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The quantitative comparison of two or more microarrays can
reveal, for example, the distinct patterns of gene expression that
define different cellular phenotypes or the genes that are induced
in the cellular response to certain stimulations. Normalization of
the measured intensities is a prerequisite of such comparisons.
However, a fundamental problem in cDNA microarray analysis is
the lack of a common standard to compare the expression levels of
different samples. Several normalization protocols have been pro-
posed to overcome the variabilities inherent in this technology. We
have developed a normalization procedure based on within-array
replications via a semilinear in-slide model, which adjusts objec-
tively experimental variations without making critical biological
assumptions. The significant analysis of gene expressions is based
on a weighted t statistic, which accounts for the heteroscedasticity
of the observed log ratios of expressions, and a balanced sign
permutation test. We illustrated the use of the techniques in a
comparison of the expression profiles of neuroblastoma cells that
were stimulated with a growth factor, macrophage migration
inhibitory factor (MIF). The analysis of expression changes at mRNA
levels showed that �99 genes were up-regulated and 24 were
reduced significantly (P <0.001) in MIF-stimulated neuroblastoma
cells. The regulated genes included several oncogenes, growth-
related genes, tumor metastatic genes, and immuno-related genes.
The findings provide clues as to the molecular mechanisms of
MIF-mediated tumor progression and supply therapeutic targets
for neuroblastoma treatment.

DNA microarrays measure the expression of thousands of
genes in a single hybridization experiment by using oligo-

nucleotide or cDNA probes. Although the technique has been
widely used for monitoring mRNA expression in many areas of
biomedical research (1), large experimental variations pose
challenges to the analysis of the resulting data. Issues about
normalization, the analysis of gene effects, and experimental
designs have been systematically addressed (2–13). Yet, there are
still a number of important problems in these areas that need to
be studied.

The normalization of microarray data is required because of
the variations in experimental conditions such as the efficiency
of dye incorporation, concentration of DNA on arrays, amount
of mRNA, variability in reverse transcription, washing process,
and batch variation, among others. Proper normalization is
critical for revealing relevant biological results. Yet, the normal-
ization methods (3–6) require certain critical biological or
statistical assumptions. For example, a popular method of global
normalization (5) assumes that there is no print-tip block effect
and no intensity effect. Without such an assumption, the global
normalization method is statistically biased. But such an assump-
tion is not valid for many situations, as documented in refs. 3, 4,
and 6. The ‘‘lowess’’ method in ref. 3 significantly relaxes the
above assumption, but it is assumed that the average expression
levels of up- and down-regulated genes at each intensity level are
about the same in each print-tip block. Tseng et al. (4) relax this
assumption to only a subset of more conservative genes based on

a rank invariant selection method. Such a biological assumption
is not always granted, especially when cells are treated with some
reagents (14). In an attempt to relax further the above biological
assumption, Huang et al. (6) introduce a semilinear model to
account for the intensity effect and use data from other arrays
to obtain an aggregated estimate. The method is expected to
work well when the gene effect is the same across arrays and the
number of arrays is large. All of the above biological and
statistical assumptions can be removed by using within-array
replications. We develop a method to estimate the intensity and
print-tip effects by aggregating information from the replica-
tions. This process allows us to estimate the intensity effect and
print-tip effect without the above biological assumptions, which
is particularly useful in situations in which cells are treated. After
removing the effects of intensity and print-tip blocks, one can
further apply the global normalization method to reduce the dye
effect.

Various statistical methods (3, 4, 9, 10) have been introduced
to assess the gene effect, but they have not accounted for the
impact of heteroscedasticity: the expression ratios that are
associated with high intensity tend to be more stably measured.
In addition, experimental errors vary across arrays (see Fig. 6).
We assess such a degree of heteroscedasticity and use a weighted
t statistic to evaluate the effects of genes. Our analysis shows that
this method yields statistically significant and biologically mean-
ingful results.

