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Improving efficiency for regression coefficients and predicting trajectories of individuals are two important aspects in the analysis of longi-
tudinal data. Both involve estimation of the covariance function. Yet challenges arise in estimating the covariance function of longitudinal
data collected at irregular time points. A class of semiparametric models for the covariance function by that imposes a parametric correla-
tion structure while allowing a nonparametric variance function is proposed. A kernel estimator for estimating the nonparametric variance
function is developed. Two methods for estimating parameters in the correlation structure—a quasi-likelihood approach and a minimum
generalized variance method—are proposed. A semiparametric varying coefficient partially linear model for longitudinal data is introduced,
and an estimation procedure for model coefficients using a profile weighted least squares approach is proposed. Sampling properties of the
proposed estimation procedures are studied, and asymptotic normality of the resulting estimators is established. Finite-sample performance
of the proposed procedures is assessed by Monte Carlo simulation studies. The proposed methodology is illustrated with an analysis of a

real data example.
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1. INTRODUCTION

Estimating covariance functions is an important issue in the
analysis of longitudinal data. It features prominently in fore-
casting the trajectory of an individual response over time and is
closely related to improving the efficiency of estimated regres-
sion coefficients. Challenges arise in estimating the covariance
function due to the fact that longitudinal data are frequently
collected at irregular and possibly subject-specific time points.
Interest in these kinds of challenges has surged in the recent
literature. Wu and Pourahmadi (2003) proposed nonparametric
estimation of large covariance matrices using a two-step esti-
mation procedure (Fan and Zhang 2000), but their method can
deal with only balanced or nearly balanced longitudinal data.
Recently, Huang, Liu, Pourahmadi, and Liu (2006) introduced
a penalized likelihood method for estimating a covariance ma-
trix when the design is balanced and Yao, Miiller, and Wang
(20054, b) approached the problem from the standpoint of func-
tional data analysis.

In this article we consider a semiparametric varying-coeffi-
cient partially linear model,

yO =x(O a(t) +2(0" B+ ), (1

where «(f) comprises p unknown smooth functions, 8 is a
g-dimensional unknown parameter vector, and E{e(?)|x(?),
z(1)} = 0. Nonparametric models for longitudinal data (Lin and
Carroll 2000; Wang 2003) can be viewed as special cases of
model (1). Moreover, model (1) is a useful extension of the par-
tially linear model, systematically studied by Hirdle, Liang,
and Gao (2000), and of the time-varying coefficient model
(Hastie and Tibshirani 1993). It has been considered by Zhang,
Lee, and Song (2002), Xia, Zhang, and Tong (2004), and Fan
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and Huang (2005) in the case of iid observations and by Mar-
tinussen and Scheike (1999) and Sun and Wu (2005) for lon-
gitudinal data. It is a natural extension of the models studied
by Lin and Carroll (2001) (with identity link), He, Zhu, and
Fung (2002), He, Fung, and Zhu (2005), Wang, Carroll, and
Lin (2005), and Huang and Zhang (2004).

We focus on parsimonious modeling of the covariance func-
tion of the random error process &(f) for the analysis of longi-
tudinal data, when observations are collected at irregular and
possibly subject-specific time points. We approach this by as-
suming that var{e (¢¥)|x(¢), z(¢)} = az(t), which is a nonparamet-
ric smoothing function, but the correlation function between
&(s) and &(¢) has a parametric form, corr{e(s), ()} = p(t, s, 0),
where p (s, t, #) is a positive definite function of s and ¢, and
is an unknown parameter vector.

The covariance function is fitted by a semiparametric model,
which allows the random error process €(#) to be nonstationary
as its variance function o2 (¢) may be time-dependent. Com-
pared with a fully nonparametric fit, defined in (16) in Section 6,
to the correlation function, our semiparametric model guaran-
tees positive definiteness for the resulting estimate; it retains
the flexibility of nonparametric modeling and parsimony and
the ease of interpretation of parametric modeling. To improve
the efficiency of the regression coefficient, one typically takes
the weight matrix in the weighted least squares method to be the
inverse of estimated covariance matrix. Thus the requirement
on positive definiteness becomes necessary. Our semiparamet-
ric model allows a data analyst to easily incorporate prior infor-
mation about the correlation structure. It can be used to improve
the estimation efficiency of . For example, letting po(s, 7) be a
working correlation function (e.g., working independence) and
p(s,t,0) be a family of correlation functions (e.g., an AR or
ARMA correlation structure) that contains pg, our method al-
lows us to choose an appropriate @ to improve the efficiency
of the estimator of . Obviously, to improve the efficiency, the
family of correlation functions {p(s, #, #)} need not contain the
true correlation structure.

We also introduce an estimation procedure for the variance
function and propose two approaches to estimating the un-
known vector @, motivated from two different principles. We
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also propose an estimation procedure for the regression func-
tion «(¢) and coefficient B using the profile least squares. As-
ymptotic properties of the proposed estimators are investigated,
and finite-sample performance is assessed through Monte Carlo
simulation studies. A real data example is used to illustrate the
proposed methodology.

The article is organized as follows. Estimation procedures for
variance function and unknown parameters in the correlation
matrix are proposed in Section 2. An efficient estimation pro-
cedure for a(¢) and B based on the profile least squares tech-
niques is described in Section 3. Sampling properties of the
proposed procedures are presented in Section 4, and simula-
tion studies and real data analysis are given in Section 5. All
technical proofs are relegated to the Appendix.

