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Semiparametric regression models are very useful for longitudinal data analysis. The complexity of semiparametric models and the structure
of longitudinal data pose new challenges to parametric inferences and model selection that frequently arise from longitudinal data analysis.
In this article, two new approaches are proposed for estimating the regression coefficients in a semiparametric model. The asymptotic
normality of the resulting estimators is established. An innovative class of variable selection procedures is proposed to select significant
variables in the semiparametric models. The proposed procedures are distinguished from others in that they simultaneously select significant
variables and estimate unknown parameters. Rates of convergence of the resulting estimators are established. With a proper choice of
regularization parameters and penalty functions, the proposed variable selection procedures are shown to perform as well as an oracle
estimator. A robust standard error formula is derived using a sandwich formula and is empirically tested. Local polynomial regression
techniques are used to estimate the baseline function in the semiparametric model.

KEY WORDS: Local polynomial regression; Partial linear model; Penalized least squares; Profile least squares; Smoothly clipped
absolute deviation.

1. INTRODUCTION

Longitudinal data are often highly unbalanced because the
data were collected at irregular and possibly subject-specific
time points. Due to their unbalanced nature, it is difficult to di-
rectly apply traditional multivariate regression techniques for
analyzing such data. Various parametric models and statisti-
cal tools have been developed for longitudinal data analysis
(see, e.g., Diggle, Heagerty, Liang, and Zeger 2002; Verbeke
and Molenberghs 2000). Parametric models are very useful for
analyzing longitudinal data and for providing a parsimonious
description of the relationship between the response variable
and its covariates. But they are used at the risk of introducing
modeling biases. To relax the assumptions on parametric forms,
various nonparametric models, including varying coefficient
models, functional linear models, and their extensions, have
been proposed for longitudinal data analysis (see, e.g., Hoover,
Rice, Wu, and Yang 1998; Wu, Chiang, and Hoover 1998; Fan
and Zhang 2000; Martinussen and Scheike 2001; Chiang, Rice,
and Wu 2001; Huang, Wu, and Zhou 2002; references therein).
Although parametric models may be restrictive for some ap-
plications, nonparametric models may be too flexible to make
concise conclusions in comparison with parsimonious paramet-
ric models. Semiparametric models are good compromises and
retain nice features of both the parametric and nonparametric
models. In this article, we study the semiparametric model

y(t) = α(t) + βT x(t) + ε(t), (1)

where y(t) is the response variable and x(t) is the d × 1 co-
variate vector at time t , α(t) is an unspecified baseline func-
tion of t , β is a vector of unknown regression coefficients, and
ε(t) is a mean-0 stochastic process. Model (1) does not re-
quire data analysts to parameterize the baseline function which
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may be difficult in practice. It keeps the flexibility of the non-
parametric models for the baseline function, while maintain-
ing the explanatory power of parametric models. Therefore,
model (1) and its variations have been receiving increasing at-
tention recently. Zeger and Diggle (1994) proposed an iterative
algorithm to estimate α(t) and β by the backfitting method.
Extending the idea of partial residual (Speckman 1988) for
partial linear models, Moyeed and Diggle (1994) proposed an
estimation procedure that improves Zeger and Diggle’s pro-
cedure. Lin and Carroll (2001b) considered a marginal model
for clustered data through specification of the mean and vari-
ance function and suggested using a kernel generalized estima-
tion equation (GEE) for their marginal model. Martinussen and
Scheike (1999, 2001), Cheng and Wei (2000), and Lin and Ying
(2001) proposed estimation procedures under the formation of
point processes. All aforementioned works focus on estima-
tion of the baseline function and the regression coefficients.
Issues related to model selection, including selection smooth-
ing parameter for the baseline function and variable selection
for x-variables, have not been addressed to date.

In this article, we first propose two simple, reliable, and ef-
fective estimation procedures for regression coefficients. The
difference-based estimator (DBE) of β provides a simple and
good initial estimate of β and does not rely on any smooth-
ing techniques. The estimator is then refined by the newly pro-
posed profile least squares estimator, which depends on a choice
of smoothing parameter. This can be selected relatively easily.
With a good initial estimate of β , such as the DBE, model (1)
becomes a univariate nonparametric regression problem. Thus
a wealth of bandwidth selection techniques for univariate non-
parametric regression can be used. The asymptotic normality of
the profile least squares is established and a consistent standard
error (SE) formula is derived using the sandwich formula. Our
methods are very effective in the class of working independent
estimators. Our study shows that our newly proposed estima-
tors, including the DBE, outperforms the proposal of Lin and
Ying. In this article, we propose an estimation procedure for
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the baseline function, α(t), in model (1) using local polynomial
regression.

Like parametric regression models, variable selection is im-
portant in the semiparametric model (1). The number of vari-
ables in (1) can easily be large when nonlinear terms and
interactions between covariates are introduced to reduce pos-
sible modeling biases. It is common in practice to include only
important variables in the model, to enhance predictability and
to give a parsimonious description between the response and
the covariates. Stepwise deletion and best-subset variable selec-
tion may be extended to semiparametric regression analysis, but
pose greater challenges for implementation, such as the choice
of smoothing parameter for each submodel. Furthermore, as an-
alyzed by Breiman (1996), they suffer from several drawbacks,
including a lack of stability. Although they are useful in prac-
tice, the stepwise deletion and the best-subset methods ignore
stochastic errors inherited in the stage of variable selection.
Hence their theoretical properties are somewhat hard to under-
stand, and the sampling properties of the resulting estimates are
difficult to establish, even in the classical linear model. Conse-
quently, the confidence intervals based on these methods may
not necessarily be valid.

Nonconcave penalized likelihood approaches to select sig-
nificant variables for parametric regression models have been
proposed (Fan and Li 2001). These are useful extensions of the
work by Tibshirani (1996). With a suitable choice of penalty
functions (Fan and Li 2001), the resulting estimates of the
nonconcave penalized likelihood approaches have an oracle
property. This encourages us to extend the methodology to
semiparametric regression analysis for longitudinal data. Semi-
parametric structure poses new challenges for the procedure.
Because the baseline function has not yet been parameterized,
we introduce a new quadratic loss between the observed data
and the theoretical model that involves only the unknown para-
meter β . This permits us to extend the penalized least squares
technique to the semiparametric model (1). The simultaneous
selection of variables and estimation of unknown parameters al-
lows us to construct a confidence interval for the coefficients. It
also enables us to establish rates of convergence for the result-
ing estimator. Further, we show that, with a proper choice of
regularization parameters and penalty functions, the proposed
procedure performs as well as an oracle estimator. The theoret-
ical result has also been empirically tested. In addition, with the
aid of local quadratic approximations to the penalty functions,
an iterative ridge regression algorithm is used to find the solu-
tion of the penalized least squares, and a robust standard error
formula for estimated coefficients of nonzero components is de-
rived using a sandwich formula. The SE formula is empirically
tested; it performs very well with moderate-sized samples.

The rest of the article is organized as follows. In Section 2
we propose two new estimation procedures for regression coef-
ficients in the parametric component and establish asymptotic
normality of one of the proposed estimators. In Section 3 we
propose a penalized quadratic loss procedure for selecting sig-
nificant variables in model (1). We investigate finite-sample per-
formance of the proposed procedures in Section 4. We further
illustrate the proposed methodology through an analysis of a
subset of data from the Multi-Center AIDS cohort study. Tech-
nical proofs are relegated to the Appendix.

2. NEW ESTIMATION PROCEDURES

Suppose that we have a sample of n subjects. For the ith sub-
ject, the response variable yi(t) and the covariate vector xi (t)

are collected at time points t = ti1, . . . , tiJi , where Ji is the total
number of observations on the ith subject. Consider the mar-
ginal model

E{y(tij )|xi (tij )} = α(tij ) + βT xi (tij ) (2)

for i = 1, . . . , n and j = 1, . . . , Ji . Denote

yi = (
yi(ti1), . . . , yi(tiJi )

)T
,

Xi = (
xi (ti1), . . . ,xi (tiJi )

)T
,

and

αi = (
α(ti1), . . . , α(tiJi )

)T
.

Thus a weighted least squares fit is obtained by minimizing the
weighted least squares function

1

2

n∑

i=1

(yi − αi − Xiβ)T Wi (yi − αi − Xiβ) (3)

with respect to α and β , where Wi is a Ji × Ji weight matrix,
called a working covariance matrix. The most efficient choice
of the working covariance matrix is the inverse of the true co-
variance matrix. Following Lin and Ying (2001), we focus on
the situation in which the weight matrix Wi is a diagonal matrix
(working independence) with diagonal elements possibly data-
dependent. Although this Wi may not be correct, misspecifica-
tion of the working matrix will not affect the consistency of the
resulting estimate, only the efficiency.

