
Statistical Science
2005, Vol. 20, No. 4, 317–337
DOI 10.1214/088342305000000412
© Institute of Mathematical Statistics, 2005

A Selective Overview of Nonparametric
Methods in Financial Econometrics
Jianqing Fan

Abstract. This paper gives a brief overview of the nonparametric techniques
that are useful for financial econometric problems. The problems include es-
timation and inference for instantaneous returns and volatility functions of
time-homogeneous and time-dependent diffusion processes, and estimation
of transition densities and state price densities. We first briefly describe the
problems and then outline the main techniques and main results. Some use-
ful probabilistic aspects of diffusion processes are also briefly summarized to
facilitate our presentation and applications.
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1. INTRODUCTION

Technological innovation and trade globalization
have brought us into a new era of financial markets.
Over the last three decades, a large number of new
financial products have been introduced to meet cus-
tomers’ demands. An important milestone occurred in
1973 when the world’s first options exchange opened
in Chicago. That same year, Black and Scholes [23]
published their famous paper on option pricing and
Merton [90] launched the general equilibrium model
for security pricing, two important landmarks for mod-
ern asset pricing. Since then the derivative markets
have experienced extraordinary growth. Professionals
in finance now routinely use sophisticated statistical
techniques and modern computational power in portfo-
lio management, securities regulation, proprietary trad-
ing, financial consulting and risk management.

Financial econometrics is an active field that inte-
grates finance, economics, probability, statistics and
applied mathematics. This is exemplified by the books
by Campbell, Lo and MacKinlay [28], Gouriéroux
and Jasiak [60] and Cochrane [36]. Financial activities
generate many new problems, economics provides use-
ful theoretical foundation and guidance, and quantita-
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tive methods such as statistics, probability and applied
mathematics are essential tools to solve the quantitative
problems in finance. To name a few, complex finan-
cial products pose new challenges on their valuation
and risk management. Sophisticated stochastic mod-
els have been introduced to capture the salient features
of underlying economic variables and to price deriva-
tives of securities. Statistical tools are used to identify
parameters of stochastic models, to simulate complex
financial systems and to test economic theories via em-
pirical financial data.

An important area of financial econometrics is study
of the expected returns and volatilities of the price dy-
namics of stocks and bonds. Returns and volatilities
are directly related to asset pricing, proprietary trad-
ing, security regulation and portfolio management. To
achieve these objectives, the stochastic dynamics of
underlying state variables should be correctly speci-
fied. For example, option pricing theory allows one
to value stock or index options and hedge against the
risks of option writers once a model for the dynamics
of underlying state variables is given. See, for exam-
ple, the books on mathematical finance by Bingham
and Kiesel [20], Steele [105] and Duffie [42]. Yet many
of the stochastic models in use are simple and conve-
nient ones to facilitate mathematical derivations and
statistical inferences. They are not derived from any
economics theory and hence cannot be expected to fit
all financial data. Thus, while the pricing theory gives
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spectacularly beautiful formulas when the underlying
dynamics is correctly specified, it offers little guid-
ance in choosing or validating a model. There is al-
ways the danger that misspecification of a model leads
to erroneous valuation and hedging strategies. Hence,
there are genuine needs for flexible stochastic model-
ing. Nonparametric methods offer a unified and elegant
treatment for such a purpose.

Nonparametric approaches have recently been intro-
duced to estimate return, volatility, transition densities
and state price densities of stock prices and bond yields
(interest rates). They are also useful for examining the
extent to which the dynamics of stock prices and bond
yields vary over time. They have immediate applica-
tions to the valuation of bond price and stock options
and management of market risks. They can also be em-
ployed to test economic theory such as the capital asset
pricing model and stochastic discount model [28] and
answer questions such as if the geometric Brownian
motion fits certain stock indices, whether the Cox–
Ingersoll–Ross model fits yields of bonds, and if in-
terest rate dynamics evolve with time. Furthermore,
based on empirical data, one can also fit directly the
observed option prices with their associated character-
istics such as strike price, the time to maturity, risk-free
interest rate, dividend yield and see if the option prices
are consistent with the theoretical ones. Needless to
say, nonparametric techniques will play an increas-
ingly important role in financial econometrics, thanks
to the availability of modern computing power and the
development of financial econometrics.

The paper is organized as follows. We first intro-
duce in Section 2 some useful stochastic models for
modeling stock prices and bond yields and then briefly
outline some probabilistic aspects of the models. In
Section 3 we review nonparametric techniques used for
estimating the drift and diffusion functions, based on
either discretely or continuously observed data. In Sec-
tion 4 we outline techniques for estimating state price
densities and transition densities. Their applications in
asset pricing and testing for parametric diffusion mod-
els are also introduced. Section 5 makes some conclud-
ing remarks.

2. STOCHASTIC DIFFUSION MODELS

Much of financial econometrics is concerned with
asset pricing, portfolio choice and risk management.
Stochastic diffusion models have been widely used for
describing the dynamics of underlying economic vari-
ables and asset prices. They form the basis of many

spectacularly beautiful formulas for pricing contingent
claims. For an introduction to financial derivatives, see
Hull [78].

2.1 One-Factor Diffusion Models

Let St� denote the stock price observed at timet�.
The time unit can be hourly, daily, weekly, among oth-
ers. Presented in Figure 1(a) are the daily log-returns,
defined as

log(St�) − log
(
S(t−1)�

) ≈ (
St� − S(t−1)�

)
/S(t−1)�,

of the Standard and Poor’s 500 index, a value-weighted
index based on the prices of the 500 stocks that account
for approximately 70% of the total U.S. equity (stock)
market capitalization. The styled features of the returns
include that the volatility tends to cluster and that the
(marginal) mean and variance of the returns tend to be
constant. One simplified model to capture the second
feature is that

log(St�) − log
(
S(t−1)�

) ≈ µ0 + σ0εt ,

where{εt } is a sequence of independent normal random
variables. This is basically a random walk hypothesis,
regarding the stock price movement as an independent
random walk. When the sampling time unit� gets
small, the above random walk can be regarded as a
random sample from the continuous-time process:

d log(St ) = µ0 + σ1 dWt,(1)

where {Wt } is a standard one-dimensional Brownian
motion andσ1 = σ0/

√
�. The process (1) is called

geometric Brownian motion asSt is an exponent of
Brownian motionWt . It was used by Osborne [92]
to model the stock price dynamic and by Black and
Scholes [23] to derive their celebrated option price for-
mula.

Interest rates are fundamental to financial markets,
consumer spending, corporate earnings, asset pricing,
inflation and the economy. The bond market is even
bigger than the equity market. Presented in Figure 1(c)
are the interest rates{rt } of the two-year U.S. Treasury
notes at a weekly frequency. As the interest rates get
higher, so do the volatilities. To appreciate this, Fig-
ure 1(d) plots the pairs{(rt−1, rt − rt−1)}. Its dynamic
is very different from that of the equity market. The
interest rates should be nonnegative. They possess het-
eroscedasticity in addition to the mean-revision prop-
erty: As the interest rates rise above the mean levelα,
there is a negative drift that pulls the rates down; while
when the interest rates fall belowα, there is a posi-
tive force that drives the rates up. To capture these two
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FIG. 1. (a)Daily log-returns of the Standard and Poor’s500 index from October 21, 1980 to July 29, 2004. (b) Scatterplot of the returns
against logarithm of the index( price level). (c) Interest rates of two-year U.S. Treasury notes from June 4, 1976 to March 7, 2003 sampled
at weekly frequency. (d) Scatterplot of the difference of yields versus the yields.

main features, Cox, Ingersoll and Ross [37] derived the
following model for the interest rate dynamic:

drt = κ(α − rt ) dt + σr
1/2
t dWt .(2)

For simplicity, we will refer it to as the CIR model. It
is an amelioration of the Vasicek model [106],

drt = κ(α − rt ) dt + σ dWt,(3)

which ignores the heteroscedasticity and is also re-
ferred to as the Ornstein–Uhlenbeck process. While
this is an unrealistic model for interest rates, the
process is Gaussian with explicit transition density. It
fact, the time series sampled from (3) follows the au-
toregressive model of order 1,

Yt = (1− ρ)α + ρYt−1 + εt ,(4)

where Yt = rt�, ε ∼ N(0, σ 2(1 − ρ2)/(2κ)) and
ρ = exp(−κ�). Hence, the process is well understood

and usually serves as a test case for proposed statistical
methods.

There are many stochastic models that have been in-
troduced to model the dynamics of stocks and bonds.
Let Xt be an observed economic variable at timet .
This can be the price of a stock or a stock index, or
the yield of a bond. A simple and frequently used sto-
chastic model is

dXt = µ(Xt) dt + σ(Xt) dWt .(5)

The functionµ(·) is often called a drift or instanta-
neous return function andσ(·) is referred to as a dif-
fusion or volatility function, since

µ(Xt) = lim
�→0

�−1E(Xt+� − Xt |Xt),

σ 2(Xt) = lim
�→0

�−1 var(Xt+�|Xt).



320 J. FAN

The time-homogeneous model (5) contains many fa-
mous one-factor models in financial econometrics. In
an effort to improve the flexibility of modeling interest
dynamics, Chan et al. [29] extends the CIR model (2)
to the CKLS model,

dXt = κ(α − Xt) dt + σX
γ
t dWt .(6)

Aït-Sahalia [3] introduces a nonlinear mean rever-
sion: while interest rates remain in the middle part
of their domain, there is little mean reversion, and at
the end of the domain, a strong nonlinear mean re-
version emerges. He imposes the nonlinear drift of the
form (α0X

−1
t + α1 + α2Xt + α2X

2
t ). See also Ahn and

Gao [1], which models the interest rates byYt = X−1
t ,

in which theXt follows the CIR model.
Economic conditions vary over time. Thus, it is

reasonable to expect that the instantaneous return
and volatility depend on both time and price level
for a given state variable such as stock prices and
bond yields. This leads to a further generalization of
model (5) to allow the coefficients to depend on timet :

dXt = µ(Xt , t) dt + σ(Xt , t) dWt .(7)

Since only a trajectory of the process is observed
[see Figure 1(c)], there is not sufficient information
to estimate the bivariate functions in (7) without fur-
ther restrictions. [To consistently estimate the bivariate
volatility function σ(x, t), we need to have data that
eventually fill up a neighborhood of the point(t, x).]
A useful specification of model (7) is

dXt = {α0(t) + α1(t)Xt }dt + β0(t)X
β1(t)
t dWt .(8)

This is an extension of the CKLS model (6) by
allowing the coefficients to depend on time and was
introduced and studied by Fan et al. [48]. Model (8) in-
cludes many commonly used time-varying models for
the yields of bonds, introduced by Ho and Lee [75],
Hull and White [79], Black, Derman and Toy [21] and
Black and Karasinski [22], among others. The expe-
rience in [48] and other studies of the varying coeffi-
cient models [26, 31, 74, 76] shows that coefficient
functions in (8) cannot be estimated reliably due to
the collinearity effect in local estimation: localizing in
the time domain, the process{Xt } is nearly constant
and henceα0(t) andα1(t) andβ0(t) andβ1(t) cannot
easily be differentiated. This leads Fan et al. [48] to
introduce the semiparametric model

dXt = {α0(t) + α1Xt }dt + β0(t)X
β
t dWt(9)

to avoid the collinearity.

2.2 Some Probabilistic Aspects

The question when there exists a solution to the sto-
chastic differential equation (SDE) (7) arises naturally.
Such a program was first carried out by Itô [80, 81].
For SDE (7), there are two different meanings of solu-
tion: strong solution and weak solution. See Sections
5.2 and 5.3 of [84]. Basically, for a given initial con-
dition ξ , a strong solution requires thatXt is deter-
mined completely by the information up to timet . Un-
der Lipschitz and linear growth conditions on the drift
and diffusion functions, for everyξ that is independent
of {Ws}, there exists a strong solution of equation (7).
Such a solution is unique. See Theorem 2.9 of [84].

For the one-dimensional time-homogeneous diffu-
sion process (5), weaker conditions can be obtained for
the so-called weak solution. By an application of the
Itô formula to an appropriate transform of the process,
one can make the transformed process have zero drift.
Thus, we can consider without loss of generality that
the drift in (5) is zero. For such a model, Engelbert
and Schmidt [45] give a necessary and sufficient condi-
tion for the existence of the solution. The continuity of
σ suffices for the existence of the weak solution. See
Theorem 5.5.4 of [84], page 333, and Theorem 23.1
of [83].

We will use several times the Itô formula. For the
processXt in (7), for a sufficiently regular functionf
([84], page 153),

df (Xt , t) =
{
∂f (Xt , t)

∂t

+ 1

2

∂2f (Xt , t)

∂x2 σ 2(Xt , t)

}
dt(10)

+ ∂f (Xt , t)

∂x
dXt .

The formula can be understood as the second-order
Taylor expansion off (Xt+�, t + �) − f (Xt , t) by
noticing that(Xt+� − Xt)

2 is approximatelyσ 2(Xt ,

t)�.
The Markovian property plays an important role

in statistical inference. According to Theorem 5.4.20
of [84], the solutionXt to equation (5) is Markovian,
provided that the coefficient functionsµ and σ are
bounded on compact subsets. Letp�(y|x) be the tran-
sition density, the conditional density ofXt+� = y

given Xt = x. The transition density must satisfy the
forward and backward Kolmogorov equations ([84],
page 282).

Under the linear growth and Lipschitz conditions,
and additional conditions on the boundary behavior of
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the functionsµ andσ , the solution to equation (1) is
positive and ergodic. The invariant density is given by

f (x) = 2C0σ
−2(x)

(11)

·exp
(
−2

∫ x

.
µ(y)σ−2(y) dy

)
,

whereC0 is a normalizing constant and the lower limit
of the integral does not matter. If the initial distri-
bution is taken from the invariant density, then the
process{Xt } is stationary with the marginal densityf
and transition densityp�.

Stationarity plays an important role in time series
analysis and forecasting [50]. The structural invariabil-
ity allows us to forecast the future based on the his-
torical data. For example, the structural relation (e.g.,
the conditional distribution, conditional moments) be-
tweenXt andXt+� remains the same over timet . This
makes it possible to use historical data to estimate the
invariant quantities. Associated with stationarity is the
concept of mixing, which says that the data that are far
apart in time are nearly independent. We now describe
the conditions under which the solution to the SDE (1)
is geometrically mixing.