The techniques were applied to the cDNA microarrays of
neuroblastoma cells stimulated by a growth factor, macrophage
migration inhibitory factor (MIF). Neuroblastoma is the second
most common pediatric solid cancer and is responsible for �15%
of all childhood cancer deaths (15). The clinical hallmark of
neuroblastoma is marked heterogeneity, with the likelihood of
tumor progression varying widely according to the stage, age at
diagnosis, and anatomical site. MIF has emerged to play a central
role in the control of the host inflammatory and immune
responses. In addition to MIF’s potent effects on the immune
system, several reports have linked it to fundamental processes
that control cell proliferation, cell survival, angiogenesis, and
tumor progression (16). Recently, the overexpression of MIF was
found in several human cancers (17, 18). However, the precise
role of MIF in tumorigenesis remains unclear. Understanding
the genes that are affected by MIF in neuroblastoma may
provide approaches to screening and identifying molecular
targets for the treatment of patients.

Materials and Methods
Neuroblastoma Cell Line Culture and Stimulation Assay. This study
investigated human neuroblastoma cell line SK-N-AS. Cells were

Abbreviations: MIF, macrophage migration inhibitory factor; CV, coefficient of variation;
FDR, false discovery rate.
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maintained in Eagle’s MEM that was supplemented with 10%
FBS and antibiotics (GIBCO). For stimulation experiments,
cells were first seeded at 1 � 106�ml in flask and then incubated
in MEM that was supplemented with 10% FBS for 24 h. The cells
were then washed with PBS and treated with different concen-
trations of recombinant human MIF for 24 h.

DNA and RNA Isolation. Total RNA was isolated from cells with or
without MIF treatment by using TRIzol Reagent (GIBCO),
according to the manufacturer’s instructions. Finally, the quality
and quantities of RNA samples were verified at agarose gel
electropheresis.

cDNA Microarrays. cDNA clones of the Sequence Validated
Human cDNA Library (ResGen, Invitrogen) were amplified by
PCR using primers that were complementary to the vector
sequences. The purified PCR products were then robotically
arrayed onto polylysine-coated microarray slides, on which the
DNAs were immobilized by UV light. Of the cDNA microarrays
described here, 19,968 contained sequence-validated human
cDNAs, generally with insert sizes of 0.25–2.5 kb. Among them,
111 cDNA clones were printed twice on each slide.

Expression Array Analyses. Twenty-five micrograms of total RNA
was reverse-transcribed with oligo(dT) primer (5�-TTT TTT
TTT TTT TTT TTT TTV N-3�) and Superscript II Reverse
Transcriptase (GIBCO�BRL), in the presence of Cy5-dCTP and
Cy3-dCTP (Amersham Pharmacia), respectively. After purifi-
cation through a Microcon-30 filter (Amicon), the Cy3- and
Cy5-labeled cDNA probes were mixed with 40 �g human Cot-1
DNA (GIBCO), 20 �g yeast tRNA (GIBCO), and 20 �g poly
d(A) (Sigma). The mixture was concentrated to 16 �l with a
Microcon-30 filter (Amicon). After denaturation, 16 �l of 2�
hybridization solution (50% formamide, 10� SSC, 0.2% SDS)
was added into the mixture and incubated for at least 20 min at
42°C. The mixture was then hybridized onto the prewarmed
(42°C) slides for 18 h at 42°C. After hybridization, the slides were
scanned (Scan Array Lite, GSI Lumonics, Billerica, CA). Images
were analyzed by using GENEPIX PRO 4.0 software (Axon Instru-
ments, Foster City, CA).

For each cDNA spot, the local background was subtracted
from the total signal intensities of Cy5 and Cy3. The ratio of net
fluorescence from the Cy5-specific channel to that from the
Cy3-specific channel was calculated for each spot and represents
the expression of the cDNA in the cells treated with MIF relative
to the expression in the cells without treatment. Six independent
experiments were performed to reduce variations related to
labeling and hybridization efficiencies among the experiments.