In what follows, we first introduce notation for counting
process and give a brief review of Lin and Ying’s method, and
then propose two new estimation procedures for regression co-
efficients: DBE and profile least squares estimator. We further
discuss the issue of bandwidth selection. The DBE serves as a
good initial estimator for bandwidth selection. The sampling
property of the profile least squares estimator will be estab-
lished. Finally, we present estimation of the baseline function
and its asymptotic properties in Section 2.6.

2.1 Counting Process Approaches

Martinussen and Scheike (1999) and Lin and Ying (2001)
introduced the counting process technique to the estimation
scheme. The time points where the observations on the ith sub-
ject are made are characterized by the counting process

Ni(t) ≡
Ji∑

j=1

I (tij ≤ t),

where I (·) is the indicator function. Both y(t) and time-varying
covariates x(t) were observed at the jump points of Ni(t). The
observation times are considered as realizations from an arbi-
trary counting process that is censored at the end of follow-up.
Specifically, Ni(t) = N∗

i (t ∧ ci), where N∗
i (t) is a counting

process in discrete or continuous time, ci is the follow-up or
censoring time, and a ∧b = min(a, b). The censoring time ci is
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allowed to depend on the vector of covariates xi (·) in an arbi-
trary manner. In this article we assume that the censoring mech-
anism is noninformative in the sense that

E{yi(t)|xi (t), ci ≥ t} = E{yi(t)|xi (t)}.
Using the foregoing counting process notation, the least squares
problem (3) can be written as

1

2

n∑

i=1

∫ +∞

0
w(t)

{
yi(t) − α(t) − βT xi (t)

}2
dNi(t) (4)

for a working independence Wi with diagonal elements w(tij ).
The essence of Lin and Ying’s approach is to first estimate the

function α(t) and then apply a substitution technique. Lin and
Ying (2001) considered two situations, depending on whether
the potential observation times are independent of the covari-
ates x(t). When the potential observation times depend on the
covariates, they assumed that

E
{
dN∗

i (t)|xi (t), yi(t), ci ≥ t
} = exp{γ ′xi (t)}d�(t),

i = 1, . . . , n, (5)

where γ is a vector of unknown parameter and �(·) is an ar-
bitrary nondecreasing function. When γ = 0, the observation
times are independent of the covariates. Denote

x̄(t,γ ) =
∑n

i=1 ξi(t) exp{γ T xi (t)}xi (t)∑n
i=1 ξi(t) exp{γ T xi (t)}

and

ȳ(t,γ ) =
∑n

i=1 ξi(t) exp{γ T xi (t)}yi(t)∑n
i=1 ξi(t) exp{γ T xi (t)} ,

where ξi(t) = I (ci ≥ t). Lin and Ying (2001) estimated the
baseline function by

α̂(t;β,γ ) = ȳ(t,γ ) − βT x̄(t,γ ). (6)

In practice, x̄(t,γ ) and ȳ(t,γ ) may not be evaluable because
x(t) and y(t) are not fully observed until the censoring time ci .
Lin and Ying (2001) replaced x(t) and y(t) by their correspond-
ing values at the nearest time when their values are observed.
Thus, substituting α(t) by α̂(t;β,γ ) in (4) yields

�(β,γ )

= 1

2

n∑

i=1

∫ +∞

0
w(t)

[{yi(t) − ȳ(t,γ )}

− βT {xi(t) − x̄(t,γ )}]2
dNi(t). (7)

The parameter γ can be consistently estimated by its moment
estimator γ̂ , the solution to

n∑

i=1

∫ +∞

0
{xi (t) − x̄(t,γ )}dNi(t) = 0.

Substituting γ̂ for γ in (7), we can derive an explicit form
for β̂. The standard error of the resulting estimate β̂ can be con-
structed via the corresponding sandwich formula, as proposed
by Lin and Ying (2001).

2.2 A Difference-Based Method

An advantage of Lin and Ying’s approach is its simplicity.
It does not involve any smoothing parameter. Lin and Ying
(2001) realized that efficiency can be gained by incorporating
smoothing techniques into the baseline estimation, and Lin and
Carroll (2001a) argued further that the efficiency gain can be in-
finite for certain specific cases, such as the partial linear model
(Speckman 1988; Severini and Staniswalis 1994; Carroll, Fan,
Gijbels, and Wand 1997).

The weighted least squares problem (7) requires that the
processes yi(t) and xi (t) be fully observable until the censor-
ing time ci . This is an unrealistic assumption. Lin and Ying
(2001) replaced the processes by their corresponding values at
the nearest time where their values are observed. Although this
helps practical implementations of the procedure, the method
introduces biases due to the nearest-neighbor approximations.
Further, because for each subject, the spaces among observa-
tion times {tij , j = 1, . . . , Ji} do not tend to 0 even when the
sample size tends to infinity, the approximation biases cannot
always be negligible in practice. The approach may cause some
problems in asymptotic theory.

To avoid the forementioned two problems, unbounded loss of
efficiency and nonnegligible biases due to approximations, and
to maintain the simplicity of Lin and Ying’s approach, we pro-
pose the following simple method from the partial linear model
(Fan and Huang 2001). As in Lin and Ying’s approach, we ig-
nore the within-subject correlation and use the working inde-
pendence covariance matrix, for simplicity of presentation and
implementation. Dropping the subscript j , the observed data

{(
tij ,x(tij )

T ,y(tij )
)
, j = 1, . . . , Ji, i = 1, . . . , n

}

can be expressed in the vector notation as

{
(ti,xT

i ,yi ), i = 1, . . . , n∗} with n∗ =
n∑

i=1

Ji,

ordered according to time {tij }. By the marginal model (2), it
follows that

yi = α(ti ) + βT xi + εi with E(εi |xi ) = 0. (8)

First, observe that

yi+1 − yi = α(ti+1) − α(ti ) + βT (xi+1 − xi) + ei,

i = 1, . . . , n∗ − 1, (9)

where stochastic error ei = εi+1 − εi . Under some mild con-
ditions, the spacing between ti and ti+1 is of order O(1/n).
Hence, the term α(ti+1) − α(ti ) in (9) is negligible. The least
squares approach can be used to estimate the parameter β . The
method can be further improved by fitting the linear model

yi+1 − yi = α0 + α1(ti+1 − ti) + βT (xi+1 − xi ) + ei ,

i = 1, . . . , n∗ − 1. (10)

In the presence of ties among observation times tij , this linear
approximation to α(ti+1) − α(ti ) still holds. The linear term
α0 + α1(ti+1 − ti) is introduced to correct for the finite-sample
bias when the gap of the spacing is wide. This can occur at the
tails of the distribution of the time {ti , i = 1, . . . , n∗}. Fitting
model (10) yields an estimate of β . For simplicity, we call this
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method the DBE. Our limited experience shows that the DBE
performs quite well; see the numerical comparison in Section 4.
The purpose of the DBE is to obtain a quick and reliable initial
estimate of β . The DBE is also used in the bandwidth selec-
tion of the profile least squares method. We do not pursue the
sampling property of the DBE any further herein.

2.3 Profile Least Squares Approach

For a given β , let y∗(t) ≡ y(t) − βT x(t). Then the model (1)
can be written as

y∗(t) = α(t) + ε(t). (11)

This is a nonparametric regression problem. Thus we can use a
nonparametric regression technique to estimate α(t). We focus
only on the local linear regression technique (Fan 1992). For t

in a neighborhood of t0, it follows by the Taylor expansion that

α(t) ≈ α(t0) + α′(t0)(t − t0) ≡ a0 + a1(t − t0).

Let K(·) be a kernel function and let h be a bandwidth. The
local linear fit is to find (â0, â1) minimizing

n∑

i=1

Ji∑

j=1

{
y∗
i (tij ) − a0 − a1(tij − t0)

}2
w(tij )Kh(tij − t0), (12)

where Kh(·) = h−1K(·/h). Here the weight function, w(tij ),
serves a similar purpose to that in (4). The local linear esti-
mate is simply α̂(t0;β) = â0. To improve the efficiency, Wang,
Carroll, and Lin (2004) recently proposed an innovative iter-
ated profile likelihood method for estimating β when the true
covariance function is given. The procedure is very computa-
tionally intensive. In contrast, implementing our procedure is
very simple.

Before we proceed further, we introduce some notation.
Let y = (yT

1 , . . . ,yT
n ), X = (XT

1 , . . . ,XT
n )T , and α = (αT

1 ,

. . . ,αT
n )T . Then model (8) can be written as

y = α + Xβ + ε, (13)

where ε is the vector of stochastic errors. It is well known that
the local linear fit is linear in y∗

i (tij ) (Fan 1992). Thus the esti-
mate of α(t) is linear in y−Xβ . Hence, the estimate for the vec-
tor α can be expressed as α̂ = S(y−Xβ). The matrix S, usually
called a smoothing matrix of the local linear smoother, depends
only on the observation times {tij , i = 1, . . . , n, j = 1, . . . , Ji}
and the amount of smoothing. Substituting α̂ into (13), we ob-
tain

(I − S)y = (I − S)Xβ + ε, (14)

where I is the identity matrix of order n∗. Applying weighted
least squares to the linear model (14), we obtain

β̂ = {
XT (I − S)T W(I − S)X

}−1XT (I − S)T W(I − S)y, (15)

where W is a diagonal matrix with the diagonal elements
as w(tij )s. The form of β̂ is similar to that of Speckman
(1988) for partial linear models with independent observations.
Speckman’s work is motivated by partial residuals; Moyeed and
Diggle (1994) extended the idea of partial residuals to longitu-
dinal data. Our approach is motivated from the principle of pro-
file likelihood, which is also applicable to the penalized least
squares in Section 3.1. However, the asymptotic normality of

Moyeed and Diggle’s estimator has not yet been shown. Fur-
thermore, our current statistical setting is different from theirs.
The estimator in (15) is called the profile least squares estima-
tor. The profile least squares estimator for the nonparametric
component is simply α(·; β̂).