2. ESTIMATION OF COVARIANCE FUNCTION

Suppose that a random sample from model (1) consists of n
subjects. For the ith subject, i =1, ..., n, the response variable
vi(#) and the covariates {x;(¢), z;(¢)} are collected at time points
t=t;j=1,...,J;, where J; is the total number of observations
for the ith subject. Denote

rij = rij(e, B) = yity) — xi(t;) T ee(ty) — zi(t;)" B
and ri(a, B) = (ri1,...,7iy;)T. Here we adopt the notation
rij(ee, B) to emphasize the parameters o and g, although for
true values of o and B, rj(a, B) = &;(t;;).
To motivate the proposed estimation procedures that follow,
assume for the moment that e; is normally distributed with

mean 0 and covariance matrix X;. Then the logarithm of the
likelihood function for e, 8, o2, and 0 is

e, B, 52, 0)

n n
= —% > log|zil — % > rie. B’ I i@, ) (2)
i=1 i=1

after dropping a constant. Maximizing the log-likelihood func-
tion yields a maximum likelihood estimate (MLE) for the un-
known parameters. The parameters can be estimated by iterat-
ing between estimation of (e, 8) and estimation of (02,0).[We
discuss the estimation procedure of (&, 8) for model (1) in de-
tail in the next section.] Thus we may substitute their estimates
into r;j(ee, B), and r;j(e, [Ai) is computable and is denoted by 7;;
for simplicity.

2.1 Estimation of Variance Function

We first propose an estimation procedure for (7). Note that

o2 (ty) = E{e* (D]t = 1;j).
A natural estimator for o 2(f) is the kernel estimator
Ji A
2 20 rizthl (t — 1)
Ji ’
Z?:l Zj:l Kp, (r— tij)

where Kj,, (x) = hy ’IK(x/hl), K (x) is a kernel density function,
and A is a smoothing parameter. Note that locally around a time
point, few subjects contribute more than one data point to the
estimation of o2(7). Thus the estimator should behave locally as

if the data were independent. Ruppert, Wand, Holst, and Hoss-
jer (1997) studied local polynomial estimation of the variance

62(1) =
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function when observations are independently taken from the
canonical nonparametric regression model, Y = m(X) + ¢ with
E(¢|X) = 0 and var(e|X) = 02(X). Fan and Yao (1998) further
showed that the local linear fit of variance function performs
as well as the ideal estimator, which is a local linear fit to the
true squared residuals {(¥; — m(X,-))z}, allowing data to be taken
from a stationary mixing process. A similar result was obtained
by Miiller and Stadtmiiller (1993). The consistency and asymp-
totic behavior of 62(¢) are studied in Theorem 2(b) in Section 4,
from which we may choose an optimal bandwidth for &2 (7) us-
ing various existing bandwidth selectors for independent data
(see, e.g., Ruppert, Sheather, and Wand 1995).

2.2 Estimation of 8

Decompose the covariance matrix ¥; into variance—correla-
tion form, that is,

% =ViGi0)V;,

where V; = diag{o (#;1),...,0(tiy;)} and C;(0) is the correla-
tion matrix of &; with (k, /) element equaling p(tj, t;1,0). To
construct an estimator for @, we maximize £(a, ﬁ, 62, 0) with
respect to 0. In other words,

0 ES AT —1 ~—1 g\ (14
0=argm;1x<—52{log|Ci(0)|+ri Vi G @)V r,-} ,

i=1
) 3)
where V; = diag{&(til), ey &(tiji)} and f‘,’ = (?ils cee ?,'Ji)T.
The estimator in (3) is referred to as a quasi-likelihood (QL)
estimator.

Optimizing QL may provide a good estimate for § when the
correlation structure is correctly specified, but when it is mis-
specified, the QL might not be the best criterion to optimize.
For example, we may be interested in improving the efficiency
for B, treating «, o2, and @ as nuisance parameters. In such
a case, we are interested in choosing # to minimize the esti-
mated variance of B . For example, for a given working corre-
lation function po(s, ) (e.g., working independence), we can
embed this matrix into a family of parametric models p (s, , 9)
[e.g., autocovariance function of the ARMA(1, 1) model]. Even
though p (s, f, @) might not be the true correlation function, we
can always find a @ to improve the efficiency of 8. More gen-
erally, suppose that the current working correlation function is
po(s, t; 0p). Let p1(s, 1), ..., pm(s, t) be given family of correla-
tion functions. We can always embed the current working cor-
relation function pg(s, #; @¢) into the family of the correlation
functions,

p(s,t;,0) =T1000(s, t; 00) + T101(5, 1) + -+ - + TP (s, 1),

where 6 = (0, 19,...,T») and 79 + --- + T, = 1 with all
7; > 0. Thus, by optimizing the parameters 6y, to, ..., Ty, the
efficiency of the resulting estimator [3 can be improved.

To fix the idea, let ['(62, 0) be the estimated covariance ma-
trix of B derived in (11) in Section 3 for a given working corre-
lation function p (s, t, ). Define the generalized variance of B
as the determinant of I'(62, #). Minimizing the volume of the
confidence ellipsoid of (B — B)TT1(62, 6)(B — B) < c for any
positive constant ¢ is equivalent to minimizing the generalized
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variance. Thus we may choose # to minimize the volume of the
confidence ellipsoid,

9=argmoin|r‘(62,0)|. )

We refer to this approach as the minimum generalized variance
(MGV) method.

3. ESTIMATION OF REGRESSION COEFFICIENTS

As mentioned in Section 2, the estimation of o2 and @ de-
pends on the estimation of « () and 8. On the other hand, im-
proving the efficiency of the estimate for («, 8) relies on the
estimation of 2 and 6. In practice, therefore, estimation must
be done in steps. The initial estimates of (e(r), B) are con-
structed by ignoring within subject correlation. With this initial
estimate, we can further estimate o 2(¢) and 6. Finally, we can
now estimate « () and § more efficiently by using the estimate
of 0%(f) and 0. In this section we propose efficient estimates for
a(?) and B using the profile least squares techniques.

