Statistical Foundations of Data Science

Jianqing Fan

Runze Li

Cun-Hui Zhang

Hui Zou

|____ ____

Preface

Big data are ubiquitous. They come in varying volume, velocity, and variety. They have a deep impact on systems such as storages, communications and computing architectures and analysis such as statistics, computation, optimization, and privacy. Engulfed by a multitude of applications, data science aims to address the large-scale challenges of data analysis, turning big data into smart data for decision making and knowledge discoveries. Data science integrates theories and methods from statistics, optimization, mathematical science, computer science, and information science to extract knowledge, make decisions, discover new insights, and reveal new phenomena from data. The concept of data science has appeared in the literature for several decades and has been interpreted differently by different researchers. It has nowadays become a multi-disciplinary field that distills knowledge in various disciplines to develop new methods, processes, algorithms and systems for knowledge discovery from various kinds of data, which can be either low or high dimensional, and either structured, unstructured or semi-structured. Statistical modeling plays critical roles in the analysis of complex and heterogeneous data and quantifies uncertainties of scientific hypotheses and statistical results.

This book introduces commonly-used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook on the statistical foundations of data science as well as a research monograph on sparsity, covariance learning, machine learning and statistical inference. For a one-semester graduate level course, it may cover Chapters 2, 3, 9, 10, 12, 13 and some topics selected from the remaining chapters. This gives a comprehensive view on statistical machine learning models, theories and methods. Alternatively, one-semester graduate course may cover Chapters 2, 3, 5, 7, 8 and selected topics from the remaining chapters. This track focuses more on high-dimensional statistics, model selection and inferences but both paths emphasize a great deal on sparsity and variable selections.

Frontiers of scientific research rely on the collection and processing of massive complex data. Information and technology allow us to collect big data of unprecedented size and complexity. Accompanying big data is the rise of dimensionality and high dimensionality characterizes many contemporary statistical problems, from sciences and engineering to social science and humanities. Many traditional statistical procedures for finite or low-dimensional data are still useful in data science, but they become infeasible or ineffective for dealing with high-dimensional data. Hence, new statistical methods are indispensable. The authors have worked on high-dimensional statistics for two decades, and started to write the book on the topics of high-dimensional data analysis over a decade ago. Over the last decide, there have been surges in interest and exciting developments in high-dimensional and big data. This led us to concentrate mainly on statistical aspects of data science.

We aim to introduce commonly-used statistical models, methods and pro-

cedures in data science and provide readers with sufficient and sound theoretical justifications. It has been a challenge for us to balance statistical theories and methods and to choose the topics and works to cover since the amount of publications in this emerging area is enormous. Thus, we focus on the foundational aspects that are related to sparsity, covariance learning, machine learning, and statistical inference.

Sparsity is a common assumption in the analysis of high-dimensional data. By sparsity, we mean that only a handful of features embedded in a huge pool suffice for certain scientific questions or predictions. This book introduces various regularization methods to deal with sparsity, including how to determine penalties and how to choose tuning parameters in regularization methods and numerical optimization algorithms for various statistical models. They can be found in Chapters 3–6 and 8.

High-dimensional measurements are frequently dependent, since these variables often measure similar things, such as aspects of economics or personal health. Many of these variables have heavy tails due to big number of collected variables. To model the dependence, factor models are frequently employed, which exhibit low-rank plus sparse structures in data matrices and can be solved by robust principal component analysis from high-dimensional covariance. Robust covariance learning, principal component analysis, as well as their applications to community detection, topic modeling, recommender systems, ect. are also a feature of this book. They can be found in Chapters 9–11. Note that factor learning or more generally latent structure learning can also be regarded as unsupervised statistical machine learning.

Machine learning is critical in analyzing high-dimensional and complex data. This book also provides readers with a comprehensive account on statistical machine learning methods and algorithms in data science. We introduce statistical procedures for supervised learning in which the response variable (often categorical) is available and the goal is to predict the response based on input variables. This book also provides readers with statistical procedures for unsupervised learning, in which the responsible variable is missing and the goal concentrates on learning the association and patterns among a set of input variables. Feature creations and sparsity learning also arise in these problems. See Chapters 2, 12–14 for details.