From (15), we can derive an estimate for covariance matrix
of β̂ ,

cov
{
β̂|tij ,xi(tij )

} = D−1VD−1, (16)

where D = XT (I − S)T W(I − S)X and V = cov{XT ×
(I − S)T Wε}, which is linear in ε and can be easily estimated
by

V̂ = XT (I − S)T WCWT (I − S)X, (17)

where C = diag{ε̂1ε̂
T
1 , . . . , ε̂nε̂

T
n } and ε̂i is the residual vector

for the ith subject.

2.4 Bandwidth Selection

A few questions arise in the practical implementation of the
foregoing procedure. The first question is how to select the
bandwidth so that β can be estimated well. The variance in-
herited in the nonparametric estimate α̂(·;β) does not usually
cause a problem, because it will be averaged out in the para-
metric least squares fitting. Thus, a general strategy is to select a
small bandwidth so that the bias is negligible. In fact, the proce-
dure in (10), with even indices, can be considered as the profile
least squares estimate using the local average of two data points
as a nonparametric estimator,

α̂(t2i+1) = 2−1{(y2i+1 − βT x2i+1) + (y2i − βT x2i)
}
,

where the notation is the same as that in Section 2.2. This pro-
vides stark evidence that for a large range of the smoothing pa-
rameter, as long as it is small enough, the resulting profile least
squares estimate is root-n consistent. However, the efficiency
for estimating β can be affected by the choice of bandwidth.

Using (15) and noting that α̂ = S(y − Xβ̂), we see that α̂ is
linear in y. Data-driven methods, such as cross-validation (CV)
and generalized cross-validation (GCV), can be used to select
the bandwidth. But this will be computationally expensive. To
avoid expensive computations and possibly unstable numeri-
cal implementation, our practical choice of bandwidth is to use
the DBE to get an estimate β̂DBE. Substituting it into (11), we
have a univariate nonparametric regression problem. Let ĥ be
the bandwidth that is appropriate for this problem. This can
be obtained by a subjective choice via visualization, or by a
data-driven procedure such as a substitution method, or a CV
method. Use this ĥ for the profile least squares estimate. From
nonparametric theory, this optimal choice of bandwidth is of
order hn = bn−1/5. Theorem 1 endorses this choice.

The function α(·) cannot be estimated well at some tail of the
observation times because of sparsity. Including its estimates at
these regions in (14) can have an adverse effect on the estima-
tion of β . To avoid this, we can simply exclude 5%, say, of the
data at the tail in the analysis.
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2.5 Asymptotic Result

It is well known that asymptotic theory depends on the for-
mulation of how the data were collected. For longitudinal data,
there are many possible formulations. For example, in a series
of works by Wu and collaborators (see, e.g., Hoover et al. 1998;
Wu et al. 1998), it was assumed that time points {tij } are a
random sample from a certain population. Diggle et al. (2002)
used a different formulation. Lin and Ying (2001) assumed the
counting process Ni(·) to be a random sample from a certain
population. To be consistent with the simulation models used in
this article, we adopt the formulation of Lin and Ying (2001).
Other formulations can also be accommodated, with similar re-
sults obtained.

In the sequel, we use α0(·) and β0 to denote the true pa-
rameters. Because the estimators β̂ and α̂(·) are linear in the
response variable, we can directly demonstrate the asymptotic
normality by computing asymptotic counterparts for various
terms in (15). This will bury much good intuition in the detailed
asymptotic calculations. Instead, in the Appendix we provide
a much simpler idea for establishing the asymptotic normal-
ity of the estimators. When the weight function w(t) is data-
dependent, we assume that it tends to a deterministic function
in probability. Therefore, for simplicity, assume that w(t) is a
deterministic function of t .

Set

�̂n = n−1
n∑

i=1

∫ ∞

0
{xi (t) − Exi(t)}⊗2w(t) dNi(t),

where a⊗2 = aaT , and

ξ̂n = n−1
n∑

i=1

∫ ∞

0
{xi (t) − Exi (t)}εi(t)w(t) dNi(t).

Let

A = E

∫ ∞

0
{x(t) − Ex(t)}⊗2w(t) dN(t)

and

B = E

{∫ ∞

0
{x(t) − Ex(t)}ε(t)w(t) dN(t)

}⊗2

.

We then have the following result.

Theorem 1. Suppose that w(·) is continuous, the Ji ’s are
bounded, and the matrices A and B exist. If A is finite positive
definite and hn = bn−a for 1/8 < a < 1/2, then, as n → ∞,

√
n(β̂ − β0) = √

n�̂
−1
n ξ̂n + oP (1)

L−→ N(0,A−1BA−1),

where n is the number of subjects.

Theorem 1 gives the asymptotic representation for the profile
least squares estimator. This allows one to establish asymptotic
normality under a different formulation. The asymptotic nor-
mality easily follows from the asymptotic representation.

It is intuitively clear that the matrix D is a consistent esti-
mator of A and the matrix V̂ is a consistent estimator of B.
Thus it can be shown that D−1V̂D−1 is a consistent estimator
of A−1BA−1. This will also be demonstrated in our empirical
studies.

2.6 Estimation of Baseline Function

As discussed in Section 2.3, the baseline function α(·) can be
estimated by smoothing the partial residuals {(ti, yi −xT

i β̂), i =
1, . . . , n∗} using a local linear fit. This results in a nonparamet-
ric fit, α̂(·; β̂). Because the rate of convergence for β̂ is faster
than that for the nonparametric estimator, β̂ can either be a pro-
file least squares estimator or a DBE. The latter is much easier
to obtain, whereas the former may have better performance in
some situations. Because the errors in estimation β are negli-
gible in the nonparametric estimation of α, the value of β can
be considered as known. Using the fact that α̂ = S(y − Xβ̂) is
linear in y (ignoring the variability from β̂), the standard error
for α̂ can be estimated as SCST ; see (16) for a similar expres-
sion.

For a given shrinking neighborhood t0 ± hn around a given
time t0, the likelihood of getting two or more data points from
the same subject is negligible as hn → 0. Hence, the problem is
the same as the nonparametric regression for independent data.
Let λ(t) be the intensity function of the process N(t), where
λ(t) may depend on covariates x. For ease of presentation, we
suppress x in the notation of λ. Then it can be shown that, under
some mild regularity conditions,

√
nhn

{
α̂(t0; β̂) − α0(t0) − 1

2
α′′

0 (t0)

∫
u2K(u)duh2

n

}

L−→ N
(
0, σ 2(t0)

)
, (18)

where

σ 2(t0) = var{ε(t0)}
λ(t0)

∫
K(u)2 du.

We omit the details of the proof. The bias and variance expres-
sions are similar to those of Fan (1992). We outline the key
steps for deriving the bias and variance in Appendix A.2.

3. VARIABLE SELECTION

Model selection is an indispensable tool for statistical data
analysis. However, it has rarely been studied in the semipara-
metric context. In this section we introduce the penalized least
squares approach. The first step is to eliminate the nuisance
parameters, the nonparametric function α(·). Let �(β) be the
weighted least squares that we would like to minimize. It can
be (7) or the weighted quadratic loss induced by model (14),
and reflects a semiparametric method that we would like to use.

3.1 Penalized Weighted Least Squares

Suppose that xi consists of d variables, some of which are
not statistically significant. A penalized least squares takes the
form

L(β) ≡ �(β) + n

d∑

j=1

λjpj (|βj |), (19)

where the pj (·)’s are penalty functions and the λj ’s are tun-
ing parameters, which control the model complexity and can be
selected by some data-driven methods, such as CV and GCV.
By minimizing (19), with special construction of the penalty
function, some coefficients are estimated as 0, which deletes the



Fan and Li: Semiparametric Modeling in Longitudinal Data Analysis 715

corresponding variables, whereas others are not. Thus the pro-
cedure selects variables and estimates coefficients simultane-
ously. The resulting estimate is called a penalized least squares
estimate.

