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This paper considers a proportional hazards model, which allows one to
examine the extent to which covariates interact nonlinearly with an exposure
variable, for analysis of lifetime data. A local partial-likelihood technique is
proposed to estimate nonlinear interactions. Asymptotic normality of the pro-
posed estimator is established. The baseline hazard function, the bias and the
variance of the local likelihood estimator are consistently estimated. In addi-
tion, a one-step local partial-likelihood estimator is presented to facilitate the
computation of the proposed procedure and is demonstrated to be as efficient
as the fully iterated local partial-likelihood estimator. Furthermore, a penal-
ized local likelihood estimator is proposed to select important risk variables
in the model. Numerical examples are used to illustrate the effectiveness of
the proposed procedures.

1. Introduction. One of the most celebrated models for analyzing lifetime
data is the Cox proportional hazards model, which explicitly postulates the covari-
ate effects on the hazard risk via

λ(t) = λ0(t) exp{g(Z)},
where λ0(·) is the baseline hazard risk and g(Z) reflects the covariate effect. In
parametric models it is commonly assumed that

g(Z) = βT Z

for some unknown parameters β . See, for example, [1] and [20]. The log-linear
model is a simple and mathematically convenient model that provides useful analy-
sis for a covariate effect. However, in many biomedical studies, the covariate
effects can be more complicated than the log-linear effect and new analytic chal-
lenges arise in assessing nonlinear effects. Beyond the traditional linear model,
there are infinitely many possible nonlinear forms. Depending on the background
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of study, one often chooses a form that reasonably explains the objective of the
study. For example, the effect of exposure variables and confounding factors on
the hazard risk may vary with the level of an exposure variable, denoted by W .
This leads one naturally to consider the model

λ(t) = λ0(t) exp{β(W(t))T Z(t) + g(W(t))}.(1.1)

Here β(·) and g(·) are unknown coefficient functions, characterizing the extent to
which the association varies with the level of the exposure variable W . Note that
the term g(W(t)) can be incorporated into the covariates Z(t) by introducing a
dummy variable with column one. We opt to not do so, because the local intercept
for g(·) will cancel out in the local partial likelihood (2.3) below, leading to a
different estimator rule for g. For ease of presentation, we drop the dependence of
covariates on time Xi , with the understanding that the methods and proofs in this
paper are applicable to time-dependent covariates.

When the variable W is time, rather than a covariate variable, model (1.1)
becomes a time-dependent coefficient Cox model, which has been studied by
a number of authors, including Zucker and Karr [37], Murphy and Sen [31],
Gamerman [21], Murphy [30], Marzec and Marzec [28], Martinussen, Scheike
and Skovgaard [27], Cai and Sun [10], and Tian, Zucker and Wei [32]. In this case,
unless the coefficient functions β(t) are independent of time t , the model is no
longer a proportional hazards model. In contrast, model (1.1) is still a proportional
hazards model. It allows one to examine the extent to which covariates Z inter-
act nonlinearly with the exposure variable W . As will be explained later, although
model (1.1) looks similar to the time-dependent coefficient Cox model, it is more
involved when establishing asymptotic properties.

The varying-coefficient models arise from many different fields and have been
studied in many different contexts. For cross-sectional type data, they have been
studied as models to explore nonlinearity and assess nonlinear interactions by
Cleveland, Grosse and Shyu [14], Hastie and Tibshirani [24], Carroll, Ruppert
and Welsh [12], Fan and Zhang [19] and Cai, Fan and Li [8], among others. In
time series, they are extensions of threshold autoregressive models and have been
used to enhance the predictive power of linear autoregressive models. See, for ex-
ample, [13] and [9]. The varying coefficient models have also been widely used
to analyze longitudinal data. They allow one to examine the extent to which the
association between independent and dependent variables varies over time. See,
for example, [7, 25, 35, 36].

In this paper we propose techniques for estimating the coefficient functions β(·)
using local linear techniques [15]. The asymptotic bias and variance are obtained
by establishing asymptotic normality. The variance is then estimated via a sand-
wich formula, which is shown to be consistent. To save computation of the local
partial-likelihood estimator, a one-step procedure is proposed, which is shown to
have the same asymptotic bias and variance as the local partial-likelihood estima-
tor. Implementation of the proposed estimator depends on the choice of good ini-
tial estimators: estimates at the nearest grid points are recommended. The resulting
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procedure is demonstrated to be quite effective in our numerical implementation.
In addition, the baseline hazard function λ0(·) is estimated via a kernel method.
The consistency property is demonstrated.

An objective of survival analysis is to identify the risk factors and their risk con-
tributions. At the initial stage of a study, many covariates are collected to reduce
possible modeling biases, and a large model is built, namely the dimensionality
of Z in (1.1) is high. An important and challenging task is to efficiently select a
subset of significant variables from model (1.1). Fan and Li [17] proposed a fam-
ily of new variable selection methods based on a nonconcave penalized likelihood.
Their methods are different from traditional ones in that they delete insignificant
variables by estimating their coefficients as 0, and simultaneously select significant
variables and estimate regression coefficients. Lasso, proposed by Tibshirani [33,
34], is a member of this family with an L1 penalty. From their simulations, Fan
and Li [17] showed that the penalized likelihood estimator with smoothly clipped
absolute deviation (SCAD) penalty outperforms the best subset variable selection
in terms of computational cost and stability in the terminology of Breiman [5]. In
addition, they have proven that SCAD improves the lasso in terms of estimation
biases. Furthermore, they have demonstrated that with a proper choice of regular-
ization parameters and penalty functions (such as SCAD), the penalized likelihood
estimator possesses an oracle property. Namely, the true regression coefficients that
are zero are automatically estimated as zero and the remaining coefficients are es-
timated as well as if the correct submodel is known in advance. Hence, the SCAD
and its siblings are ideal for variable selection, at least from a theoretical point
of view. These nice properties encouraged us to extend the technique to the non-
parametric model (1.1). It gives us a quick and effective method for eliminating
unimportant variables.

The paper is organized as follows. Section 2 introduces the local partial-
likelihood estimation and establishes the asymptotic normality. One-step esti-
mation and estimation of the baseline hazard function are studied in Section 3.
Section 4 deals with the issue of variable selection. Numerical examples are given
in Section 5. Technical proofs are relegated to Appendix A.

2. Partial-likelihood estimation. Suppose that there is a random sample of
size n from an underlying population. Let Ti denote the potential failure time,
let Ci denote the potential censoring time and let Xi = min(Ti,Ci) denote the
observed time for the ith individual. Assume that Ti and Ci are independent given
covariates Zi and Wi . Let �i be an indicator which equals 1 if Xi is a failure time
and 0 otherwise. The covariates Z and W are allowed to be time dependent. The
observed data structure is

{Xi,�i,Zi ,Wi} for i = 1, . . . , n,

where Zi = (Zi1, . . . ,Zip)T and Wi are two types of covariates, with W being an
exposure variable of interest.



LOCAL PARTIAL-LIKELIHOOD ESTIMATION 293

When all the observations are independent, the partial likelihood for model (1.1)
is

L
(
β(·), g(·))= n∏

i=1

{
exp{β(Wi)

T Zi + g(Wi)}∑
j∈R(Xi)

exp{β(Wj )T Zj + g(Wj )}
}�i

,(2.1)

where R(t) = {i :Xi ≥ t} denotes the set of the individuals at risk just prior to
time t .

2.1. Local partial likelihood. If the unknown functions β(·) and g(·) are para-
metrized, the parameters can be estimated by maximizing (2.1). For our nonpara-
metric estimation, since the forms of the unknown functions are not available, we
can only rely on their qualitative traits.

Assume that every component of β(·) and g(·) is smooth so that it admits Taylor
expansion: for each given w0 and w around w0,

β(w) ≈ β(w0) + β ′(w0)(w − w0) ≡ δ + η(w − w0),
(2.2)

g(w) ≈ g(w0) + g′(w0)(w − w0) ≡ α + γ (w − w0).

Substituting this into (2.1), we obtain the logarithm of the local partial likelihood,

�(γ, δ,η)

= n−1
n∑

i=1

Kh(Wi − w0)�i

×
{
δT Zi + ηT Zi (Wi − w0) + γ (Wi − w0)(2.3)

− log

( ∑
j∈R(Xi)

exp{δT Zj + ηT Zj (Wj − w0) + γ (Wj − w0)}

× Kh(Wj − w0)

)}
,

where K is a probability density called a kernel function, h represents the size of
the local neighborhood and Kh(·) = K(·/h)/h. The kernel weight is introduced to
confirm that the local model (2.2) is only applied to the data around w0. The local
partial likelihood (2.3) can be derived from a profile likelihood point of view. The
derivation is similar to those of Breslow [6] and Fan, Gijbels and King [16].

Let γ̂ (w0), δ̂(w0) and η̂(w0) be the maximizer of (2.3). Then β̂(w0) = δ̂(w0)

is a local linear estimator for the coefficient function β(·) at the point w0. Sim-
ilarly, an estimator of g′(·) at the point w0 is simply the local slope γ̂ (w0),
namely ĝ′(w0) = γ̂ (w0). The curve ĝ can be estimated by integration on the func-
tion ĝ′(w0). Following Hastie and Tibshirani [23], the integration can be approxi-
mated by using the trapezoidal rule.
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We now express the local partial likelihood using the counting process notation.
To this end, let Ni(t) = I (Ti ≤ t,�i = 1) and Yi(t) = I (Xi ≥ t). Set

ξ = (δT ,ηT , γ )T and X∗
i = (

ZT
i ,ZT

i (Wi − w0),Wi − w0
)T

.