Statistical inferences on high-dimensional data are another focus of this book. Statistical inferences require one to characterize the uncertainty, estimate the standard errors of the estimated parameters of primary interest and derive the asymptotic distributions of the resulting estimates. This is very challenging under the high-dimensional regime. See Chapter 7.

Fueled by the surging demands on processing high-dimensional and big data, there have been rapid and vast developments in high-dimensional statistics and machine learning over the last decade, contributed by data scientists from various fields such as statistics, computer science, information theory, applied and computational mathematics, among others. Even though we have narrowed the scope of the book to the statistical aspects of data science, the

ii

field is still too broad for us to cover. Many important contributions that do not fit our presentation have been omitted. Conscientious effort was made in the composition of the reference list and bibliographical notes, but they merely reflect our immediate interests. Omissions and discrepancies are inevitable. We apologize for their occurrence.

Although we all contribute to various chapters and share the responsibility for the whole book, Jianqing Fan was the lead author for Chapters 1, 3 and 9–11, 14 and some sections in other chapters, Runze Li for Chapters 5, and 8 and part of Chapters 6–7, Cun-Hui Zhang for Chapters 4 and 7, and Hui Zou for Chapters 2, 6, 11 and 12 and part of Chapter 5. In addition, Jianqing Fan and Runze Li oversaw the whole book project.

Many people have contributed importantly to the completion of this book. In particular, we would like to thank the editor, John Kimmel, who has been extremely helpful and patient with us for over 10 years! We greatly appreciate a set of around 10 anonymous reviewers for valuable comments that lead to the improvement of the book. We are particularly grateful to Cong Ma and Yiqiao Zhong for preparing a draft of Chapter 14, to Zhao Chen for helping us with putting our unsorted and non-uniform references into the present form, to Tracy Ke, Bryan Kelly, Dacheng Xiu and Jia Wang for helping us with constructing Figure 1.3, and to Boxiang Wang, Yi Yang for helping produce some figures in Chapter 12. Various people have carefully proof-read certain chapters of the book and made useful suggestions. They include Krishna Balasubramanian, Pierre Bayle, Elynn Chen, Wenyan Gong, Yongyi Guo, Cong Ma, Igor Silin, Qiang Sun, Francesca Tang, Bingyan Wang, Kaizheng Wang, Weichen Wang, Yuling Yan, Zhuoran Yang, Mengxin Yu, Wenxin Zhou, Yifeng Zhou, and Ziwei Zhu. We owe them many thanks.

In the spring semester of 2019, we used a draft of this book as a textbook for a first-year graduate course at Princeton University and a senior graduate topic course at the Pennsylvania State University. We would like to thank the graduate students in the classes for their careful readings. In particular, we are indebted to Cong Ma, Kaizheng Wang and Zongjun Tan for assisting in preparing the homework problems at Princeton, most of which are now a part of our exercise at the end of each chapter. At Princeton, we covered chapters 2-3, 5, 8.1, 8.3, 9–14.

We are very grateful for grant supports from National Science Foundation and National Institutes of Health on our research. Finally, we would like to thank our families and our parents for their love and support.

> Jianqing Fan Runze Li Cun-Hui Zhang Hui Zou

January 2020.