The penalized least squares (19) can be obtained from the
penalized quadratic loss of the semiparametric model (2), us-
ing the profiling technique. For example, starting from the
quadratic loss (3) and adding the penalty term n

∑d
j=1 λj ×

pj (|βj |), we obtain the penalized quadratic loss

1

2

n∑

i=1

(yi −αi −Xiβ)T Wi (yi −αi −Xiβ)+n

d∑

j=1

λjpj (|βj |).

After eliminating the nuisance function α(·) using the profil-
ing technique in Section 2.3 [see (14)], we obtain the penalized
least squares

1

2
(y − Xβ)T (I − S)T W(I − S)(y − Xβ) + n

d∑

j=1

λjpj (|βj |).

The penalty functions pj (·) and the regularization parame-
ters λj are not necessarily the same for all j . This allows us
to incorporate prior information for the unknown coefficients
by using different penalty functions or taking different values
of λj . For instance, we may wish to keep important predictors
in linear regression models, and hence do not want to penalize
their coefficients. For ease of presentation, we denote λjpj (·)
by pλj (·).

Many penalty functions, such as the family of Lq penalty
(q ≥ 0), have been used for penalized least squares and pe-
nalized likelihood in various parametric models. For instance,
q = 0 corresponds to the entropy penalty, L1 penalty results
in the LASSO proposed by Tibshirani (1996), and bridge re-
gression (Frank and Friedman 1993) corresponds to 0 < q < 1.
Antoniadis and Fan (2001) and Fan and Li (2001) have pro-
vided various insights into how a penalty function should be
chosen. They advocated that a good penalty function should
yield an estimator with the following three properties: unbi-
asedness for a large true coefficient, to avoid unnecessary es-
timation bias; sparsity (estimating a small coefficient as 0), to
reduce model complexity; and continuity, to avoid unnecessary
variation in model prediction. Necessary conditions were given
by Antoniadis and Fan (2001). None of the Lq penalties pro-
duces estimates that simultaneously satisfy the foregoing three
properties. A simple penalty function, which results in an esti-
mator with the three desired properties, is the smoothly clipped
absolute deviation (SCAD) penalty. Its first derivative is defined
by

p′
λ(β) = λ

{
I (β ≤ λ) + (aλ − β)+

(a − 1)λ
I (β > λ)

}

for some a > 2 and β > 0,

and pλ(0) = 0. For simplicity of presentation, we use the term
SCAD to denote all procedures using the SCAD penalty. The
SCAD involves two unknown parameters, λ and a. Fan and Li
(2001) suggested using a = 3.7 from a Bayesian standpoint;
hence we use this value throughout the rest of the article.

3.2 Iterated Ridge Regression

Finding the solution of the penalized least squares of (19)
is challenging, because the penalty function pλj (|βj |), such as
the Lq penalty (0 < q ≤ 1) or the SCAD penalty, is irregu-
lar at the origin and may not have a second derivative at some
points. Following Fan and Li (2001), we locally approximate
the penalty functions by quadratic functions as follows. Given
an initial value β(0) that is close to the minimizer of (19), when
|β(0)

j | ≥ η (a prescribed value), the penalty pλj (|βj |) can be lo-
cally approximated by the quadratic function as
[
pλj (|βj |)

]′ = p′
λj

(|βj |) sgn(βj ) ≈ {
p′

λj

(∣∣β(0)
j

∣
∣)/

∣
∣β(0)

j

∣
∣}βj .

With the local quadratic approximation, the Newton–Raphson
algorithm can be implemented directly for minimizing L(β),
(19). Furthermore, the Newton–Raphson algorithm is indeed an
iterative ridge regression algorithm. For instance, we update the
solution of the penalized profile least squares by

β(1) = [
XT (I − S)T W(I − S)X + n�λ

(
β(0)

)]−1

× XT (I − S)T W(I − S)y,

where

�λ(β0) = diag
{
p′

λ1

(∣∣β(0)
1

∣
∣)/

∣
∣β(0)

1

∣
∣, . . . , p′

λd

(∣∣β(0)
d

∣
∣)/

∣
∣β(0)

d

∣
∣}.

When there is a component |β(0)
j | < η, it is set to 0. In the im-

plementation, we take the unpenalized profile least squares es-
timator as an initial value and iteratively update β(1).

Similar to the penalized profile least squares method, the
foregoing thresholding-shrinkage idea can also be applied to
Lin and Ying’s estimator. The penalized least squares estimator
derived by using Lin and Ying’s approach can be obtained by
iteratively updating

β(1) =
[

1

n

n∑

i=1

∫ +∞

0
w(t){xi (t) − x̄(t, γ̂ )}⊗2 dNi(t)

+ �λ

(
β(0)

)
]−1

×
[

1

n

n∑

i=1

∫ +∞

0
w(t){xi (t) − x̄(t; γ̂ )}

× {yi(t) − ȳ(t; γ̂ )}dNi(t)

]

.

When the algorithm converges, the estimator satisfies the
condition

∂�(β̂)

∂βj

+ np′
λj

(|β̂j |
)

sgn(β̂j ) = 0, (20)

the penalized weighted least squares equation for nonzero com-
ponents.

With the local quadratic approximation, the iterative ridge
regression is similar to the Newton–Raphson algorithm. Thus
a robust empirical SE formula for the estimated coefficients
can be derived from the iterative ridge regression. In other
words, the covariance matrix of β̂ can be consistently estimated
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by n−1{D̂ + �λ(β̂)}−1V̂{D̂ + �λ(β̂)}−1 for the nonzero com-
ponent, where

D̂ = 1

n
XT (I − S)T W(I − S)X

and

V̂ = 1

n
ĉov

{
XT (I − S)T W(I − S)y

}

for the penalized profile least squares estimator; see (17) for an
explicit form of V̂. For the penalized least squares estimator de-
rived by using Lin and Ying’s approach, D̂ and V̂ are as defined
in their article.

3.3 Choice of Regularization Parameters

To implement the methods described in the previous sections,
it is desirable to have an automatic data-driven method for es-
timating the tuning parameters λ1, . . . , λd . For linear estima-
tors (in terms of response variable) in nonparametric regression,
there is much literature on choosing a smoothing parameter.
The resulting estimators of the penalized weighted least squares
are not linear, but, with the aid of local quadratic approxima-
tion, they are approximately linear. Therefore various smooth-
ing parameter selectors, such as CV or GCV, can be used. Here
we estimate λ = (λ1, . . . , λd) by minimizing an approximate
GCV score. Recall that the iterative ridge regression algorithm
is used to obtain the penalized weighted least squares estima-
tor. By some straightforward calculation, the effective number
of parameters in the last step of the iterative ridge regression
algorithm is

e(λ) = tr
[{D̃ + �λ(β̂)}−1D̃

]
,

where D̃ is a submatrix of D̂, defined in Section 3.2, corre-
sponding to the nonzero components of β̂ . Thus the GCV sta-
tistic is defined by

GCV(λ) = RSS

n{1 − e(λ)/n}2 ,

where RSS = 2�(β̂) is the residual sum of squares correspond-
ing to β̂ , given λ. We select λ̂ = arg minλ{GCV(λ)}.

To find an optimal λ, we need to minimize the GCV over
a d-dimensional space. This is an unduly onerous task. Intu-
itively, it is expected that the magnitude of λj should be pro-
portional to the standard error of the weighted least squares
estimate of βj . Therefore, we may set λ = λ se(β̂LS) in prac-

tice, where se(β̂LS) denotes the SE of the unpenalized weighted
least squares estimate. Thus we minimize the GCV score over
the one-dimensional space, which will save a great deal of cost.
We implement this in our simulation.

3.4 Sampling Properties

We now study the asymptotic properties of the resulting esti-
mate of the penalized least squares (19). Express L(β) as

L(β) = 1

2

n∑

i=1

Ji∑

j=1

{
yi(t) − α̂(tij ;β) − xT (tij )β

}2
w(tij )

+ n

d∑

j=1

pλjn(|βj |). (21)

Expression (21) provides a unified form of penalized least
squares for Lin and Ying’s approach and the profile least
squares approach. Specifically, for Lin and Ying’s approach,
α̂(t;β) = ȳ(t; γ̂ ) − βT x̄(t, γ̂ ), whereas for the profile least
squares, α̂(·;β) = S(y − βT X).

First we establish the convergence rate of the penalized pro-
file least squares estimator. Assume that all penalty functions
pλjn(·) are negative and nondecreasing with pλjn(0) = 0. Let
β0 denote the true value of β , and let

an = max
j

{∣∣p′
λjn

(|βj0|)
∣∣ :βj0 �= 0

}

(22)and

bn = max
j

{∣∣p′′
λjn

(|βj0|)
∣
∣ :βj0 �= 0

}
.

Theorem 2. Under the conditions of Theorem 1, if both
an and bn tend to 0 as n → ∞, then with probability tend-
ing to 1, there exists a local minimizer β̂ of L(β) such that
‖β̂ − β0‖ = OP (n−1/2 + an).