Let Ht be the operator defined by

(Htg)(x) = E
(
g(Xt)|X0 = x

)
, x ∈ R,(12)

wheref is a Borel measurable bounded function onR.
A stationary processXt is said to satisfy the condition
G2(s, α) of Rosenblatt [95] if there exists ans such
that

‖Hs‖2
2 = sup

{f : Ef (X)=0}
E(Hsf )2(X)

Ef 2(X)
≤ α2 < 1,

namely, the operator is contractive. As a consequence
of the semigroup (Hs+t = HsHt ) and contraction prop-
erties, the conditionG2 implies [16, 17] that for any
t ∈ [0,∞), ‖Ht‖2 ≤ αt/s−1. The latter implies, by the
Cauchy–Schwarz inequality, that

ρ(t) = sup
g1,g2

corr
(
g1(X0), g2(Xt)

) ≤ αt/s−1,(13)

that is, theρ-mixing coefficient decays exponentially
fast. Banon and Nguyen [18] show further that for
a stationary Markov process,ρ(t) → 0 is equivalent
to (13), namely,ρ-mixing and geometricρ-mixing are
equivalent.

2.3 Valuation of Contingent Claims

An important application of SDE is the pricing of fi-
nancial derivatives such as options and bonds. It forms
a beautiful modern asset pricing theory and provides
useful guidance in practice. Steele [105], Duffie [42]
and Hull [78] offer very nice introductions to the field.

The simplest financial derivative is the European call
option. A call option is the right to buy an asset at a
certain priceK (strike price) before or at expiration
time T . A put option gives the right to sell an asset
at a certain priceK (strike price) before or at expira-
tion. European options allow option holders to exercise
only at maturity while American options can be exer-
cised at any time before expiration. Most stock options
are American, while options on stock indices are Euro-
pean.

The payoff for a European call option is(XT −K)+,
whereXT is the price of the stock at expirationT .
When the stock rises above the strike priceK , one can
exercise the right and make a profit ofXT − K . How-
ever, when the stock falls belowK , one renders one’s
right and makes no profit. Similarly, a European put op-
tion has payoff(K − XT )+. See Figure 2. By creating
a portfolio with different maturities and different strike
prices, one can obtain all kinds of payoff functions. As
an example, suppose that a portfolio of options con-
sists of contracts of the S&P 500 index maturing in six
months: one call option with strike price $1,200, one
put option with strike price $1,050 and $40 cash, but
with short position (borrowing or−1 contract) on a call
option with strike price $1,150 and on a put option with
strike price $1,100. Figure 2(c) shows the payoff func-
tion of such a portfolio of options at the expirationT .
Clearly, such an investor bets the S&P 500 index will
be around $1,125 in six months and limits the risk ex-
posure on the investment (losing at most $10 if his/her
bet is wrong). Thus, the European call and put options
are fundamental options as far as the payoff function
at time T is concerned. There are many other exotic
options such as Asian options, look-back options and
barrier options, which have different payoff functions,
and the payoffs can be path dependent. See Chapter 18
of [78].

Suppose that the asset price follows the SDE (7) and
there is a riskless investment alternative such as a bond
which earns compounding rate of interestrt . Suppose
that the underlying asset pays no dividend. Letβt be
the value of the riskless bond at timet . Then, with an
initial investmentβ0,

βt = β0 exp
(∫ t

0
rs ds

)
,
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FIG. 2. (a)Payoff of a call option. (b)Payoff of a put option. (c)Payoff of a portfolio of four options with different strike prices and different
(long and short) positions.

thanks to the compounding of interest. Suppose that
a probability measureQ is equivalent to the original
probability measureP , namelyP(A) = 0 if and only if
Q(A) = 0. The measureQ is called an equivalent mar-
tingale measure for deflated price processes of given
securities if these processes are martingales with re-
spect toQ. An equivalent martingale measure is also
referred to as a “risk-neutral” measure if the deflater is
the bond price process. See Chapter 6 of [42].

When the markets are dynamically complete, the
price of the European option with payoff�(XT ) with
initial priceX0 = x0 is

P0 = exp
(
−

∫ T

0
rs ds

)
EQ(

�(XT )|X0 = x0
)
,(14)

whereQ is the equivalent martingale measure for the
deflated price processXt/βt . Namely, it is the dis-
counted value of the expected payoff in the risk neutral
world. The formula is derived by using the so-called
relative pricing approach, which values the price of the
option from given prices of a portfolio consisting of a
risk-free bond and a stock with the identical payoff as
the option at the expiration.

As an illustrative example, suppose that the price of
a stock follows the geometric Brownian motiondXt =
µXt dt + σXt dWt and that the risk-free rater is con-
stant. Then the deflated price processYt = exp(−rt)Xt

follows the SDE

dYt = (µ − r)Yt dt + σYt dWt .

The deflated price process is not a martingale as the
drift is not zero. The risk-neutral measure is the one

that makes the drift zero. To achieve this, we ap-
peal to the Girsanov theorem, which changes the drift
of a diffusion process without altering the diffusion
via a change of probability measure. Under the “risk-
neutral” probability measureQ, the processYt satisfies
dYt = σYt dWt , a martingale. Hence, the price process
Xt = exp(rt)Yt underQ follows

dXt = rXt dt + σXt dWt .(15)

Using exactly the same derivation, one can easily gen-
eralize the result to the price process (5). Under the
risk-neutral measure, the price process (5) follows

dXt = rXt dt + σ(Xt) dWt .(16)

The intuitive explanation of this is clear: all stocks un-
der the “risk-neutral” world are expected to earn the
same rate as the risk-free bond.

For the geometric Brownian motion, by an applica-
tion of the Itô formula (10) to (15), we have under the
“risk-neutral” measure

logXt − logX0 = (r − σ 2/2)t + σ 2Wt.(17)

Note that given the initial priceX0, the price fol-
lows a log-normal distribution. Evaluating the expec-
tation of (14) for the European call option with payoff
�(XT ) = (XT − K)+, one obtains the Black–Scholes
[23] option pricing formula

P0 = x0�(d1) − K exp(−rT )�(d2),(18)

whered1 = {log(x0/K)+ (r +σ 2/2)T }{σ√
T }−1 and

d2 = d1 − σ
√

T .
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2.4 Simulation of Stochastic Models

Simulation methods provide useful tools for the
valuation of financial derivatives and other financial
instruments when the analytical formula (14) is hard
to obtain. For example, if the price under the “risk-
neutral” measure is (16), the analytical formula for
pricing derivatives is usually not analytically tractable
and simulation methods offer viable alternatives (to-
gether with variance reduction techniques) to evaluate
it. They also provide useful tools for assessing perfor-
mance of statistical methods and statistical inferences.

The simplest method is perhaps the Euler scheme.
The SDE (7) is approximated as

Xt+� = Xt + µ(t,Xt)� + σ(t,Xt)�
1/2εt ,(19)

where{εt } is a sequence of independent random vari-
ables with the standard normal distribution. The time
unit is usually a year. Thus, the monthly, weekly and
daily data correspond, respectively, to� = 1/12,1/52
and 1/252 (there are approximately 252 trading days
per year). Given an initial value, one can recursively
apply (19) to obtain a sequence of simulated data
{Xj�, j = 1,2, . . .}. The approximation error can be
reduced if one uses a smaller step size�/M for a given
integer M to first obtain a more detailed sequence
{Xj�/M, j = 1,2, . . .} and then one takes the sub-
sequence{Xj�, j = 1,2, . . .}. For example, to simu-
late daily prices of a stock, one can simulate hourly
data first and then take the daily closing prices. Since
the step size�/M is smaller, the approximation (19)
is more accurate. However, the computational cost is
about a factor ofM higher.

The Euler scheme has convergence rate�1/2, which
is called strong order 0.5 approximation by Kloeden
et al. [87]. The higher-order approximations can be ob-
tained by the Itô–Taylor expansion (see [100],
page 242). In particular, a strong order-one approxi-
mation is given by

Xt+� = Xt + µ(t,Xt)� + σ(t,Xt)�
1/2εt

(20)
+ 1

2σ(t,Xt)σ
′
x(t,Xt)�{ε2

t − 1},
whereσ ′

x(t, x) is the partial derivative function with re-
spect tox. This method can be combined with a smaller
step size method in the last paragraph. For the time-
homogeneous model (1), an alternative form, without
evaluating the derivative function, is given in (3.14)
of [87].

The exact simulation method is available if one can
simulate the data from the transition density. Given the

current valueXt = x0, one drawsXt+� from the tran-
sition densityp�(·|x0). The initial condition can either
be fixed at a given value or be generated from the in-
variant density (11). In the latter case, the generated
sequence is stationary.

There are only a few processes where exact sim-
ulation is possible. For GBM, one can generate the
sequence from the explicit solution (17), where the
Brownian motion can be simulated from indepen-
dent Gaussian increments. The conditional density of
Vasicek’s model (3) is Gaussian with mean
α + (x0 − α)ρ and varianceσ 2

� = σ 2(1− ρ2)/(2κ) as
indicated by (4). GenerateX0 from the invariant den-
sity N(α,σ 2/(2κ)). With X0, generateX� from the
normal distribution with meanα+(X0−α)exp(−κ�)

and varianceσ 2
�. With X�, we generateX2� from

meanα + (X� − α)exp(−κ�) and varianceσ 2
�. Re-

peat this process until we obtain the desired length of
the process.

For the CIR model (2), provided thatq = 2κα/σ 2 −
1 ≥ 0 (a sufficient condition forXt ≥ 0), the transition
density is determined by the fact that givenXt = x0,
2cXt+� has a noncentralχ2 distribution with degrees
of freedom 2q + 2 and noncentrality parameter 2u,
wherec = 2κ/{σ 2(1−exp(−κ�))}, u = cx0 exp(k�).
The invariant density is the Gamma distribution with
shape parameterq + 1 and scale parameterσ 2/(2κ).

As an illustration, we consider the CIR model (7)
with parametersκ = 0.21459, α = 0.08571, σ =
0.07830 and� = 1/12. The model parameters are
taken from [30]. We simulated 1000 monthly data val-
ues using both the Euler scheme (19) and the strong
order-one approximation (20) with the same random
shocks. Figure 3 depicts one of their trajectories. The
difference is negligible. This is in line with the ob-
servations made by Stanton [104] that as long as data
are sampled monthly or more frequently, the errors in-
troduced by using the Euler approximation are very
small for stochastic dynamics that are similar to the
CIR model.

3. ESTIMATION OF RETURN AND VOLATILITY
FUNCTIONS

There is a large literature on the estimation of
the return and volatility functions. Early references
include [93] and [94]. Some studies are based on
continuously observed data while others are based on
discretely observed data. For the latter, some regard�

tending to zero while others regard� fixed. We briefly
introduce some of the ideas.
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FIG. 3. Simulated trajectories(multiplied by100)using the Euler approximation and the strong order-one approximation for a CIR model.
Top panel: solid curve corresponds to the Euler approximation and the dashed curve is based on the order-one approximation. Bottom panel:
the difference between the order-one scheme and the Euler scheme.

3.1 Methods of Estimation

We first outline several methods of estimation for
parametric models. The idea can be extended to non-
parametric models. Suppose that we have a sample
{Xi�, i = 0, . . . , n} from model (5). Then, the likeli-
hood function, under the stationary condition, is

logf (X0) +
n∑

i=1

logp�

(
Xi�|X(i−1)�

)
.(21)

If the functionsµ andσ are parameterized and the ex-
plicit form of the transition density is available, one can
apply the maximum likelihood method. However, the
explicit form of the transition density is not available
for many simple models such as the CLKS model (6).
Even for the CIR model (2), its maximum likelihood

estimator is very difficult to find, as the transition den-
sity involves the modified Bessel function of the first
kind.

One simple technique is to rely on the Euler ap-
proximation scheme (19). Then proceed as if the data
come from the Gaussian location and scale model. This
method works well when� is small, but can create
some biases when� is large. However, the bias can be
reduced by the following calibration idea, called indi-
rect inference by Gouriéroux et al. [61]. The idea works
as follows. Suppose that the functionsµ andσ have
been parameterized with unknown parametersθ . Use
the Euler approximation (19) and the maximum likeli-
hood method to obtain an estimateθ̂0. For each given
parameterθ aroundθ̂0, simulate data from (5) and ap-
ply the crude method to obtain an estimateθ̂1(θ) which
depends onθ . Since we simulated the data with the true
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parameterθ , the functionθ̂1(θ) tells us how to cali-
brate the estimate. See Figure 4. Calibrate the estimate
via θ̂−1

1 (θ̂0), which improves the bias of the estimate.
One drawback of this method is that it is intensive in
computation and the calibration cannot easily be done
when the dimensionality of parametersθ is high.

Another method for bias reduction is to approximate
the transition density in (21) by a higher order approx-
imation, and to then maximize the approximated like-
lihood function. Such a scheme has been introduced
by Aït-Sahalia [4, 5], who derives the expansion of
the transition density around a normal density function
using Hermite polynomials. The intuition behind such
an expansion is that the diffusion processXt+� − Xt

in (5) can be regarded as sum of many independent
increments with a very small step size and hence the
Edgeworth expansion can be obtained for the distribu-
tion of Xt+� − Xt givenXt . See also [43].

An “exact” approach is to use the method of moments.
If the processXt is stationary as in the interest-rate
models, the moment conditions can easily be derived
by observing

E

{
lim
�→0

�−1E[g(Xt+�) − g(Xt)|Xt ]
}

= lim
�→0

�−1E[g(Xt+�) − g(Xt)] = 0

for any functiong satisfying the regularity condition
that the limit and the expectation are exchangeable.

The right-hand side is the expectation ofdg(Xt). By
Itô’s formula (10), the above equation reduces to

E[g′(Xt)µ(Xt) + g′′(Xt)σ
2(Xt)/2] = 0.(22)

For example, ifg(x) = exp(−ax) for some given
a > 0, then

E exp(−aXt){µ(Xt) − aσ 2(Xt)/2} = 0.

This can produce an arbitrary number of equations by
choosing differenta’s. If the functionsµ andσ are pa-
rameterized, the number of moment conditions can be
more than the number of equations. One way to effi-
ciently use this is the generalized method of moments
introduced by Hansen [65], minimizing a quadratic
form of the discrepancies between the empirical and
the theoretical moments, a generalization of the clas-
sical method of moments which solves the moment
equations. The weighting matrix in the quadratic form
can be chosen to optimize the performance of the re-
sulting estimator. To improve the efficiency of the es-
timate, a large system of moments is needed. Thus,
the generalized method of moments needs a large sys-
tem of nonlinear equations which can be expensive in
computation. Further, the moment equations (22) use
only the marginal information of the process. Hence,
the procedure is not efficient. For example, in the
CKLS model (6),σ andκ are estimable via (22) only
throughσ 2/κ .