Then the local partial-likelihood function (2.3) can be expressed as

�n(ξ , τ ) = n−1
n∑

i=1

∫ τ

0
Kh(Wi − w0)ξ

T X∗
i dNi(u)

− n−1
n∑

i=1

∫ τ

0
Kh(Wi − w0)(2.4)

× log

{
n∑

j=1

Yj (u) exp(ξT X∗
j )Kh(Wj − w0)

}
dNi(u)

with τ = ∞. To avoid the technicality of tail problems, only the data up to a finite
time point τ are frequently used. Without ambiguity, we will let ξ̂(w0) be the
maximizer of (2.4).

Note that the local partial likelihood in (2.4) is more complicated than that for
the time-dependent coefficient Cox model. In particular, the kernel functions ap-
pear twice in the local partial likelihood (2.4), so as to use only local data. In con-
trast, for the time-dependent coefficient model, localizing in time once suffices. As
a consequence, the technical proofs are more involved in the current setting.

The above method uses only one smoothing parameter to fit all the coefficient
functions. When the coefficient functions admit different degree of smoothness
[e.g., g′(w) often admits a different degree of smoothness from other coefficient
functions], one needs to use different bandwidths for different components. The
two-step estimation method of Fan and Zhang [19] can be adapted here.

2.2. Asymptotic normality. We now establish the asymptotic normality of the
local partial-likelihood estimator. As shown in Appendix A, the local partial-
likelihood function �n(ξ , τ ) is concave in ξ and its maximizer exists with prob-
ability tending to 1. Let H be a (2p + 1) × (2p + 1) diagonal matrix, with the
first p elements 1 and the remaining p + 1 elements h, where p is the number
of elements in Z. For any function ξ(w), w ∈ J , let ‖ξ‖J = supw∈J |ξ(w)|, for
a p-vector a, let |a| = (

∑p
i=1 a2

i )
1/2 and ‖a‖ = supi |ai |, and for a matrix A, let

‖A‖ = supij |aij |. Then we have the following consistency result.

THEOREM 1. Under Conditions A.1–A.8 in Appendix A, we have

H{ξ̂(w0) − ξ0(w0)} P−→ 0,
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where ξ0(w0) = (βT
0 (w0),β

′
0(w0)

T , g′
0(w0))

T is the vector of the true parame-
ter functions. If, in addition, Conditions B.1–B.8 hold, then we have the uniform
consistency

‖H{ξ̂ − ξ0}‖JW
= sup

w∈JW

|H{ξ̂(w) − ξ0(w)}| P−→ 0,

where JW is a compact subset of the support of the random variable W .

To express explicitly the bias and variance of the estimator, we introduce some
necessary notation. Let

µi =
∫

xiK(x) dx, νi =
∫

xiK2(x) dx.

Denote

P(u, z,w0) = P(X ≥ u|Z = z,W = w0) and

ρ(u, z,w0) = P(u, z,w0) exp{β0(w0)
T z + g0(w0)}.

For k = 0,1,2, define

ak(u,w0) = f (w0)E{ρ(u,Z,w0)Z⊗k|W = w0},
where f (·) is the density of W and Z⊗k = 1,Z and ZZT for k = 0,1 and 2, re-
spectively. Additionally set

ak = ak(w0) =
∫ τ

0
ak(u,w0) d
0(u).

We will drop the dependence of ak(u,w0) and ak(w0) on w0 whenever there is no
ambiguity. Finally, let

� = �(w0) =
{

a2 −
∫ τ

0
a1(u)a1(u)T a−1

0 (u)λ0(u) du

}−1

and

Q =
(

(a2 − a1aT
1 a−1

0 )−1 −(a2 − a1aT
1 a−1

0 )−1a1a−1
0

−a−1
0 aT

1 (a2 − a1aT
1 a−1

0 )−1 (a0 − aT
1 a−1

2 a1)
−1

)
,

where, in fact, a0 is a scale.

THEOREM 2 (Asymptotic normality). Suppose that Conditions A.1–A.8 in
Appendix A hold. Then

√
nh
{
H
(
ξ̂(w0) − ξ0(w0)

)− 1
2h2epξ ′′

0(w0)µ2
} L−→ N

(
0,�(τ,w0)

)
,

where ep is a (2p + 1)-order diagonal matrix, with the first p elements 1 and the
last p + 1 diagonal elements 0, ξ0(w) = (βT

0 (w), β ′
0(w)T , g′

0(w0))
T and

�(τ,w0) =
(

�ν0 0
0T Qµ−2

2 ν2

)
.
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The above theorem gives the joint asymptotic normality for the local partial-
likelihood estimator. Its marginal distribution can easily be obtained as in the fol-
lowing corollary.

COROLLARY 1. Under the conditions of Theorem 2, we have
√

nh{β̂(w0) − β0(w0) − h2β ′′
0(w0)µ2/2} L−→ N(0, ν0�),√

nh3{ĝ′(w0) − g′
0(w0)} L−→ N

(
0, (a0 − aT

1 a−1
2 a1)

−1µ−2
2 ν2

)
.

Furthermore, they are asymptotically independent.

As a consequence of Theorem 2, the theoretical optimal bandwidth can be ob-
tained.

3. Issues related to partial-likelihood estimation. In this section we dis-
cussed a few issues that are related to the implementation of the partial-likelihood
estimator.

3.1. One-step local partial-likelihood estimator. When estimating the whole
functions β(·) and g(·), we usually need to apply the local partial likelihood (2.4)
at hundreds of points. Computing such an implicit estimator requires an iterative
algorithm such as the Newton–Raphson method or Fisher’s scoring method. Even
worse, for certain given w0, there does not exist a local partial-likelihood esti-
mator due to the limited amount of data around w0. These drawbacks make the
local partial-likelihood estimator less appealing. Following Fan and Chen [15], we
propose a one-step estimator as a viable alternative.

The local partial-likelihood estimator ξ̂ is found via solving the likelihood equa-
tion �′

n(ξ , τ ) = 0, where �′
n(ξ , τ ) = ∂�n(ξ , τ )/∂ξ . To facilitate notation, from now

on we drop the dependence of �n(ξ , τ ) on τ . For a given initial estimator ξ̂0, by
Taylor expansion we have

�′
n(ξ̂0) + �′′

n(ξ̂0)(ξ̂ − ξ̂0) ≈ 0.

Thus, the one-step estimator ξ̂os is defined as

ξ̂os = ξ̂0 − {�′′
n(ξ̂0)}−1�′

n(ξ̂0).(3.1)

A natural question arises: How good an initial estimator ξ̂0 is needed for the
one-step estimator to have the same performance as the maximum local partial-
likelihood estimator. The following theorem gives an answer to this question.

THEOREM 3. Under the conditions given in Theorem 2, ξ̂os has the same as-
ymptotic distribution as the maximum local partial-likelihood estimator ξ̂ , pro-
vided that

H(ξ̂0 − ξ0) = Op

(
h2 + (nh)−1/2).(3.2)
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Theorem 3 provides the conditions under which the one-step estimator performs
as well as the local partial-likelihood estimator. However, it does not provide any
guidance for choosing an initial estimator. Cai, Fan and Li [8] provided a useful
strategy for the choice of initial estimators and their idea can be adapted to the cur-
rent setting. The basic idea is first to compute the local partial-likelihood estimates
at a few fixed points. Use these estimates as the initial values of their nearest grid
points and obtain the one-step estimates at these grid points. For example, in our
simulation studies we evaluate the functions at ngrid = 200 grid points. We first
compute the maximum local pseudo-partial-likelihood estimators at specific grid
points u20, u60, u100, u140 and u180, and then use them as the initial values for the
one-step estimator at their nearest grid points. Use the newly computed one-step
estimates (at points u19, u21, u59, u61, . . . ) as the initial values of their nearest grid
points to compute the one-step estimates and so on, until the one-step estimates at
all grid points are computed. Hence, as long as the number of grid points is large
enough, condition (3.2) holds.

3.2. Estimation of baseline hazard function. With estimators of β(·) and g(·),
we can estimate the baseline hazard function by using a kernel smoothing,

λ̂0(t) =
∫

Wb(t − x)d
̂0(x),

where W is a given kernel function, b is a given bandwidth and


̂0(t) = 1

n

n∑
i=1

∫ t

0

dNi(u)

n−1∑n
j=1 Yj (u) exp(β̂T (Wj )Zj (u) + ĝ(Wj ))

.

Note that 
̂0(·) is an estimate of the cumulative hazard function 
0.

THEOREM 4. Under Condition B in Appendix A, we have


̂0(t) −→ 
0(t) and λ̂0(t) −→ λ0(t)

uniformly on (0, τ ] in probability.