Theorem 2 demonstrates how the rate of convergence of the
penalized weighted least squares estimator β̂ depends on λj . To
achieve the root n convergence rate, we have to take λj small
enough so that an = OP (n−1/2). Next we establish the oracle
property for the penalized profile least squares estimator. Let
βS consist of all nonzero components of β0, and let βN consist
of all zero components of β0. Let

xT (t)β0 = xT
S (t)βS + xT

N(t)βN = xT
S (t)βS,

where xS(t) and xN(t) are two subsets of covariates. The first
part in the right side of the foregoing equation is the significant
part in the model, whereas the second part is not significant.
Thus, for ease of presentation, we assume, without loss of gen-
erality, that all of the first s components of β0 are not equal
to 0, and all other components do equal 0, that is, β10 = βS and
β20 = βN . Denote

� = diag
{
p′′

λ1n
(|β10|), . . . , p′′

λsn
(|βs0|)

}
,

and

b = (
p′

λ1n
(|β10|) sgn(β10), . . . , p

′
λsn

(|βs0|) sgn(βs0)
)T

.

Further, let β̂1 consist of the first s components of β̂ and let
β̂2 consist of the last d − s components of β̂ .

Theorem 3 (Oracle property). Assume that for j = 1, . . . , d ,
λjn → 0,

√
nλjn → ∞, and the penalty function pλjn(|βj |) sat-

isfies that

lim inf
n→∞ lim inf

βj→0+
p′

λjn
(βj )

λjn

> 0. (23)

If an = OP (n−1/2), then under the conditions of Theorem 2,
with probability tending to 1, the root n consistent local mini-
mizer β̂ = (β̂T

1 , β̂T
2 )T in Theorem 2 must satisfy the following:

a. (sparsity) β̂2 = 0
b. (asymptotic normality)
√

n{A11 + �}[β̂1 − β10 + {A11 + �}−1b
] → Ns (0,B11)

in distribution, where A11 and B11 consist of the first s rows
and columns of A and B defined in Theorem 1.
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From Theorem 3, if λjn → 0,
√

nλjn → ∞ for j = 1, . . . , d ,
an = OP (n−1/2), and condition (23) is satisfied, then the re-
sulting estimate has an oracle property. This implies that the
resulting procedure correctly specifies the true model and es-
timates the unknown regression coefficients as efficiently as
if we knew the submodel. If all of the penalty functions are
SCAD, then an = 0 when n is sufficiently large, and hence the
resulting estimate has the oracle property. However, this is not
true for the L1 penalty, because the condition an = maxj λjn =
Op(n−1/2) and the conditions

√
nλjn → ∞ cannot be satisfied

simultaneously.

4. NUMERICAL STUDIES

We now assess the finite-sample performance of the newly
proposed procedures via Monte Carlo simulations.

4.1 Simulation Models

We generated simulation data from the semiparametric
model

y(t) = α(t) + βT x(t) + ε(t),

where α(t) = τ
√

t/τ or τ sin(2πt/τ), β = (3,1.5,0,0,2,0,

0,0)T and ε(t) is a Gaussian process with mean 0 and covari-
ance function E{ε(s)ε(t)} = exp(−2|t − s|). We simulated the
covariate vector x from a normal distribution with mean 0 and
cov(xi, xj ) = .5|i−j |. Following Lin and Ying (2001), we set
w(t) ≡ 1 for simplicity. The mechanism for generating simula-
tion data is as follows:

• Case I. Observation times are independent of covariates.
We adopt the scheme for generating observation times of
Lin and Ying (2001). We generated the counting process
N∗(t)(t > 0) for the observation times from a random-
effects Poisson process with intensity rate η, where η is an
independent gamma variable with mean 1 and variance .5.
Thus the observation times within the same subject are
positively correlated. We set N∗(0) ≡ 1 so that each sub-
ject has at least one observation. The censoring time was
an independent uniform (0, τ ) variable, where τ equals ei-
ther 4 or 20, which yields, on average, 3 and 11 observa-
tions per subject.

• Case II. Observation times depend on covariates. We gen-
erated the counting process N∗(t) for the observation
times from a random-effects Poisson process with inten-
sity rate η exp(.5x1), where η is the same as that in case I.
Further, the censoring time and the covariate vector are
also the same as those in case I.

• Case III. Observation times are fixed. The censoring time
is the same as that in case I, but the observation times are
set to be integers, 0,1,2, . . . . The censoring time was an
independent uniform (0, τ ) variable, where τ equals either
10 or 20, which yields, on average, 6 and 11 observations
per subject.

• Case IV. Observation times are scheduled but can be ran-
domly missed. Each individual has a set of “scheduled”
time points, {0,1,3, . . . ,29}, and each scheduled time (ex-
cept time 0) has a probability of being skipped of 60%.
The actual observation time is a random perturbation of
the scheduled time; a uniform distribution over a [−1,1]

random deviate is added to the nonskipped scheduled time
to obtain the different observed time point tij per subject.
This scheme for generating observation times is similar to
that of Huang et al. (2002). The baseline function α(t) is
taken to be either 30

√
t/30 or 30 sin(2πt/30), and the co-

variate vector is the same as that in case I.

4.2 Performance of Semiparametric Estimators

4.2.1 Performance of β̂ . We assess the performance of
an underlying estimator β̂ via its mean squares error (MSE),
E‖β̂ − β‖2. To evaluate the MSE, we conducted K replicates
of Monte Carlo simulations; the MSE is estimated by

1

K

K∑

k=1

‖β̂k − β‖2.

In our simulations, K = 400. The MSEs of the DBE and
the profile least squares estimator are compared with Lin and
Ying’s (LY for short) estimator. The relative MSE (RMSE), the
ratio of the MSE of an underlying estimator to that of the LY es-
timator, is depicted in Table 1. The profile least squares estima-
tor improves the LY estimator by reducing interpolation bias
and efficiently estimating the baseline function. In addition, the
profile least squares estimator improves the DBE by reducing
variance. Thus Table 1 shows that the profile least squares es-
timator performs best in all four cases. For cases I, II, and IV,
there are many distinct sampling time points, and (10) approx-
imately holds. Therefore, for such cases, the DBE also out-
performs the LY estimator. For case III, the spacing between
sampling time points is wide, and thus (10) does not hold. Thus
the DBE does not improve the performance of the LY estima-
tor. From Table 1, the relative performance of the LY method
gets poorer as τ increases. This is due to the bias of the nearest-
neighbor approximations used in the LY method.

Now we test the accuracy of the SE formula (16) for the pro-
file least squares estimator. The standard deviation (SD) of the
400 estimated coefficients from the 400 simulations can be con-
sidered the true SE except for Monte Carlo error. (The relative
size of Monte Carlo error is approximately of size

√
1/800.)

Table 1. Ratios of MSEs

n = 50 n = 75

α(t) τ DBE Profile LSE DBE Profile LSE

Case I
τ
√

t/τ 4 .8481 .6592 .8407 .6661
τ
√

t/τ 20 .3450 .2962 .3963 .3246
τsin(2π t/τ ) 4 .6632 .5065 .6756 .5377
τsin(2π t/τ ) 20 .2798 .2324 .3001 .2359

Case II
τ
√

t/τ 4 .7868 .6500 .7209 .6004
τ
√

t/τ 20 .2518 .2138 .2438 .2015
τsin(2π t/τ ) 4 .5627 .4641 .5409 .4502
τsin(2π t/τ ) 20 .1705 .1395 .1623 .1280

Case III
τ
√

t/τ 10 1.0785 .7040 1.1299 .7348
τ
√

t/τ 20 .7748 .5006 .8316 .5424
τsin(2π t/τ ) 10 1.2188 .6818 1.2560 .7347
τsin(2π t/τ ) 20 .9868 .5007 1.0721 .5973

Case IV
30

√
t/30 .9666 .6842 1.0501 .7086

30sin(2π t/30) .1434 .0953 .1360 .0869
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Table 2. SDs, SEs, and 95% CP of Profile LSE for Case I
With α(t) = τ

√
t/τ

β1 β2

(n,τ ) SD SE(SD(SE)) 95% CP SD SE(SD(SE)) 95% CP

(50, 4) .151 .138(.033) .923 .168 .158(.037) .918
(75, 4) .120 .115(.021) .930 .126 .127(.024) .955
(50, 20) .085 .082(.018) .943 .100 .091(.021) .945
(75, 20) .065 .068(.013) .953 .072 .075(.014) .960

The mean and SD of the 400 estimated SEs gauge the over-
all performance of the SE formula. The coverage probability
(CP) indicates the how accuracy of the confidence interval. Ta-
ble 2 presents only the simulation results of β̂1 and β̂2 for case I
with the baseline τ

√
t/τ . The results are similar for other cases.

From Table 2, the difference between the true SE and the mean
of the estimated SEs is less than half of a standard deviation of
the estimated SEs. This implies that the proposed SE formula
is accurate. The CP of 95% confidence interval of β̂j is also
presented.