FIG. 4. The idea of indirect inference. For each given trueθ , one obtains an estimate using the Euler approximation and the simulated
data. This gives a calibration curve as shown. Now for a given estimatêθ0 = 3 based on the Euler approximation and real data, one finds the
calibrated estimatêθ−1

1 (3) = 2.080.
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3.2 Time-Homogeneous Model

The Euler approximation can easily be used to
estimate the drift and diffusion nonparametrically.
Let Yi� = �−1(X(i+1)� − Xi�) and Zi� =
�−1(X(i+1)� − Xi�)2. Then

E(Yi�|Xi�) = µ(Xi�) + O(�)

and

E(Zi�|Xi�) = σ 2(Xi�) + O(�).

Thus,µ(·) and σ 2(·) can be approximately regarded
as the regression functions ofYi� and Zi� on Xi�,
respectively. Stanton [104] applies kernel regression
[102, 107] to estimate the return and volatility func-
tions. LetK(·) be a kernel function andh be a band-
width. Stanton’s estimators are given by

µ̂(x) =
∑n−1

i=0 Yi�Kh(Xi� − x)∑n−1
i=0 Kh(Xi� − x)

and

σ̂ 2(x) =
∑n−1

i=0 Zi�Kh(Xi� − x)∑n−1
i=0 Kh(Xi� − x)

,

whereKh(u) = h−1K(u/h) is a rescaled kernel. The
consistency and asymptotic normality of the estimator
are studied in [15]. Fan and Yao [49] apply the local
linear technique (Section 6.3 in [50]) to estimate the
return and volatility functions, under a slightly differ-
ent setup. The local linear estimator [46] is given by

µ̂(x) =
n−1∑
i=0

Kn(Xi� − x, x)Yi�,(23)

where

Kn(u, x) = Kh(u)
Sn,2(x) − uSn,1(x)

Sn,2(x)Sn,0(x) − Sn,1(x)2 ,(24)

with Sn,j (x) = ∑n−1
i=0 Kh(Xi� − x)(Xi� − x)j , is the

equivalent kernel induced by the local linear fit. In con-
trast to the kernel method, the local linear weights de-
pend on bothXi andx. In particular, they satisfy

n−1∑
i=1

Kn(Xi� − x, x) = 1

and

n−1∑
i=1

Kn(Xi� − x, x)(Xi� − x) = 0.

These are the key properties for the bias reduction of
the local linear method as demonstrated in [46]. Fur-
ther, Fan and Yao [49] use the squared residuals

�−1(X(i+1)� − Xi� − µ̂(Xi�)�
)2

rather thanZi� to estimate the volatility function. This
will further reduce the approximation errors in the
volatility estimation. They show further that the con-
ditional variance function can be estimated as well as
if the conditional mean function is known in advance.

Stanton [104] derives a higher-order approximation
scheme up to order three in an effort to reduce bi-
ases. He suggests that higher-order approximations
must outperform lower-order approximations. To ver-
ify such a claim, Fan and Zhang [53] derived the fol-
lowing orderk approximation scheme:

E(Y ∗
i�|Xi�) = µ(Xi�) + O(�k),

(25)
E(Z∗

i�|Xi�) = σ 2(Xi�) + O(�k),

where

Y ∗
i� = �−1

k∑
j=1

ak,j

{
X(i+j)� − Xi�

}

and

Z∗
i� = �−1

k∑
j=1

ak,j

{
X(i+j)� − Xi�

}2

and the coefficientsak,j = (−1)j+1(k
j

)/
j are chosen to

make the approximation error in (25) of order�k . For
example, the second approximation is

1.5(Xt+� − Xt) − 0.5(Xt+2� − Xt+�).

By using the independent increments of Brownian mo-
tion, its variance is 1.52 + 0.52 = 2.5 times as large as
that of the first-order difference. Indeed, Fan and Zhang
[53] show that while higher-order approximations give
better approximation errors, we have to pay a huge pre-
mium for variance inflation,

var(Y ∗
i�|Xi�) = σ 2(Xi�)V1(k)�−1{1+ O(�)},

var(Z∗
i�|Xi�) = 2σ 4(Xi�)V2(k){1+ O(�)},

where the variance inflation factorsV1(k) and V2(k)

are explicitly given by Fan and Zhang [53]. Table 1
shows some of the numerical results for the variance
inflation factor.

The above theoretical results have also been veri-
fied via empirical simulations in [53]. The problem is
no monopoly for nonparametric fitting—it is shared by
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TABLE 1
Variance inflation factors by using higher-order differences

Order k

1 2 3 4 5

V1(k) 1.00 2.50 4.83 9.25 18.95
V2(k) 1.00 3.00 8.00 21.66 61.50

the parametric methods. Therefore, the methods based
on higher-order differences should seldomly be used
unless the sampling interval is very wide (e.g., quar-
terly data). It remains open whether it is possible to
estimate nonparametrically the return and the volatility
functions without seriously inflating the variance with
other higher-order approximation schemes.

As an illustration, we take the yields of the two-year
Treasury notes depicted in Figure 1. Figure 5 presents
nonparametrically estimated volatility functions, based
on orderk = 1 andk = 2 approximations. The local
linear fit is employed with the Epanechnikov kernel
and bandwidthh = 0.35. It is evident that the order two
approximation has higher variance than the order one
approximation. In fact, the magnitude of variance in-
flation is in line with the theoretical result: the increase
of the standard deviation is

√
3 from order one to order

two approximation.
Various discretization schemes and estimation meth-

ods have been proposed for the case with high
frequency data over a long time horizon. More pre-
cisely, the studies are under the assumptions that
�n → 0 andn�n → ∞. See, for example, [12, 27,
39, 58, 59, 85, 109] and references therein. Arapis

FIG. 5. Nonparametric estimates of volatility based on order one and two differences. The bars represent two standard deviations above
and below the estimated volatility. Top panel: order one fit. Bottom panel: order two fit.
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and Gao [11] investigate the mean integrated square
error of several methods for estimating the drift and
diffusion and compare their performances. Aït-Sahalia
and Mykland [9, 10] study the effects of random and
discrete sampling when estimating continuous-time
diffusions. Bandi and Nguyen [14] investigate small
sample behavior of nonparametric diffusion estima-
tors. Thorough study of nonparametric estimation of
conditional variance functions can be found in [62, 69,
91, 99]. In particular, Section 8.7 of [50] gives var-
ious methods for estimating the conditional variance
function. Wang [108] studies the relationship between
diffusion and GARCH models.

3.3 Model Validation

Stanton [104] applies his kernel estimator to a Trea-
sury bill data set and observes a nonlinear return
function in his nonparametric estimate, particularly in
the region where the interest rate is high (over 14%,
say). This leads him to postulate the hypothesis that
the return functions of short-term rates are nonlin-
ear. Chapman and Pearson [30] study the finite sam-
ple properties of Stanton’s estimator. By applying his
procedure to the CIR model, they find that Stanton’s
procedure produces spurious nonlinearity, due to the
boundary effect and the mean reversion.

Can we apply a formal statistics test to
Stanton’s hypothesis? The null hypothesis can sim-
ply be formulated: the drift is of a linear form as
in model (6). What is the alternative hypothesis? For
such a problem our alternative model is usually vague.
Hence, it is natural to assume that the drift is a nonlin-
ear smooth function. This becomes a testing problem
with a parametric null hypothesis versus a nonpara-
metric alternative hypothesis. There is a large body
of literature on this. The basic idea is to compute a
discrepancy measure between the parametric estimates
and nonparametric estimates and to reject the paramet-
ric hypothesis when the discrepancy is large. See, for
example, the book by Hart [73].

In an effort to derive a generally applicable principle,
Fan et al. [54] propose the generalized likelihood ra-
tio (GLR) tests for parametric-versus-nonparametric or
nonparametric-versus-parametric hypotheses. The ba-
sic idea is to replace the maximum likelihood under
a nonparametric hypothesis (which usually does not
exist) by the likelihood under good nonparametric es-
timates. Section 9.3 of [50] gives details on the im-
plementation of the GLR tests, including estimating
P -values, bias reduction and bandwidth selection. The
method has been successfully employed by Fan and

Zhang [53] for checking whether the return and volatil-
ity functions possess certain parametric forms.

Another viable approach of model validation is
to base it on the transition density. One can check
whether the nonparametrically estimated transition
density is significantly different from the parametri-
cally estimated one. Section 4.3 provides some addi-
tional details. Another approach, proposed by Hong
and Li [77], uses the fact that under the null hypothesis
the random variables{Zi} are a sequence of i.i.d. uni-
form random variables whereZi = P(Xi�|X(i−1)�, θ)

and P(y|x, θ) is the transition distribution function.
They propose to detect the departure from the null
hypothesis by comparing the kernel-estimated bivari-
ate density of{(Zi,Zi+1)} with that of the uniform
distribution on the unit square. The transition-density-
based approaches appear more elegant as they check
simultaneously the forms of drift and diffusion. How-
ever, the transition density does often not admit an
analytic form and the tests can be computationally in-
tensive.

3.4 Fixed Sampling Interval

For practical analysis of financial data, it is hard to
determine whether the sampling interval tends to zero.
The key determination is whether the approximation
errors for small “�” are negligible. It is ideal when a
method is applicable whether or not “�” is small. This
kind of method is possible, as demonstrated below.

The simplest problem to illustrate the idea is the ker-
nel density estimation of the invariant density of the
stationary process{Xt }. For the given sample{Xt�},
the kernel density estimate for the invariant density is

f̂ (x) = n−1
n∑

i=1

Kh(Xi� − x),(26)

based on the discrete data{Xi�, i = 1, . . . , n}. This
method is valid for all�. It gives a consistent estimate
of f as long as the time horizon is long:n� → ∞.
We will refer to this kind of nonparametric method as
state-domain smoothing, as the procedure localizes in
the state variableXt . Various properties, including con-
sistency and asymptotic normality, of the kernel esti-
mator (26) are studied by Bandi [13] and Bandi and
Phillips [15]. Bandi [13] also uses the estimator (26),
which is the same as the local time of the process
spending at a pointx except for a scaling constant, as a
descriptive tool for potentially nonstationary diffusion
processes.

Why can the state-domain smoothing methods be
employed as if the data were independent? This is due
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to the fact that localizing in the state domain weakens
the correlation structure and that nonparametric esti-
mates use essentially only local data. Hence many re-
sults on nonparametric estimators for independent data
continue to hold for dependent data as long as their
mixing coefficients decay sufficiently fast. As men-
tioned at the end of Section 2.2, geometric mixing and
mixing are equivalent for time-homogeneous diffusion
processes. Hence, the mixing coefficients decay usu-
ally sufficiently fast for theoretical investigation.

The localizing and whitening can be understood
graphically in Figure 6. Figure 6(a) shows that there is
very strong serial correlation of the yields of the two-
year Treasury notes. However, this correlation is signif-
icantly weakened for the local data in the neighborhood
8%± 0.2%. In fact, as detailed in Figure 6(b), the in-

dices of the data that fall in the local window are quite
far apart. This in turn implies the weak dependence
for the data in the local window, that is, “whitening
by windowing.” See Section 5.4 of [50] and Hart [72]
for further details. The effect of dependence structure
on kernel density estimation was thoroughly studied by
Claeskens and Hall [35].

The diffusion function can also be consistently esti-
mated when� is fixed. In pricing the derivatives of in-
terest rates, Aït-Sahalia [2] assumesµ(x) = k(α − x).
Using the kernel density estimator̂f and estimatedκ
and α from a least-squares method, he applied (11)
to estimateσ(·) : σ̂ 2(x) = 2

∫ x
0 µ̂(u)f̂ (u) du/f̂ (x). He

further established the asymptotic normality of such an
estimator. Gao and King [56] propose tests of diffusion
models based on the discrepancy between the paramet-

FIG. 6. (a) Lag 1 scatterplot of the two-year Treasury note data. (b) Lag 1 scatterplot of those data falling in the neighborhood
8%± 0.2%—the points are represented by the times of the observed data. The numbers in the scatterplot show the indices of the data
falling in the neighborhood. (c) Kernel density estimate of the invariant density.
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ric and nonparametric estimates of the invariant den-
sity.

The Aït-Sahalia method [2] easily illustrates that the
volatility function can be consistently estimated for
fixed �. However, we do not expect that it is effi-
cient. Indeed, we use only the marginal information of
the data. As shown in (21), almost all information is
contained in the transition densityp�(·|·). The tran-
sition density can be estimated as in Section 4.2 be-
low whether� is small or large. Since the transition
density and drift and volatility are in one-to-one cor-
respondence for the diffusion process (5), the drift and
diffusion functions can be consistently estimated via
inverting the relationship between the transition den-
sity and the drift and diffusion functions.

There is no simple formula for expressing the drift
and diffusion in terms of the transition density. The in-
version is frequently carried out via a spectral analysis
of the operatorH� = exp(�L), where the infinitesimal
operatorL is defined as

Lg(x) = σ 2(x)

2
g′′(x) + µ(x)g′(x).

It has the property

Lg(x) = lim
�→0

�−1[E{g(Xt+�)|Xt = x} − g(x)]
by Itô’s formula (10). The operatorH� is the transition
operator in that [see also (12)]

H�g(x) = E{g(X�)|X0 = x}.
The works of Hansen and Scheinkman [66], Hansen,
Scheinkman and Touzi [67] and Kessler and Sørensen
[86] consist of the following idea. The first step is to es-
timate the transition operatorH� from the data. From
the transition operator, one can identify the infinitesi-
mal operatorL and hence the functionsµ(·) andσ(·).
More precisely, letλ1 be the largest negative eigen-
value of the operatorL with eigenfunctionξ1(x). Then
Lξ1 = λ1ξ1, or equivalently,σ 2ξ ′′

1 + 2µξ ′
1 = 2λ1ξ1.

This gives one equation ofµ andσ . Another equation
can be obtained via (11):(σ 2f )′ − 2µf = 0. Solving
these two equations we obtain

σ 2(x) = 2λ1

∫ x

0
ξ1(y)f (y) dy/[f (x)ξ1(x)]

and another explicit expression forµ(x). Using semi-
group theory ([44], Theorem IV.3.7),ξ1 is also an
eigenfunction ofH� with eigenvalue exp(�λ1). Hence,
the proposal is to estimate the invariant densityf and
the transition densityp�(y|x), which implies the val-
ues ofλ1 andξ1. Gobet [58] derives the optimal rate

of convergence for such a scheme, using a wavelet ba-
sis. In particular, [58] shows that for fixed�, the op-
timal rates of convergence forµ andσ are of orders
O(n−s/(2s+5)) andO(n−s/(2s+3)), respectively, where
s is the degree of smoothness ofµ andσ .