For a given B, let y*(¢) = y(r) — z()T . Then model (1) can
be written as

() =x(0) () +e. Q)

This is a varying coefficient model, studied by Fan and Zhang
(2000) in the context of longitudinal data and by Hastie and
Tibshirani (1993) for the case of iid observations. Thus a«(f)
can be easily estimated using any linear smoother. Here we use
local linear regression (Fan and Gijbels 1996). For any ¢ in a
neighborhood of #y, it follows from Taylor’s expansion that

~ ay(19) + o) (o) (t — 1)

=aq+b(t—1ty forl=1,...,q9

a; (1)

Let K(-) be a kernel function and / be a bandwidth. Thus we
can find local parameters (ay, ..., b,) that minimize

2
Z Z [yl (1) — Z{az + by(t — m)}xu(rij)}

i=1 j=1

ag, by, ...,

x Kp(tij —t9), (6)

where Kj,(-) = h_lK(-/h). The local linear estimate for o (zg)
is then simply é& (o, B) =(ay,..., aq)T. Note that because the
data are localized in time, the covariance structure does not
greatly affect the local linear estimator.

The profile least squares estimator of (e, ) has a closed

form using the following matrix notation. Let y; = (y;(#;1), . . .,
Yt ), Xi = i), .o xitu)', i = @it), ..,
zi(tiy))!, and m; = (x;(t;) T (tin), ..., xi(tig) T (tyy,))T . Write
y = (le,...,yn)T X = XIL....xDyI 7z = @,...,
ZZ)T, and m = (m1 ,...,m)7T . Then, model (5) can be written
as

y—Zf=m+e¢, @)

where ¢ = (e1(t11), ..., Sn(tnjn))T. It is known that the local
linear regression results in a linear estimate in y*(#;;) for ec(-)
(Fan and Gijbels 1996). Thus the estimate of «(-) is linear in
y — Z8, and the estimate of m is of the form m = S(y — Zg).
The matrix S, usually called a smoothing matrix of the local lin-
ear smoother, depends only on the observations {z;;, X;(;;),j =
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1,...,J;,i=1,...,n}. Substituting m into (7) results in the
synthetic linear model

I —-98)y=

where [ is the identity matrix of order n* =), J;.
To improve the efficiency for estimating 8, we minimize the
weighted least squares,

y—Zp) a-

where W is a weight matrix, called a working covariance ma-
trix. As usual, misspecification of the working covariance ma-
trix does not affect the consistency of the resulting estimate, but
does affect the efficiency. The weighted least squares estimator
for B is

(I—S)ZB + &, ®)

S)TW(I - S)(y — ZB), ©)

B=1{Z"U—-S)"WI—-S)Z)"'2"(1 —S)"W({ —S)y. (10)

This estimator is called the profile weighted least squares esti-
mator. The profile least squares estimator for the nonparametric
component is simply é&(-; ﬁ). Using (8), it follows that when the
weight matrix does not depend on y,

cov{Blj, xi(t;), z:(1;)) =D'VD ' 2T (62, 0), (1)

where D = ZT(I — S)TW({ — S)Z and V = cov{ZT(I —

S)TWe}. In practlce F(02 0) is estimated using a sandwich
formula by takmg V=271 - STWRW! (I — S)Z, where
R = diag{rir!, ..., r,rl} with r; = y; — §;. Speckman (1988)
derived a partial residual estimator of B for partially linear mod-
els with independent and identically distributed data; the form
of this estimator is the same as that in (9), with W set to be
an identity matrix. However, the partial residual approach is
difficult to implement for model (1).

4. SAMPLING PROPERTIES

In this section we investigate sampling properties of the
profile weighted least squares estimator. The proposed es-
timation procedures are applicable for various formulations
for collecting longitudinal data. Here we consider the col-
lected data as a random sample from the population process
{y(®),x(2),z(t)},t € [0, T]. To facilitate the presentation, we
assume that J;, i = 1,...,n, are independent and identically
distributed with 0 < E(J;) < oo, and for a given J;, tj;,j =
1,...,J;, are independent and identically distributed according
to a density f(¢). Furthermore, suppose that the weight matrix
W in (9) is block diagonal, that is, W = diag{Wy,..., W,},
where W; is a J; x J; matrix. Moreover, assume that the (u, v)-
element of W; is set to be w(t;, ;,,) for a bivariate positive func-
tion w(-, -). When the weight function w(-, -) is data-dependent,
assume that it tends to a positive definite function in probability.
Thus for simplicity, assume that w(-, -) is deterministic.

Let G(f) = Ex()X (1), ¥ (1) = Ex(1)z” (¢), and write

W (110, Gt )xi(1))

(\I"(ttl)G (#i)xi(ti1), -

Set

1< - -
=) 12— X} Wiz, - X))
i=1



Fan, Huang, and Li: Semiparametric Estimation of Covariance Function

and
1 < -
En=" D {Zi— X} Wi,
i=1
where &; = (¢;(ti1), ..., Si(tijl-))T. Let
A=E(Z - X)W (Z; - X))}
and

B=E{((Z —X1)Wie1elT W (Z) — X))).
Let ao(?) and B denote the true values of «(¢) and .

Theorem 1. Under the regularity conditions (1)—(5) in the
Appendix, if the matrices A and B exist, and if A is positive
definite, then, as n — 00,

~ _ L _ —
V(B — Bo) = V/nZ,; & +op(1) —> N(O,A"'BATY),
where 7 is the number of subjects.

When W; is taken to be the inverse of the conditional
variance—covariance matrix of &; given x;(t;) and z;(t;) for
j=1,...,J;, then A = B. In this case

(B — Bo) = N, By ),

where By = E{(Z; — X))  cov (11X, Z1)(Z1 — X1)}. We
show in the Appendix that for any weight matrix W;,

A7'BAT' —-B;' >0, (12)

where D > 0 means that the matrix D is nonnegative defi-
nite. Thus the most efficient estimator for § among the profile
weighted least squares estimates given in (10) is the one that
uses the inverse of the true variance—covariance matrix of &; as
the weight matrix W;.