3.3. Estimation of biases and variances. The biases of nonparametric esti-
mates are generally hard to estimate, since they involve higher-order derivatives.
However, their variances can be estimated quite reasonably. Thus, in construction
of confidence intervals/bands, the bias components are frequently omitted; in par-
ticular, undersmoothing procedures have been used to make the biases negligible
relative to their standard error. See, for example, [4, 22, 26]. Some people might ar-
gue that this is also the approach that parametric methods take—modeling biases
are inevitable and they are simply ignored in the construction of the parametric
confidence intervals.
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The bias and covariance of these local estimators H(ξ̂(w0) − ξ0(w0)) can be
estimated by

Â−1
n (τ,w0)B̂n(τ,w0) and (nh)−1Â−1

n (τ,w0)�̂n(τ,w0)Â−1
n (τ,w0),

where

Ân(τ,w0) = 1

n

n∑
i=1

∫ τ

0
Kh(Wi − w0)

× Ŝn2(u,w0)Ŝn0(u,w0) − Ŝn1(u,w0)Ŝn1(u,w0)
T

(Ŝn0(u,w0))2
dNi(u),

B̂n(τ,w0) = 1

n

n∑
i=1

∫ τ

0
Kh(Wi − w0)

(
U∗

i (u) − Ŝn1(u,w0)

Ŝn0(u,w0)

)
Yi(u)λ̂i(u) du,

�̂n(τ,w0) = h

n

n∑
i=1

∫ τ

0
K2

h(Wi − w0)

(
U∗

i (u) − Ŝn1(u,w0)

Ŝn0(u,w0)

)⊗2

Yi(u)λ̂i(u) du,

with λ̂i(u) = exp(β̂(Wi)
T Zi (u) + ĝ(Wi))λ̂0(u), U∗

i = H−1X∗
i and

Ŝnk(u,w0) =
n∑

i=1

Kh(Wi − w0)Yi(u) exp(ξ̂T
0 (w0)X∗

i (u))(U∗
i (u))⊗k,

k = 0,1,2.

THEOREM 5. Under the conditions of Theorem 4, we have

h−2Â−1
n (τ,w0)B̂n(τ,w0) −→ epξ ′′(w0)µ2/2,

Â−1
n (τ,w0)�̂n(τ,w0)Â−1

n (τ,w0) −→ �(τ,w0)

in probability.

In fact, by using the martingale properties, we can construct different estimators
of B̂n(τ,w0) and �̂(τ,w0) without estimating the baseline hazard function λ0(·).
That is,

B̃n(τ,w0) = 1

n

n∑
i=1

∫ τ

0
Kh(Wi − w0)

(
U∗

i (u) − Ŝn1(u,w0)

Ŝn0(u,w0)

)
dNi(u),

�̃n(τ,w0) = h

n

n∑
i=1

∫ τ

0
K2

h(Wi − w0)

(
U∗

i (u) − Ŝn1(u,w0)

Ŝn0(u,w0)

)⊗2

dNi(u).

The results of Theorem 5 still hold when the quantities B̂n(τ,w0) and �̂n(τ,w0)

are replaced by B̃n(τ,w0) and �̃n(τ,w0), respectively.
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One can also use the bootstrap method as in [32] to obtain an estimated variance
for our estimators. In fact, the method is particularly useful for estimating the
sampling variability of ĝ(w), since its analytic form is hard to derive.

4. Variable selection via nonconcave penalized likelihood.

4.1. Local penalized likelihood. For the nonparametric model (1.1), it is not
easy to give a variable selection procedure without going to detailed inferences on
each coefficient function. Motivated by the work of Fan and Li [17, 18], we apply
their procedure locally around each grid point w0. This results in the penalized log
partial-likelihood function

Q(ξ) = �n(ξ , τ ) −
2p+1∑
j=1

p�(|ξj |),(4.1)

where p�(·) is a penalty function. The penalized local partial-likelihood estimate
of ξ is to maximize (4.1). With a proper choice of � and a penalty function, many
estimated coefficients will be zero and hence their corresponding variables do not
appear in the model at the point w0. This achieves the objective of variable selec-
tion and results in a simple and implementable method to begin with.

A good penalty function should result in an estimator with the following three
properties: unbiasedness for large coefficients to attenuate biases, sparsity (many
small coefficients are estimated as zero) to reduce model complexity and conti-
nuity to avoid unnecessary variation in model prediction. Necessary conditions for
unbiasedness, sparsity and continuity have been derived by Antoniadis and Fan [3]
and Fan and Li [17]. A simple penalty function that satisfies all the three mathe-
matical requirements is the smoothly clipped absolute deviation (SCAD) penalty,
defined by

p′
�(θ) = �

{
I (θ ≤ �) + (a� − θ)+

(a − 1)�
I (θ > �)

}
(4.2)

for some a > 2 and θ > 0.

Fan and Li [17] suggested using a = 3.7 from a Bayesian point of view and this
value will be used in our numerical implementation.

There are two issues related to the practical implementation of the procedure.
First, to facilitate the implementation we use only one regularization parameter for
all variables which can have very different scales. Thus, we need to standardize
variables before using (4.1). Since each variable in (4.1) is used locally around a
given point w0, its sample mean and standard deviation should be defined locally.
For example, the variable Z1 at the point w0 can be standardized by

ave(Z1|w0) = 1

N

n∑
i=1

Kh(Wi − w0)Z1i
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and

var(Z1|w0) = 1

N

(
n∑

i=1

Kh(Wi − w0)Z
2
1i − ave(Z1|w0)

2N

)
,

where N =∑n
i=1 Kh(Wi − w0). The second issue is that the number of variables

as a function of w0, if not constant, will be discontinuous. This will lead to dis-
continuous estimates of coefficient functions. This may not be bad in terms of
overall prediction error, but does not produce parsimonious and appealing models.
To avoid this, we use a simple voting rule: if a coefficient function is estimated
as zero over a certain percentage of grid points, delete its corresponding variable;
otherwise keep the variable. In our implementation, we use the majority voting
rule, namely, the thresholding percentage is taken as 50%.

4.2. Oracle property. We now establish an oracle property of the penalized
local partial-likelihood estimator. We assume without loss of generality that the
first s variables of Z are significant and the last p − s variables are not significant.
To state our main result more explicitly, we need the following notation.

Recall that ξ = (δT ,ηT , γ )T . We divide δ into (δT
1 , δT

2 )T , where δ1 and δ2 are
s ×1 and (p− s)×1 vectors, representing, respectively, the vanishing and nonvan-
ishing coefficients. Corresponding to the partition of δ, we divide η into (ηT

1 ,ηT
2 )T .

Write

ξ1 = (δT
1 ,ηT

1 , γ )T = (ξ1,1, . . . , ξ1,2s, ξ1,2s+1)
T

and ξ2 = (δT
2 ,ηT

2 )T . Let ξ10 = (ξ1,1,0, . . . , ξ1,2s+1,0)
T , and ξ20 and ξ0 be, re-

spectively, the true values of ξ1, ξ2 and ξ . For example, ξ1,j,0 = βj0(w0) for
j = 1, . . . , s, ξ1,j,0 = β ′

j0(w0) for j = s + 1, . . . ,2s and ξ1,2s+1,0 = g′
0(w0). With-

out loss of generality, assume that ξ20 = 0. Set

an(w0) = max{p′
�(|ξ1,j,0|) : ξ1,j,0 
= 0},

bn(w0) = max{p′′
�(|ξ1,j,0|) : ξ1,j,0 
= 0}.

Let �1 and A1 be, respectively, the submatrices of �(τ,w0) and A(τ,w0) in
(A.10) and (A.16) in Appendix A that correspond to the rows in ξ1. Corresponding
to the partition of δ, let �−1 = (�T−1,�

T−2)
T with �−1 and �−2 being s × p and

(p − s) × p matrices, respectively.
The following theorem shows how the rates of convergence for the penalized

local partial-likelihood estimates depend on the regularization parameter.

THEOREM 6. Suppose that Conditions A.1–A.8 in the Appendix A hold. If
bn(w0) → 0, then there exists a local maximizer ξ̂p of Q(ξ) such that ‖ξ̂p − ξ0‖ =
Op(h2 + (nh)−1/2 + an(w0)).

It is clear from Theorem 6 that by choosing a proper �, such that an(w0) =
O((nh)−1/2 + h2), there exists a (nh)−1/2 + h2 consistent penalized local partial-
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likelihood estimator. Now we show that this estimator must possess an oracle
property.

THEOREM 7. Assume that the penalty function p�(θ) satisfies

lim inf
n→∞ lim inf

θ→0+ p′
�(θ)/� > 0.(4.3)

Let � → 0, {(nh)−1/2 + h2}/� → 0 and an(w0) = O((nh)−1/2 + h2). Under the
conditions of Theorem 6, the consistent local maximizer ξ̂p = (ξ̂T

1p, ξ̂T
2p) in Theo-

rem 6 satisfies the following statements with probability tending to 1:

(a) (Sparsity) We have ξ̂2p = 0.
(b) (Asymptotic normality) We have

√
nhB1

{
H1(ξ̂1p − ξ10)

(4.4)

− B−1
1

[
H−1

1 b + h2µ2

(
�−1β

′′
0(w0)

0s+1

)]}
−→ N

(
0,�1(τ,w0)

)
,

where b = (p′
�(|ξ1,1,0|) sgn(ξ1,1,0), . . . , p

′
�(|ξ1,2s+1,0|) sgn(ξ1,2s+1,0))

T , B1 =
A1 − H−1

1 �1H−1
1 , �1 = diag{p′′

�(|ξ1,1,0|), . . . , p′′
�(|ξ1,2s+1,0|)}, β0(w0) =

(β10(w0), β20(w0), . . . , βs0(w0),0)T, and H1 is a (2s + 1) × (2s + 1) diagonal
matrix with first s elements 1 and the last s + 1 elements h.