3.5 Time-Dependent Model

The time-dependent model (8) was introduced to ac-
commodate the possibility of economic changes over
time. The coefficient functions in (8) are assumed to
be slowly time-varying and smooth. Nonparametric
techniques can be applied to estimate these coefficient
functions. The basic idea is to localizing in time, re-
sulting in a time-domain smoothing.

We first estimate the coefficient functionsα0(t)

andα1(t). For each given timet0, approximate the co-
efficient functions locally by constants,α(t) ≈ a and
β(t) = b for t in a neighborhood oft0. Using the Euler
approximation (19), we run a local regression: Mini-
mize

n−1∑
i=0

(Yi� − a − bXi�)2Kh(i� − t0)(27)

with respect toa and b. This results in an estimate
α̂0(t0) = â and α̂1(t0) = b̂, where â and b̂ are the
minimizers of the local regression (27). Fan et al. [48]
suggest using a one-sided kernel such asK(u) = (1−
u2)I (−1 < u < 0) so that only the historical data in
the time interval(t0 − h, t0) are used in the above local
regression. This facilitates forecasting and bandwidth
selection. Our experience shows that there are no sig-
nificant differences between nonparametric fitting with
one-sided and two-sided kernels. We opt for local con-
stant approximations instead of local linear approxi-
mations in (27), since the local linear fit can create
artificial albeit insignificant linear trends when the un-
derlying functionsα0(t) and α1(t) are indeed time-
independent. To appreciate this, for constant functions
α1 andα2 a large bandwidth will be chosen to reduce
the variance in the estimation. This is in essence fitting
a global linear regression by (27). If the local linear ap-
proximations are used, since no variable selection pro-
cedures have been incorporated in the local fitting (27),
the slopes of the local linear approximations will not be
estimated as zero and hence artificial linear trends will
be created for the estimated coefficients.

The coefficient functions in the volatility can be es-
timated by the local approximated likelihood method.
Let

Êt = �−1/2{Xt+� − Xt − (
α̂0(t) + α̂1(t)Xt

)
�

}
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be the normalized residuals. Then

Êt ≈ β0(t)X
β1(t)
t εt .(28)

The conditional log-likelihood of̂Et givenXt can eas-
ily be obtained by the approximation (28). Using lo-
cal constant approximations and incorporating the ker-
nel weight, we obtain the local approximated likeli-
hood at each time point and estimates of the functions
β0(·) and β1(·) at that time point. This type of local
approximated-likelihood method is related to the gen-
eralized method of moments of Hansen [65] and the
ideas of Florens-Zmirou [55] and Genon-Catalot and
Jacod [57].

Since the coefficient functions in both return and
volatility functions are estimated using only historical
data, their bandwidths can be selected based on a form
of the average prediction error. See Fan et al. [48] for
details. The local least-squares regression can also be
applied to estimate the coefficient functionsβ0(t) and
β1(t) via the transformed model [see (28)]

log(Ê2
t ) ≈ 2 logβ0(t) + β1(t) log(X2

t ) + log(ε2
t ),

but we do not continue in this direction since the lo-
cal least-squares estimate is known to be inefficient in
the likelihood context and the exponentiation of an es-
timated coefficient function of logβ0(t) is unstable.

The question arises naturally if the coefficients in
the model (8) are really time-varying. This amounts,
for example, to testingH0 :β0(t) = β0 andβ1(t) = β1.

Based on the GLR technique, Fan et al. [48] proposed
a formal test for this kind of problem.

The coefficient functions in the semiparametric
model (9) can also be estimated by using the profile
approximated-likelihood method. For each givenβ1,
one can easily estimateβ0(·) via the approxima-
tion (28), resulting in an estimatêβ0(·;β1). Regarding
the nonparametric functionβ0(·) as being parameter-
ized byβ̂0(·;β1), model (28) withβ1(t) ≡ β1 becomes
a “synthesized” parametric model with unknownβ1.
The parameterβ1 can be estimated by the maximum
(approximated) likelihood method. Note thatβ1 is es-
timated by using all the data points, whilêβ0(t) =
β̂0(t; β̂1) is obtained by using only the local data
points. See [48] for details.

For other nonparametric methods of estimating vola-
tility in time inhomogeneous models, see Härdle,
Herwartz and Spokoiny [68] and Mercurio and
Spokoiny [89]. Their methods are based on model (8)
with α1(t) = β1(t) = 0.

3.6 State-Domain Versus Time-Domain Smoothing

So far, we have introduced both state- and time-
domain smoothing. The former relies on the structural
invariability implied by the stationarity assumption and
depends predominantly on the (remote) historical data.
The latter uses the continuity of underlying parame-
ters and concentrates basically on the recent data. This
is illustrated in Figure 7 using the yields of the three-
month Treasury bills from January 8, 1954 to July 16,

FIG. 7. Illustration of time- and state-domain smoothing using the yields of three-month Treasury bills. The state-domain smoothing is
localized in the horizontal bars, while the time-domain smoothing is concentrated in the vertical bars.
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2004 sampled at weekly frequency. On December 28,
1990, the interest rate was about 6.48%. To estimate
the drift and diffusion aroundx = 6.48, the state-
domain smoothing focuses on the dynamics where in-
terest rates are around 6.48%, the horizontal bar with
interest rates falling in 6.48%± 0.25%. The estimated
volatility is basically the sample standard deviation of
the differences{Xi� − X(i−1)�} within this horizon-
tal bar. On the other hand, the time-domain smoothing
focuses predominantly on the recent history, say one
year, as illustrated in the figure. The time-domain esti-
mate of volatility is basically a sample standard devia-
tion within the vertical bar.

For a given time series, it is hard to say which esti-
mate is better. This depends on the underlying stochas-
tic processes and also on the time when the forecast is
made. If the underlying process is continuous and sta-
tionary, such as model (5), both methods are applica-
ble. For example, standing at December 28, 1990, one
can forecast the volatility by using the sample standard
deviation in either the horizontal bar or the vertical bar.
However, the estimated precision depends on the lo-
cal data. Since the sample variance is basically linear
in the squared differences{Z2

i�}, the standard errors of
both estimates can be assessed and used to guide the
forecasting.

For stationary diffusion processes, it is possible to
integrate both the time-domain and state-domain esti-
mates. Note that the historical data (with interest rates
in 6.48%± 0.25%) are far apart in time from the data
used in the time-domain smoothing (vertical bar), ex-
cept the last segment, which can be ignored in the state-
domain fitting. The next-to-last segment with interest
rates in 6.48%± 0.25% is May 11 to July 20, 1988,
123 weeks prior to the last segment. Hence, these two
estimates are nearly independent. The integrated esti-
mate is a linear combination of these two nearly in-
dependent estimates. The weights can easily be cho-
sen to minimize the variance of the integrated estima-
tor, by using the assessed standard errors of the state-
and time-domain estimators. The optimal weights are
proportional to the variances of the two estimators,
which depend on timet . This forms a dynamically inte-
grated predictor for volatility estimation, as the optimal
weights change over time.

3.7 Continuously Observed Data

At the theoretical level, one may also examine the
problem of estimating the drift and diffusion functions
assuming the whole process is observable up to timeT .

Let us assume again that the observed process{Xt } fol-
lows the SDE (5). In this caseσ 2(Xt) is the derivative
of the quadratic variation process ofXt and hence is
known up to timeT . By (11), estimating the drift func-
tion µ(x) is equivalent to estimating the invariant den-
sity f . In fact,

µ(x) = [σ 2(x)f (x)]′/[2f (x)].(29)

The invariant densityf can easily be estimated by
kernel density estimation. When� → 0, the summa-
tion in (26) converges to

f̂ (x) = T −1
∫ T

0
Kh(Xt − x)dt.(30)

This forms a kernel density estimate of the invari-
ant density based on the continuously observed data.
Thus, an estimator forµ(x) can be obtained by
substituting f̂ (x) into (29). Such an approach has
been employed by Kutoyants [88] and Dalalyan and
Kutoyants [40, 41]. They established the sharp asymp-
totic minimax risk for estimating the invariant density
f and its derivative as well as the drift functionµ. In
particular, the functionsf , f ′ andµ can be estimated
with ratesT −1/2, T −2s/(2s+1) andT −2s/(2s+1), respec-
tively, wheres is the degree of smoothness ofµ. These
are the optimal rates of convergence.

An alternative approach is to estimate the drift func-
tion directly from (23). By letting� → 0, one can
easily obtain a local linear regression estimator for con-
tinuously observed data, which admits a similar form
to (23) and (30). This is the approach that Spokoiny
[103] used. He showed that this estimator attains the
optimal rate of convergence and established further a
data-driven bandwidth such that the local linear esti-
mator attains adaptive minimax rates.

4. ESTIMATION OF STATE PRICE DENSITIES AND
TRANSITION DENSITIES

The state price density (SPD) is the probability den-
sity of the value of an asset under the risk-neutral
world (14) (see [38]) or equivalent martingale mea-
sure [71]. It is directly related to the pricing of financial
derivatives. It is the transition density ofXT givenX0
under the equivalent martingaleQ. The SPD does not
depend on the payoff function and hence it can be used
to evaluate other illiquid derivatives, once it is esti-
mated from more liquid derivatives. On the other hand,
the transition density characterizes the probability law
of a Markovian process and hence is useful for validat-
ing Markovian properties and parametric models.
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4.1 Estimation of the State Price Density

For some specific models, the state price density can
be formed explicitly. For example, for the GBM (1)
with a constant risk-free rater , according to (17), the
SPD is log-normal with mean logx0 + (r − σ 2)/(2T )

and varianceσ 2.
Assume that the SPDf ∗ exists. Then the European

call option can be expressed as

C = exp
(
−

∫ T

0
rs ds

)∫ ∞
K

(x − K)f ∗(x) dx.

See (14) (we have changed the notation fromP0 to C

to emphasize the price of the European call option).
Hence,

f ∗(K) = exp
(∫ T

0
rs ds

)
∂2C

∂K2 .(31)

This was observed by Breeden and Litzenberger [25].
Thus, the state price density can be estimated from the
European call options with different strike prices. With
the estimated state price density, one can price new or
less liquid securities such as over-the-counter deriva-
tives or nontraded options using formula (14).

In general, the price of a European call option de-
pends on the current stock priceS, the strike priceK ,
the time to maturityT , the risk-free interest rater and
dividend yield rateδ. It can be written asC(S,K,T ,

r, δ). The exact form ofC, in general, is hard to de-
termine unless we assume the Black–Scholes model.
Based on historical data{(Ci, Si,Ki, Ti, ri, δi), i =
1, . . . , n}, where Ci is the ith traded-option price
with associated characteristics(Si,Ki, Ti, ri, δi), Aït-
Sahalia and Lo [7] fit the nonparametric regression

Ci = C(Si,Ki, Ti, ri, δi) + εi

to obtain an estimate of the functionC and hence the
SPDf ∗.

Due to the curse of dimensionality, the five-dimen-
sional nonparametric function cannot be estimated well
with practical range of sample sizes. Aït-Sahalia and
Lo [7] realized that and proposed a few dimensionality
reduction methods. First, by assuming that the option
price depends only on the futures priceF = S exp((r −
δ)T ), namely,

C(S,K,T , r, δ) = C(F,K,T , r)

(the Black–Scholes formula satisfies such an assump-
tion), they reduced the dimensionality from five to four.
By assuming further that the option-pricing function is
homogeneous of degree one inF andK , namely,

C(S,K,T , r, δ) = KC(F/K,T , r),

they reduced the dimensionality to three. Aït-Sahalia
and Lo [7] imposed a semiparametric form on the pric-
ing formula,

C(S,K,T , r, δ) = CBS
(
F,K,T , r, σ (F,K,T )

)
,

whereCBS(F,K,T , r, σ ) is the Black–Scholes pricing
formula given in (18) andσ(F,K,T ) is the implied
volatility, computed by inverting the Black–Scholes
formula. Thus, the problem becomes one of nonpara-
metrically estimating the implied volatility function
σ(F,K,T ). This is estimated by using a nonparamet-
ric regression technique from historical data, namely,

σi = σ(Fi,Ki, Ti) + εi,

whereσi is the implied volatility ofCi , by inverting
the Black–Scholes formula. By assuming further that
σ(F,K,T ) = σ(F/K,T ), the dimensionality is re-
duced to two. This is one of the options in [4].

The state price densityf ∗ is nonnegative and hence
the functionC should be convex in the strike priceK .
Aït-Sahalia and Duarte [6] propose to estimate the op-
tion price under the convexity constraint using a local
linear estimator. See also [70] for a related approach.

4.2 Estimation of Transition Densities

The transition density of a Markov process charac-
terizes the law of the process, except the initial distrib-
ution. It provides useful tools for checking whether or
not such a process follows a certain SDE and for statis-
tical estimation and inference. It is the state price den-
sity of the price process under the risk neutral world. If
such a process were observable, the state price density
would be estimated using the methods to be introduced.

Assume that we have a sample{Xi�, i = 0, . . . , n}
from model (5). The “double-kernel” method of Fan,
Yao and Tong [51] is to observe that

E
{
Wh2(Xi� − y)|X(i−1)� = x

} ≈ p�(y|x)
(32)

ash2 → 0,

for a kernel functionW . Thus, the transition density
p�(y|x) can be regarded approximately as the non-
parametric regression function of the response variable
Wh2(Xi� − y) onX(i−1)�. An application of the local
linear estimator (23) yields

p̂�(y|x) =
n∑

i=1

Kn

(
X(i−1)� − x, x

)
(33)

· Wh2(Xi� − y),
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where the equivalent kernelKn(u, x) was defined
in (24). Fan, Yao and Tong [51] establish the asymp-
totic normality of such an estimator under stationar-
ity and ρ-mixing conditions [necessarily decaying at
geometric rate for SDE (5)], which gives explicitly
the asymptotic bias and variance of the estimator. See
also Section 6.5 of [50]. The cross-validation idea of
Rudemo [98] and Bowman [24] can be extended to
select bandwidths for estimating conditional densities.
See [52, 63].