4.2.2 Performance of α̂(t). The performance of α̂(·) is as-
sessed by the square root of average squared errors (RASE),

RASE2 = n−1
grid

ngrid∑

k=1

{α̂(tk) − α(tk)}2,

where {tk, k = 1, . . . , ngrid} are the grid points at which the
baseline function α(·) is estimated. In our simulation, we use
the Epanechnikov kernel K(t) = .75(1 − t2)+ and ngrid = 200.

Local linear regression is used to estimate the baseline func-
tion. In our simulation, we take a sample n = 50, τ = 20, and
set the bandwidth h equal to h0 × (interquartile range of ob-
served times tij ). As discussed in Section 2.6, the regression
coefficient β can be estimated using either the DBE method
or the profile least squares approach. So we also compare the
performance of these two approaches. The RASEs for 3 differ-
ent h0’s based on 400 replicates are listed in Table 3, as are
the biases and the SDs of the 400 estimated baseline functions
at t = 5. The results are very typical; the two approaches have
almost the same performance. In addition, Table 3 also shows
that the biases are small and that as the bandwidth increases,
the biases increase but the SDs decrease. Figure 1 depicts the
typical estimated curves of α(t).

Similar to (16), the estimated SE formula for the resulting
estimator α̂(t) is given by SCST . To test the accuracy of the SE
formula, we computed the average of the 400 estimated SEs and
its standard deviation, as listed in Table 3. The results indicate
that the SE formula performs very well.

Table 3. Summary of Simulation Results for α̂(t) [α(t) = τ
√

t/τ ]

RASE
Mean(SD)

t = 5

h0 Bias SD SE(SD(SE))

DBE β̂
.25 .3195(.0665) −.0284 .1361 .1242(.0222)
.35 .3519(.0630) −.0661 .1219 .1077(.0174)
.45 .3889(.0605) −.1207 .1134 .1007(.0142)

PLS β̂
.25 .3195(.0656) −.0310 .1349 .1233(.0220)
.35 .3525(.0618) −.0686 .1206 .1067(.0172)
.45 .3900(.0592) −.1232 .1118 .0996(.0141)

(a) (b)

(c) (d)

Figure 1. Typical Estimated Baseline Curves With n = 50 and τ = 20.
The solid lines represent the estimated curves of α(t); dotted lines,
the true α(t). (a) and (c) Estimated baseline function α(t) = τ

√
t/τ us-

ing bandwidth .35 × IQR for cases I and II, when n = 50 and τ = 20.
(b) and (d) Estimated baseline function α(t) = τsin(t/τ ) using bandwidth
.2 × IQR for cases I and II.

4.3 Finite-Sample Performance of Variable
Selection Procedures

4.3.1 Prediction Error. The prediction error is defined as
the average error in the prediction of the dependent vari-
able given the independent variables for future cases that are
not used in the construction of a prediction equation. Let
{x̃(t), ỹ(t), Ñ(t)} be a new observation from the underlying
model; then the prediction error for model (1) is

PE(α̂, β̂) = E

∫ ∞

0

{
ỹ(t) − α̂(t) − β̂T x̃(t)

}2
dÑ(t),

where the expectation is a conditional expectation given the
data used in constructing the prediction procedure. The predic-
tion error can be decomposed as

PE(α̂, β̂) = E

∫ ∞

0
σ 2

ε (t) exp
{
γ T x̃i (t)

}
ξ(t) d�(t)

+ E

∫ ∞

0

{
α̂(t) − α0(t) − (β̂ − β0)

T x̃(t)
}2

dÑ(t),

where σ 2
ε (t) = var{ε(t)}. The first component is the inherent

prediction error due to noise; the second is due to lack of fit with
an underlying model. This component, termed model error, can
be further decomposed as

E

∫ ∞

0
{α̂(t) − α0(t)}2 dÑ(t)

+ E

∫ ∞

0

{
(β̂ − β0)

T x̃(t)
}2

dÑ(t)

+ 2E

∫ ∞

0
{α̂(t) − α0(t)}

{
(β̂ − β0)

T x̃(t)
}
dÑ(t).

The first component is the inherent model error due to lack
of fit of the nonparametric component α0(t), the second com-
ponent is due to lack of fit of the parametric component, and the
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third component is the covariance between the first two compo-
nents, which equals

2
∫ ∞

0
{α̂(t) − α0(t)}(β̂ − β0)

T

× E
[
x̃(t) exp

{
γ T x̃(t)

}]
ξ(t) d�(t).

When γ = 0 (the observation times are independent of covari-
ates) and E{x̃(t)} = 0, the cross-product term is equal to 0.
Therefore, the second term in the decomposition of model error
plays a role in assessing the goodness of fit of the paramet-
ric component. We call the second term the generalized mean
squared error (GMSE) and use it to compare the performance
of our proposed variable selection procedure with others. The
GMSE can be further simplified as

GMSE = (β̂ − β0)
T

{∫ ∞

0
Ex̃(t)⊗2 exp

{
γ T x̃(t)

}
ξ(t) d�(t)

}

× (β̂ − β0).

When x(t) is randomly generated from a normal distribution,
the GMSE has an analytic form, as shown by some straightfor-
ward calculations.

4.3.2 Comparison. We compare the performance of our
procedure with existing procedures in terms of reduction of
model complexity and relative GMSE (RGMSE), the ratio
of GMSE of an underlying procedure to that of the profile
least squares estimator without penalization. Table 4 depicts
simulation results of some representative cases for the penal-
ized profile least squares; results for other cases are similar.
The means and table summarizes the SDs of RGMSEs over
400 simulated datasets and also reports the average number of
zero coefficients. The column labeled “C” presents the average,
restricted only to the true zero coefficients, whereas the column
labeled “I” depicts the average of coefficients erroneously set
to 0. From Table 4, it can be seen that for both kinds of penal-
ized least squares, the penalized least squares with the SCAD
and L1 penalties effectively reduce model complexity, and that
the SCAD performs as well as the oracle estimator and outper-
forms the penalized quadratic loss with the L1 penalty. We have

Table 5. Standard Deviations, Standard Errors, and 95% Coverage
Probability of β̂

β1 β2

SD SE(SD(SE)) 95% CP SD SE(SD(SE)) 95% CP

L1 .082 .080(.018) .935 .083 .078(.018) .918
SCAD .081 .081(.018) .940 .082 .079(.019) .948
Oracle .081 .081(.018) .942 .081 .079(.019) .950

also conducted simulations to assess the performance of the
penalized least squares constructed, based on the LY method.
From our simulations, the relative performance of the penal-
ized least squares estimate with the L1 penalty and the SCAD
penalty is similar to those given in Table 4. The ratio of the
GMSE of the profile penalized least squares estimate to that
corresponding to the LY estimator is similar to those shown in
Table 1.

Next we test the accuracy of the proposed standard error for-
mula for the penalized least squares estimator. Similar to Ta-
ble 2, Table 5 summarizes the simulation results for case I with
n = 50, α(t) = τ

√
t/τ , and τ = 20. Results for other cases are

similar. From Table 5, we see that the proposed standard error
formula works very well.

4.4 An Application

We now illustrate the proposed procedures in Sections
2 and 3 via an analysis of a subset of data from the Multi-
Center AIDS Cohort study. The dataset contains the human
immunodeficiency virus (HIV) status of 283 homosexual men
who were infected with HIV during the follow-up period be-
tween 1984 and 1991. Details of the study design, methods, and
medical implications have been given by Kaslow et al. (1987).
During this study, all participants were scheduled to have their
measurements taken during semiannual visits, but, because
many participants missed some of their scheduled visits and
the HIV infections occurred randomly during the study, there
are unequal numbers of repeated measurements and different
measurement times per individual. Fan and Zhang (2000) and
Huang et al. (2002) analyzed the same dataset using varying-
coefficient models. Their analysis aimed to describe the trend

Table 4. Comparison of Variable Selection Procedures

α(t) = τ
√

t/τ α(t) = τsin(2π t/τ )

RGMSE
Mean(SD)

Zero coefficient RGMSE
Mean(SD)

Zero coefficient

Method C I C I

Case I: n = 50, τ = 20
L1 .3936(.2966) 4.9950 0 .3923(.2863) 4.9900 0
SCAD .3549(.2453) 4.9950 0 .3533(.2453) 4.9925 0
Oracle .3502(.2412) 5.0000 0 .3480(.2425) 5.0000 0

Case II: n = 75, τ = 4
L1 .5772(.2614) 4.3325 0 .5733(.2648) 4.3500 0
SCAD .5127(.2101) 4.4275 0 .5115(.2107) 4.4250 0
Oracle .3939(.2326) 5.0000 0 .3915(.2318) 5.0000 0

Case III: n = 50, τ = 20
L1 .3975(.2843) 4.9950 0 .4002(.2860) 4.9975 0
SCAD .3450(.2278) 4.9975 0 .3460(.2279) 4.9975 0
Oracle .3438(.2269) 5.0000 0 .3450(.2271) 5.0000 0

Case IV: n = 50, τ = 30
L1 .4091(.2716) 4.9975 0 .4074(.2717) 5.0000 0
SCAD .3554(.2210) 5.0000 0 .3546(.2205) 5.0000 0
Oracle .3549(.2200) 5.0000 0 .3542(.2199) 5.0000 0
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of the mean CD4 percentage depletion over time and to eval-
uate the effects of cigarette smoking, pre-HIV infection CD4
percentage, and age at infection on the mean CD4 percentage
after the infection. Therefore, they took the CD4 cell percent-
age of a subject at distinct time points after HIV infection and
considered the three covariates: Smoking, Age, and PreCD4.
They fit the data by a varying-coefficient model,

y(t) = β0(t) + β1(t)Smoking

+ β2(t)Age(t) + β3(t)PreCD4 + ε(t). (24)

The results of the hypothesis testing of Huang et al. (2002) in-
dicate that at significance level .05, only the baseline function
varies over time, and PreCD4 has a constant effect over time,
β3(t) = β3. Neither Smoking nor Age has a significant impact
on mean CD4 percentage. This motivates us to use model (1) to
fit this dataset and to use variable selection techniques to select
a parsimonious model.