One could also use a working independence correlation
structure, that is, let W be a diagonal matrix. Under the con-
ditions of Theorem 1, the resulting estimate of g is still root—
n—consistent.

Let 1; = [u'Ku)du and v; = [u'K?(u)du. For a vector
of functions a(u) of u, denote & (u) = det(u)/du and & (u) =
d*ot(u) /du?, which are the componentwise derivatives. The fol-
lowing theorem presents the asymptotic normality for &(z) and
62(0); its proof was given the earlier version of this article (Fan,
Huang, and Li 2005).

Theorem 2. Suppose that conditions of Theorem 1 hold.
Then the following results hold:

(a) If nh®> = O(1) as n — oo, then
nh (&(r) —a(t) — % mh%&(z))

EoN

(0, Lo%)r—l(o).
JSOEWU1)
(b) Under conditions 5 and 6 in the Appendix, if ¢ < nh? <

C, and c < h/h < C for some positive constants ¢ and C, then,
as n — 0o,

Jnh (62(0) — 02(1) — b()) == N(O, (1)),
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where the bias is

B[, 262(0f (1)
=30+ =750
and the variance is
2
(1) = var{e~(t)}vo
FOEWUL)

Because the parametric convergence rate of fi is faster than
the nonparametric convergence rate of &(r), the asymptotic
bias and variance have forms similar to those of the varying-
coefficient model (Cai, Fan, and Li 2000). The choice of the
weight matrix W determines the efficiency of B, but it does not
affect the asymptotic bias and variance of «(?).

From Theorem 2(b), the asymptotic bias and variance do not
depend on the choice of the weight matrix W. Therefore, one
may use the residuals obtained using the working independence
correlation matrix to estimate o2 (¢). This is consistent with our
empirical findings from the simulation studies. Therefore, in
next section, o2(¢) is estimated using residuals obtained un-
der working independence. Theorem 2(b) implies that we may
choose a bandwidth by modifying one of existing bandwidth
selectors used for independent data.

5. NUMERICAL COMPARISON AND APPLICATION

In this section we investigate finite-sample properties of the
estimators proposed in Sections 2 and 3 through Monte Carlo
simulation. All simulation studies were conducted using Matlab
code. We examined the finite-sample performance and numer-
ical comparisons for the proposed estimate 62, B , and a(1)
in the earlier version of this article. (See Fan et al. 2005 for de-
tails.) To save space, in this section we focus on the inference

on f.
5.1 Simulation Study

We generate 1,000 datasets, each consisting of n = 50 sub-
jects, from the following model:

yO =xO () +2(0" B+ ).

In practice, observation times are usually scheduled but may
be randomly missed. Thus we generate the observation times
in the following way. Each individual has a set of “scheduled”
time points, {0, 1,2, ..., 12}, and each scheduled time, except
time 0, has a 20% probability of being skipped. The actual ob-
servation time is a random perturbation of a scheduled time: a
uniform [0, 1] random variable is added to a nonskipped sched-
uled time. This results in different observed time points #; per
subject.

In our simulation, the random error process £(f) in (13) is
taken to be a Gaussian process with mean 0, variance function

o2(1) = 5exp(t/12),

13)

and ARMAC(1, 1) correlation structure

|7—=s]

corr(e(s), e(n) = yp

for s # t. We consider three pairs of (y, p)—(.85,.9), (.85, .6),
and (.85, .3)—which correspond to strongly, moderately, and
weakly correlated errors.
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We let the coefficients of both & (7) and 8 be two-dimensional
in our simulation, and further set x;(f) = 1 to include an in-
tercept term. We generate the covariates in the following way:
For a given ¢, (x2(1), 21 )T follows a bivariate normal distrib-
ution with mean 0, variance 1, and correlation .5, and z»(¢) is a
Bernoulli-distributed random variable with success probability
.5 and independent of x> (¢) and z;(¢). In this simulation we set

B=(1,27,
ar(t) = /112,

Presumably we can gain some efficiency by incorporating
the correlation structure, and it is of interest to study the size
of gain. We consider the case in which the working correlation
structure is taken to be the true one, which is an ARMA(1, 1)
correlation structure. For comparison, we also estimate 8 using
a working independence correlation structure and the true cor-
relation structure in which the parameter (y, p)7 is set to be the
true value. The profile weighted least squares estimate using
the true correlation is shown to be the most efficient estimate
among the profile weighted least squares estimates and serves
as a benchmark, whereas the working independence correlation
structure is supposed to be commonly used in practice.

Table 1 summarizes of the results over 1,000 simulations.
In the table, “bias” represents the sample average over 1,000
estimates subtracting the true value of B, “SD” represents
the sample standard deviation over 1,000 estimates. “Me-
dian” represents the median of the 1,000 estimates subtract-
ing the true value, and “MAD” represents the median ab-
solute deviation of the 1,000 estimates divided by a factor of
.6745. From Table 1, both quasi-likelihood (QL) and mini-
mum generalized variance (MGV) approaches yield estimates
for B as good as those obtained using the true correlation
function, and is much better than the estimate using work-
ing independence correlation structure. The relative efficiency
[MAD(Independence)/MAD(QL)] is about 3 for highly corre-
lated random error, 2 for moderately correlated error, and 1.3
for weakly correlated error.

The simulation results also indicate that the MGV method
is more stable and robust than the QL method. This is demon-
strated in the case of weakly correlated random error, in which

and ar(t) =sin(2wt/12).
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the estimates apparently were quite bad (i.e., the SD is much
higher than the MAD) for a few realizations. Note that the ob-
ject function to optimize in (3) may not be a concave function
of #. Thus the numerical algorithm may not converge when it
stops. This may yield a bad estimate for 8 and contribute to
the issues of the robustness of the algorithm. In addition, the
QL criterion is similar to the least squares criterion and hence
is not very robust. On the other hand, the MGV method, aimed
directly to minimize the precision of estimated standard errors,
does not allow estimates to have large standard errors.