The transition distribution can be estimated by in-
tegrating the estimator (33) overy. By lettingh2 → 0,
the estimator is the regression of the indicatorI (Xi� <

y) on X(i−1)�. Alternative estimators can be obtained
by an application of the local logistic regression and
adjusted Nadaraya–Watson method of Hall et al. [64].

Early references on the estimation of the transition
distributions and densities include [96, 97] and [95].

4.3 Inferences Based on Transition Densities

With the estimated transition density, one can now
verify whether parametric models such as (1)–(3), (6)
are consistent with the observed data. Letp�,θ (y|x)

be the transition density under a parametric diffusion
model. For example, for the CIR model (2), the pa-
rameterθ = (κ,α,σ ). As in (21), ignoring the initial
valueX0, the parameterθ can be estimated by maxi-
mizing

�(p�,θ ) =
n∑

i=1

logp�,θ

(
Xi�|X(i−1)�

)
.

Let θ̂ be the maximum likelihood estimator. By the
spirit of the GLR of Fan et al. [54], the GLR test for
the null hypothesisH0 :p�(y|x) = p�,θ (y|x) is

GLR= �(p̂�) − �(p
�,θ̂

),

where p̂ is a nonparametric estimate of the transi-
tion density. Since the transition density cannot be es-
timated well over the region where data are sparse
(usually at boundaries of the process), we need to
truncate the nonparametric (and simultaneously para-
metric) evaluation of the likelihood at appropriate in-
tervals.

In addition to employing the GLR test, one can also
compare directly the difference between the paramet-
ric and nonparametric fits, resulting in test statistics
such as‖p̂� − p

�,θ̂
‖2 and‖P̂� − P

�,θ̂
‖2 for an ap-

propriate norm‖ · ‖, whereP̂� andP
�,θ̂

are the esti-
mates of the cumulative transition distributions under
respectively the parametric and nonparametric models.

The transition density-based methods depend on two
bandwidths and are harder to implement. Indeed, their
null distributions are harder to determine than those
based on the transition distribution methods. In com-
parison with the invariant density-based approach of
Arapis and Gao [11], it is consistent against a much
larger family of alternatives.

One can also use the transition density to test
whether an observed series is Markovian (from per-
sonal communication with Yacine Aït-Sahalia). For ex-
ample, if a process{Xi�} is Markovian, then

p2�(y|x) =
∫ +∞
−∞

p�(y|z)p�(z|x)dz.

Thus, one can use the distance betweenp̂2�(y|x) and∫ +∞
−∞ p̂�(y|z)p̂�(z|x)dz as a test statistic.
The transition density can also be used for parameter

estimation. One possible approach is to find the para-
meter which minimizes the distance‖P̂� − P�,θ‖. In
this case, the bandwidth should be chosen to optimize
the performance for estimatingθ . The approach is ap-
plicable whether or not� → 0.

5. CONCLUDING REMARKS

Enormous efforts in financial econometrics have
been made in modeling the dynamics of stock prices
and bond yields. There are directly related to pricing
derivative securities, proprietary trading and portfo-
lio management. Various parametric models have been
proposed to facilitate mathematical derivations. They
have risks that misspecifications of models lead to er-
roneous pricing and hedging strategies. Nonparamet-
ric models provide a powerful and flexible treatment.
They aim at reducing modeling biases by increasing
somewhat the variances of resulting estimators. They
provide an elegant method for validating or suggesting
a family of parametric models.

The versatility of nonparametric techniques in fi-
nancial econometrics has been demonstrated in this
paper. They are applicable to various aspects of dif-
fusion models: drift, diffusion, transition densities and
even state price densities. They allow us to examine
whether the stochastic dynamics for stocks and bonds
are time varying and whether famous parametric mod-
els are consistent with empirical financial data. They
permit us to price illiquid or nontraded derivatives from
liquid derivatives.

The applications of nonparametric techniques in fi-
nancial econometrics are far wider than what has been
presented. There are several areas where nonparamet-
ric methods have played a pivotal role. One example
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is to test various versions of capital asset pricing mod-
els (CAPM) and their related stochastic discount mod-
els [36]. See, for example, the research manuscript
by Chen and Ludvigson [34] in this direction. An-
other important class of models are stochastic volatil-
ity models [19, 101], where nonparametric methods
can be also applied. The nonparametric techniques
have been prominently featured in the RiskMetrics of
J. P. Morgan. It can be employed to forecast the risks
of portfolios. See, for example, [8, 32, 33, 47, 82] for
related nonparametric techniques on risk management.
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Comment: A Selective Overview of
Nonparametric Methods in
Financial Econometrics
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Abstract. These comments concentrate on two issues arising from Fan’s
overview. The first concerns the importance of finite sample estimation bias
relative to the specification and discretization biases that are emphasized in
Fan’s discussion. Past research and simulations given here both reveal that
finite sample effects can be more important than the other two effects when
judged from either statistical or economic viewpoints. Second, we draw at-
tention to a very different nonparametric technique that is based on comput-
ing an empirical version of the quadratic variation process. This technique is
not mentioned by Fan but has many advantages and has accordingly attracted
much recent attention in financial econometrics and empirical applications.

Key words and phrases: Nonparametric method, continuous time models,
financial time series, jackknife, realized volatility.

1. INTRODUCTION

In recent years there has been increased interest in
using nonparametric methods to deal with various as-
pects of financial data. The paper by Fan gives an
overview of some nonparametric techniques that have
been used in the financial econometric literature, focus-
ing on estimation and inference for diffusion models in
continuous time and estimation of state price and tran-
sition density functions.

Continuous time specifications have been heavily
used in recent work, partly because of the analytic
convenience of stochastic calculus in mathematical fi-
nance and partly because of the availability of high-
frequency data sets for many financial series. While
the early work in continuous-time finance began in
the 1970s with the work of Merton [29] and Black
and Scholes [16], economists have been looking at the
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econometric problems of fitting continuous time sys-
tems for much longer. The idea of statistically fitting
diffusion models and continuously distributed lagged
dependencies with discretely observed data has a long
history dating back to some original work in econo-
metrics by Koopmans [27] and subsequent work by
Phillips [31], Bergstrom [14], Sims [35], Phillips [32]
and Sargan [34]. Bartlett and Rajalakshman [13] and
Bartlett [12] are two references in the early statistical
literature on fitting linear diffusions. Bergstrom [15]
provides a short history of some of this early work.
Also, the history of mathematical finance and sto-
chastic integration prior to 1970 has recently been
overviewed in an interesting historical review by Jarrow
and Protter [24].

Our comments on Fan’s paper will concentrate on
two issues that relate in important ways to the paper’s
focus on misspecification and discretization bias and
the role of nonparametric methods in empirical finance.
The first issue deals with the finite sample effects of
various estimation methods and their implications for
asset pricing. A good deal of recent attention in the
econometric literature has focused on the benefits of
full maximum likelihood (ML) estimation of diffusions
and mechanisms for avoiding discretization bias in the
construction of the likelihood. However, many of the
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problems of estimating dynamic models that are well
known in discrete time series, such as the bias in ML
estimation, also manifest in the estimation of contin-
uous time systems and affect subsequent use of these
estimates, for instance in derivative pricing. In conse-
quence, a relevant concern is the relative importance
of the estimation and discretization biases. As we will
show below, the former often dominates the latter even
when the sample size is large (at least 500 monthly ob-
servations, say). Moreover, it turns out that correction
for the finite sample estimation bias continues to be
more important when the diffusion component of the
model is itself misspecified. Such corrections appear
to be particularly important in models that are nonsta-
tionary or nearly nonstationary.

The second issue we discuss deals with a very differ-
ent nonparametric technique, which is not discussed by
Fan, but which has recently attracted much attention in
financial econometrics and empirical applications. This
method involves the use of quadratic variation mea-
sures of realized volatility using ultra high frequency
financial data. Like other nonparametric methods, em-
pirical quadratic variation techniques also have to deal
with statistical bias, which in the present case arises
from the presence of microstructure noise. The field of
research on this topic in econometrics is now very ac-
tive.

2. FINITE SAMPLE EFFECTS

In his overview of diffusion equation estimation, Fan
discusses two sources of bias, one arising from the dis-
cretization process and the second from misspecifica-
tion. We review these two bias effects and then discuss
the bias that comes from finite sample estimation ef-
fects.

The attractions of Itô calculus have made it partic-
ularly easy to work with stochastic differential equa-
tions driven by Brownian motion. Diffusion processes
in particular have been used widely in finance to model
asset prices, including stock prices, interest rates and
exchange rates. Despite their mathematical attractabil-
ity, diffusion processes present some formidable chal-
lenges for econometric estimation. The primary reason
for the difficulty is that sample data, even very high-
frequency data, are always discrete and for many popu-
lar nonlinear diffusion models the transition density of
the discrete sample does not have a closed form expres-
sion, as noted by Fan. The problem is specific to non-
linear diffusions, as consistent methods for estimating
exact discrete models corresponding to linear systems

of diffusions have been available since Phillips [32].
A simple approach discussed in the paper is to use the
Euler approximation scheme to discretize the model,
a process which naturally creates some discretization
bias. This discretization bias can lead to erroneous
financial pricing and investment decisions. In conse-
quence, the issue of discretization has attracted a lot of
attention in the literature and many methods have been
proposed to reduce the bias that it causes. Examples are
Pedersen [30], Kessler [26], Durham and Gallant [18],
Aït-Sahalia [2, 3] and Elerian, Chib and Shephard [19],
among many others.

Next, many diffusion models in practical use are
specified in a way that makes them mathematically
convenient. These specifications are typically not de-
rived from any underlying economic theory and are
therefore likely to be misspecified. Potential misspec-
ifications, like discretization, can lead to erroneous fi-
nancial decisions. Accordingly, specification bias has
attracted a great deal of attention in the literature and
has helped to motivate the use of functional estimation
techniques that treat the drift and diffusion coefficients
nonparametrically. Important contributions include
Aït-Sahalia [1], Stanton [36], Bandi and Phillips [5]
and Hong and Li [21].

While we agree that both discretization and specifi-
cation bias are important issues, finite sample estima-
tion bias can be of equal or even greater importance for
financial decision making, as noted by Phillips and Yu
[33] in the context of pricing bonds and bond options.
The strong effect of the finite sample estimation bias in
this context can be explained as follows. In continuous
time specifications, the prices of bonds and bond op-
tions depend crucially on the mean reversion parameter
in the associated interest rate diffusion equation. This
parameter is well known to be subject to estimation
bias when standard methods like ML are used. The bias
is comparable to, but generally has larger magnitude
than, the usual bias that appears in time series autore-
gression. As the parameter is often very close to zero
in empirical applications (corresponding to near mar-
tingale behavior and an autoregressive root near unity
in discrete time), the estimation bias can be substantial
even in very large samples.

To reduce the finite sample estimation bias in para-
meter estimation as well as the consequential bias that
arises in asset pricing, Phillips and Yu [33] proposed
the use of jackknife techniques. Suppose a sample ofn

observations is available and that this sample is decom-
posed intom consecutive sub-samples each with� ob-
servations (n = m × �). The jackknife estimator of a
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parameterθ in the model is defined by

θ̂jack = m

m − 1
θ̂n −

∑m
i=1 θ̂�i

m2 − m
,(2.1)

whereθ̂n and θ̂�i are the extreme estimates ofθ based
on the entire sample and thei ’th sub-sample, respec-
tively. The parameterθ can be a coefficient in the dif-
fusion process, such as the mean reversion parameter,
or a much more complex function of the parameters
of the diffusion process and the data, such as an asset
price or derivative price. Typically, the full sample ex-
treme estimator has bias of orderO(n−1), whereas un-
der mild conditions the bias in the jackknife estimate is
of orderO(n−2).

The following simulation illustrates these various
bias effects and compares their magnitudes. In the ex-
periment, the true generating process is assumed to be
the following commonly used model (CIR hereafter)
of short term interest rates due to Cox, Ingersoll and
Ross [17]:

dr(t) = κ
(
µ − r(t)

)
dt + σr1/2(t) dB(t).(2.2)

The transition density of the CIR model is known to
bece−u−v(v/u)q/2Iq(2(uv)1/2) and the marginal den-
sity isw

w2
1 rw2−1e−w1r/�(w2), wherec = 2κ/(σ 2(1−

e−κ�)), u = cr(t)e−κ�, v = cr(t + �), q = 2κµ/

σ 2−1, w1 = 2κ/σ 2, w2 = 2κµ/σ 2, � is the sampling
frequency, andIq(·) is the modified Bessel function of
the first kind of orderq. The transition density together
with the marginal density can be used for simulation
purposes as well as to obtain the exact ML estimator of
θ (= (κ,µ,σ )′). In the simulation, we use this model
to price a discount bond, which is a three-year bond
with a face value of $1 and initial interest rate of 5%,
and a one-year European call option on a three-year
discount bond which has a face value of $100 and a
strike price of $87. The reader is referred to [33] for
further details.

In addition to exact ML estimation, we may dis-
cretize the CIR model via the Euler method and es-
timate the discretized model using (quasi-) ML. The
Euler scheme leads to the discretization

r(t + �) = κµ� + (1− κ�)r(t)

+ σN
(
0,�r(t)

)
.

(2.3)

One thousand samples, each with 600 monthly ob-
servations (i.e.,� = 1/12), are simulated from the
true model (2.2) with(κ,µ,σ )′ being set at(0.1,0.08,
0.02)′, which are settings that are realistic in many
financial applications. To investigate the effects of

discretization bias, we estimate model (2.3) by the
(quasi-) ML approach. To investigate the finite sample
estimation bias effects, we estimate model (2.2) based
on the true transition density. To examine the effects
of bias reduction in estimation, we apply the jackknife
method (withm = 3) to the mean reversion parame-
ter κ , the bond price and the bond option price.

To examine the effects of specification bias, we fit
each simulated sequence from the true model to the
misspecified Vasicek model [37] to obtain the exact
ML estimates ofκ , the bond price and the option price
from this misspecified model. The Vasicek model is
given by the simple linear diffusion

dr(t) = κ
(
µ − r(t)

)
dt + σ dB(t).(2.4)

We use this model to price the same bond and bond
option. Vasicek [37] derived the expression for bond
prices and Jamshidian [23] gave the corresponding for-
mula for bond option prices. The transition density for
the Vasicek model is

r(t + �)|r(t)
∼ N

(
µ(1− e−κ�)

+ e−κ�rt , σ
2(1− e−2κ�)/(2κ)

)
.