Results
Replications and Preprocessing. Among 19,968 genes on an array,
there are 111 replicated clones (Fig. 1). These provide valuable
information for removing the effects of print-tip block and
intensity. However, because of experimental errors, the actual
number of available pairs of replication in six arrays ranges from
82 to 101.

Following ref. 3, we first computed the log intensity A � 0.5
log2(G * R) and log ratio M � log2G�R, with R and G being the
red (Cy3) and green (Cy5) intensities, respectively. For simplic-
ity, A is referred to as the intensity. The median intensities are
actually very stable among the six replications: the median
intensities among six arrays are �10% different from each other.
We first normalized the six arrays so that they had the same
median intensity as the median intensity of the six aggregated
arrays. This does not change the ratios and normalization results,
but facilitates our presentation and analysis.

The intensities and ratios are not available at certain spots for
each given array. The spots with average log intensities �6 were

regarded as missing (only �3% of such genes). Genes with less
than four replications were not considered, which filtered out
�12% of the genes. The repeatability of the expressions of
mRNA can be measured by the coefficient of variation (CV),
which is the SD of intensity divided by the average for each gene
in six replications: the higher the CV, the lower the repeatability.
Genes with high CVs (1.5 SD above the median CV) were
regarded as unreliable measurements and were deleted. This
process filtered out another 8% of the genes (Fig. 2A). The
effects of the remaining 15,266 genes treated by MIF were
compared to those without treatment. The intensities (A) instead
of ratios as in ref. 4 were used to compute the CVs because the
former can be more reliably computed (Fig. 2). This is because
the average intensities are much larger than the averages of
ratios, which are close to one for many genes. Furthermore, the
CVs that are based on ratios are closely related to t test statistics
(to be defined) and those with low repeatability will be auto-
matically filtered out in the process of analysis of the gene effect.

Within-Array Normalization. For each array, let Mgi and Agi be the
measurement of M and A for gene g in replication i. For those
with replications, let I be the total number of replications. In our
study, I � 2. To take into account the print-tip effect, let c and
r be the associated column and row of the print-tip block where
the cDNAs reside. To examine the intensity and print-tip effect,
we introduce the following semilinear in-slide model

Mgi � �r � �c � f�Agi� � �g � �gi [1]

for all genes in an array. Here, �r and �c are the effects of the
print-tip block, f is the intensity effect, and �g is the gene effect.

Fig. 1. Log ratios (A) and intensities (B) for pairs of clones replicated in an
array connected by lines (the horizontal axis is the index of pairs). These
provide useful information for normalization without making critical biolog-
ical assumptions. The x axes are the indices of the pairs.

Fig. 2. CVs computed based on intensities (A) and ratios (B), which are a
measure of repeatability. The median CVs in A is 0.12 (thick bar), which is much
lower than that in B (0.75). Genes with CVs above thin bar in A were filtered.
(A) The average intensities against the CV based on intensities. (B) The average
ratios against the CV based on ratios. (C) The average intensities versus the CV
based on ratios.
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For identifiability, the parameters �, �, and f all have mean zero.
Because gene effects �g are completely unknown, any gene
without replication provides no information about the print-tip
and the intensity effects. However, those genes with replications
provide relevant information. Let �̂r, �̂c and f̂ be the estimated
parameters (to be detailed below) from genes with replications.
Then, for each gene without replication, the normalized log ratio is

M̂g � Mg � �̂r � �̂c � f̂�Ag�. [2]

According to model 1, this is the observed log ratio after taking
out the effects of print-tip and intensity.

The semilinear in-slide model 1 is similar to those used in refs.
3 and 6. In ref. 3, for each print-tip (so that parameters � and �
can be set to zero), model 1 is fitted. To be able to identify the
intensity effect, Dudoit et al. (3) implicitly made an important
biological assumption: the average of �g is zero for those genes
with Ag that are approximately the same. In an effort to remove
this biological assumption, Huang et al. (6) aggregated informa-
tion from other arrays. However, the gene effects are assumed
to be the same across arrays.