|____ ____

Contents

1	1 Introduction		3
1.1 Rise of Big Data and Dimensionality		Rise of Big Data and Dimensionality	3
		1.1.1 Biological Sciences	4
		1.1.2 Health Sciences	6
		1.1.3 Computer and Information Sciences	7
		1.1.4 Economics and Finance	9
		1.1.5 Business and Program Evaluation	11
		1.1.6 Earth Sciences and Astronomy	11
	1.2	Impact of Big Data	11
	1.3	Impact of Dimensionality	13
		1.3.1 Computation	13
		1.3.2 Noise Accumulation	14
		1.3.3 Spurious Correlation	16
		1.3.4 Statistical theory	19
	1.4	Aim of High-dimensional Statistical Learning	20
	1.5	What big data can do	21
	1.6	Scope of the book	21
2	$\mathbf{M}\mathbf{u}$	ltiple and Nonparametric Regression	23
2	Mu 2.1	ltiple and Nonparametric Regression Introduction	23 23
2			
2	2.1	Introduction	23
2	2.1	Introduction Multiple Linear Regression	23 23
2	2.1	Introduction Multiple Linear Regression 2.2.1 The Gauss-Markov Theorem	23 23 25
2	2.1 2.2	Introduction Multiple Linear Regression 2.2.1 The Gauss-Markov Theorem 2.2.2 Statistical Tests	23 23 25 28
2	2.12.22.3	Introduction Multiple Linear Regression 2.2.1 The Gauss-Markov Theorem 2.2.2 Statistical Tests Weighted Least-Squares	23 23 25 28 29
2	 2.1 2.2 2.3 2.4 	Introduction Multiple Linear Regression 2.2.1 The Gauss-Markov Theorem 2.2.2 Statistical Tests Weighted Least-Squares Box-Cox Transformation	23 23 25 28 29 31
2	 2.1 2.2 2.3 2.4 	Introduction Multiple Linear Regression 2.2.1 The Gauss-Markov Theorem 2.2.2 Statistical Tests Weighted Least-Squares Box-Cox Transformation Model Building and Basis Expansions	23 23 25 28 29 31 32
2	 2.1 2.2 2.3 2.4 	Introduction Multiple Linear Regression 2.2.1 The Gauss-Markov Theorem 2.2.2 Statistical Tests Weighted Least-Squares Box-Cox Transformation Model Building and Basis Expansions 2.5.1 Polynomial Regression	23 23 25 28 29 31 32 33
2	 2.1 2.2 2.3 2.4 	Introduction Multiple Linear Regression 2.2.1 The Gauss-Markov Theorem 2.2.2 Statistical Tests Weighted Least-Squares Box-Cox Transformation Model Building and Basis Expansions 2.5.1 Polynomial Regression 2.5.2 Spline Regression	23 23 25 28 29 31 32 33 34
2	2.12.22.32.42.5	Introduction Multiple Linear Regression 2.2.1 The Gauss-Markov Theorem 2.2.2 Statistical Tests Weighted Least-Squares Box-Cox Transformation Model Building and Basis Expansions 2.5.1 Polynomial Regression 2.5.2 Spline Regression 2.5.3 Multiple Covariates	23 23 25 28 29 31 32 33 34 37
2	2.12.22.32.42.5	Introduction Multiple Linear Regression 2.2.1 The Gauss-Markov Theorem 2.2.2 Statistical Tests Weighted Least-Squares Box-Cox Transformation Model Building and Basis Expansions 2.5.1 Polynomial Regression 2.5.2 Spline Regression 2.5.3 Multiple Covariates Ridge Regression	23 23 25 28 29 31 32 33 34 37 38
2	2.12.22.32.42.5	Introduction Multiple Linear Regression 2.2.1 The Gauss-Markov Theorem 2.2.2 Statistical Tests Weighted Least-Squares Box-Cox Transformation Model Building and Basis Expansions 2.5.1 Polynomial Regression 2.5.2 Spline Regression 2.5.3 Multiple Covariates Ridge Regression 2.6.1 Bias-Variance Tradeoff	23 23 25 28 29 31 32 33 34 37 38 39
2	2.12.22.32.42.5	IntroductionMultiple Linear Regression2.2.1The Gauss-Markov Theorem2.2.2Statistical TestsWeighted Least-SquaresBox-Cox TransformationModel Building and Basis Expansions2.5.1Polynomial Regression2.5.2Spline Regression2.5.3Multiple CovariatesRidge Regression2.6.1Bias-Variance Tradeoff2.6.2 ℓ_2 Penalized Least Squares	23 23 25 28 29 31 32 33 34 37 38 39 39