We next study the impact of misspecification of correla-
tion structure, by comparing the performance of [3 using in-
dependent and AR(1) working correlation structures when the
true correlation structure is ARMAC(1, 1). The top part of Ta-
ble 2 summarizes the simulation results. From Table 2, we
can see that the AR(1) working correlation structure produces
much more efficient estimates than the working independence
correlation structure. For example, the relative efficiency for
highly correlated random error is about (30.066/19.975)%
2.3. Thus, even when the true correlation structure is unavail-
able, choosing a structure close to the truth is still quite desir-
able.

In practice, we could try several values for p and choose the
best one using the QL or MGV method rather than an optimiza-
tion algorithm. We call such a search a rough grid point search.
We next examine how such search works in practice, using the
points {.05, .1, .25, .5, .75, .9, .95} for p. The bottom part of Ta-
ble 2 presents the simulation results. Comparing the bottom and
top parts of Table 2 shows that the performance of the resulting
estimates using the rough grid point search is very close to that
using an optimization algorithm.

Now we test the accuracy of the proposed standard error for-
mula (11). Table 3 depicts the simulation results for the case
where (y, p) = (.85,.9). Results for other cases are similar. In
Table 3, “SD” represents for the sample standard deviation of
1,000 estimates of B and can be viewed as the true standard de-
viation of the resulting estimate. “SE” represents for the sample
average of 1,000 estimated standard errors using formula (11),
and “Std” represents the standard deviation of these 1,000 stan-
dard errors. Table 3 demonstrates that the standard error for-

Table 1. Performance of B*

B1 B2

Method SD Bias MAD Median SD Bias MAD Median
Independence 47.780 —1.9730 44.575 —1.2802 82.488 —1.7276 79.580 —2.7890
True 25.061 —1.2565 25.905 —.7676 45.003 1211 45.543 —.1568
QL 25.156 —1.2545 25.536 —.7709 44.932 1749 44.654 —.6489
MGV 25.205 —1.2040 25.575 —.9126 45.585 .2663 45.033 —.5308
(v, p) = (.85, .6)

Independence 47.499 —2.6415 49.465 —.8980 82.094 —-1.1161 82.553 —3.0444
True 34.308 —1.6807 34.569 —1.5081 62.596 —.2047 61.871 -.3016
QL 46.365 —.2651 34.807 —1.2672 62.650 —.0023 62.485 —.3322
MGV 34.634 —1.3411 35.450 —.5676 64.393 —.2691 61.090 —1.8051
(v, p) = (.85, .3)

Independence 46.991 —2.8990 47.457 —1.6817 81.798 —1.0896 83.991 —-1.2721
True 40.123 —1.9687 40.184 —2.1143 73.031 —-.5122 73.278 .1861
QL 95.506 —6.7632 41.841 —1.9187 288.389 —5.7357 77.514 .1459
MGV 40.389 —1.6740 40.685 —1.4153 74.798 —.5055 73.465 .1435

*Values in the columns of SD, bias, MAD, and median are multiplied by a factor of 1,000.
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Table 2. Impacts of Misspecification of Correlation on j*

B [

Method SD Bias MAD Median SD Bias MAD Median
Optimization algorithm search
(v, p) =(85,.9)
Independence 47.7800 —1.9730 44.5759 —1.2802 82.4880 —1.7276 79.5815 —2.7890
QL 31.8570 —.4859 29.6149 —.0837 60.8860 —.0684 54.6946 .2275
MGV 33.1210 —.5275 31.8003 .0535 63.4840 .3800 58.0557 7224
(v. p) = (.85, .6)
Independence 47.4990 —2.6415 49.4655 —.8980 82.0940 —1.1161 82.5541 —3.0444
QL 37.0470 —1.0667 36.2184 —.8100 68.9890 —.0925 61.8111 —1.6883
MGV 37.9660 —1.1648 36.9805 -1.0777 71.3970 1137 65.4138 —2.2338
(v, p) = (.85,.3)
Independence 46.9910 —2.8990 47.4580 —1.6817 81.7980 —1.0896 83.9923 —1.2721
QL 41.0240 —1.6139 40.7671 —1.0700 74.8700 —.3320 73.7801 .0931
MGV 42.4130 —1.6264 42.2526 —.7556 79.1190 —-.1797 73.2301 —2.0012
Rough grid point search
(v, p) =(.85,.9)
Independence 47.7800 —-1.9730 44.5759 —1.2802 82.4880 —1.7276 79.5815 —2.7890
QL 31.9390 —.4489 29.3436 —.0714 60.7410 .0272 54.9896 .7295
MGV 33.2930 —.5232 31.4578 —.2297 63.8040 4463 58.2365 .6303
(v, p) = (.85, .6)
Independence 47.4990 —2.6415 49.4655 —.8980 82.0940 —1.1161 82.5541 —3.0444
QL 37.2570 —1.1533 36.4912 -1.1077 6.9254 .2263 63.1202 —1.2543
MGV 40.6740 —-1.1390 39.7678 —1.5885 77.0800 .5339 71.0284 7412
(v, p) =(.85,.3)
Independence 46.9910 —2.8990 47.4580 —1.6817 81.7980 —1.0896 83.9923 —1.2721
QL 41.3200 —1.6483 40.9850 —1.8832 75.1910 .0079 73.4095 .3885
MGV 48.4380 —1.5369 47.8895 —-1.9910 91.9430 .2399 84.2413 1.8811

*Values in the columns of SD, bias, MAD, and median are multiplied by a factor of 1,000.

mula works very well for both correctly specified and misspec-
ified correlation structures.