The parameters in the semilinear in-slide model can be
estimated by the following Gauss-Seidel or back-fitting algo-
rithm (19, 20). For genes with replication in an array, we iterate
the following steps:

Y Initialize the print-tip and intensity effects as zero.
Y Given an estimate of the print-tip and intensity effects, the

gene effect can be estimated by

�̂g � I�1�
i�1

I

	Mgi � �̂b � �̂c � f̂�Agi�
.

Y Given the gene and intensity effects, the parameters � and �
can be estimated by ordinary least squares.

Y Given the gene and print-tip effects, the intensity effect can be
estimated by lowess (21) or more generally local linear fit (20),
by smoothing the partial residuals {Mgj � �̂b � �̂c � �̂g} on
intensities {Agj}.

Y Iterate the last three steps until convergence.

In our implementation, it took us only a couple of iterations
to get the algorithm to converge. Statistically, when the number
of replicated genes is large, the print-tip and intensity effect can
be estimated with good accuracy. However, as expected, the gene
effects can be accurately assessed only when the number of
replicated arrays is sufficiently large.

Fig. 3 depicts the normalization for one of the arrays. Pre-
sented in Fig. 3A are the intensity effects that are estimated by

our method (green curve) and the lowess method (3) (cyan
curve).�

Global Normalization. After removing the effects of the print-tip
block and intensity, we normalize each slide so that its median
log ratio is zero. This eliminates the biases of conventional global
normalization without removing those effects. This is equivalent
to adding an intercept term in 1.

Estimation of In-Slide Variability. The ratios of expressions for
genes with low intensity tend to have a large variability (Fig. 3C).
Further, the intensities for the same gene can also vary substan-
tially across experiments (see Fig. 6A). Therefore, the simple
average of the gene effects across arrays is not an efficient
method. The presence of heteroscedasticity also makes it diffi-
cult to compute P values. The degree of heteroscedasticity
should be estimated and its impact should be removed in the
analysis of the gene effect.

For each array, let M̂g be the normalized log ratio for gene g
in the pool of 15,266 candidate gene sets. We model the
heteroscedasticity with the following model

M̂g � ��Ag� � ��Ag��. [3]

The function � can be estimated by the lowess method (3, 19),
resulting in an estimate �̂. Let rg � (M̂g � �̂(Ag))2 be the squared
residuals. An application of the lowess method to smooth the
pairs {(Ag, rg)} results in an estimate of the function �̂2 (Fig. 3C).
This method is statistically efficient (22). Thus, for each gene, in
addition to the normalized ratio Âg, we obtained a weight sg �
�̂(Ag), which indicates the reliability of the measured log ratio Mg

in an array.
To examine the effect of the weight, we use the quantile-

quantile plot to determine the normality of unstandardized log
ratios M̂g and standardized log ratios (M̂g � �̂(Ag))��̂(Ag) for an
array. Fig. 4A shows that log ratios are not normally distributed
because of the heteroscedasticity, yet the standardization miti-
gates this effect (Fig. 4B).

Analysis of Treatment Effects. After normalization, a commonly
used method to evaluate treatment effects is the two-sample
t statistic (3) or its variants (6, 9, 10). For each gene g, in
the presence of heteroscedasticity sgj in slide j, we applied
the weighted least-squares technique with weights sgj

�2 to the
problem:

�For simplicity of presentation, we applied the normalization method (3) to the whole data
set instead of to each of 32 print-tip blocks as suggested in ref. 3.

Fig. 3. (A) The intensity effects f estimated based on the data in Fig. 1 (cyan curve) and estimated by the method in ref. 3 (green curve). (B) The unnormalized
(blue) and normalized (pink) ratios for the genes with replications vs. their intensities. (C) Normalized log ratios (vs. their intensities) with intensity and print-tip
effect removed for a given array, along with the lowess estimate of SDs (blue curves); two other curves are reproduced from A.
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mgj � �g � �g j, �g j � N�0, sg j
2 �g

2�,

where mgj is the log ratio (after normalization) for gene g at the
jth array. This results in an estimated ratio

m� g � �
j�1

J

sg j
�2mgj��

j�1

J

sg j
�2

and weighted t statistic

tg � m� g��SEg � s0� [4]

where SEg � �̂g���j�1
J sgj

�2 with weighted sample SD �̂g
2 � (J �

1)�1�j�1
J sgj

�2(mgj � m� g)2. The constant s0 is used here to guard
against the zero denominator (9). When sg � 1, the weighted t
statistic reduces to the classical t statistic.

