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Preface

Big data are ubiquitous. They come in varying volume, velocity, and va-
riety. They have a deep impact on systems such as storages, communications
and computing architectures and analysis such as statistics, computation, op-
timization, and privacy. Engulfed by a multitude of applications, data science
aims to address the large-scale challenges of data analysis, turning big data
into smart data for decision making and knowledge discoveries. Data science
integrates theories and methods from statistics, optimization, mathematical
science, computer science, and information science to extract knowledge, make
decisions, discover new insights, and reveal new phenomena from data. The
concept of data science has appeared in the literature for several decades and
has been interpreted differently by different researchers. It has nowadays be-
come a multi-disciplinary field that distills knowledge in various disciplines to
develop new methods, processes, algorithms and systems for knowledge dis-
covery from various kinds of data, which can be either low or high dimensional,
and either structured, unstructured or semi-structured. Statistical modeling
plays critical roles in the analysis of complex and heterogeneous data and
quantifies uncertainties of scientific hypotheses and statistical results.

This book introduces commonly-used statistical models, contemporary sta-
tistical machine learning techniques and algorithms, along with their mathe-
matical insights and statistical theories. It aims to serve as a graduate-level
textbook on the statistical foundations of data science as well as a research
monograph on sparsity, covariance learning, machine learning and statistical
inference. For a one-semester graduate level course, it may cover Chapters 2,
3, 9, 10, 12, 13 and some topics selected from the remaining chapters. This
gives a comprehensive view on statistical machine learning models, theories
and methods. Alternatively, one-semester graduate course may cover Chap-
ters 2, 3, 5, 7, 8 and selected topics from the remaining chapters. This track
focuses more on high-dimensional statistics, model selection and inferences
but both paths emphasize a great deal on sparsity and variable selections.

Frontiers of scientific research rely on the collection and processing of mas-
sive complex data. Information and technology allow us to collect big data
of unprecedented size and complexity. Accompanying big data is the rise of
dimensionality and high dimensionality characterizes many contemporary sta-
tistical problems, from sciences and engineering to social science and humani-
ties. Many traditional statistical procedures for finite or low-dimensional data
are still useful in data science, but they become infeasible or ineffective for
dealing with high-dimensional data. Hence, new statistical methods are in-
dispensable. The authors have worked on high-dimensional statistics for two
decades, and started to write the book on the topics of high-dimensional data
analysis over a decade ago. Over the last decide, there have been surges in
interest and exciting developments in high-dimensional and big data. This led
us to concentrate mainly on statistical aspects of data science.

We aim to introduce commonly-used statistical models, methods and pro-
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cedures in data science and provide readers with sufficient and sound theoret-
ical justifications. It has been a challenge for us to balance statistical theories
and methods and to choose the topics and works to cover since the amount
of publications in this emerging area is enormous. Thus, we focus on the
foundational aspects that are related to sparsity, covariance learning, machine
learning, and statistical inference.

Sparsity is a common assumption in the analysis of high-dimensional data.
By sparsity, we mean that only a handful of features embedded in a huge pool
suffice for certain scientific questions or predictions. This book introduces var-
ious regularization methods to deal with sparsity, including how to determine
penalties and how to choose tuning parameters in regularization methods and
numerical optimization algorithms for various statistical models. They can be
found in Chapters 3–6 and 8.

High-dimensional measurements are frequently dependent, since these vari-
ables often measure similar things, such as aspects of economics or personal
health. Many of these variables have heavy tails due to big number of collected
variables. To model the dependence, factor models are frequently employed,
which exhibit low-rank plus sparse structures in data matrices and can be
solved by robust principal component analysis from high-dimensional covari-
ance. Robust covariance learning, principal component analysis, as well as
their applications to community detection, topic modeling, recommender sys-
tems, ect. are also a feature of this book. They can be found in Chapters 9–11.
Note that factor learning or more generally latent structure learning can also
be regarded as unsupervised statistical machine learning.