5.2 Comparison With the Traditional Approach

In this section we demonstrate the flexibility and efficiency
of model (1) by comparing its performance with linear models
for longitudinal data,

yO =x(O e +z(0" B+ (), (14)

which can be viewed as a special case of model (1) with con-
stant function & (-). We used the weighted least squares method
to estimate & and B in model (14). To make the comparison fair,
we generated 1,000 datasets, each consisting of n = 50 samples,
from model (13) with the following:

e Case I: a1(¢) = +/1/12 and an(t) = sin(27t/12), exactly
the same as given in Section 5.1.

e Case II: «1(r) =2 and a»(r) = 1; that is, both «(¢) and
o (1) are constant functions.

Table 3. Standard Errors

B1 B2
SD SE (Std) SD SE (Std)

ARMA(1, 1) working correlation matrix

Independence .0478 .0464(0065) .0825 .0800(_0108)
QL .0252 .0254 9030) .0449 .0440(.0047)
MGV .0252 .0257 0031) .0456 .0446 0049)
AR(1) working correlation matrix

QL .0319 .03070078) .0609 .05410131)
MGV .0331 .0316.0084) .0635 .05570141)

All other parameters and generation schemes of observation
times are the same as those specified in Section 5.1.

To illustrate the flexibility of model (1), we fit data generated
under the setting of Case I using the linear model (14). The error
correlation structure is no longer ARMA if model (14) is fitted
under the setting of Case I. Thus we did not include the “true”
correlation structure in our simulation. Simulation results are
summarized in the top part of Table 4, in which the notation
is the same as that given in Tables 1 and 2. To save space, we
present only the simulation results with (y, p) = (.85, .6); re-
sults for other (y, p) pairs are similar. Compared with the re-
sults in Tables 1 and 2, misspecification «(f) may yield a less
efficient estimate with larger bias.

Simulation results of models (14) and (1) for Case II are
summarized in the middle and bottom parts of Table 4. The
bias of the resulting estimates for all estimation procedures are
in the same magnitude. Comparing the simulation of models
(14) and (1) with independent working correlation matrix and
with the true/QL ARMAC(1, 1) correlation matrix shows that the
proposed models do not lose much efficiency. In summary, the
proposed estimation procedure with model (1) offers a good
balance between model flexibility and estimation efficiency.

5.3 An Application

Here we demonstrate the newly proposed procedures through
an analysis of a subset of data from the Multi-Center AIDS Co-
hort study. The dataset comprises the human immunodeficiency
virus (HIV) status of 283 homosexual men who were infected
with HIV during the following-up period of 1984—1991. This
dataset has been analyzed by Fan and Zhang (2000) and Huang,
Wu, and Zhou (2002) using functional linear models. Details of
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Table 4. Comparison to the Linear Modef*
B1 B2
Model Correlation Method MAD Median(bias) MAD Median(bias)
Case |: a1(t) = /t/12, aa(t) = sin (2 t/12), and (y, p) = (.85, .6)
(14) Independence 62.5252 —3.7274 102.7234 2.3116
AMRA(1, 1) QL 43.3809 —5.2141 75.1942 1.0293
ARMA(1, 1) MGV 60.7346 —4.1006 98.3291 1.8330
AR(1) QL 52.8866 —2.2510 93.2711 —3.9622
AR(1) MGV 59.9004 —3.2324 96.4753 1.1836
Case Il: a1(t) =2, ap(t)=1, and (y, p) = (.85, .6)
(14) Independence 47.7871 —3.1878 82.1597 —2.2803
AMRA(1, 1) True 32.9404 —1.9984 61.6268 .5491
ARMA(1, 1) QL 33.1803 —2.8015 61.8600 1782
ARMA(1, 1) MGV 47.0792 —1.2353 76.6334 —.6911
AR(1) QL 35.1901 —.8354 64.2013 —.3883
AR(1) MGV 47.0576 —1.4820 76.8226 —.8559
(1) Independence 49.4474 —1.0333 82.7413 —3.0255
AMRA(1, 1) True 34.3453 —1.6239 63.0509 .2820
ARMA(1, 1) QL 35.3995 —1.7503 62.9548 —.5040
ARMA(1, 1) MGV 35.6286 —.3130 62.1033 —2.5856
AR(1) QL 36.2746 —.8732 63.2304 —1.2967
AR(1) MGV 39.8883 —.8650 72.1075 1.2003

*Values in the columns of MAD and median are multiplied by a factor of 1,000.

the study design, methods, and medical implications have been
given by Kaslow et al. (1987).

All participants were scheduled to undergo measurement
during semiannual visits, but because many participants missed
some of their scheduled visits and the HIV infections occurred
randomly during the study, there are unequal numbers of re-
peated measurements and different measurement times per in-
dividual. Our interest is in describing the trend in mean CD4
percentage depletion over time and to evaluate the effects of
cigarette smoking, pre-HIV infection CD4 percentage, and age
at infection on the mean CD4 percentage after the infection.
Huang et al. (2002) took the response y(7) to be CD4 cell per-
centage and considered the functional linear model

y(0) = Bo(r) + B1(r)Smoking + B> (r)Age
+ B3(t)PreCD4 + &(1).  (15)

The results of the hypothesis testing of Huang et al. (2002) indi-
cate that the baseline function varies over time; neither Smok-
ing nor Age has a significant impact on the mean CD4 percent-
age, and whether or not PreCD4 has a constant effect over time
is nuclear. The p value for testing whether or not 83(¢) varies
over time is .059. Thus we fit the data using a simpler semi-
parametric varying-coefficient partially linear model,

y(@) = a1 () + a2(O)X1 + B1Z1 + BaZy + (1),

where, for numerical stability, X; is the standardized variable
for PreCD4, Z; is the smoking status (1 for a smoker and O for
a nonsmoker), Z; is the standardized variable for age, and the
unit for observation time ¢ is 1 month.