In our analysis, we took x1 to be the smoking status: (1 for
a smoker and 0 for a nonsmoker), x2(t) to be the standard-
ized variable for age, and x3 to be the standardized variable for
PreCD4. It is of interest to examine whether there are any inter-
action effects and quadratic effects from these covariates. So we
introduce the interactions of the three covariates and quadratic
terms of x2 and x3 to the initial full model, and consider the
following semiparametric model:

y(t) = α(t) + β1x1 + β2x2(t) + β3x3 + β4x
2
2(t) + β5x

2
3

+ β6x1x2(t) + β7x1x3 + β8x2(t)x3 + ε(t). (25)

We computed the DBE estimate for β to obtain the partial
residuals for α(·), and then selected the bandwidth h = .5912
by the Ruppert, Sheather, and Wand (1995) plug-in method. Af-
ter that, we applied the profile least squares method with weight
w(t) ≡ 1 to this model. The resulting estimates and standard
errors are given in Table 6. Figure 2 depicts the estimated base-
line function α(t) using the bandwidth h = .5912. It also plots
the estimated baseline function plus/minus two standard errors,
which can serve as a pointwise confidence interval ignoring the
bias of the nonparametric fit.

We further applied the penalized profile least squares ap-
proach to select significant variables. The tuning parameter
λ = .7213 for both the SCAD and the L1 penalties. The results
are also shown in Table 6. The penalized profile least squares
with the SCAD penalty and the L1 penalty yield almost the
same results, except that the penalized profile least squares with
the L1 penalty shrinks the large coefficients more and results
in a small SE. The results in Table 6 are in line with those of

Table 6. Estimated Coefficients for Model (25)

Profile LS L1 SCAD
Variable β̂(SE(β̂)) β̂(SE(β̂)) β̂(SE(β̂))

Smoking .5333(1.0972) 0(0) 0(0)
Age −.1010(.9167) 0(0) 0(0)
PreCD4 2.8252(.8244) 3.0932(.5500) 3.1993(.5699)
Age2 .1171(.4558) 0(0) 0(0)
PreCD42 −.0333(.3269) 0(0) 0(0)
Smoking*Age −1.7084(1.1192) −.9684(.4904) −1.0581(.5221)
Smoking*PreCD4 1.3277(1.3125) 0(0) 0(0)
Age*PreCD4 −.1360(.5413) 0(0) 0(0)

Figure 2. Estimated Baseline Function. The solid line represents the
estimated baseline function; the dashed lines, the estimated baseline
function plus/minus twice standard errors. The dots are the residual, on
parametric part r(t) = y(t) − β̂Tx(t).

Huang et al. (2002), but indicate possible interactions between
Smoking and Age; elder smokers tend to have lower average
CD4 counts.

5. CONCLUDING REMARKS

In this article we have proposed two new approaches for es-
timating the regression coefficients in a semiparametric model.
The asymptotic normality is established. We have further pro-
posed an innovative class of variable selection procedures for
the semiparametric model. With a proper choice of regulariza-
tion parameters and penalty functions, we have demonstrated
that the proposed variable selection procedures perform as well
as an oracle estimator. Our method for the nonparametric com-
ponent is distinguished from those of Martinussen and Scheike
(1999, 2001) and Lin and Ying (2001), which focus on cumu-
latives of the nonparametric terms of the model.

As a referee pointed out, a very important model is the semi-
parametric varying coefficient model

y(t) = x1(t)β(t) + x2(t)γ + ε(t), (26)

which has been studied by Martinussen and Scheike (2001) us-
ing a point process approach. Our profile least squares approach
can be applied to model (26). Furthermore, our variable selec-
tion procedure can readily be extended to model (26). It is of
interest to test whether or not the effect β(t) is really time-
dependent. One may deal with this issue using the strategy pro-
posed by Martinussen and Scheike (1999, 2001), Fan, Zhang,
and Zhang (2001), and Lin and Ying (2001).

Under certain regularity conditions, the profile likelihood ap-
proach provides a semiparametric efficient estimator for inde-
pendent observations. This is also true for our estimator; under
the setting of independent and identically distributed observa-
tions, the covariance matrix given in Theorem 1 is the same as
the semiparametric information bound given by, for example,
Carroll et al. (1997). For longitudinal data analysis, the efficient
bound is very complicated, as demonstrated by Lin and Carroll
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(2001b). Finding a simple and effective nonparametric efficient
method for the problem is an interesting subject of future re-
search. Our simple profile likelihood method provides a useful
tool for this investigation.

APPENDIX: PROOFS

A.1 Proof of Theorem 1

For each given β, the estimator α̂(t;β) is a local linear estimator of
the bivariate data

{(
tij , y∗

i (tij )
)
, j = 1, . . . , Ji , i = 1, . . . , n

}
.

Thus from the theory of local linear fitting (Fan 1992), it is a consistent
estimate of the function

α(t;β) = E
{
y(t) − βT x(t)

} = α0(t) − (β − β0)
T Ex(t). (A.1)

Let �n(β) denote the weighted quadratic loss,

�n(β) = n−1
n∑

i=1

Ji∑

j=1

{
yi (tij ) − α̂(tij ;β) − xi (tij )T β

}2
w(tij ).

(A.2)

Then β̂ minimizes the convex function �n(β). (In fact, it is a quadratic
function of β .) Decompose

�n(β) = In,1(β) + In,2(β) + In,3(β), (A.3)

where

In,1(β) = n−1
n∑

i=1

Ji∑

j=1

{
yi (tij ) − α(tij ;β) − xi (tij )T β

}2
w(tij ),

In,2(β) = 2n−1
n∑

i=1

Ji∑

j=1

{
yi(tij ) − α(tij ;β) − xi (tij )T β

}

× {
α(tij ;β) − α̂(tij ;β)

}
w(tij ),

and

In,3(β) = n−1
n∑

i=1

Ji∑

j=1

{
α(tij ;β) − α̂(tij ;β)

}2
w(tij ).

Note that �n(β) is really the weighted residuals sum of squares of
the local linear estimator α̂(·;β). Following some tedious calculations,
similar to those of Müller and Stadtmüller (1993),

In,2(β) = OP {In,3(β)} = O

(
h4 + 1

nh

)
. (A.4)

We now deal with the main term In,1 in (A.2). This can be written
as

In,1(β) = n−1
n∑

i=1

∫ ∞
0

{
yi (t) − α(t;β) − xi (t)

T β
}2

w(t) dNi(t).

Using the model

y(t) = α0(t) + x(t)T β0 + ε(t)

and (A.1), we have

In,1(β) = n−1
n∑

i=1

∫ ∞
0

[
εi(t) − {xi (t) − Exi (t)}T (β − β0)

]2

× w(t) dNi(t)

= n−1
n∑

i=1

∫ ∞
0

ε2
i (t)w(t) dNi(t)

− 2(β − β0)
T ξ̂n + (β − β0)T �̂n(β − β0). (A.5)

The minimization of this quadratic function is given by

β̂0 = β0 + �̂
−1
n ξ̂n.

By the law of large numbers and the central limit theorem,

√
n(β̂0 − β0)

L−→ N(0,A−1BA−1), (A.6)

where

A = E

∫ ∞
0

{x(t) − Ex(t)}⊗2w(t) dN(t)

and

B = E

{∫ ∞
0

{x(t) − Ex(t)}ε(t)w(t) dN(t)

}2
.

Finally, we apply the convexity lemma (see, e.g., Andersen and Gill
1982) to show that

√
n(β̂ − β0) = √

n�̂
−1
n ξn + oP (1). (A.7)

This together with (A.6) proves the results. To show that, first of all,
by the convexity lemma, β̂ is a consistent estimator of β0, from (A.3),
we have

I′n,1(β̂) + I′n,2(β̂) + I′n,3(β̂)

= 2�̂n(β̂ − β0) − 2ξ̂n + I′n,2(β̂) + I′n,3(β̂)

= 0.

