown.
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We have laid down a general blueprint for testing problems with nonparametric
alternatives. While we have observed the Wilks phenomenon and demonstrated it
for a few useful cases, it is impossible for us to verify the phenomenon for all
nonparametric hypothesis testing problems. The Wilks phenomenon needs to be
checked for other problems that have not been covered in this paper. In addition,
most of the topics outlined in the above discussion remains open and are technically
and intellectually challenging. More developments are needed, which will push the
core of statistical theory and methods forward.

References

Aı̈t-Sahalia Y, Fan J, Peng H (2005) Nonparametric transition-based tests for
Jump-diffusions. Unpublished manuscript.

Anderson TW (1993) Goodness of fit tests for spectral distributions. Ann. Statist.
21:830–847
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