We now explain that the penalized local-likelihood estimators possess an oracle
property when penalty functions are properly chosen. Suppose that there is an
oracle who knows ξ2p = 0. She then uses this knowledge to estimate ξ̂1p , resulting
in an oracle estimator. From Theorem 2, the asymptotic covariance matrix of this
oracle estimator is 1

nh
A−1

1 �1(τ,w0)A
−1
1 . For penalty functions such as SCAD,

since � → 0, for sufficiently large n,

an(w0) = 0 and bn(w0) = 0 so b = 0 and �1 = 0.

Thus, Theorems 6 and 7 yield that ξ̂2p = 0 and H1(ξ̂1p − ξ10) is asymptotically

normal with covariance matrix 1
nh

A−1
1 �1(τ,w0)A

−1
1 , which is the same as the

asymptotic variance of the oracle estimator (see Theorem 2). Furthermore, it can
easily be seen that both estimators share the same asymptotic bias. Thus, the penal-
ized likelihood estimators perform as well as the oracle estimator when the penalty
functions are constant at the tails. In other words, when the true parameters have
some zero components, they are estimated as 0 with probability tending to 1 and
the nonzero components are estimated as well as the case where the correct sub-
model is known.

5. Numerical examples.

5.1. Simulations. In this section we first compare the performance of the one-
step and local partial-likelihood estimators. The performance of estimator β̂(·) is
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assessed via the weighted mean square error (WMSE),

WMSE = 1

ngrid

p∑
j=1

ngrid∑
k=1

aj [β̂j (wk) − βj (wk)]2,(5.1)

or the unweighted mean square error (UMSE) with all aj = 1, where {wk, k =
1, . . . , ngrid} are the grid points at which the functions β(·) are estimated. In the
following examples, the Gaussian kernel will be used, ngrid = 200 and, for WMSE,
aj is reciprocal to the sample variance of {βj (wk)}.

EXAMPLE 1. We first consider the varying-coefficient model λ(t) = 4t3 ×
exp{b(Z1(t),Z2,W)} with

b(Z1,Z2,W) = 0.5W(1.5 − W)Z1 + sin(2W)Z2

+ 0.5{exp(W − 1.5) − exp(−1.5)},
where W is a random variable uniformly distributed on [0,3], the covariate Z1(t)

is time-dependent, defined as Z1(t) = Z1/4I (t ≤ 1) + Z1I (t > 1), and Z1 and Z2
are jointly normal with correlation 0.5, each with mean 0 and standard deviation 5.
The censoring random variable C given (Z1,Z2,W) is distributed uniformly on
[0, a(Z1,Z2,W)], where

a(Z1,Z2,W) = c1I
(
b(Z1,Z2,W) > b0

)+ c2I
(
b(Z1,Z2,W) ≤ b0

)
,

with b0 being the mean function of b(Z1,Z2,W). The constants c1 = 0.8 and
c2 = 20 are chosen so that about 30–40% of data are censored in each region of
the function a(·).

We have conducted 200 simulations with sample size 300. Figure 1(a) depicts
the distribution for the WMSE over the 200 replications, using the three band-
widths h = 0.2,0.5,1. The initial value is chosen at grid points w20,w60,w100,
w140 and u180 by the local partial-likelihood estimator just mentioned in Sec-
tion 3.1. It is evident that the performances of the one-step local partial-likelihood
estimator (one-step LPLE) and local partial-likelihood estimator (LPLE) are com-
parable for a wide range of bandwidths. Figure 1(b)–(d) presents estimates of the
coefficient functions from a typical sample (attaining the median WMSE perfor-
mance) with h = 0.2.

We now test the accuracy of our standard error formula given in Section 3.3. The
standard deviations, denoted by SD in Table 1, of 200 estimated β̂1(w0), β̂2(w0)

and ĝ′(w0), based on 200 simulations, can be regarded as the true standard errors.
The average and the standard deviation of 200 estimated standard errors, denoted
by SEave and SEstd, summarize the overall performance of the standard error for-
mula. Table 1 presents the results at the points w = 0.3,0.75,1.5,2.25 and 2.7,
which correspond to the 10th, 25th, 50th, 75th and 90th percentiles of the distrib-
ution of W . The performance of the standard error formula is quite satisfactory.
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FIG. 1. Simulation results for Example 1. (a) Boxplots for the distribution for the WMSE over
the 200 replications, using the three bandwidths h = 0.2,0.5,1 (from left to right). (b), (c) and
(d) Typical estimates of β1(·), β2(·) and g(·) with bandwidth h = 0.2 (solid line, true function;
dashed line, one-step LPLE, i.e., OS).

EXAMPLE 2. In the following examples, we evaluate the performance of the
proposed variable selection method. Samples of size 300 were simulated from the

TABLE 1
True and estimated standard errors using bandwidth = 0.2 for Example 1

β̂1(w0) β̂2(w0) ĝ′(w0)

w0 SD SEave (SEstd) SD SEave (SEstd) SD SEave (SEstd)

0.30 0.0606 0.0573 (0.0098) 0.0655 0.0479 (0.0111) 0.3831 0.3735 (0.0492)
0.75 0.0458 0.0479 (0.0076) 0.0579 0.0337 (0.0079) 0.2779 0.2967 (0.0354)
1.50 0.0340 0.0414 (0.0058) 0.0473 0.0236 (0.0043) 0.1910 0.2457 (0.0258)
2.25 0.0303 0.0343 (0.0046) 0.0282 0.0197 (0.0018) 0.1873 0.1602 (0.0228)
2.70 0.0429 0.0385 (0.0053) 0.0321 0.0222 (0.0027) 0.2491 0.1474 (0.0178)
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FIG. 2. Boxplot for the distribution of the UMSE over the 200 replications, using bandwidths
h = 0.3 and λ = 0.3.

hazard regression model

λ(t) = exp

( 4∑
j=1

Zjβj (w) + g(w)

)
,

where β1(w) = 3(w − 2)2, β2(w) = 4 cos( (w−1.5)π
5 ) and β3(w) = β4(w) =

g(w) = 0. The covariates Z1,Z2,Z3 and Z4 are jointly normal, all with mean 0
and variance 2, and pairwise correlation 0.6. They are independent of W , which is
uniformly distributed on [0,3]. The censoring time follows the uniform distribu-
tion on [0,7] so that about 30–40% of the data were censored. The kernel function
is Gaussian.

The performance of the proposed variable selection technique is compared
with that of the maximum local partial-likelihood estimator from the full model
and from the oracle estimator, which is based on the model with only covariates
Z1 and Z2. Figure 2 depicts the distribution for the UMSE over the 200 repli-
cations, using bandwidths h = 0.3 and λ = 0.3. It is evident that the proposed
variable selection procedure outperforms the maximum local partial-likelihood es-
timator and performs comparably with the oracle estimator.

Using the majority voting (50%) rule, the variables Z3, Z4 and g(W) were
simultaneously deleted 98.5% of the time among 200 simulations, and using
a 60% thresholding level, the variables Z3,Z4 and g(w) were simultaneously
deleted 92% of the time. Hence, only variables Z1 and Z2 remain. Their estimated
coefficients are depicted in Figure 3 for a typical sample.
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FIG. 3. The estimated coefficient functions (dashed lines) using the local partial-likelihood ap-
proach with bandwidth h = 0.3 after deleting Z3,Z4 and g(w), as well as true lines (solid lines)
and their 95% confidence bands (dotted lines) for Example 2.

5.2. Data analysis. The proposed approaches are now applied to the nursing
home data set analyzed by Morris, Norton and Zhou [29], where a full description
of this data set is given. The data are from an experiment sponsored by the National
Center for Health Services Research during 1980–1982 that involved 36 for-profit
nursing homes in San Diego, California, with a sample of size 1601.

The study was designed to evaluate the effects of different financial incentives
on, among other things, the duration of stay. This motivated Morris, Norton and
Zhou [29] to take days T in the nursing home as the response variable. They used
the model

λ(t, x) = λ0(t) exp

( 7∑
j=1

xjβj

)
,

where x1 is a treatment indicator, being 1 if treated at a nursing home and 0 oth-
erwise; x2 is a gender variable (1 for males and 0 for females); x3 is a marital
status indicator (1 if married and 0 otherwise); x4, x5, x6 are three binary health
status indicators that correspond to the best health to the worst health; x7 is age,
which ranges from 65 to 104. Morris, Norton and Zhou [29] fitted the Cox model
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FIG. 4. The estimated coefficient functions (solid lines) via a local partial-likelihood approach with
bandwidth h = 15 and their 95% confidence limits (dotted lines) for the nursing home data without
the treatment and marital covariates.

with three parametric and one nonparametric baseline hazard model to this data
set. Their model does not include any possible interactions between age and other
variables. To explore possible interaction, Fan and Li [17] added interaction terms
such as x7x1, x7x2, . . . in the initial model. With our newly developed technique,
we can fit the more general model

λ(t, x) = λ0(t) exp

( 6∑
j=1

βj (x7)xj + g(x7)

)
.

This permits us to examine how different age groups interact with covariates such
as treatment, gender and marital status. In fact, as age increases, elderly people
would expect to stay at nursing homes longer. Therefore, it is natural to introduce
the term g(x7), the varying intercept.