We applied both weighted and ordinary t tests to examine the
effect of MIF treatment on genes. Fig. 5 depicts the results with
	 � 0.001. Table 1 summarizes the results. The weighted t test
has a better ability to assess the effect of genes. In fact, the
weighted t statistic is, in general, larger than the ordinary t
statistic (Fig. 5C) and hence identifies more significant genes
(Table 1) with smaller P values.

Balanced Sign Permutation and P Values. Instead of using the
two-sample permutation idea (9), to keep the correlation struc-
ture among genes and heteroscedasticity within each array, we
used a balanced sign permutation. For example, after reverting
the treatment and control in slides 4, 5, and 6 as the control and
treatment (multiplying their log ratios by �1), there is no
treatment effect among six arrays. From such a reversion, 15,266
t test or weighted t test statistics were obtained. There are 20
examples of such a balanced sign permutation. The pool of these
20 � 15,226 test statistics forms an estimate of the null distribution
of the test statistics (23). Hence, the P values were obtained.

We applied the multiple comparison techniques of refs. 23 and
24 to select significant genes and obtained unsatisfactory results.
This result was because the effects of genes are corrected. In
addition, with the number of genes in an order of 15,000, the
multiple comparison method requires calculating tail probability
in an order of 10�6, which cannot be accurately estimated.
Following ref. 9, instead of controlling the false discovery rate
(FDR), we estimate it. For a weighted t statistic, with 	 � 0.001,
we would expect to have 15.3 false positive genes. Hence, the
FDR of the weighted t statistic is �12.4% (see Table 1). The
choice of 	 � 0.001 for our presentation is based on the
consideration of FDR and the number of significant genes.

Global Changes in Gene Expression in Response to MIF. MIF induces
biological effects in target cells by changing the expression of a
subset of genes. RNA was isolated from neuroblastoma cell line
SK-N-AS that was treated with MIF for 24 h. The number of
genes with significant changes in expression in response to MIF
is shown in Table 1. A total of 99 (0.65%) genes were up-
regulated and 24 (0.16%) were reduced (P �0.001) in MIF-

Fig. 4. Quantile–quantile plot for log ratios Âg (A) and standardized log
ratios (Âg � �̂(Mg))��̂(Mg) (B). The standardization is effective as the quantile–
quantile plot appears more linear. The x axes are the quantiles of the standard
normal distribution, and y axes are the quantiles of log ratios.

Fig. 5. The gene effect is studied by using the ordinary t test (A) and the
weighted t test (B). The test statistics are plotted against their average log
ratios. Genes with P values �0.001 are marked with magenta (up-regulated)
and green (down-regulated). (C) Average log intensity versus log2(weighted
t stat�ordinary t stat) for the genes with P values �0.001 by one of the t tests.
Magenta, cyan, and green spots are the genes identified by both methods,
ordinary t test only, and weighted t test, respectively. (D) The average of log
intensities with MIF treatment versus those without MIF treatment. Up-
regulated and down-regulated genes, identified by the weighted t test, are
indicated by magenta and green, respectively.