Bandwidth Selection. We use a multifold cross-validation
method to select a bandwidth for & (7). We partition the data into
Q groups, each of which has approximately the same number
of subjects. For each k, k=1, ..., Q, we fit model (15) for the
data excluding the k-group of data. The cross-validation score
is defined as the sum of residual squares,

0 Ji
Vi) =" 3" S yitey) = 5-a )}

k=1 iedy, j=1

where J_g, (t;) is the fitted value for the ith subject at observed
time #; with the data in dj deleted, using a working indepen-
dence correlation matrix. In the implementation, we choose
Q = 15. Figure 1(a) depicts the cross-validation score func-
tion, CV(h), that gives the optimal bandwidth 4 = 21.8052.
Note that 52(¢) is a one-dimensional kernel regression of the
squared residuals over time. Thus various bandwidth selectors
for one-dimensional smoothing can be used to choose a band-
width for 62(7). In this application we directly use the plug-in
bandwidth selector (Ruppert et al. 1995) and choose the band-
width h; = 12.7700.

Estimation. The resulting estimate of «(?) is depicted in
Figures 1(b) and 1(c). The intercept function decreases with

(a) (b)
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Figure 1. Plots of (a) the Cross-Validation Score Against the Band-
width, (b) and (c) Estimate of a1(t) and ao(t) With Bandwidth 21.8052,
Chosen by the Cross-Validation Method, and (d) Estimated o (t) With
Bandwidth 12.7700, Chosen by the Plug-in Method.
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time, implying an overall trend of decreasing CD4 cell percent-
age over time. The trend for o, (¢) implies that the impact of
PreCD4 on CD4 cell percentage decreases gradually as time
evolves. The results are consistent with our expectation; they
quantify the extent to which the mean CD4 percentage de-
creases over time and how the association between CD4 per-
centage and PreCD4 varies as time evolves. The resulting esti-
mate of 6 (¢), depicted in Figure 1(d), indicates that o (f) seems
to be constant during the first and half year and then increases as
time increases. This shows that predicting the CD4 percentage
becomes harder over time.

We next estimate 8. Here we consider an ARMAC(1, 1) cor-
relation structure. The proposed estimation procedures in Sec-
tion 2 were applied for estimating (y, p). The resulting esti-
mates are displayed in the top part of Table 5, and the cor-
responding estimates for 8 are depicted in the bottom part of
Table 5. The QL approach yields a correlation structure with
moderate correlation, and the standard error for the resulting
estimate of B is smaller than that obtained using the indepen-
dence correlation structure. The MVG method results in a cor-
relation structure with low correlation but with corresponding
standard error still smaller than that of the independence corre-
lation structure. Table 5 shows that the effects of smoking status
and age are not significant under the three estimation schemes.

Prediction of Individual Trajectory. 'We now illustrate how
to incorporate correlation information into prediction. Let us
assume that given the covariates x(¢) and z(#), the error process
&(¢) is a Gaussian process with mean 0 and covariance func-
tion c(t, s). Denote () = x(H) () + z(r)T B. Suppose that
data for an individual are collected at t = 1{,...,t; and we
want to predict his or her y(¢) at r = * with covariates x(*)
and z(t*). Let y, = (y(t1), ..., y(t7)) be the observed response
and let o = (u(1), ..., u(ty))7 be its associated mean. Let %
be the covariance matrix of (¢(¢1),...,&@))T, and let ¢* =
(c(t,t%), ..., c(ty,t*)T. Then, by the properties of the multi-
variate normal distribution, we have

E{y(t)yo} = nt) + =7y, — )
and
var{y(r*)|yo} = o2 (t*) — T2 1.
Thus the prediction of y(#*) is
() = A" + & TSNy, — ).

Because the errors in estimating the unknown regression coef-
ficients and parameters of the covariance matrix are negligible
relative to random error, the (1 — «)100% predictive interval is

() £ Zlfa/2\/&2(t*) — TR 1ex,

Table 5. Estimates of (y, p) and

Independence QL MGV
p 8575 5334
0 .9852 .0804
B .8726(1.1545) .6848 9972) .63281.0864)
B2 —.51436110) .0556.4718) —.3658 5488)
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Figure 2. Plot of Pointwise Predictions and Their 95% Predictive In-
tervals for Four Typical Subjects. The solid line is the prediction, the
dashed and dotted lines represent the limits for the 95% pointwise pre-

dictive confidence interval, and “o” is the observed value of y(t).

where 7142 is the 1 — «/2th quantile of the standard normal
distribution. In particular, it is easy to verify that when ¢* is
one of the observed time points, the prediction error is zero, a
desired property.

We now apply the prediction procedure for this application.
Assume that () has AMRAC(1, 1) correlation structure. As an
illustration, here we consider only the prediction with (y, p)
estimated by the QL approach, that is, (7, p) = (.8575, .9852).
Predictions and their 95% predictive intervals for four typical
subjects are displayed in Figure 2.

6. DISCUSSION

In this article we proposed a class of semiparametric models
for the covariance function of longitudinal data. We further de-
veloped an estimation procedure for o2(r) using kernel regres-
sion, estimation procedures for @ in correlation matrix using QL
and MGV approaches, and estimation procedure for regression
coefficients a(f) and B using profile weighted least squares.
Robust method estimation procedures have been proposed for
semiparametric regression modeling with longitudinal data (He
et al. 2002, 2005). In the presence of outliers, one should con-
sider a robust method to estimate a(¢) and .

Although misspecification of the correlation structure p(s,
t,0) does not affect the consistency of the resulting estimate
of a(7) and B, it may lead to nonexistence or inconsistency of
the estimates of . Thus it is of interest to check whether the
imposed correlation structure is approximately correct. To ad-
dress this issue, we may consider a full nonparametric estimate
for the correlation function p (s, 1),

Yo Yo @it)eity) Ky (s — ty) Ky (¢ — 1)
St Yy Ko (s = 1)Ky (0 — 1)

p(s, 1) =

(16)

for s # t, where é(t;;) = 7,;/6 (;j), the standardized residual.
The nonparametric covariance estimator cannot be guaran-
teed to be positive definite, but it may be useful in specifying
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an approximate correlation structure or in checking whether the
imposed correlation structure p(s, t, @) its approximately cor-
rect. This is a two-dimensional smoothing problem, but the ef-
fective data points in (16) can be small unless the time points
for each subject are nearly balanced.