The local partial-likelihood method was applied to the data set with band-
width h = 15, which was chosen by K-fold cross-validation [8, 25] to mini-
mize the prediction error

∫ τ
0 (Ni(t) − ÊNi(t))

2 d{∑n
k=1 Nk(t)}, where ÊNi(t) =∫ t

0 Yi(u) exp{β̂(Wi)
T Zi(u) + ĝ(Wi)}λ̂0(u) du is the estimate of the expected fail-
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ure number up to time t . We chose K = 20. Here, examination of the resulting es-
timated coefficient functions and their 95% confidence bands (not presented here)
suggests that variable treatment and marital status are not very significant. We
therefore applied the variable selection technique to the data with λ = 0.02 and
bandwidth h = 15. The coefficient function for the treatment effect was estimated
as zero at 89.5% of grid points, the coefficient function for marital status was esti-
mated as zero at 97.9% of grid points and they were simultaneously estimated as
zero at 87.5% of grid points. Thus, the variables treatment indicator and marital
status were deleted. In other words, there is no significant treatment effect even
when the more objective model (less restrictive model than in [29] and [18]) is
used. Applying the local log partial-likelihood method (2.4) to the remaining five
variables, we obtained estimated coefficient functions as in Figure 4 above. These
functions depict the extent to which the gender effect and the health effect vary
with age, and indicate clearly that the risk of staying at a nursing home depends
on age.

APPENDIX A: PROOFS

A.1. Notation and conditions. For easy reference, we collect a set of nota-
tion and conditions to be used. Let (�,F ,P(β,g,λ)) be a family of complete prob-
ability spaces provided with a history F = {Ft }t for an increasing right-continuous
filtration Ft ⊂ F . We assume that Wi is Ft -measurable, and Ni(u) and Zi (u) are
F-adapted. Write Ft = σ {Xi ≤ u,Zi(u),Wi, Yi(u), i = 1,2, . . . , n,0 ≤ u ≤ t} and
Mi(t) = Ni(t)−∫ t

0 λi(u) du, i = 1,2, . . . , n. Obviously, Mi(t) is an Ft martingale.
Let ‖ · ‖ denote the L2-norm and let ‖ · ‖J be the sup-norm of a function or a

process on a set J . The support of the random variable W is denoted by W . For a
compact subset JW of W , we define the neighborhood set of JW,ε as

JW,ε =
{
w : inf

w0∈JW

|w − w0| ≤ ε

}
for some ε > 0.

To facilitate technical arguments, we will reparametrize the local partial likeli-
hood (2.4) via the transformation ζ = H(ξ − ξ0). Hence, the logarithm of the local
partial-likelihood function is

�̃n(t, ζ ) = �n(H
−1ζ + ξ0, t)

= 1

n

n∑
i=1

∫ t

0
Kh(Wi − w0)

× [ζ T U∗
i (u) + ξT

0 X∗
i (u) − logSn0(u, ζ ,w0)]dMi(u)

+ 1

n

n∑
i=1

∫ t

0
Kh(Wi − w0)[ζ T U∗

i (u) + ξT
0 X∗

i (u) − logSn0(u, ζ ,w0)]

× Yi(u) exp
(
β0(Wi)

T Zi (u) + g0(Wi)
)
λ0(u) du,
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where U∗
i (u) = H−1X∗

i (u) and

Snk(u, ζ ,w0) =
n∑

i=1

Kh(Wi − w0)Yi(u) exp
(
ζ T U∗

i (u) + ξT
0 X∗

i (u)
)
(U∗

i (u))⊗k,

k = 0,1,2.

Furthermore, for each u ∈ [0, τ ] and k = 0,1,2, we write �̃n(ζ ) = �̃(ζ , τ ) and
define

S∗
nk(u, θ,w0) =

n∑
i=1

Kh(Wi − w0)Yi(u) exp
(
βT (Wi)Zi (u) + g(Wi)

)
(U∗

i (u))⊗k,

where ξ(·) = (βT (·),β ′(·)T , g(·))T , θ(·) = (βT (·), g(·))T and w0 ∈ JW .
Let f (w0) be the density of the random variable W . In addition to the notation

introduced before Theorem 2, we also define, for w0 ∈ JW,ε ,

s∗
0 (u, θ,w0) = f (w0)E

[
ρ
(
u,Z(u),w0

)|W = w0
]
,

s∗
1 (u, θ,w0) = f (w0)E

[
ρ
(
u,Z(u),w0

)(
ZT (u),0,0

)T |W = w0
]
,

s∗
2 (u, θ,w0) = f (w0)E

ρ
(
u,Z(u),w0

)
exp

(
β(w0)

T Z(u) + g(w0)
)

×
Z(u)ZT (u) 0 0

0 Z(u)ZT (u)µ2, Z(u)µ2
0 ZT (u)µ2, µ2

∣∣∣∣W = w0


and

sk(u, ζ ,w0)

= f (w0)

∫
E[P(u,Z(u),w0)�(ζ , ξ0,Z(u), y)Ru(y)⊗k|W = w0]K(y)dy,

where k = 0,1,2, Ru(y) = (ZT (u),ZT (u)y, y)T and

�(ζ , ξ0,Z, y) = exp

ζ T Ru(y) + ξT
0

Z
0
0

 .

To facilitate notation, the arguments θ0(w) = (βT
0 (w), g0(w))T , ξ0(w), ζ 0 = 0

and w0 are omitted in S∗
nk(t, θ,w0), Snk(t, ζ ,w0), s∗

k (t, θ,w0) and sk(t, ζ ,w0)

whenever there is no ambiguity. For example,

S∗
nk(t) = S∗

nk(t,w0) = S∗
nk(t, θ0,w0), s∗

k (t) = s∗
k (t,w0) = s∗

k (t, θ0,w0),

Snk(t) = Snk(t,w0) = Snk(t,0,w0), sk(t) = sk(t,w0) = sk(t,0,w0),

Snk(t, ζ ) = Snk(t, ζ ,w0), sk(t, ζ ) = sk(t, ζ ,w0).
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CONDITION A.

1. The kernel function K ≥ 0 is a bounded, symmetric density function with com-
pact support.

2. The functions β(·) and g(·) have continuous second-order derivatives around
the point w0.

3. The density function f (·) of W is continuous at the point w0 and f (w0) > 0.
4. The conditional probability P(u,Z(u), ·) is equicontinuous at w0 and the co-

variate Z(u) is continuous.
5. We have nh → ∞ and nh5 is bounded.
6. We have

∫ τ
0 λ0(t) dt < ∞.

7. (Lindeberg condition) There exists δ > 0 such that

(nh)−1/2 sup
t∈[0,τ ],i∈N

|Zi (t)|Yi(t)I
(
βT

0 (w0)Zi (t) > −δ|Zi (t)|) P−→ 0,

where N = {1,2, . . . , n}.
8. (Asymptotic variance) The matrix a2 −∫ τ

0
a1(u)a1(u)T

a0(u)
d
0(u) is positive definite

at the point w0 and the matrix
(a2 a1
aT

1 a0

)
is nonsingular at the point w0.

Condition A will be used to derive the pointwise convergence properties of ξ̂
and its asymptotic normality. Conditions A.1–A.5 are similar to those in [16] and
Conditions A.7–A.8 are similar to Conditions C and D of [2]. Condition A.7 seems
complicated, but can be easily verified in some important cases. For example, when
the covariates Z are bounded, the condition is always satisfied; if the covariates Z
are bounded by a random variable that has a bounded r th moment for some con-
stant r > 2, the condition also holds. Other cases can be found in [2]. To derive the
uniformly consistent result, Condition A needs to be strengthened as follows.

CONDITION B.

1. The kernel function K ≥ 0 is a bounded, symmetric density function with com-
pact support.

2. The functions β0(·) and g0(·) have continuous second-order derivatives
on JW,ε .

3. The conditional probability P(u,Z(u),w) is equicontinuous in the argu-
ments (u,w) on [0, τ ] × JW,ε .

4. The compact set JW ⊂ W has the property infw∈JW,ε
f (w) > 0 for some ε > 0.

5. The covariate process Z(u) has continuous sample paths in a subset Z of the
continuous function space, and

∫ τ
0 λ0(t) dt < ∞ and ‖fW‖JW

< ∞.
6. The function s0(t, θ,w0) is bounded away from 0 on the product space

[0, τ ] × C × JW,ε , that is,

inf
t∈[0,τ ] inf

(βT ,g)∈C
inf

w0∈JW,ε

s0(t, θ,w0) > 0
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and

sup
t∈[0,τ ]

sup
(βT ,g)∈C

E|Z(t)|k exp
(
βT Z(t) + g

)
< ∞,

where C ⊂ Rp+1.
7. We have nh/ logn → ∞ and nh5 is bounded.

8. (Asymptotic variance) The matrix a2 −∫ τ
0

a1(u)a1(u)T

a0(u)
d
0(u) is positive definite

for any w0 ∈ JW,ε and the matrix
(a2 a1
aT

1 a0

)
is nonsingular for every w0 ∈ JW,ε .

A.2. Proof of main results. Let

Cn(t) = n−1
n∑

i=1

Yi(t)g
(
Wi, (Wi − w0)/h,Zi(t)

)
Kh(Wi − w0)

for a function g(·, ·, ·).
LEMMA A.1. Assume that Conditions A.1 and A.4 hold. Suppose that

g(·, ·, ·) is continuous in its three arguments and that E(g(W,u,Z(t))|W = w0) is
continuous at the point w0. If h → 0 in such a way that nh/ logn → ∞, then

sup
0≤t≤τ

|Cn(t) − C(t)| P−→ 0,

where C(t) = f (w0)
∫

E(Y (t)g(w0, u,Z(t))|W = w0)K(u)du.