Table 1. No. of genes that are up-regulated or down-regulated after MIF treatment

Methods

	 � 5% 	 � 1% 	 � 0.5% 	 � 0.1% 	 � 0.05% 	 � 0.01% 	 � 0.005% 	 � 0.001%

Up Down
FDR,
% Up Down

FDR,
% Up Down

FDR,
% Up Down

FDR,
% Up Down

FDR,
% Up Down

FDR,
% Up Down

FDR,
% Up Down

FDR,
%

t test 842 823 45.9 279 200 31.9 174 90 28.9 62 16 19.6 49 9 13.2 12 1 11.7 6 1 10.7 5 1 2.5
Weighted

t test
963 546 50.1 338 131 32.1 234 73 24.9 99 24 12.4 62 11 10.5 13 1 10.9 13 1 5.4 5 1 2.5
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stimulated neuroblastoma cells. Genes that displayed increased
or decreased expression included a number of structural genes,
genes involved in cell proliferation, cell cycle regulation, tran-
scription factors, and known growth factor receptors and im-
mune-related genes (Table 2). Furthermore, activating tran-
scription factor 5 (25) and HNK-1 sulfotransferase (26) have
been reported to play roles in controlling the development of the
nervous system. In addition, a group of genes are known to be
tumor related, such as kruepel-subfamily C2H2-type zinc finger
protein (27), tumor differentially expressed 1 (28), inter-	-
trypsin inhibitor heavy chain (29), fatty acid synthase (30), and
ribosomal protein S27 (31). Cell division cycle 34, tumor differ-
entially expressed 1, and casein kinase 1-encoded proteins (32)
are also reported to be involved in cell proliferation. Finally, type
IV collagen and inter-	-trypsin inhibitor heavy chain may be
associated with tumor metastasis. Hagedorn et al. (33) and
Krecicki et al. (34) suggested that loss of type IV collagen is an
absolute indication for tumor metastasis. Our previous study
showed that MIF could trigger neuroblastoma cell migration
(data not shown), and the current data revealed that type IV
collagen can be down-regulated by MIF (Table 2), suggesting
that MIF enhances tumor cell migration probably by decreasing
type IV collagen. In summary, we used a global gene expression
strategy to identify genes that are affected by MIF in neuroblas-
toma. These genes represent good candidates for future analysis.

Discussion

Normalization is important for cDNA microarray data analysis.
It reduces the effects of blocks, intensity, and slides. Global
normalization is a popular method used in microarray analysis.
However, because of the block and intensity effects, such a
method can suffer from substantial biases, making it hard to

reveal the biological effect of treatments. Several useful ideas
have already been introduced to overcome the drawback (3, 4,
6). They are very powerful when their biological assumptions are
granted.

The semilinear in-slide model is a powerful approach for
removing the intensity and block effects. It requires virtually no
biological assumptions and does not assume the identical gene
effects across arrays. When the latter is imposed, the statistical
efficiency in estimating the intensity effect and print-tip block
effect can be improved somewhat by aggregating information on
estimating the gene effects from other arrays. The effects of
intensity and block can be efficiently removed when the number
of clones with replications is large within an array. With the
number of genes in the order of tens of thousands in an array,
it is not difficult to print hundreds of replicated clones. With such
an order of replicated genes, the intensity and block effects can
be very effectively removed. After the removal, the global
normalization can be carried out to remove the slide effect.

It is evident (Fig. 6) that expression ratios are heteroscedastic
within and across arrays. When the intensity is large, the
variability of the ratios gets small. Even in the region (e.g., A

10) where it tends to be constant in each array, the variability
still varies across different arrays (Fig. 6A). The measurement
errors across arrays need to be standardized. Thus, a weighted
version of the t statistic such as 4 is needed to obtain a correct
P value and efficiently test whether there is any treatment effect.

Because of the large number of genes to be analyzed, the
traditional multiple comparison techniques in statistics need to
be applied carefully. This poses challenges to the control of FDR.
First, the treatment effects on mRNA expressions can be cor-
related. Second, with the number of multiple comparisons in the
order of tens of thousands, the probability calculation largely
depends on the model assumption. Robustness to the model
assumption is a critical issue, and one should try to estimate the
FDR. Significance analysis of microarrays (9) is a powerful
approach. However, it does not take care of the correlation and
heteroscedastic structure within and across arrays. The balanced
sign permutation overcomes this drawback and provides a useful
method for computing the P value.
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