Some alternative estimation procedures for a(f) and B also
may be considered. For example, an alternative strategy for es-
timating B is to first decorrelate data within subjects, and then
apply the profile least squares techniques to the decorrelated
data. Further research and comparison may be of interest.

In this article we have not discussed the sampling property
of  derived by the QL and MGV approaches. If the correlation
function is correctly specified, then the asymptotic property of
0 may be derived by following conventional techniques related
to linear mixed-effects models. It would be interesting to in-
vestigate the asymptotic behaviors of 9 when the correlation
function is misspecified. Some new formulation may be needed
to establish the asymptotic property of 0. This research topic is
beyond the scope of this article; further research is needed.

APPENDIX: CONDITIONS AND PROOFS

The following technical conditions are imposed. They are not the
weakest possible conditions, but they are imposed to facilitate the
proofs.

1. The density function f(-) is Lipschitz-continuous and bounded
away from 0. The function K(-) is a symmetric density function
with a compact support.

2. nh8 - 0 and nhz/(logn)3 — 00.

3. Ex(t)x(t)T and Ex(t)z(t)T are Lipschitz-continuous.

4. J; has a finite moment-generating function. In addition,
E|x(®)|* + El2(0)|* < oo.

5. a(¢) has a continuous second derivative.

6. 02(-) has a continuous second derivative.

Proof of Theorem 1

First, by condition 4, we can easily show almost surely that
maxi<;<pJ; = O(logn). For each given B, the estimator a B) is
a local linear estimator by minimizing (6) based on data

{tij, xi (&), yi )},

Observe that {y;." (#ij),j=1,...,J;i} is arealization from the process

Y0 =x0 o) + 20 (By — B) +£(0).

Note that the consistency of &(#; B) is not affected by ignoring the cor-
relation within subjects. Following the proof of Fan and Huang (2005),
a(t; B) is a consistent estimator of the function

j=1,...Ji=1,....n

a(t; B) =ao() — G~ OW (B - Bo)- (A.D)
Indeed, uniformly in ¢,
a(t; B) — a(t; B) = Op(cn), (A2)

where ¢, = h? + {—log h/(nh)}'/2. Let i;;(B) = x;(t;)) T &(t;j; B) and
m;(B) = (M1, ..., ﬁz,'J,.)T. Note that the profile weighted least squares
estimate [i is the minimizer of the weighted quadratic function

1 ¢ . .
n(B) =~ 3 (vi—i(B) = ZiB) Wity —ini(B) — Zif),  (A3)
i=1
which is a convex and quadratic function of f. This allows us to ap-
ply the convexity lemma and the quadratic approximation lemma (see,
e.g., Fan and Gibjels 1996, pp. 209-210) to establish the asymptotic
normality of .
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‘We next decompose £, (). Write

m;(B) = (Xi(til)Tot(lil;ﬂ), o -7Xi(fi11)T0‘(li11 ; ﬂ))T,
1 n
In1(B) =~ > {yi = mi(B) — ZiB) Wilyi — m;(B) — Zi},
i=1

2 n
In2(B) = =3 tyi = mi(B) — Z;B) Wilmi(B) —ini(B)},
i=1
and

1 n
L3 =- > " mi(B) — mi(B)) Wilm;(B) — i(B)},
i=1

where m;(B) = (m;1, ..., mjj;) with m;j(B) = x;(t;j) T ee(t;j, B). Then
Cn(B) =1In,1(B) +1n2(B) + 1n,3(B)- (A4

Note that [, 2(B) and I, 3(B) are quadratic in 8. Using techniques
related to the approaches of Miiller and Stadtmiiller (1993) and Fan
and Huang (2005), and after some tedious calculations, it follows that
for each given 8,

1,2(B) =1, 3(B) = O(c;) = op(n™"/?). (A.5)

We now deal with the main term 7,, ; (8). Using the model

y(0) =x(0) o) +2()T B + (1)

and (A.1), we have
1 n
I B)= -~ ;‘e? Wiei —2(B — Bo) &

+(B—B =n(B—By). (A6)

The minimization of I, 1 is given by

ﬁO = ﬂO + Znén,

where X, and &, are defined before Theorem 1. By the weak law of
large numbers and central limit theorem,

JaBo — Bo) —=> N, A"1BAT), (A7)

where A and B are as defined in Section 3.2. Finally, we apply the
convexity lemma to show that
V(B — Bo) = VnZ; & +op(D). (A8)

This together with (A.7) proves the results. To show (A.8), first, by the
convexity lemma, B is a consistent estimator of 8. From (A.4), we
have

0=in1(B +102B) +1n3(B)
=2%,(B — Bo) — 20 + In2(B) + 10 3(B).
Because I, (B) and I3(B) are quadratic in B, it follows from (A.5) that
Ih3(B)=op(n~'7?).

2By =0p(n™'?)  and

This completes the proof of Theorem 1.
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Proof of (12)
Write U= (Z — 5(] ), and Wq = cov(e|X1, Z1). Define

D= (EQUTW,0)} ' UTW, W2 — (EUT W5 oy ot w2

Then
pp’ = (EUTW,U)}~ L UTW, WoW, U){EUTW, U)} !

—(EUTW 0 UTW O ECTWS )
—(EUTW, o) "W oy EUTW U) !
+EUTW oy otTwy o w, o)

Because DD is nonnegative definite, we have that

EDDT) = {(EUTW,U)} ' ECUTW,WoW, U{ECUTW, U)} !

—(EUTW, Uyt
is nonnegative definite. Hence
A7'BAT —B;! > 0.

The equality holds if and only if D = 0, which occurs when W = W, I
[Received March 2006. Revised October 2006.]
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