PROOF. It is easy to show that for every t ∈ [0, τ ],
|Cn(t) − C(t)| P−→ 0.(A.1)

Now we divide [0, τ ] into M subintervals [ti−1, ti], i = 1,2, . . . ,M , with maxi-
mum length δ. Then

max
1<i≤M

|Cn(ti) − C(ti)| P−→ 0.(A.2)

Note that

sup
0≤t≤τ

|Cn(t) − C(t)|

≤ max
1≤i≤M

|Cn(ti) − C(ti)|(A.3)

+ max
1≤i≤M

sup
|t−ti−1|<δ

∣∣Cn(t) − C(t) − (
Cn(ti−1) − C(ti−1)

)∣∣.
The first term on the right-hand side is asymptotically negligible. We now deal
with the second term. Write

g
(
W,(W − w0)/h,Z

)= g+(W,(W − w0)/h,Z
)− g−(W,(W − w0)/h,Z

)
,
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where g+(·, ·, ·) and g−(·, ·, ·) are the positive part and negative part of g(·, ·, ·),
respectively. Correspondingly, we decompose Cn(t) into C+

n (t) and C−
n (t). We

only need to show that

max
1≤i≤M

sup
|t−ti−1|<δ

|C+
n (t) − C+

n (ti−1)| + max
1≤i≤M

sup
|t−ti−1|<δ

|C+(t) − C+(ti−1)|
(A.4)

P−→ 0

and a similar result for C−
n (t). We now focus on (A.4). It will be shown in Appen-

dix B that

max
1≤i≤M

sup
|t−ti−1|<δ

|C+
n (t) − C+

n (ti−1)| P−→ 0.(A.5)

On the other hand, we have

max
1≤i≤M

sup
|t−ti−1|<δ

|C+(t) − C+(ti−1)|

≤ max
1≤i≤M

sup
|t−ti−1|≤δ

f (w0)

∫
E
{
Y(t)

[
g+(w0, u,Z(t)

)
− g+(w0, u,Z(ti−1)

)]|W = w0
}

(A.6)
× K(u)du

+ max
1≤i≤M

sup
|t−ti−1|≤δ

∣∣∣∣∫ E
{
I (ti−1 < X < ti)g

+(w0, u,Z(ti−1)
)|W = w0

}
× K(u)du

∣∣∣∣,
which tends to zero as δ → 0. Hence (A.4) holds. This completes the proof. �

LEMMA A.2. Assume that g(w,u,Z(t)) is equicontinuous in its arguments
w and u, and that E(g(w0, u,Z(t))|W = w0) is equicontinuous in the argu-
ment w0. Under Conditions B.3 and 4, we have

sup
0≤t≤τ

sup
w0∈B

|Cn(t,w0) − C(t,w0)| P−→ 0,

where B is a compact set that satisfies infw∈B f (w) > 0.

The proof of Lemma A.2 is similar to that of Lemma A.1 and is omitted.

LEMMA A.3. Let C and D be compact sets in Rd and Rp , and let f (x, θ) be
a continuous function in θ ∈ C and x ∈ D. Assume that θ0(x) is continuous in
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x ∈ D and is the unique maximizer of f (x, θ). Let θ̂n(x) ∈ C be a maximizer
of fn(x, θ). If

sup
θ∈C,x∈D

|fn(x, θ) − f (x, θ)| −→ 0,

then

sup
x∈D

|θ̂n(x) − θ0(x)| −→ 0.

The proof of Lemma A.3 can be found in [11].

LEMMA A.4. Under Condition A, we have for k = 0,1,2,

n−1S∗
nk(u) = s∗

k (u) + op(1),

uniformly for u ∈ (0, τ ], where s∗
k (u) = s∗

k (u, θ0,w0) and

sup
u∈(0,τ ]

‖n−1S∗
nk(u, θ,w0) − s∗

k (u, θ,w0)‖ = op(1),

where θ lies in a neighborhood of θ0 for fixed w0. In addition, we have for each ζ ,

sup
u∈(0,τ ]

‖n−1Snk(u, ζ ,w0) − sk(u, ζ ,w0)‖ = op(1),

where ζ lies in a neighborhood of 0 for fixed w0. Furthermore, under Condition B,
we have

‖n−1S∗
nk − s∗

k ‖R = op(1),

where R = [0, τ ] × C × JW,ε and a similar result holds for Snk(u, ζ ,w0).

The results of Lemma A.4 can be easily proved along similar lines to the argu-
ments establishing Lemma A.1.

PROOF OF THEOREM 1. The first result of Theorem 1 follows from the first
step in the proof of Theorem 2. Now we only prove the second result of Theorem 1.
By an argument similar to that in the first step in the proof of Theorem 2, we easily
prove from Lemma A.2 that

sup
t∈[0,τ ]

sup
ξ0∈C∗

sup
w0∈JW

|�̃n(t, ζ ) − �̃n(t,0) − Y(t, ζ )| −→ 0

in probability; here C∗ is a convex and compact set of R2p+1. Therefore, it follows
from Lemma A.3 that supw0∈JW

|ζ̂ | → 0 in probability. The proof is complete.
�

PROOF OF THEOREM 2. We first prove that
√

nhH(ξ̂(w0) − ξ0(w0)) is as-
ymptotically normal with mean h2epξ ′′

0(w0)µ2/2 and covariance �(τ,w0). Now
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we divide the proof of the asymptotic normality of
√

nhH(ξ̂(w0) − ξ0(w0)) into
three steps. The first step is to show that H(ξ̂(w0) − ξ0(w0)) → 0 in probability.
The second step is to establish the asymptotic normality of the first derivative of
the local partial likelihood. The third step is to demonstrate that the Hessian ma-
trix of the local partial-likelihood function converges to a positive definite one.
Theorem 2 will then be proved by combining the results in these three steps.

(a) We first show that ζ̂ → 0 in probability, where ζ̂ = H(ξ̂ − ξ0). It is easy to
show that

�̃n(t, ζ ) − �̃n(t,0)

= 1

n

n∑
i=1

∫ t

0
Kh(Wi − w0)

[
ζ T U∗

i (u) − log
Sn0(u, ζ )

Sn0(u,0)

]
dMi(u)

(A.7)

+ 1

n

∫ t

0
S∗

n1(u)T ζλ0(u) du − 1

n

∫ t

0
log

Sn0(u, ζ )

Sn0(u,0)
S∗

n0(u)λ0(u) du

:= Xn(t, ζ ) + Yn(t, ζ ).

By Lemma A.1 we obtain that

Yn(t, ζ ) =
∫ t

0
(s∗

1 (u))T ζλ0(u) du −
∫ t

0
log

s0(u, ζ )

s0(u,0)
s∗

0 (u)λ0(u) du + op(1)

:= Y(t, ζ ) + op(1).

In Appendix B, we will show that Y(t, ζ ) is a strictly concave function in ζ and
has maximum value at ζ = 0. The process Xn(t, ζ ) is a local square integrable
martingale with the square variation process

Dn(t) = 〈Xn(·, ζ ),Xn(·, ζ )〉(t)

= 1

n2

n∑
i=1

∫ t

0
K2

h(Wi − w0)

[
ζ T U∗

i (u) − log
(

Sn0(u, ζ )

Sn0(u,0)

)]⊗2

× Yi(u) exp
(
β0(Wi)

T Zi (u) + g0(Wi)
)
λ0(u) du.

It follows from Lemma A.1 that

EX2
n(t, ζ ) = EDn(t) = O((nh)−1) −→ 0, 0 < t ≤ τ.

Hence, we have that

�̃n(t, ζ ) − �̃n(t,0) = Y(t, ζ ) + Op((nh)−1/2).

Obviously, �̃n(t, ζ )− �̃n(t,0) is strictly concave in ζ with the maximizer ζ̂ . By the
concavity lemma it follows that ζ̂ → 0, the maximizer of Y(t, ζ ) in probability.
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(b) We now show that
√

nh(�̃′
n(τ,0) − Bn(τ,w0)) is asymptotically normal

with mean zero and covariance �(τ,w0), where the definitions of Bn(τ,w0) and
�(τ,w0) can be found below.

Observe that

�̃′
n(0) = �̃′

n(τ,0) = 1

n

n∑
i=1

∫ τ

0
Kh(Wi − w0)

[
U∗

i (u) − Sn1(u,w0)

Sn0(u,w0)

]
dMi(u)

+ 1

n

n∑
i=1

∫ τ

0
Kh(Wi − w0)

[
U∗

i (u) − Sn1(u,w0)

Sn0(u,w0)

]
× exp

(
β0(Wi)

T Zi (u) + g0(Wi)
)
Yi(u)λ0(u) du.

Let us denote the above two terms, respectively, by I1(τ,0) and I2(τ,0). We first
deal with I2(τ,0). By Taylor expansion we have

exp
(
β0(Wi)

T Zi (u) + g0(Wi)
)− exp

(
ξT

0 X∗
i + g0(w0)

)
= 1

2 exp
(
ξT

0 X∗
i + g0(w0)

)[β ′′
0 (w0)

T Zi (u) + g′′
0 (w0)](A.8)

× (Wi − w0)
2(1 + Op(h)

)
.

Note that

I2(τ,0) = 1

n

n∑
i=1

∫ τ

0
Kh(Wi − w0)

(
U∗

i (u) − Sn1(u)

Sn0(u)

)
× [

exp
(
β0(Wi)

T Zi (u) + g0(Wi)
)− exp

(
ξT

0 X∗
i + g0(w0)

)]
× Yi(u)λ0(u) du.