vi			CONT	ENTS
	2.7	Regres	ssion in Reproducing Kernel Hilbert Space	44
	2.8	-	one-out and Generalized Cross-validation	49
	2.9	Exerci	ses	51
3	Inti	roducti	on to Penalized Least-Squares	57
	3.1		cal Variable Selection Criteria	57
		3.1.1	Subset selection	57
		3.1.2	Relation with penalized regression	58
		3.1.3	Selection of regularization parameters	59
	3.2	Folded	l-concave Penalized Least Squares	61
		3.2.1	Orthonormal designs	63
		3.2.2	Penalty functions	64
		3.2.3	Thresholding by SCAD and MCP	65
		3.2.4	Risk properties	66
		3.2.5	Characterization of folded-concave PLS	67
	3.3	Lasso	and L_1 Regularization	68
		3.3.1	Nonnegative garrote	68
		3.3.2	Lasso	70
		3.3.3	Adaptive Lasso	73
		3.3.4	Elastic Net	74
		3.3.5	Dantzig selector	76
		3.3.6	SLOPE and Sorted Penalties	79
		3.3.7	Concentration inequalities and uniform convergence	80
		3.3.8	A brief history of model selection	82
	3.4	Bayesi	an Variable Selection	83
		3.4.1	Bayesian view of the PLS	83
		3.4.2	A Bayesian framework for selection	85
	3.5	Numer	rical Algorithms	86
		3.5.1	Quadratic programs	86
		3.5.2	Least angle regression [*]	88
		3.5.3	Local quadratic approximations	91
		3.5.4	Local linear algorithm	92
		3.5.5	Penalized linear unbiased selection [*]	93
		3.5.6	Cyclic coordinate descent algorithms	95
		3.5.7	Iterative shrinkage-thresholding algorithms	96
		3.5.8	Projected proximal gradient method	98
		3.5.9	ADMM	98
		3.5.10	1 0	00
		0 5 11	tion Other Mathada and Timeling	99
	9.0	3.5.11		100
	3.6		arization parameters for PLS	101
		3.6.1	Degrees of freedom	102
		3.6.2	Extension of information criteria	103
	0 7	3.6.3	Application to PLS estimators	104
	3.7	Residu	al variance and refitted cross-validation	105

CO	ONTE	ENTS		vii
		3.7.1	Residual variance of Lasso	105
		3.7.2	Refitted cross-validation	106
	3.8	Extens	sions to Nonparametric Modeling	108
		3.8.1	Structured nonparametric models	108
		3.8.2	Group penalty	109
	3.9	Applic	ations	111
	3.10	Bibliog	graphical notes	116
	3.11	Exercis	Ses	117
4	Pen	alized	Least Squares: Properties	125
	4.1	Perform	mance Benchmarks	125
		4.1.1	Performance measures	126
		4.1.2	Impact of model uncertainty	129
			4.1.2.1 Bayes lower bounds for orthogonal design	130
			4.1.2.2 Minimax lower bounds for general design	134
		4.1.3	Performance goals, sparsity and sub-Gaussian noise	140
	4.2	Penaliz	zed L_0 Selection	143
	4.3	Lasso a	and Dantzig Selector	149
		4.3.1	Selection consistency	150
			Prediction and coefficient estimation errors	154
		4.3.3	Model size and least squares after selection	165
			Properties of the Dantzig selector	171
		4.3.5	Regularity conditions on the design matrix	179
	4.4	Proper	ties of Concave PLS.	187
		4.4.1	Properties of penalty functions	189
		4.4.2	Local and oracle solutions	194
		4.4.3	Properties of local solutions	199
		4.4.4	Global and approximate global solutions	204
	4.5		r and Sorted Penalties	210
		4.5.1	Sorted concave penalties and its local approximation	211
		4.5.2	Approximate PLS with smaller and sorted penalties	215
		4.5.3	Properties of LLA and LCA	224
	4.6		graphical notes	228
	4.7	Exercis	Ses	229
5	Ger	eralize	ed Linear Models and Penalized Likelihood	231
	5.1		alized Linear Models	231
		5.1.1	Exponential family	231
		5.1.2	Elements of generalized linear models	234
		5.1.3	Maximum likelihood	235
		5.1.4	Computing MLE: Iteratively reweighed least squares	236
		5.1.5	Deviance and Analysis of Deviance	238
		5.1.6	Residuals	240
	5.2	Examp		242
		521	Bernoulli and binomial models	242