(2.5)

This transition density is utilized to obtain the exact
ML estimates ofκ , the bond price and the bond op-
tion price, all under the mistaken presumption that the
misspecified model (2.4) is correctly specified.

Table 1 reports the means and root mean square er-
rors (RMSEs) for all these cases. It is clear that the
finite sample estimation bias is more substantial than

TABLE 1
Finite sample properties of ML and jackknife estimates of κ , bond
price and option price for the (true) CIR model using a (correctly

specified ) fitted CIR model and a (misspecified ) fitted Vasicek
model (sample size n = 600)

Parameter κ Bond price Option price

True value 0.1 0.8503 2.3920

Exact ML Mean 0.1845 0.8438 1.8085
of CIR RMSE 0.1319 0.0103 0.9052
Euler ML Mean 0.1905 0.8433 1.7693
of CIR RMSE 0.1397 0.0111 0.9668
Jackknife (m = 3) Mean 0.0911 0.8488 2.1473
of CIR RMSE 0.1205 0.0094 0.8704
ML of Vasicek Mean 0.1746 0.8444 1.8837
(misspecified) RMSE 0.1175 0.0088 0.7637
Jackknife (m = 2) of Mean 0.0977 0.8488 2.2483
Vasicek (misspecified) RMSE 0.1628 0.0120 1.0289
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the discretization bias and the specification bias for all
three quantities, at least in this experiment. In particu-
lar, κ is estimated by the exact ML method with 84.5%
upward bias, which contributes toward the−0.76%
bias in the bond price and the−24.39% bias in the
option price. Relative to the finite sample bias, the
bias in κ due to the discretization is almost negli-
gible since the total bias inκ changes from 84.5%
to 90.5%. (The increase in the total bias indicates
that the discretization bias effect is in the same di-
rection as that of the estimation bias.) The total bias
changes from−0.76% to −0.82% in the bond price
and from−24.39% to −26.03% in the option price.
These changes are marginal. Similarly, relative to the
finite sample bias, the bias inκ due to misspecification
of the drift function is almost negligible since the total
bias changes from 84.5% to 74.6%. (The decrease in
the total bias indicates that the misspecification bias ef-
fect is in the opposite direction to that of the estimation
bias.) The total bias changes from−0.76% to−0.69%
in the bond price and from−24.39% to−21.25% in
the option price. Once again, these changes are mar-
ginal. When the jackknife method is applied to the cor-
rectly specified model, the estimation bias is greatly
reduced in all cases (from 84.5% to−8.9% for κ ;
from −0.76% to −0.18% for the bond price; and
from −24.39% to−10.23% for the option price).

Even more remarkably, when the jackknife method
is applied to the incorrectly specified model (see the fi-
nal row of Table 1), the estimation bias is also greatly
reduced in all cases (from 84.5% to−2.3% for κ ;
from −0.76% to −0.18% for the bond price; and
from −24.39% to−6.01% for the option price). These
figures reveal that dealing with estimation bias can be
much more important than ensuring correct specifica-
tion in diffusion equation estimation, suggesting that
general econometric treatment of the diffusion through
nonparametric methods may not address the major
source of bias effects on financial decision making.

Although the estimation bias is not completely re-
moved by the jackknife method, the bias reduction is
clearly substantial and the RMSE of the jackknife es-
timate is smaller in all cases than that of exact ML. In
sum, it is apparent from Table 1 that the finite sample
estimation bias is larger in magnitude than either of the
biases due to discretization and misspecification and
correcting this bias is therefore a matter of importance
in empirical work on which financial decisions depend.

Although this demonstration of the relative impor-
tance of finite sample estimation bias in relation to dis-
cretization bias and specification bias is conducted in

a parametric context, similar results can be expected
for some nonparametric models. For example, in the
semiparametric model examined in [1], the diffusion
function is nonparametrically specified and the drift
function is linear, so that the mean reversion parameter
is estimated parametrically as in the above example. In
such cases, we can expect substantial finite sample es-
timation bias to persist and to have important practical
implications in financial pricing applications.

3. REALIZED VOLATILITY

As noted in Fan’s overview, many models used in fi-
nancial econometrics for modeling asset prices and in-
terest rates have the fully functional scalar differential
form

dXt = µ(Xt) dt + σ(Xt) dBt ,(3.1)

where both drift and diffusion functions are nonpara-
metric and where the equation is driven by Brownian
motion incrementsdBt . For models such as (3.1), we
have(dXt)

2 = σ 2(Xt) dt a.s. and hence the quadratic
variation ofXt is

[X]T =
∫ T

0
(dXt)

2 dt =
∫ T

0
σ 2(Xt) dt,(3.2)

where
∫ T
0 σ 2(Xt) dt is the accumulated or integrated

volatility of X. WereXt observed continuously,[X]T
and, hence, integrated volatility, would also be ob-
served. For discretely recorded data, estimation of (3.2)
is an important practical problem. This can be accom-
plished by direct nonparametric methods using an em-
pirical estimate of the quadratic variation that is called
realized volatility. The idea has been discussed for
some time, an early reference being Maheswaran and
Sims [28], and it has recently attracted a good deal of
attention in the econometric literature now that very
high frequency data has become available for empirical
use. Recent contributions to the subject are reviewed in
[4] and [8].

SupposeXt is recorded discretely at equispaced
points(�,2�, . . . , n��(≡ T )) over the time interval
[0, T ]. Then,[X]T can be consistently estimated by the
realized volatility ofXt defined by

[X�]T =
n�∑
i=2

(
Xi� − X(i−1)�

)2
,(3.3)

as� → 0, as is well known. In fact, any construction
of realized volatility based on an empirical grid of ob-
servations where the maximum grid size tends to zero
will produce a consistent estimate. It follows that the
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integrated volatility can be consistently estimated by
this nonparametric approach, regardless of the form of
µ(Xt) andσ(Xt). The approach has received a great
deal of attention in the recent volatility literature and
serves as a powerful alternative to the methods dis-
cussed by Fan, especially when ultra-high frequency
data are available.

While this approach is seemingly straightforward,
it is not without difficulties. First, in order for the
approach to be useful in empirical research, it is
necessary to estimate the precision of the realized
volatility estimates. Important contributions on the
central limit theory of these empirical quadratic vari-
ation estimates by Jacod [22] and Barndorff-Nielson
and Shephard [10, 11] has facilitated the construction
of suitable methods of inference. Second, in practical
applications, realized volatility measures such as (3.3)
are usually contaminated by microstructure noise bias,
especially at ultra high frequencies and tick-by-tick
data. Noise sources arise from various market frictions
and discontinuities in trading behavior that prevent the
full operation of efficient financial markets. Recent
work on this subject (e.g., [8, 9, 21, 38]) has devel-
oped various methods, including nonparametric kernel
techniques, for reducing the effects of microstructure
noise bias.

4. ADDITIONAL ISSUES

Given efficient market theory, there is good reason to
expect that diffusion models like (3.1) may have non-
stationary characteristics. Similar comments apply to
term structure models and yield curves. In such cases,
nonparametric estimation methods lead to the estima-
tion of the local time (or sojourn time) of the cor-
responding stochastic process and functionals of this
quantity, rather than a stationary probability density.
Moreover, rates of convergence in such cases become
path dependent and the limit theory for nonparametric
estimates of the drift and diffusion functions in (3.1)
is mixed normal. Asymptotics of this type require an
enlarging time span of data as well as increasing in-fill
within each discrete interval asn → ∞. An overview
of this literature and its implications for financial data
applications is given in [6]. Nonparametric estimates
of yield curves in multifactor term structure models are
studied in [25].

Not all models in finance are driven by Brown-
ian motion. In some cases, one can expect noise to
have to have some memory and, accordingly, models

such as (3.1) have now been extended to accommo-
date fractional Brownian motion increments. The sto-
chastic calculus of fractional Brownian motion, which
is not a semi-martingale, is not as friendly as that of
Brownian motion and requires new constructs, involv-
ing Wick products and versions of the Stratonovich in-
tegral. Moreover, certain quantities, such as quadratic
variation, that have proved useful in the recent empiri-
cal literature may no longer exist and must be replaced
by different forms of variation, although the idea of
volatility is still present. Developing a statistical theory
of inference to address these issues in financial econo-
metric models is presenting new challenges.
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1. INTRODUCTION

Professor Fan should be congratulated for his review
that convincingly demonstrates the usefulness of non-
parametric techniques to financial econometric prob-
lems. He is mainly concerned with financial models
given by stochastic differential equations, that is, dif-
fusion processes. I will therefore complement his se-
lective review by discussing some important problems
and useful methods for diffusion models that he has
not covered. My concern will mainly, but not solely, be
with parametric techniques. A recent comprehensive
survey of parametric inference for discretely sampled
diffusion models can be found in [19].

2. GAUSSIAN LIKELIHOOD FUNCTIONS

In his brief review of parametric methods, Profes-
sor Fan mentions the Gaussian approximate likelihood
function based on the Euler scheme and states that this
method has some bias when the time between observa-
tions� is large. This is actually a very serious problem.
As an example, consider a model with a linear drift of
the formµ(x) = −β(x − α) (β > 0). The estimator̂βn

of β obtained from the Gaussian approximate likeli-
hood based on the Euler scheme converges to

(1− e−β0�)�−1

as the number of observationsn tends to infinity.
Hereβ0 denotes the true parameter value. The limiting
value of�β̂n is always smaller than one, and the limit
of β̂n is always smaller than�−1. Thus the asymp-
totic bias can be huge if� is large. A simulation study
in [3] demonstrates that also for finite sample sizes an
enormous bias can occur. When�β0 is small so that
(1 − e−β0�)�−1 ≈ β0, the asymptotic bias is negligi-
ble. The problem is, however, that if we use the approx-
imate likelihood function based on the Euler scheme,

Michael Sørensen is Professor and Head, Department
of Applied Mathematics and Statistics, University of
Copenhagen, Universitetsparken 5, DK-2100 Copen-
hagen Ø, Denmark (e-mail: michael@math.ku.dk).

there is no way we can know whether�β0 is small
or large because�β̂n will always tend to be small.
I suspect that the nonparametric methods outlined in
Sections 3.2 and 3.5 might suffer from a similar short-
coming as they are based on the same type of approxi-
mation as the Euler scheme.

A simple solution to this problem is to use an ap-
proximate likelihood function where the transition den-
sity is replaced by a normal distribution with mean
equal to the exact conditional expectationF(x, θ) =
Eθ(X�|X0 = x) and with the variance equal to the ex-
act conditional variance�(x; θ) = Varθ (X�|X0 = x).
Here θ is the (typically multivariate) parameter to
be estimated. This approach is exactly the same as
using quadratic martingale estimating functions; see
[3] and [20]. The estimators obtained from quadratic
martingale estimating functions have the same nice
properties for high frequency observations (small�) as
the estimators based on the Euler likelihood, but they
are consistent for any value of� and can thus be used
whether or not� is small. In most cases there is no ex-
plicit expression for the functionsF(x, θ) and�(x; θ),
so often they must be determined by simulation. This
requires, however, only a modest amount of computa-
tion and is not a problem in practice. If a completely
explicit likelihood is preferred, one can approximate
F(x, θ) and�(x; θ) by expansions of a higher order
than those used in the Euler scheme; see [16].

The nonparametric method in Section 3.5 could
probably be improved in a similar way by using in
(27) and (28) the functionsF(x, θ) and �(x; θ) (or
the higher-order expansions in [16]) instead of the first-
order approximation used in the Euler scheme.

3. MARTINGALE ESTIMATING FUNCTIONS

More generally, martingale estimating functions pro-
vide a simple and versatile technique for estimation
in discretely sampled parametric stochastic differential
equation models that works whether or not� is small.

344
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An estimator is obtained by solving the equation
n∑

i=1

N∑
j=1

aj

(
X(i−1)�; θ)

· [
fj (Xi�) − Hθ

�fj

(
X(i−1)�

)] = 0,

where H� is the transition operator, and where the
function a has the same dimension as the parameter
θ . First suitable functionsfj are chosen, and then the
weight functionsaj are determined so that an opti-
mal estimating function in the sense of Godambe and
Heyde [9] is obtained; see also [10]. Optimal estimat-
ing functions are approximations to the non-explicit
score function. UsuallyHθ

�fj must be determined
by a modest amount of simulation, but Kessler and
Sørensen [17] demonstrated how completely explicit
estimating functions can be obtained if the functionsfj

are eigenfunctions of the operatorLθ (called the gener-
ator); see also [18] for details on how to explicitly find
the optimal weight functions. A review of the theory of
estimating functions for discretely sampled diffusion-
type models can be found in [1].

For martingale estimating functions large sample
results concerning estimators can be obtained via mar-
tingale limit theory. Under weak conditions, estima-
tors are consistent, and optimal estimating functions
tend to work well when the functionsfj are chosen
reasonably, that is, such that a good approximation to
the score function can be obtained. At low sampling
frequencies the estimators are, however, usually not
efficient. The behavior of the estimators at high sam-
pling frequencies can be investigated by considering
an asymptotic scenario where the time between ob-
servations�n is assumed to go to zero, as the sam-
ple sizen tends to infinity, sufficiently slowly that the
time horizon over which observations are made,n�n,
tends to infinity. It is well known that in this situation
estimators of parameters appearing in the diffusion co-
efficient may converge at a suboptimal rate, 1/

√
n�n.

The reason is that there is a lot of information about the
diffusion coefficient in the fine structure of diffusion
trajectories, which some estimators do not capture.
Recently Sørensen [22] has given conditions ensuring
that a martingale estimating function provides estima-
tors that are rate-optimal (rate 1/

√
n ) and efficient in

the high-frequency asymptotic scenario. Optimal mar-
tingale estimating functions satisfy these conditions.
Quadratic martingale estimating functions are always
rate-optimal, and if they are obtained from Gaussian
approximate likelihood functions they are efficient too.
These results are closely related to the theory of small
�-optimality developed in [13] and [14].

4. NON-MARKOVIAN OBSERVATIONS

There are several situations in which observations
from a diffusion process are non-Markovian. Most
prominently this happens if a function of lower di-
mension of a multivariate diffusion is observed. An
example is the stochastic volatility model that plays an
important role as a model of financial time series since
it is well known that a simple one-dimensional diffu-
sion often cannot capture all the salient features of such
data. Another example is given by the sums of diffu-
sions proposed by Bibby, Skovgaard and Sørensen [2]
as models of phenomena with more than one time
scale. Other situations where diffusion data are non-
Markovian are in the presence of measurement error, or
when only integrals of the diffusion over time-intervals
are observed; see [4]. The latter is, for instance, the
case when climate data from ice cores are analyzed by
means of a diffusion model. When the data are non-
Markovian, it is usually not possible to find a tractable
martingale estimating function, but an alternative is
provided by the prediction-based estimating functions
proposed in [21], which can be interpreted as approxi-
mations to martingale estimating functions.