Then it follows from Lemmas A.1 and A.4 that

I2(τ,0) = 1

2n

n∑
i=1

∫ τ

0
Kh(Wi − w0)

[
U∗

i (u) − s∗
1 (u)

s∗
0 (u)

]
× Yi(u) exp

(
ξT

0 X∗
i + g0(w0)

)[β ′′
0(w0)

T Zi (u) + g′′
0 (w0)]

× (Wi − w0)
2λ0(u) du

(
1 + op(h)

)
= 1

2
h2f (w0)

∫ τ

0
E


Z(u)µ2

Z(u)µ3
µ3

− s∗
1 (u)µ2

s∗
0 (u)

ρ
(
u,Z(u),w0

)

× [β ′′
0 (w0)

T Z(u) + g′′
0 (w0)]|W = w0


× λ0(u) du

(
1 + Op(h)

)
,



LOCAL PARTIAL-LIKELIHOOD ESTIMATION 315

where s∗
k (u) = s∗

k (u, θ0,w0) for k = 0,1,2. Since K(·) is a symmetric function,
which implies µ3 = 0, simple algebra shows that

I2(τ,0) = 1
2h2µ2f (w0)

×
∫ τ

0
E

Z(u) − a1(u)/a0(u)

0
0


×ρ

(
u,Z(u),w0

)
(ZT ,0,1)

β ′′
0(w0)

0
g′′(w0)

 d
0(u)(A.9)

× (
1 + Op(h)

)
= 1

2h2µ2ep�−1β ′′
0(w0)

(
1 + Op(h)

)
.

Let us denote the term in (A.9) by Bn(τ,w0).
We now derive the asymptotic normality of the term I1(τ,0). Let I ∗

1 (t) =√
nhI1(t,0). Then

〈I ∗
1 , I ∗

1 〉(t) = h

n

n∑
i=1

∫ t

0
K2

h(Wi − w0)

[
U∗

i (u) − Sn1(u)

Sn0(u)

]⊗2

× Yi(u) exp
(
β0(Wi)

T Zi (u) + g0(Wi)
)
λ0(u) du.

By Lemma A.1 and using Conditions A.1 and A.8, it can be shown that

�(τ,w0)

= lim
n→∞E〈I ∗

1 , I ∗
1 〉(τ )

= f (w0)

×
∫ τ

0
E

(Z(u) − a1(u)/a0(u)
)⊗2

ν0 0 0
0 Z(u)ZT (u)ν2 Z(u)ν2
0 ZT (u)ν2 ν2

(A.10)

× ρ
(
u,Z(u),w0

)| W = w0

 d
0(u)

=
�−1ν0 0 0

0 a2ν2 a1ν2
0 aT

1 ν2 a0ν2

 .

By Condition A.7 and a proof similar to that of Anderson and Gill [2], it is easy to
prove that the Lindeberg condition for the process I ∗

1 (t) holds. By the martingale
central limit theorem, we derive that I ∗

1 (t) is asymptotically normal with mean
zero and covariance �(t,w0). Hence√

nh
(
�̃′
n(0) − Bn(τ,w0)

)−→ N
(
0,�(τ,w0)

)
.(A.11)
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(c) We will show that the second derivative of the logarithm of the local partial-
likelihood function converges to a finite constant matrix. Since ζ̂ → 0 in probabil-
ity, by the mean-value theorem we have that

�̃′′
n(ζ̂ ) = �̃′′

n(0) + op(1).(A.12)

Since s∗
k (u) = sk(u) exp(g0(w0)), k = 0,1,2, from Lemma A.4, we can obtain

�̃′′
n(0) = 1

n

∫ τ

0

n∑
i=1

Kh(Wi − w0)
s∗

2 (u)s∗
0 (u) − s∗

1 (u)(s∗
1 (u))T

(s∗
0 (u))2 dNi(u) + op(1).

Write Fw(u) = P(X ≤ u,� = 1|W = w) and its corresponding empirical condi-
tional measure,

F̃w(u) = 1

n

n∑
i=1

Kh(Wi − w0)I (Xi ≤ u,�i = 1).

By kernel smoothing techniques, we easily prove that

�̃′′
n(0) = −

∫ τ

0

s∗
2 (u)s∗

0 (u) − s∗
1 (u)(s∗

1 (u))T

(s∗
0 (u))2 dF̃w(u) + op(1)

(A.13)
= −A(τ,w0) + op(1),

where

A =
∫ τ

0

s∗
2 (u)s∗

0 (u) − s∗
1 (u)(s∗

1 (u))T

(s∗
0 (u))2 dFw(u).

It is easy to show that A(τ,w0) is positive definite.
(d) Combining the results in steps (a), (b) and (c), we can establish the asymp-

totic normality of
√

nhH(ξ̂(w0) − ξ(w0)). In fact, since ζ̂ maximizes �̃n(ζ ), by
Taylor expansion around 0, we have

−�̃′
n(0) = �̃′

n(ζ̂ ) − �̃′
n(0) = (�̃′′

n(ζ̂
∗
))T ζ̂ ,

where ζ̂
∗

lies between 0 and ζ̂ . Hence ζ̂
∗ → 0 in probability. It follows

from (A.13) that

ζ̂ − A(τ,w0)
−1Bn(τ,w0)

= −(�̃′′
n(ζ̂

∗
))−1(�̃′

n(0) − Bn(τ,w0)
)+ op(1).

Combining (A.11) with (A.13), by Slutsky’s theorem we obtain that
√

nh
(
ζ̂ − A(τ,w0)

−1Bn(τ,w0)
)

−→ N
(
0,A−1(τ,w0)�(τ,w0)

(
A−1(τ,w0)

)T )
.
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Now we simplify the matrix A(τ,w0). Obviously, by a simple calculation we
have

s∗
2 (u) = f (w0)E

Z(u)ZT (u) 0 0
0 Z(u)ZT (u)µ2 Z(u)µ2
0 ZT (u)µ2 µ2


× ρ

(
u,Z(u),w0

)|W = w0

(A.14)

=
a2(u) 0 0

0 a2(u)µ2 a1(u)µ2
0 aT

1 (u)µ2 a0(u)µ2

 .

Similarly, we obtain that

(s∗
1 (u))⊗2 =

a1(u)aT
1 (u) 0 0

0 0 0
0 0 0

 .(A.15)

Note that s∗
0 (u) = a0(u). Hence it follows from (A.14) and (A.15) that

A(τ,w0) =
�−1 0 0

0 a2µ2 a1µ2
0 aT

1 µ2 a0µ2

 .(A.16)

Hence, the asymptotic bias of the estimator ζ̂ (w0) is

b(τ,w0) = A−1(τ,w0)Bn(τ,w0)

= h2epξ ′′
0(w0)µ2/2

and the asymptotic covariance is

�(τ,w0) = A−1(τ,w0)�(τ,w0)
(
A−1(τ,w0)

)T
=
�ν0 0

0T

(
a2 a1
a1 a0

)−1
µ−2

2 ν2


=
(

� 0
0T Qµ−2

2 ν2

)
.

This completes the proof. �

PROOF OF THEOREM 3. We have shown from (A.13) that

�̃′′
n(ζ̂

∗
) = −A(τ,w0) + op(1)(A.17)

for any ζ̂
∗

between zero and ζ̂ = H(ξ̂ − ξ0). By Theorem 2, ζ̂ = Op(h2 +
(nh)−1/2). Thus, for any ζ̂

∗ = Op(h2 + (nh)−1/2), (A.17) holds.
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By Taylor expansion of �̃′
n(ζ̂ 0) at ζ 0 = 0, we have

�̃′
n(ζ̂ 0) = �̃′

n(ζ 0) + �̃′′
n(ζ̂

∗
)(ζ̂ 0 − ζ 0),(A.18)

where ζ̂ 0 = H(ξ̂0 − ξ0) and ζ̂
∗ = H(ξ̂

∗
0 − ξ0), in which ξ̂

∗
0 lies between ξ0 and ξ̂0.

By definition of the one-step estimator and (A.18), we have that

ζ̂ os − ζ 0 = (ζ̂ 0 − ζ 0) − (�̃′′
n(ζ̂ 0))

−1�̃′
n(ζ̂ 0).

Using (A.17), we have

ζ̂ os − ζ 0 = (
I − (�̃′′

n(ζ̂ 0))
−1�̃′′

n(ζ̂
∗
)
)
(ζ̂ 0 − ζ 0) − (�̃′′

n(ζ̂ 0))
−1�̃′

n(ζ 0)

= −(�̃′′
n(ζ̂ 0))

−1�̃′
n(ζ 0) + op(ζ̂ 0 − ζ 0)

= −(�̃′′
n(ζ̂ 0))

−1[�̃′
n(ζ 0) − Bn(τ,w0)] − �̃′′

n(ζ̂ 0)
−1Bn(τ,w0)

+ op

(
(nh)−1/2 + h2).