|____

CONTENTS

	5.2.2	Models for count responses	245
	5.2.3	-	246
	5.2.4	Normal error models	247
5.3	Spares	st solution in high confidence set	247
	5.3.1	A general setup	247
	5.3.2	· · ·	248
	5.3.3	1	249
5.4	Variał	ble Selection via Penalized Likelihood	250
5.5	Algori	thms	253
	5.5.1	Local quadratic approximation	253
	5.5.2	Local linear approximation	254
	5.5.3	Coordinate descent	255
	5.5.4	Iterative Local Adaptive Majorization and Minimiza-	
		tion	256
5.6	Tunin	g parameter selection	256
5.7	An Ap	oplication	258
5.8	Sampl	ing Properties in low-dimension	260
	5.8.1	Notation and regularity conditions	261
	5.8.2	The oracle property	262
	5.8.3	Sampling Properties with Diverging Dimensions	264
	5.8.4	Asymptotic properties of GIC selectors	266
5.9	-	rties under Ultrahigh Dimensions	268
	5.9.1	The Lasso penalized estimator and its risk property	268
	5.9.2	Strong oracle property	272
	5.9.3	Numeric studies	277
		properties	278
		graphical notes	282
5.12	Exerci	ises	283
Pen	alized	M-estimators	291
6.1	Penali	zed quantile regression	291
	6.1.1	Quantile regression	291
	6.1.2	Variable selection in quantile regression	293
	6.1.3	A fast algorithm for penalized quantile regression	295
6.2	Penali	zed composite quantile regression	298
6.3	Variał	ble selection in robust regression	301
	6.3.1	Robust regression	301
	6.3.2	Variable selection in Huber regression	303
6.4		regression and its variable selection	305
	6.4.1	Rank regression	306
	6.4.2	Penalized weighted rank regression	306
6.5		ble Selection for Survival Data	307
	6.5.1	Partial likelihood	308
	6.5.2	Variable selection via penalized partial likelihood and	_
		its properties	310

viii

CO	ONTI	ENTS	ix
	6.6	Theory of folded-concave penalized M-estimator 6.6.1 Conditions on penalty and restricted strong convexity 6.6.2 Statistical accuracy of penalized M-estimator with	312 313
		folded concave penalties	314
	6.7	6.6.3 Computational accuracy	$318 \\ 321$
	$\begin{array}{c} 0.7 \\ 6.8 \end{array}$	0 1	$321 \\ 323$
7	Hig	h Dimensional Inference	327
	7.1	0	328
		7.1.1 Debias of regularized regression estimators	329
		7.1.2 Choices of weights	331
		7.1.3 Inference for the noise level	333
	7.2	Inference in generalized linear models	336
		7.2.1 Desparsified Lasso	337
		7.2.2 Decorrelated score estimator	338
		7.2.3 Test of linear hypotheses	341
		7.2.4 Numerical comparison	343
		7.2.5 An application	344
	7.3		345
		7.3.1 Statistical efficiency and Fisher information	345
		7.3.2 Linear regression with random design	351
		7.3.3 Partial linear regression	357
	7.4	0 1	361
		7.4.1 Inference via penalized least squares	361
		7.4.2 Sample size in regression and graphical models	367
	7.5	General solutions	373
		7.5.1 Local semi-LD decomposition	374
		7.5.2 Data swap	375
		7.5.3 Gradient approximation	380
	7.6	0 1	382
	7.7	Exercises	383
8		ture Screening	387
	8.1	Correlation Screening	387
		8.1.1 Sure screening property	388
		8.1.2 Connection to multiple comparison	390
	0.0	8.1.3 Iterative SIS	391
	8.2	Generalized and Rank Correlation Screening	392
	8.3	Feature Screening for Parametric Models	395
		8.3.1 Generalized linear models	395
		8.3.2 A unified strategy for parametric feature screening	397
	0.4	8.3.3 Conditional sure independence screening	400
	8.4	Nonparametric Screening	401
		8.4.1 Additive models	401