Similar to (A.4), we can show that

I′n,2(β̂) = oP (n−1/2) and I′n,3(β̂) = oP (n−1/2). (A.8)

Hence, the result follows.

A.2 Derivation of Bias and Variance in (18)

In this section we outline the key steps to derive the bias and vari-
ance in (18). Detailed proofs are similar to those given by Fan (1992);
also see chapter 3 of Fan and Gijbels (1996).

Denote ŷi (tij ) = yi(tij ) − xi (tij )T β̂ . From (12), the local linear fit

involves finding â = (â0, â1)T minimizing

n∑

i=1

Ji∑

j=1

{
ŷi (tij ) − a0 − a1(tij − t0)

}2
w(tij )Kh(tij − t0).

Using matrix notation, we have a closed form for â. Denote
ŷ = (y1(t11), . . . , yn(tnJn

))T ; Z = (z1, z2) is n∗ × 2 matrix, where
z1 = 1n∗ and z2 = (t11 − t0, . . . , tnJn

− t0)T . Furthermore, let U =
diag{w(t11)Kh(t11 − t0), . . . ,w(tnJn

)Kh(tnJn
− t0)}, an n∗ × n∗ di-

agonal matrix. Thus

â = (ZT UZ)−1ZT Uŷ.

We further have

E{â|X, t} = (ZT UZ)−1ZT U{α + XE(β̂ − β)} (A.9)

and

var{â|X, t} = (ZT UZ)−1(
ZT U var{ŷ|X, t}UT Z

)
(ZT UZ)−1. (A.10)

We first calculate the order of Sn ≡ ZT UZ. Denote

Sn,l =
n∑

i=1

Ji∑

j=1

w(tij )Kh(tij − t0)(tij − t0)
l

=
n∑

i=1

∫ ∞
0

w(t)Kh(t − t0)(t − t0)
l dNi(t), l = 0,1,2.



722 Journal of the American Statistical Association, September 2004

Thus by some calculations,

E(Sn,l) = nE

∫ ∞
0

w(t)Kh(t − t0)(t − t0)l dN(t)

= nhl

{
λ(t0)w(t0)

∫
ulK(u)du + o(1)

}
.

Using Sn,l = ESn,l + OP {√var(Sn,l) }, we can further show that

Sn,l = nhlλ(t0)w(t0)

∫
ulK(u)du {1 + oP (1)}, (A.11)

provided that h → 0 and nh → ∞. Next we calculate the order of
S∗
n ≡ ZT U var{y|X, t}UT Z. Note that the off-diagonal elements of

U var{y|X, t}UT either are equal to 0 or have the form

w(tij )Kh(tij − t0) cov{ŷi (tij ), ŷi (tij ′ )}w(tij ′ )Kh(tij ′ − t0),

which is negligible as h → 0, because Kh(tij − t0)Kh(tij ′ − t0) is
negligible under mild conditions on the kernel function. Hence, the
leading term of S∗

n involves its diagonal elements. Denote

S∗
n,l =

n∑

i=1

Ji∑

j=1

(tij − t0)
lw2(tij )K2

h(tij − t0)var{εi(tij )}

=
n∑

i=1

∫ ∞
0

w2(t)K2
h(t − t0)var{ε(t)}dNi(t).

Similar to Sn,l , we can show that

S∗
n,l = nhl−1w2(t0)λ(t0)var{ε(t0)}

∫
ulK2(u)du

(
1 + OP (1)

)
.

(A.12)
Note that ‖β̂ − β‖ = OP (n−1/2), the leading term in the right

side of (A.9) is (ZT UZ)−1ZT Uα. Similar to Fan (1992), we can
further derive the asymptotic bias given in (18) using (A.11). Again
because ‖β̂ − β‖ = OP (n−1/2), it can be shown that the difference
between var{ŷi (tij )|X, t} and var{εi(tij )} is negligible. So we can ob-
tain the asymptotic variance by calculating the order of (A.10) using
(A.11) and (A.12).

A.3 Proof of Theorem 2

Denote αn = n−1/2 + an. It is sufficient to show that, for any given
η > 0, there exists a large constant C such that

P
{

inf‖u‖=C
L(β0 + αnu) ≥ L(β0)

}
≥ 1 − η. (A.13)

This implies, with probability at least 1 − η, that there exists a local
minimizer in the ball {β0 + αnu :‖u‖ ≤ C}. Define

Dn(u) = L(β0 + αnu) −L(β0).

Note that pλjn
(0) = 0 and pλjn

(|βj |) is nonnegative,

n−1Dn(u) ≥ n−1{�(β0 + αnu) − �(β0)
}

+
s∑

j=1

{
pλjn

(|βj0 + αnuj |) − pλjn
(|βj0|)},

where �(β) is the first term on the right side of (21). Using equa-
tion (A.5) and the rates in (A.8), it can be shown that

n−1{�(β0 + αnu) − �(β0)}

= α2
n

2
uT

{
�̂n + oP (1)

}
u − αnuT

{
ξ̂n + oP (n−1/2)

}
, (A.14)

as �(β) is a quadratic function of β . Note that �̂n → A, a finite
positive definite matrix in probability. The first term in the right
side of (A.14) is of order OP (C2α2

n), and the second term is of

order OP (Cn−1/2αn) = OP (Cα2
n). Furthermore,

s∑

j=1

{
pλjn

(|βj0 + αnuj |) − pλjn
(|βj0|)} (A.15)

is bounded by
√

sαnan‖u‖ + α2
nbn‖u‖2 = Cα2

n(
√

s + bnC)

by the Taylor expansion and the Cauchy–Schwarz inequality. As
bn → 0, the first term on the right side of (A.14) will dominate (A.15)
as well as the second term on the right side of (A.14), by taking C

sufficiently large. Hence (A.13) holds for sufficiently large C. This
completes the proof of the theorem.

A.4 Proof of Theorem 3

Lemma A.1. Under the conditions of Theorem 3, with probability
tending to 1, for any given β1 satisfying ‖β1 − β10‖ = OP (n−1/2)

and any constant C,

L
{
(βT

1 ,0)T
} = min

‖β2‖≤Cn−1/2
L

{
(βT

1 ,βT
2 )T

}
.

Proof. We show that with probability tending to 1, as n → ∞, for
any β1 satisfying ‖β1 − β10‖ = OP (n−1/2) and ‖β2‖ ≤ Cn−1/2,
∂�(β)/∂βj and βj have the same signs for βj ∈ (−Cn−1/2,Cn1/2),
for j = s + 1, . . . , d . Thus the minimizer attains at β2 = 0.

For βj �= 0 and j = s + 1, . . . , d ,

∂L(β)

∂βj
= �′

j (β) + np′
λjn

(|βj |) sgn(βj ), (A.16)

where �′
j
(β) = ∂�(β)/∂βj . By the proof of Theorem 1,

�′
j (β) = −n

{
ξ̂j − (β − β0)T �̂j + oP (n−1/2)

}
,

where ξ̂j is the j th component of ξ̂n and �̂j is the j th column of �̂n.
Note that ‖β −β0‖ = OP (n−1/2) by the assumption and that �̂n → A
in probability. Thus n−1�j (β) is of order OP (n−1/2). Therefore,

∂�(β)

∂βj
= nλjn

{
λ−1
jn

p′
λjn

(|βj |) sgn(βj ) + OP (n−1/2/λn)
}
.

Because lim infn→∞ lim infβj→0+ λ−1
jn p′

λjn
(|βj |) > 0 and n−1/2 ×

λjn → 0, the sign of the derivative is completely determined by that
of βj . This completes the proof.

Proof of the Theorem 3. Part (a) directly follows by Lemma A.1.
Now we prove part (b). Using an argument similar to the proof of The-
orem 2, it can be shown that there exists a β̂1 in Theorem 2 that is a
root-n consistent local minimizer of L{(βT

1 ,0)T }, satisfying the pe-
nalized least squares equations

∂L{(β̂T
1 ,0)T }

∂β1
= 0.

Following the proof of Theorem 1, we have

∂L{(β̂T
1 ,0)T }

∂β1

= n
[−ξ̂ (1) + oP (n−1/2) + {

�̂(1) + oP (1)
}
(β̂1 − β10)

]

+ n
[
bn + �{1 + oP (1)}(β̂1 − β10)

]
,

where ξ̂(1) consists of the first s components of ξ̂n and �̂(1) consists

of the first s rows and columns of �̂n.
Therefore, similar to the proof of Theorem 1 and by Slutsky’s theo-

rem, it follows that
√

n(A11 + �)
{
β̂1 − β10 + (A11 + �)−1b

} → Ns (0,B11). (A.17)



Fan and Li: Semiparametric Modeling in Longitudinal Data Analysis 723

This completes the proof of Theorem 3.

[Received November 2002. Revised March 2004.]
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