It follows from (A.11) and (A.13) that ζ̂ os has the same asymptotic distribution as
the maximum local partial-likelihood estimator. This yields Theorem 3. �

PROOF OF THEOREM 4. By the same argument as that of Lemma A.1, we
have

sup
t∈[0,τ ]

sup
‖θ−θ0‖≤‖θ̂−θ0‖

n−1|�n(t, θ) − �n(t, θ0)| −→ 0(A.19)

in probability, where

�n(t, θ) =
n∑

i=1

I (Wi ∈ JW)Yi(t) exp{βT (Wi)Zi (t) + g(Wi)},

where θ = (βT (·), g(·))T .
By definition of 
̂0(t), we have


̂0(t) − 
0(t) =
∫ t

0

{
1

�n(θ̂)
− 1

�n(θ0)

}
dN̄n +

∫ t

0

{
dN̄n

�n(θ0)
− d
0

}

= −
∫ t

0

�n(θ̂) − �n(θ0)

�n(θ̂)
d
0 −

∫ t

0

�n(θ̂) − �n(θ0)

�n(θ̂)�n(θ0)
dM̄n

+
∫ t

0

1

�n(θ0)
dM̄n,

where N̄n =∑n
i=1 Ni and M̄n =∑n

i=1 Mi . From (A.19) it is easy to see that the
first term converges to zero in probability uniformly on (0, τ ] as n → ∞. The last
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two terms of the above expression are square integrable local martingales with
variation processes∫ t

0

(�n(θ̂) − �n(θ0))
2

(�n(θ̂))2�n(θ0)
d
0 and

∫ t

0

1

�n(θ0)
d
0,

respectively. Since �n(θ0) = Op(n), the above variance processes converge to
zero in probability uniformly on (0, τ ] as n → ∞. The terms converge to zero in
probability uniformly on (0, τ ] by an argument similar to that of Andersen and
Gill [2] via the Lenglart inequality. Therefore


̂0(t) −→ 
0(t)

uniformly on (0, τ ]. Thus, we can prove by the standard argument of kernel esti-
mation that

λ̂0(t) −→ λ0(t)

uniformly on (0, τ ]. �

PROOF OF THEOREM 5. From the proof of Theorem 2, we easily show that
this theorem holds. �

PROOF OF THEOREM 6. Using the same proof as in Theorem 2, we can get

�′
n(ξ0) = Op

(
(nh)−1/2 + h2).

Let αn = (nh)−1/2 + h2 + an. Following the same lines as the proof of Theorem 1
of [17], the result follows. �

LEMMA A.5. Suppose that the conditions of Theorem 6 hold. Then with prob-
ability tending to 1, for any given ξ1 satisfying ‖ξ1 − ξ10‖ = Op((nh)−1/2 + h2)

and any constant C, we have

Q
(
(ξT

1 ,0)T
)= max

‖ξ2‖≤C[(nh)−1/2+h2]
Q
(
(ξT

1 , ξT
2 )T

)
.

PROOF. From an argument similar to that in step (b) in the proof of Theorem 2,
it is easy to show that

�′
n(ξ0) = Op

(
(nh)−1/2 + h2),

and by an argument similar to that in step (c) of the proof of Theorem 2, we have

�′′
n(ξ0) = Op(1).

The result follows from the the proof of Lemma 1 of [17]. �

PROOF OF THEOREM 7. It follows from Lemma A.5 and Theorem 6 that the
first result of Theorem 7 holds. Now we prove the second result of Theorem 7. It
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can be easily shown that there exists a ξ̂1 as in Theorem 6 that is a local maximizer
of Q(ξT

1 ,0)T , and that satisfies the likelihood equations

∂Q(ξ)

∂ξ1

∣∣∣∣
ξ=(ξ̂1,0)

= 0.

Using the Taylor expansion of (∂Q(ξ))/∂ξ1 at point ξ0 and noting that ξ̂1 is a
consistent estimator from Theorem 6, we have

∂�n(ξ0)

∂ξ1
+
(

∂2ln(ξ0)

∂ξ1∂ξT
1

+ op(1)

)
(ξ̂1 − ξ10)

(A.20)
− b − (

�1 + op(1)
)
(ξ̂1 − ξ10) = 0.

From the proof of Theorem 2, it is easy to show that
√

nh

(
H−1 ∂�n(ξ0)

∂ξ
− 1

2
h2µ2ep�−1β ′′(w0)

(
1 + op(1)

))−→ N
(
0,�(τ,w0)

)
and

H−1 ∂2�n(ξ0)

∂ξ ∂ξT
H−1 −→ −A(τ,w0).

Thus, we have
√

nh

(
H−1

1
∂�n(ξ0)

∂ξ1
− 1

2
h2µ2

(
�−1β

′′
0(w0)

0

)(
1 + op(1)

))
(A.21)

−→ N
(
0,�1(τ,w0)

)
and

H−1
1

∂2ln(ξ0)

∂ξ1∂ξT
1

H−1
1 −→ −A1(τ,w0).(A.22)

By some simple calculations, we easily show that the second result of Theorem 7
follows from (A.20), (A.21) and (A.22). �

APPENDIX B

Concavity and maxima of Y(t, β). Here we prove that Y(τ, ζ ) defined by (A.7)
is concave with respect to ζ . Differentiating the function Y(τ, ζ ) with respect to ζ ,
we have

∂Y (τ, ζ )

∂ζ
=
∫ t

0
s∗

1 (u)λ0(u) du −
∫ t

0

s1(u, ζ )

s0(u, ζ )
s∗

0 (u)λ0(u) du,

∂2Y(τ, ζ )

∂ζ 2 = −
∫ t

0

s2(u, ζ )s0(u, ζ ) − (s1(u, ζ ))⊗2

(s0(u, ζ ))2 s∗
0 (u)λ0(u) du.

By the integral transform and the fact that aaT + bbT ≥ 2abT for any vectors a
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and b, we can show that

∂2Y(τ,0)

∂ζ 2 < 0.

Again by s∗
k (u,0) = sk(u, θ0) exp(g0(w0)), k = 0,1, we have

∂Y (τ,0)

∂ζ
= 0.

Hence ζ = 0 is the maximizer Y(τ, ζ ).

PROOF OF (A.5). It is easy to show that

max
1≤i≤M

sup
|t−ti−1|<δ

|C+
n (t) − C+

n (ti−1)| ≤ J1 + J2,

where

J1 = max
1≤i≤M

sup
|t−ti−1|≤δ

∣∣∣∣∣n−1
n∑

j=1

Yj (t)g
+(Wj, (Wj − w0)/h,Zj (t)

)
Kh(Wj − w0)

− n−1
n∑

j=1

Yj (t)g
+(Wj, (Wj − w0)/h,Zj (ti−1)

)

× Kh(Wj − w0)

∣∣∣∣∣
and

J2 = max
1≤i≤M

sup
|t−ti−1|≤δ

∣∣∣∣∣n−1
n∑

j=1

Yj (t)g
+(Wj, (Wj − w0)/h,Zj (ti−1)

)
× Kh(Wj − w0)

− n−1
n∑

i=1

Yj (ti−1)g
+(Wj, (Wj − w0)/h,Zj (ti−1)

)

× Kh(Wj − w0)

∣∣∣∣∣.
Note that Zj (t) (j = 1,2, . . . , n) is continuous on [0, τ ]. Thus we easily obtain
that

J1 ≤ max
1≤j≤n

sup
t∈[0,τ ]

sup
|t−ti−1|≤δ

∣∣g+(Wj, (Wj − w0)/h,Zj (t)
)

− g+(Wj, (Wj − w0)/h,Zj (ti−1)
)∣∣

× sup
t∈[0,τ ]

n−1
n∑

j=1

Yj (t)Kh(Wj − w0),
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which tends to zero in probability. Since Yi(t) is a decreasing function of t , we
have, for any ε > 0,

P(J2 > ε) ≤ MP

(
n−1

∣∣∣∣∣
n∑

j=1

I (ti−1 < Xj < ti)

× g+(Wj, (Wj − w0)/h,Zj

)
Kh(Wj − w0)

∣∣∣∣∣> ε

)
.

It is easy to show that

n−1
n∑

j=1

I (ti−1 < Xj < ti)g
+(Wj, (Wj − w0)/h,Zj (ti−1)

)
Kh(Wj − w0)

P−→ f (w0)

∫
E
{
I (ti−1 < X < ti)g

+(w0, u,Zj (ti−1)|W = w0
)}

K(u)du.

On the other hand,

E
(
I (ti−1 < X < ti)g

+(w0, u,Z(ti−1)
)|W = w0

)
≤ E1/2{I (ti−1 < X < ti)|W = w0)}

× E1/2{g+2(w0, u,Z(ti−1)
)|W = w0

}
= ∣∣P(X < ti−1|W = w0) − P(X < ti |W = w0)

∣∣1/2

× E1/2(g+2(w0, u,Z(ti−1)
)|W = w0

)
< ε

as |ti − ti−1| < δ. Hence

P

(
n−1

∣∣∣∣∣
n∑

j=1

I (ti−1 < Xj < ti)

× g+(Wj, (Wj − w0)/h,Zj (ti−1)
)
Kh(Wj − w0)

∣∣∣∣∣> ε

)

≤ P

(∣∣∣∣∣
n∑

j=1

n−1I (ti−1 < Xj < ti)

× g+(Wj, (Wj − w0)/h,Zj (ti−1)
)
Kh(Wj − w0)

− f (w0)

∫
E
(
I (ti−1 < X < ti)

× g+(w0, u,Z(ti−1)
)|W = w0

)
K(u)du

∣∣∣∣∣> ε/2

)
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+ P

(
f (w0)

∫ ∣∣E(I (ti−1 < X < ti)

× g+(w0, u,Z(ti−1)
)|W = w0

)
K(u)du

∣∣> ε/2
)

< η.

Hence for any η > 0 and ε > 0 there exists N0 such that for n > N0 we have

P(J1 + J2 > ε) < 2η.(B.1)

Therefore, we obtain that

P

(
max

1≤i≤M
sup

|t−ti−1|<δ

|C+
n (t) − C+

n (ti−1)| > ε

)
< 2η.(B.2)

This completes the proof of (A.5). �
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