Machine learning is critical in analyzing high-dimensional and complex
data. This book also provides readers with a comprehensive account on statis-
tical machine learning methods and algorithms in data science. We introduce
statistical procedures for supervised learning in which the response variable
(often categorical) is available and the goal is to predict the response based
on input variables. This book also provides readers with statistical procedures
for unsupervised learning, in which the responsible variable is missing and
the goal concentrates on learning the association and patterns among a set
of input variables. Feature creations and sparsity learning also arise in these
problems. See Chapters 2, 12–14 for details.

Statistical inferences on high-dimensional data are another focus of this
book. Statistical inferences require one to characterize the uncertainty, esti-
mate the standard errors of the estimated parameters of primary interest and
derive the asymptotic distributions of the resulting estimates. This is very
challenging under the high-dimensional regime. See Chapter 7.

Fueled by the surging demands on processing high-dimensional and big
data, there have been rapid and vast developments in high-dimensional statis-
tics and machine learning over the last decade, contributed by data scientists
from various fields such as statistics, computer science, information theory,
applied and computational mathematics, among others. Even though we have
narrowed the scope of the book to the statistical aspects of data science, the
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field is still too broad for us to cover. Many important contributions that do
not fit our presentation have been omitted. Conscientious effort was made in
the composition of the reference list and bibliographical notes, but they merely
reflect our immediate interests. Omissions and discrepancies are inevitable. We
apologize for their occurrence.

Although we all contribute to various chapters and share the responsibility
for the whole book, Jianqing Fan was the lead author for Chapters 1, 3 and
9–11, 14 and some sections in other chapters, Runze Li for Chapters 5, and 8
and part of Chapters 6–7, Cun-Hui Zhang for Chapters 4 and 7, and Hui Zou
for Chapters 2, 6, 11 and 12 and part of Chapter 5. In addition, Jianqing Fan
and Runze Li oversaw the whole book project.

Many people have contributed importantly to the completion of this book.
In particular, we would like to thank the editor, John Kimmel, who has been
extremely helpful and patient with us for over 10 years! We greatly appreciate
a set of around 10 anonymous reviewers for valuable comments that lead to
the improvement of the book. We are particularly grateful to Cong Ma and
Yiqiao Zhong for preparing a draft of Chapter 14, to Zhao Chen for helping us
with putting our unsorted and non-uniform references into the present form,
to Tracy Ke, Bryan Kelly, Dacheng Xiu and Jia Wang for helping us with
constructing Figure 1.3, and to Boxiang Wang, Yi Yang for helping produce
some figures in Chapter 12. Various people have carefully proof-read certain
chapters of the book and made useful suggestions. They include Krishna Bal-
asubramanian, Pierre Bayle, Elynn Chen, Wenyan Gong, Yongyi Guo, Cong
Ma, Igor Silin, Qiang Sun, Francesca Tang, Bingyan Wang, Kaizheng Wang,
Weichen Wang, Yuling Yan, Zhuoran Yang, Mengxin Yu, Wenxin Zhou, Yifeng
Zhou, and Ziwei Zhu. We owe them many thanks.

In the spring semester of 2019, we used a draft of this book as a textbook
for a first-year graduate course at Princeton University and a senior graduate
topic course at the Pennsylvania State University. We would like to thank the
graduate students in the classes for their careful readings. In particular, we
are indebted to Cong Ma, Kaizheng Wang and Zongjun Tan for assisting in
preparing the homework problems at Princeton, most of which are now a part
of our exercise at the end of each chapter. At Princeton, we covered chapters
2-3, 5, 8.1, 8.3, 9–14.

We are very grateful for grant supports from National Science Foundation
and National Institutes of Health on our research. Finally, we would like to
thank our families and our parents for their love and support.

Jianqing Fan
Runze Li
Cun-Hui Zhang
Hui Zou

January 2020.
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