Asymptotic results for estimators based on non-
Markovian data are usually based on the assump-
tion that the underlying diffusion process is strongly
mixing. The condition ensuring exponentialρ-mixing
cited in Section 2.2 is not easy to check for concrete
diffusion models. A condition on the drift and diffusion
coefficient that is easy to verify and that implies expo-
nentialρ-mixing andα-mixing was given by Genon-
Catalot, Jeantheau and Larédo [6].

5. NONPARAMETRIC METHODS

Let me conclude by drawing attention to some rel-
atively early work on nonparametric methods for dis-
cretely sampled diffusion models. Wavelet methods for
estimating the diffusion coefficient of a time-dependent
model were proposed by Genon-Catalot, Larédo and
Picard [7]. The first estimator of the diffusion coef-
ficient mentioned in Section 3.2 was first proposed
by Florens-Zmirou [5]. She considered a high fre-
quency asymptotic scenario with fixed time span, that
is, with n�n constant, and proved that the asymptotic
distribution of her estimator is a mixture of normal
distributions where the mixing distribution is the dis-
tribution of the local time of the diffusion. If a data-
dependent normalization of the estimator is used, an
asymptotic normal distribution is obtained. In a series
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of important papers, Marc Hoffmann has studied opti-
mal rates of convergence of nonparametric estimators
of the drift and diffusion coefficient under the three
asymptotic scenarios usually considered for diffusion
models including optimal estimators; see [8, 11, 12].
Other estimators of the diffusion coefficient were pro-
posed by Soulier [23] and Jacod [15].
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Comment: A Selective Overview of
Nonparametric Methods in
Financial Econometrics
Per A. Mykland and Lan Zhang

We would like to congratulate Jianqing Fan for an
excellent and well-written survey of some of the lit-
erature in this area. We will here focus on some of
the issues which are at the research frontiers in finan-
cial econometrics but are not covered in the survey.
Most importantly, we consider the estimation of actual
volatility. Related to this is the realization that financial
data is actually observed with error (typically called
market microstructure), and that one needs to consider
a hidden semimartingale model. This has implications
for the Markov models discussed above.

For reasons of space, we have not included refer-
ences to all the relevant work by the authors that are
cited, but we have tried to include at least one refer-
ence to each of the main contributors to the realized
volatility area.

1. THE ESTIMATION OF ACTUAL VOLATILITY:
THE IDEAL CASE

The paper discusses the estimation of Markovian
systems, models where the drift and volatility coeffi-
cients are functions of timet or statex. There is, how-
ever, scope for considering more complicated systems.
An important tool in this respect is the direct estima-
tion of volatility based on high-frequency data. One
considers a system of, say, log securities prices, which
follows:

dXt = µt dt + σt dBt ,(1)

whereBt is a standard Brownian motion. Typically,µt ,
the drift coefficient, andσ 2

t , the instantaneous variance
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Mellon University, Pittsburgh, Pennsylvania 15213,
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(or volatility) of the returns processXt , will be sto-
chastic processes, but these processes can depend on
the past in ways that need not be specified, and can be
substantially more complex than a Markov model. This
is known as anItô process.

A main quantity of econometric interest is to obtain

time series of the form�i = ∫ T +
i

T −
i

σ 2
t dt , i = 1,2, . . . .

HereT −
i andT +

i can, for example, be the beginning
and the end of day numberi. �i is variously known
as theintegrated variance (or volatility) or quadratic
variation of the processX. The reason why one can
hope to obtain this series is as follows. IfT −

i = t0 <

t1 < · · · < tn = T +
i spans day numberi, define there-

alized volatility by

�̂i =
n−1∑
j=0

(
Xtj+1 − Xtj

)2
.(2)

Then stochastic calculus tells us that

�i = lim
max|tj+1−tj |→0

�̂i .(3)

In the presence of high frequency financial data, in
many cases with transactions as often as every few sec-
onds, one can, therefore, hope to almostobserve �i .
One can then either fit a model to the series of�̂i , or
one can use it directly for portfolio management (as
in [12]), options hedging (as in [29]), or to test good-
ness of fit [31].

There are too many references to the relationship (3)
to name them all, but some excellent treatments can
be found in [27], Section 1.5; [26], Theorem I.4.47
on page 52; and [33], Theorem II-22 on page 66. An
early econometric discussion of this relationship can
be found in [2].

To make it even more intriguing, recent work both
from the probabilistic and econometric sides gives
the mixed normal distribution of the error in the ap-
proximation in (3). References include [6, 25, 31].

The random variance of the normal error is 2
T +

i −T −
i

n
·
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∫ T +
i

T −
i

σ 4
t dH(t), whereH is thequadratic variation of

time. H(t) = t in the case where theti are equidistant.
Further econometric literature includes, in particu-

lar, [3, 4, 8, 9, 14, 18, 32]. Problems that are attached to
the estimation of covariations between two processes
are discussed in [22]. Estimatingσ 2

t at each pointt
goes back to [13]; see also [30], but this has not caught
on quite as much in econometric applications.

2. THE PRESENCE OF MEASUREMENT ERROR

The theory described above runs into a problem with
real data. For illustration, consider how the realized
volatility depends on sampling frequency for the stock
(and day) considered in Figure 1. The estimator does
not converge as the observation pointsti become dense
in the interval of this one day, but rather seems to take
off to infinity. This phenomenon was originally docu-
mented in [2]. For transaction data, this picture is re-
peated for most liquid securities [19, 37].

In other words, the model (1) is wrong. What can one
do about this? A lot of people immediately think that

the problem is due to jumps, but that is not the case.
The limit in (3) exists even when there are jumps. The
requirement for (3) to exist is that the processX be a
semimartingale (we again cite Theorem I.4.47 of [26]),
which includes both Itô processes and jumps.

The inconsistency between the empirical results
where the realized volatility diverges with finer sam-
pling, and the semimartingale theory which dictates
the convergence of the realized volatility, poses a prob-
lem, since financial processes are usually assumed
to be semimartingales. Otherwise, somewhat loosely
speaking, there would be arbitrage opportunities in
the financial markets. For rigorous statements, see, in
particular, [11]. The semimartingaleness of financial
processes, therefore, is almost a matter of theology in
most of finance, and yet, because of Figure 1 and sim-
ilar graphs for other stocks, we have to abandon it.

Our alternative model is that there is measurement
error in the observation. At transaction numberi, in-
stead of seeingXti from model (1) or, more generally,
from a semimartingale, one observes

Yti = Xti + εi.(4)

FIG. 1. Plot of realized volatility for Alcoa Aluminum for January 4, 2001. The data is from the TAQ database. There are 2011 trans-
actions on that day, on average one every 13.365seconds. The most frequently sampled volatility uses all the data, and this is denoted as
“ frequency = 1.” “ Frequency = 2” corresponds to taking every second sampling point. Because this gives rise to two estimators of volatility,
we have averaged the two. And so on for “ frequency = k” up to 20.The plot corresponds to the average realized volatility discussed in [37].
Volatilities are given on an annualized and square root scale.
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We call this thehidden semimartingale model. The ra-
tionale is (depending on your subject matter) either
that a transaction is a measurement of the underlying
priceXti , and of course there is error, or that it is due to
market microstructure, as documented by, among oth-
ers, Roll [34], Glosten [15], Glosten and Harris [16],
Brown [7], Harris [20] and Hasbrouck [21]. See [1] for
a discussion of this.

A natural model for the error is that it is either i.i.d.
or a stationary process, as considered by Zhou [38],
Gloter and Jacod [17], Zhang, Mykland and Aït-
Sahalia [37], Bandi and Russell [5], Zhang [36],
Aït-Sahalia, Mykland and Zhang [1] and Hansen and
Lunde [19].

Under quite loose conditions, this alternative model
is consistent with the plot in Figure 1. Instead of (3),
one gets that the realized volatility becomesnE(ε1 −
ε0)

2 + Op(n−1/2). In the early literature (as cited in
the previous section), the problem is usually taken care
of by (sic) reducingn. A variety of approaches that
improve on this are documented in [37], to which we
refer for an in depth discussion. As demonstrated by
Zhang [36], the true volatility�i can be consistently
estimated at rateOp(n−1/4), as opposed toOp(n−1/2)

when there is no error. This is not as slow as it seems,
sincen is quite large for liquid securities.

An alternative description of the error is that it arises
due to rounding (financial instruments are, after all,
traded on a price grid). Research in this direction has
been done by Delattre and Jacod [10] and by Zeng [35].
To first order, the rounding and additive error models
are similar, as documented by Delattre and Jacod [10];
see also [28].

It is awkward that these models imply the existence
of arbitrage. The size of the error, however, is so small
that it is hard to take economic advantage of them, and
this, presumably, is why such deviations can persist.

3. IMPLICATIONS FOR MARKOV MODELS

We now return to the subject to Jianqing Fan’s
overview, namely the Markov case. It is clear that the
model without observation error is not consistent with
the data. This may not be a problem when working
with, say, daily data, but would pose problems when
using high-frequency (intraday) observations. It is pre-
sumably quite straightforward to extend the methods
discussed in the paper to the case of observation er-
ror, and it would be interesting to see the results. The
same applies to similar studies on Markov models
by the “French school,” such as Hoffmann [23] and
Jacod [24].
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Nonparametric Methods in
Financial Econometrics
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I am very grateful to the Executive Editor, Edward
George, for organizing this stimulating discussion.
I would like to take this opportunity to thank Pro-
fessors Peter Phillips, Jun Yu, Michael Sørensen, Per
Mykland and Lan Zhang for their insightful and stimu-
lating comments, touching both practical, methodolog-
ical and theoretical aspects of financial econometrics
and their applications in asset pricing, portfolio alloca-
tion and risk management. They have made valuable
contributions to the understanding of various financial
econometric problems.

The last two decades have witnessed an explosion
of developments of data-analytic techniques in statis-
tical modeling and analysis of complex systems. At
the same time, statistical techniques have been widely
employed to confront various complex problems aris-
ing from financial and economic activities. While the
discipline has grown rapidly over the last two decades
and has rich and challenging statistical problems, the
number of statisticians involved in studying financial
econometric problems is still limited. In comparison
with statisticians working on problems in biological
sciences and medicine, the group working on finan-
cial and econometric problems is dismally small. It is
my hope that this article will provide statisticians with
quick access to some important and interesting prob-
lems in financial econometrics and to catalyze the ro-
mance between statistics and finance. A similar effort
was made by Cai and Hong [12], where various aspects
of nonparametric methods in continuous-time finance
are reviewed. It is my intention to connect financial
econometric problems as closely to statistical problems
as possible so that familiar statistical tools can be em-
ployed. With this in mind, I sometimes oversimplify
the problems and techniques so that key features can
be highlighted.

Jianqing Fan is Professor, Benheim Center of Finance
and Department of Operations Research and Financial
Engineering, Princeton University, Princeton, New
Jersey 08544, USA (e-mail: jqfan@princeton.edu).

I am fully aware that financial econometrics has
grown into a vast discipline itself and that it is im-
possible for me to provide an overview within a rea-
sonable length. Therefore, I greatly appreciate what
all discussants have done to expand the scope of dis-
cussion and provide additional references. They have
also posed open statistical problems for handling non-
stationary and/or non-Markovian data with or without
market noise. In addition, statistical issues on various
versions of capital asset pricing models and their re-
lated stochastic discount models [15, 19], the efficient
market hypothesis [44] and risk management [17, 45]
have barely been discussed. These reflect the vibrant
intersection of the interfaces between statistics and fi-
nance. I will make some further efforts in outlining
econometric problems where statistics plays an impor-
tant role after brief response to the issues raised by the
discussants.

1. BIASES IN STATISTICAL ESTIMATION

The contributions by Professors Phillips, Yu and
Sørensen address the bias issues on the estimation of
parameters in diffusion processes. Professors Phillips
and Yu further translate the bias of diffusion parame-
ter estimation into those of pricing errors of bonds and
bond derivatives. Their results are very illuminating
and illustrate the importance of estimation bias in fi-
nancial asset pricing. Their results can be understood
as follows. Suppose that the price of a financial asset
depends on certain parametersθ (the speed of the re-
versionκ in their illustrative example). Let us denote it
by p(θ), which can be in one case the price of a bond
and in another case the prices of derivatives of a bond.
The value of the asset is now estimated byp(θ̂) with θ̂

being estimated from empirical data. Whenθ̂ is overes-
timated (say), which shifts the whole distribution ofθ̂

to the left, the distribution ofp(θ̂) will also be shifted,
depending on the sensitivity ofp to θ . The sensitivity
is much larger for bond derivatives whenκ is close to
zero (see Figure 2 of [46]), and hence the pricing errors
are much larger. On the other hand, as the distribution
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of κ is shifted to the left, from Figure 2 of [46], both
prices of bonds and their derivatives get smaller and so
does the variance of pricing errors. Simulation studies
in [46] suggest that these two effects cancel each other
out in terms of mean square error.

I agree with Phillips and Yu’s observation that dis-
cretization is not the main source of biases for many
reasonable financial applications. Finite-sample esti-
mation bias can be more severe. This partially an-
swers the question raised by Professor Sørensen. On
the other hand, his comments give theoretical insights
into the bias due to discretization. For financial ap-
plications (such as modeling short-term rates) when
the data are collected at monthly frequency, the bias
{1−exp(−κ�)}/�−κ = −0.0019 and−0.00042, re-
spectively, forκ = 0.21459 used in Figure 3 of [34] and
for κ = 0.1 used in the discussion by Phillips and Yu.
For weekly data, using the parameterκ = 0.0446 cited
in [14], the discretization bias is merely 9.2× 10−5.

For other types of applications, such as climatol-
ogy, Professor Sørensen is right that the bias due to
discretization can sometimes be substantial. It is both
theoretically elegant and practically viable to have
methods that work well for all situations. The quasi-
maximum likelihood methods and their modifications
discussed by Professor Sørensen are attractive alter-
natives. As he pointed out, analytical solutions are
rare and computation algorithms are required. This in-
creases the chance of numerical instability in practi-
cal implementations. The problem can be attenuated
with the estimates based on the Euler approximation
as an initial value. The martingale method is a gener-
alization of his quasi-maximum likelihood estimator,
which aims at improving efficiency by suitable choice
of weighting functionsaj . However, unless the con-
ditional density has multiplicative score functions, the
estimation equations will not be efficient. This explains
the observation made by Professor Sørensen that the
methods based on martingale estimating functions are
usually not efficient for low frequency data. The above
discussion tends to suggest that when the Euler approx-
imation is reasonable, the resulting estimates tend to
have smaller variances.