CONTENTS

		8.4.2	Varying coefficient models	402
		8.4.3	Heterogeneous nonparametric models	406
	8.5		-free Feature Screening	407
		8.5.1	Sure independent ranking screening procedure	407
		8.5.2	Feature screening via distance correlation	409
		8.5.3	Feature screening for high-dimensional categorial data	412
	8.6	Screen	ing and Selection	415
		8.6.1	0	415
		8.6.2	Sparse maximum likelihood estimate	416
		8.6.3	Feature screening via partial correlation	418
	8.7	Refitte	ed Cross-Validation	423
			RCV algorithm	423
		8.7.2	RCV in linear models	424
		8.7.3	RCV in nonparametric regression	426
	8.8	An Illu	ustration	428
	8.9	Biblio	graphical notes	432
	8.10	Exerci	Ses	434
9	Cov	arianc	e Regularization and Graphical Models	437
	9.1		facts about matrix	437
	9.2		e Covariance Matrix Estimation	441
	-	9.2.1		441
		9.2.2	· · ·	444
		9.2.3		447
	9.3		t covariance inputs	449
	9.4		Precision Matrix and Graphical Models	452
	0.1	9.4.1	-	452
		9.4.2	Penalized likelihood and M-estimation	453
		9.4.3		454
		9.4.4	CLIME and its adaptive version	457
	9.5		Gaussian Graphical Models	462
	9.6		ical Proofs	465
		9.6.1		465
			Proof of Theorem 9.3	467
		9.6.3		468
		9.6.4	Proof of Theorem 9.6	468
	9.7		graphical notes	470
	9.8	Exerci		472
10	Cov	arianc	e Learning and Factor Models	477
-0			pal Component Analysis	477
	10.1	-	Introduction to PCA	477
			Power Method	479
	10.2		Models and Structured Covariance Learning	480
	10.4		Factor model and high-dimensional PCA	481

х

CC)NTE	INTS	xi
		10.2.2 Extracting latent factors and POET	484
		10.2.3 Methods for selecting number of factors	486
	10.3	Covariance and Precision Learning with Known Factors	489
		10.3.1 Factor model with observable factors	489
		10.3.2 Robust initial estimation of covariance matrix	491
	10.4	Augmented factor models and projected PCA	494
		Asymptotic Properties	497
		10.5.1 Properties for estimating loading matrix	497
		10.5.2 Properties for estimating covariance matrices	499
		10.5.3 Properties for estimating realized latent factors	499
		10.5.4 Properties for estimating idiosyncratic components	501
	10.6	Technical Proofs	501
		10.6.1 Proof of Theorem 10.1	501
		10.6.2 Proof of Theorem 10.2	506
		10.6.3 Proof of Theorem 10.3	507
		10.6.4 Proof of Theorem 10.4	510
	10.7	Bibliographical Notes	512
	10.8	Exercises	513
			K 10
11		blications of Factor Models and PCA	519
	11.1	Factor-adjusted Regularized Model Selection	519 510
		11.1.1 Importance of factor adjustments 11.1.2 FarmSelect	519 501
			521 522
		11.1.3 Application to forecasting bond risk premia	522 524
		11.1.4 Application to a neuroblastoma data	524
	11.0	11.1.5 Asymptotic theory for FarmSelect	526
	11.2	Factor-adjusted robust multiple testing	526
		11.2.1 False discovery rate control	527 520
		11.2.2 Multiple testing under dependence measurements	529 520
		11.2.3 Power of factor adjustments 11.2.4 FarmTest	530 520
			$532 \\ 534$
	11.9	11.2.5 Application to neuroblastoma data	
	11.5	Factor Augmented Regression Methods	536 526
		11.3.1 Principal Component Regression	536
		11.3.2 Augmented Principal Component Regression	538 520
	11 /	11.3.3 Application to Forecast Bond Risk Premia	539 540
	11.4	Applications to Statistical Machine Learning	540 541
		11.4.1 Community detection	541 547
		11.4.2 Topic model	547 549
		11.4.3 Matrix completion	548 550
		11.4.4 Item ranking	550 552
	11 5	11.4.5 Gaussian Mixture models	553 556
		Bibliographical Notes	556
	11.0	Exercises	557

|____

19 5	pervised Learning	563
-	Model-based Classifiers	563
12.1		$503 \\ 563$
	12.1.1 Linear and quadratic discriminant analysis12.1.2 Logistic regression	$505 \\ 567$
19.6	2 Kernel Density Classifiers and Naive Bayes	569
	B Nearest Neighbor Classifiers	509 573
	Classification Trees and Ensemble Classifiers	573
12.4	12.4.1 Classification trees	574
		574 577
	12.4.2 Bagging 12.4.3 Random forests	578
	12.4.4 Boosting	578
19 5	5 Support Vector Machines	$580 \\ 584$
12.0	12.5.1 The standard support vector machine	$584 \\ 584$
	12.5.1 The standard support vector machine 12.5.2 Generalizations of SVMs	587
196	5 Sparse Classifiers via Penalized Empirical Loss	590
12.0	12.6.1 The importance of sparsity under high-dimensionality	590 590
	12.6.2 Sparse support vector machines	$590 \\ 592$
	12.6.3 Sparse large margin classifiers	592 593
19.5	7 Sparse Discriminant Analysis	595 595
12.1	12.7.1 Nearest shrunken centroids classifier	595 597
	12.7.1 Realest sinuficent centrolds classifier 12.7.2 Features annealed independent rule	598
	12.7.3 Selection bias of sparse independence rules	600
	12.7.4 Regularized optimal affine discriminant	600
	12.7.5 Linear programming discriminant	602
	12.7.6 Direct sparse discriminant analysis	603
	12.7.7 Solution path equivalence between ROAD and DSDA	605
12.8	B Feature Augmention and Sparse Additive Classifiers	606
12.0	12.8.1 Feature augmentation	606
	12.8.2 Penalized additive logistic regression	607
	12.8.3 Semiparametric sparse discriminant analysis	609
19 0	Bibliographical notes	611
	0Exercises	611
12.1		011
13 Un	supervised Learning	619
13.1	Cluster Analysis	619
	13.1.1 K-means clustering	620
	13.1.2 Hierarchical clustering	621
	13.1.3 Model-based clustering	623
	13.1.4 Spectral clustering	627
13.2	2 Data-driven choices of the number of clusters	629
13.3	3 Variable Selection in Clustering	632
	13.3.1 Sparse K-means clustering	632
	13.3.2 Sparse model-based clustering	634
	13.3.3 Sparse Mixture of Experts Model	636
13.4	An introduction of Sparse PCA	639

xii

CONTE	INTS	xiii
	13.4.1 Inconsistency of the regular PCA	639
	13.4.2 Consistency under sparse eigenvector mode	el 640
13.5	Sparse Principal Component Analysis	642
	13.5.1 Sparse PCA	642
	13.5.2 An iterative SVD thresholding approach	647
	13.5.3 A penalized matrix decomposition approac	h 648
	13.5.4 A semidefinite programming approach	649
	13.5.5 A generalized power method	650
13.6	Bibliographical notes	652
13.7	Exercises	653
14 An 1	Introduction to Deep Learning	657
	Rise of Deep Learning	657
	Feed-forward neural networks	660
	14.2.1 Model setup	660
	14.2.2 Back-propagation in computational graphs	662
14.3	Popular models	664
	14.3.1 Convolutional neural networks	664
	14.3.2 Recurrent neural networks	668
	14.3.2.1 Vanilla RNNs	668
	14.3.2.2 GRUs and LSTM	669
	14.3.2.3 Multilayer RNNs	670
	14.3.3 Modules	671
14.4	Deep unsupervised learning	672
	14.4.1 Autoencoders	673
	14.4.2 Generative adversarial networks	675
	14.4.2.1 Sampling view of GANs	676
	14.4.2.2 Minimum distance view of GANs	677
14.5	Training deep neural nets	678
	14.5.1 Stochastic gradient descent	679
	14.5.1.1 Mini-batch SGD	680
	14.5.1.2 Momentum-based SGD	681
	14.5.1.3 SGD with adaptive learning rates	
	14.5.2 Easing numerical instability	682
	14.5.2.1 ReLU activation function	682
	14.5.2.2 Skip connections	683
	14.5.2.3 Batch normalization	683
	14.5.3 Regularization techniques	684
	14.5.3.1 Weight decay	684
	14.5.3.2 Dropout	684 687
14.0	14.5.3.3 Data augmentation	685
	Example: image classification	685
14.7	Bibliography notes	686

References

xiv	CONTENTS
Author Index	739
Index	751

|____