In addition to the discretization bias and finite sam-
ple estimation bias, there is model specification bias.
This can be serious in many applications. In the ex-
ample given by Professors Phillips and Yu, the mod-
eling errors do not have any serious adverse effects
on pricing bonds and their derivatives. However, we
should be wary of generalizing this statement. Indeed,
for the model parameters given in the discussion by

Phillips and Yu, the transition density of the CIR model
has a noncentralχ2-distributions with degrees of free-
dom 80, which is close to the normal transition density
given by the Vasicek model. Therefore, the model is
not very seriously misspecified.

Nonparametric methods reduce model specification
errors by either global modeling such as spline meth-
ods or local approximations. This reduces significantly
the possibility of specification errors. Since nonpara-
metric methods are somewhat crude and often used
as model diagnostic and exploration tools, simple and
quick methods serve many practical purposes. For ex-
ample, in time domain smoothing, the bandwidthh is
always an order of magnitude larger than the sampling
frequency�. Therefore, the approximation errors due
to discretization are really negligible. Similarly, for
many realistic problems, the function approximation
errors can be an order of magnitude larger than dis-
cretization errors. Hence, discretization errors are often
not a main source of errors in nonparametric inference.

2. HIGH-FREQUENCY DATA

Professors Mykland, Zhang, Phillips and Jun address
statistical issues for high-frequency data. I greatly
appreciate their insightful comments and their elabora-
tions on the importance and applications of the subject.
Thanks to the advances in modern trading technology,
the availability of high-frequency data over the last
decade has significantly increased. Research in this
area has advanced very rapidly lately. I would like to
thank Professors Mykland and Zhang for their compre-
hensive overview on this active research area.

With high-frequency data, discretization errors have
significantly been reduced. Nonparametric methods
become even more important for this type of large
sample problem. The connections between the realized
volatility and the time-inhomogeneous model can sim-
ply be made as follows. Consider a subfamily of mod-
els of (8) in [34],

dXt = αt dt + σt dWt .

For high-frequency data the sampling interval is very
small. For the sampling frequency of a minute,� =
1/(252∗ 24 ∗ 60) ≈ 2.756× 10−6. Hence, standard-
ized residuals in Section 2.5 of [34] becomeEt =
�−1/2(Xt+� − Xt) and the local constant estimate of
the spot volatility reduces to

σ̂ 2
j� =

j−1∑
i=−∞

wj−iE
2
i�,
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where{wi} are the weights induced by a kernel func-
tion satisfying

∑∞
i=1 wi = 1. Now, for the weights

with a bounded support, the quadratic variation of the
process or integrated volatility

∫ T
t σ 2

t dt is naturally es-

timated by�
∑T/�−1

i=t/� σ̂ 2
i , which is simply

T/�−1∑
i=t/�

{
Xi� − X(i−1)�

}2
.

This shows that our nonparametric estimation of the
integrated volatility for high-frequency data is indeed
the same as the realized volatility.

As suggested by Professors Mykland, Zhang,
Phillips and Yu, the applications of realized volatili-
ties are not without difficulties. Market microstructure
noises emerge at such a fine frequency of observation
and market prices can contain multiple jumps due
to the flux of information during a trading session.
Figure 1 in the discussion by Mykland and Zhang
demonstrates convincingly the existence of the mar-
ket microstructure noise. Aït-Sahalia, Mykland and
Zhang [1] and Zhang, Mykland and Aït-Sahalia [50]
give comprehensive accounts of this under the assump-
tion that the observed prices are the true ones conta-
minated with random noise of market microstructure:
Yt = Xt + εt . However, they do not take into account
that the price processes{Xt } may contain jumps in
addition to random noises. An effort in this direction
has been made recently by Fan and Wang [38] using
wavelet techniques.

3. ESTIMATING COVARIANCE MATRICES

Covariance matrices play an important role in risk
management and asset allocation. They are featured
prominently in many financial econometrics problems.
For example, the smallest and largest eigenvalues are
related to the minimum and the maximum of the
volatility of portfolios and their corresponding eigen-
vectors are related to portfolio allocation. See [40] for
applications of covariance matrices to portfolio selec-
tion and [43] for their applications to other scientific
problems. There are a couple of approaches to these
kinds of problems, depending on the size of the co-
variance matrices. I hereby give a brief overview and
address some of the open challenges.

The simplest estimate of a covariance matrix is prob-
ably the sample covariance matrix of the log-returns
of p assets over a period ofn days prior to the current
time t . This is indeed a nonparametric estimation of
the covariance matrix localizing in time and has been

studied in multivariate analysis whenp is finite and
the underlying model is correct, that is, the covariance
matrix remains the same in then days prior to timet .
See, for example, [26, 27, 47]. However, the impact of
the biases in nonparametric methods on the estimation
of eigenvalues and eigenvectors has not yet been thor-
oughly investigated.

The sample covariance matrices can be augmented
by using the information from the state domain, which
is an extension of the method discussed in Section 3.6
of [34] and allows us to use the historical information.
This is particularly useful for estimating the covari-
ance matrices of bonds with different maturities. Use-
ful parametric models such as affine models have been
popularly used in interest rate modeling. See, for exam-
ple, [20, 24, 23]. Nonparametric methods provide use-
ful alternatives to estimating the covariance matrices
and to validating parametric models. A naive extension
involves high-dimensional smoothing in the state do-
main. But this can be avoided by localizing only on the
yields of a few bonds with intermediate length of ma-
turity.

Another class of techniques is to use a form of
GARCH model [28] to estimate covariance matri-
ces. As noted in [30], the number of parameters
grows rapidly with the dimensionalityp. Various ef-
forts have been made to reduce the complexity of
the models. These include constant conditional cor-
relation multivariate GARCH models [10], vectorized
multivariate GARCH models [11], dynamic condi-
tional correlation models [29, 31], orthogonal GARCH
models [2], generalized orthogonal GARCH mod-
els [48] and conditionally uncorrelated component
models [37]. For a survey, see [8].

In portfolio allocation and risk management, the
number of stocksp can be well in the order of hun-
dreds, which is typically in the same order as the sam-
ple sizen. The sample covariance matrix may not be a
good estimator of the population one. The estimated
variance of a portfolio based on the sample covari-
ance may far exceed the true one. The estimation errors
can accumulate quickly whenp grows withn. Indeed,
Johnstone [43] shows that the largest eigenvalue of the
covariance matrix is far larger than the population one.
There are many studies on the behavior of random ma-
trices when the dimensionalityp grows with n. See,
for example, [5, 22, 21, 49]. For a survey, see [4].

Estimating covariance matrices for largep is in-
trinsically challenging. For example, whenp = 200,
there are more than 20,000 free parameters. Yet, the
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available sample size is usually in the order of hun-
dreds or a few thousand. Longer time series (largern)
will increase modeling biases. Without imposing struc-
tures on the covariance matrices, they are hard to esti-
mate. Thanks to the multi-factor models (see Chapter 6
of [13]), if a few factors can capture completely the
cross-sectional risks, the number of parameters can be
significantly reduced. For example, using the Fama–
French three-factor models [32, 33], there are 4p in-
stead ofp(p+1)/2 parameters. Natural questions arise
with this structured estimate of the covariance matrix,
how largep can be such that the estimation error in the
covariance matrix is negligible in asset allocation and
risk management. The problems of this kind are inter-
esting and remain open.

Another possible approach to the estimation of co-
variance matrices is to use a model selection ap-
proach. First of all, according to Chapter 3 of [39],
the Cholesky decomposition admits nice autoregres-
sive interpretation. We may reasonably assume that the
elements in the Cholesky decomposition of the covari-
ance matrix are sparse. Hence, the penalized likelihood
method [3, 35, 42] can be employed to select and es-
timate nonsparse elements. The sampling property of
such a method remains unknown. Its impact on portfo-
lio allocation and risk management needs to be studied.

4. STATISTICS IN DERIVATIVE PRICING

Over last three decades, option pricing has witnessed
an explosion of new models that extend the original
work of Black and Scholes [9]. Empirically pricing fi-
nancial derivatives is innately related to statistical re-
gression problems. This is well documented in papers
such as [6, 7, 15, 16, 25, 41]. See also a brief review
given by Cai and Hong [12]. For a given stochastic
model with given structural parameters under the risk-
neutral measure, the prices of European options can
be determined, which are simply the discounted ex-
pected payoffs under the risk-neutral measure. Bakshi,
Cao and Chen [6] give the analytic formulas of op-
tion prices for five commonly used stochastic mod-
els, including the stochastic-volatility random-jump
model. They then estimate the risk-neutral parame-
ters by minimizing the discrepancies between the ob-
served prices and the theoretical ones. With estimated
risk-neutral parameters, option prices with different
characteristics can be evaluated. They conduct a com-
prehensive study of the relative merits of competing
option pricing models by computing pricing errors for
new options. Dumas, Fleming and Whaley [25] model

the implied volatility function by a quadratic func-
tion of the strike price and time to maturity and deter-
mine these parameters by minimizing pricing errors.
Based on the analytic formula of Bakshi, Cao and
Chen [6] for option price under the stochastic volatil-
ity models, Chernov and Ghysels [16] estimate the
risk neutral parameters by integrating information from
both historical data and risk-neutral data implied by
observed option prices. Instead of using continuous-
time diffusion models, Heston and Nandi [41] assume
that the stock prices under the risk-neutral world fol-
low a GARCH model and derive a closed form for
European options. They determine the structural pa-
rameters by minimizing the discrepancy between the
empirical and theoretical option prices. Barone-Adesi,
Engle and Mancini [7] estimate risk-neutral parame-
ters by integrating the information from both historical
data and option prices. Christoffersen and Jakobs [18]
expand the flexility of the model by introducing long-
and short-run volatility components.

The above approaches can be summarized as fol-
lows. Using the notation in Section 4.1 of [34], the
theoretical option price with option characteristics
(Si,Ki, Ti, ri, δi) is governed by a parametric form
C(Si,Ki, Ti, ri, δi, θ), whereθ is a vector of structural
parameters of the stock price dynamics under the risk-
neutral measure. The form depends on the underlying
parameters of the stochastic model. This can be in one
case a stochastic volatility model and in another case
a GARCH model. The parameters are then determined
by minimizing

n∑
i=1

{Ci − C(Si,Ki, Ti, ri, δi, θ)}2

or similar discrepancy measures. The success of a
method depends critically on the correctness of model
assumptions under the risk-neutral measure. Since
these assumptions are not on the physical measure,
they are hard to verify. This is why so many para-
metric models have been introduced. Their efforts can
be regarded as searching an appropriate parametric
form C(·; θ) to better fit the option data. Nonparamet-
ric methods in Section 4.1 provide a viable alternative
for this purpose. They can be combined with paramet-
ric approaches to improve the accuracy of pricing.

As an illustration, let us consider the options with
fixed (Si, Ti, ri, δi) so that their prices are only a func-
tion of K or equivalently a function of the moneyness
m = K/S,

C = exp(−rT )

∫ ∞
K

(x − K)f ∗(x) dx.
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(a) (b)

FIG. 1. (a) Scatterplot of the response variable computed based on option prices with consecutive strike price against the moneyness.
(b) The implied volatilities of the options during the period July 7–11, 2003.

DenotingD = exp(rT )C/S and lettingF̄ ∗(x) = 1 −
F ∗(x) = ∫ ∞

x f ∗(y) dy be the survival function, then by
integration by parts,

D = −S−1
∫ ∞
K

(x − K)dF̄ ∗(x) = S−1
∫ ∞
K

F̄ ∗(x) dx.

By a change of variable, we have

D =
∫ ∞
m

F̄ (u) du,

whereF(u) = F ∗(Su) is the state price distribution
in the normalized scale (the stock price is normalized
to $1). Let us write explicitlyD(m) to stress the depen-
dence of discounted option price on the moneynessm.
Then

D(m1) − D(m2)

m2 − m1
= (m2 − m1)

−1
∫ m2

m1

F̄ (u) du

= F̄

(
m2 + m1

2

)
+ O

(
(m2 − m1)

2).
Assume that the moneynessmi = Ki/St has already
been ordered forNt options with strike prices{Ki, i =
1, . . . ,Nt } traded at timet . Let xi = (mi + mi+1)/2 =
(Ki + Ki+1)/(2S) and yi be the observed value of
D(mi)−D(mi+1)

mi+1−mi
, namely,

yi = exp(rtTt ){Ci − Ci+1}/{Ki+1 − Ki},
i = 1, . . . ,Nt − 1,

wherert , Tt andSt are, respectively, the risk-free inter-
est rate, time to maturity and spot stock price at timet ,
andCi+1 andCi are the option prices at timet associ-
ated with strike pricesKi+1 andKi . Then, estimating

the state price distribution becomes a familiar nonpara-
metric regression problem,

yi ≈ F̄ (xi) + εi.

In the above equation, the dependence ont is sup-
pressed. Figure 1(a) shows the scatterplot of the pairs
(xi, yi) based on the closing call option prices (average
of bid-ask prices) of the Standard and Poor’s 500 index
with maturity ofTt = 75− t days on the week of July 7
to July 11, 2003 (t = 0, . . . ,4). The implied volatility
curve is given in Figure 1(b). It is not a constant and
provides stark evidence against the Black–Scholes for-
mula.

The waterfall shape of the regression curve is very
clear. The naive applications of nonparametric tech-
niques will incur large approximation biases resulting
in systematic pricing errors. One possible improve-
ment is to use a parametric method such as the ad-hoc
Black–Scholes model of Dumas, Fleming and Wha-
ley [25] to estimate the main shape of the regression
function and then use a nonparametric method to esti-
mate the difference. This kind of idea has been investi-
gated by Fan and Mancini [36]. When we aggregate the
data in the week of July 7 to July 11, 2003, the times
to maturityTt vary slightly. Semiparametric techniques
can be used to adjust for this effect. Similarly to many
practical problems, we always have side information
available that can be incorporated into modeling and
analysis of the data. This reinforces the claim that pric-
ing financial derivatives is fundamentally a statistical
problem where statisticians can play an important role.
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