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Abstract Microarray techniques have been widely used to monitor gene expression in many areas of
biomedical research. They have been widely used for tumor diagnosis and classification, predic-
tion of prognoses and treatment, and understanding of molecular mechanisms, biochemical
pathways, and gene networks. Statistical methods are vital for these scientific endeavors. This
article reviews recent developments of statistical methods for analyzing data from microarray
experiments. Emphasis has been given to normalization of expression from multiple arrays,
selecting significantly differentially expressed genes, tumor classifications, and gene expression
pathways and networks.

Due to the advances in bioimaging technology, large-scale
measurements of mRNA abundance have become widely
available through microarray techniques. With advanced
statistical techniques, microarray analyses enable simultaneous
study of the entire genome in one experiment. Currently, four
widely used array platforms are available: commercial Affyme-
trix GeneChip, oligonucleotide microarrays, cDNA microarrays,
and customized microarrays, which have been widely applied
to cancer research. They have had substantial effect on tumor
diagnosis and classification, prediction of prognosis and
response to therapy, and understanding of the molecular
mechanisms of tumorigenesis and tumor development. Fur-
thermore, gene expression profiling by microarray will further
refine the future for individualized treatment for cancer patients
based on the molecular classification of subtypes.
Proper statistical analysis is vital to the success of array use.

What makes microarray data analysis differs from traditional
statistics is the systematic biases inherent in the variations of
experimental conditions and distinguishing features associated
with the microarray outputs: high dimensionality (making
simultaneous inferences on thousands of genes) and sparsity
(only a small fraction of genes are statistically differentially
expressed). These challenges have forged new collaborations
between statisticians, computational biologists, and molecular
and clinical investigators to develop more discriminatory
statistical methods to address the issues arising from analysis
of microarrays. These have resulted in development of many
powerful and effective software packages using different and

advanced statistical methods. ‘‘Bioconductor’’ (http://www.
bioconductor.org/) is an open source and development
software project for the analysis of genomic data to which many
researchers contributed their updated statistical techniques.

Process of Biomedical Studies Using Microarray

Experiments are first designed to answer biological questions,
and then microarray experiments are conducted (Fig. 1). After
that, expression profiles through accompanying computer
software are extracted from scanned images. With raw data,
gene expression with low quality is filtered using coefficients
of variations or the intensities of scanned images (1–3) and
systematic biases are removed via normalization techniques.
After data being properly normalized, downstream statistical
analysis is conducted, such as selecting significant genes and
classifying different types of tumors. Microarray techniques are
typically used as a screening tool, biological validation and
interpretation should be done to further study the selected
genes.

Preprocessing and Normalization for cDNA
Microarrays

The quality of microarray data is paramount important for
downstream statistical analysis. These include RNA quality,
probe labeling, hybridization condition, washing, and signal
and background detection in the scanning process. This is
especially true when studying low-abundance RNA species due
to the effect of background systematic biases, which include
slide, block, and dye effects, and uneven hybridization and
processing, among others. Small variations in these conditions
can induce significant changes in gene expression, resulting in
both false-negative and false-positive predictions. However,
these variations and systematic biases in microarray data can be
attenuated by proper control and adequate replication of the
studies and statistical normalization.
After obtaining the expression profiles from both test and

reference samples, we can compute the average of the log
intensities from fluorescent dyes Cy3 and Cy5 channels for
each gene (1). This average is often referred to as the intensity
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of a particular gene. Association with each gene is the log ratio
between the expression profiles among the test and reference
groups and its physical location on cDNA chips. The first step is
to filter the data with low repeatability. This can be done
statistically by controlling the coefficient of variation (smaller
than certain threshold) and the intensity (bigger than certain
level; refs. 2, 3). After preprocessing, systematic biases need to
be removed to account for overall brightness of scanned images
and experimental variations, such as block and dye effects. This
step is essential for multiple array comparisons and down-
stream statistical analysis. It is collectively referred to as
normalization.
There are several methods for normalization. The most

primitive one is the global normalization, which makes every
array have the same median intensity. The method is useful
when there is no intensity effect and no block effect. However,
ample statistical studies (1–6) reveal the presence of these
effects. To account for these effects, Dudoit et al. (1)
normalized data at each block and intensity, called ‘‘Lowess
normalization’’ (1). The basic biological assumption is that the
average of up-regulated expression profiles and down-regulated
profiles is approximately the same at each intensity level. This
assumption is not necessarily valid especially for customized
arrays or treated cells. Tseng et al. (3) used an ‘‘invariant set of
genes’’ as proxy of housekeeping genes and estimated the
intensity effect based only on the data in the invariant set. To
remove the aforementioned biological assumption, Fan et al.
(2) introduced a semilinear in-slide model normalization
technique, which takes advantages within-array replications.
Based onf100 replicated clones within an array, the intensity
and block effects were estimated and removed from the
expression profiles. The rationale is that the difference of
expression profiles between replicated clones in an array
reflects the systematic biases in addition to the random noise,
and systematic biases of block and intensity effects can be
extracted from these pairs of data. By using semilinear in-slide

model, migration inhibitory factor targeting genes in neuro-
blastoma cells were selected and validated by real-time reverse
transcription-PCR, whereas some of these genes were missed by
ordinary normalization methods (2). Fan et al. (4) significantly
widened the scope of applicability by creating ‘synthetic’
replications and aggregating information from other arrays.
Other useful normalization methods include two-way semi-
linear model (5) and robust normalization (6).

Within-Array Replications

Within-array replications are not only powerful for normal-
ization but also useful for validation whether data have been
properly normalized. The basic idea is that the differences
among within-array replications are purely random noises after
the systematic biases are removed. When the noise levels are
estimated for each individual gene and an array is properly
normalized, the sum of the standardized square differences
follows approximately a m2 distribution. This provides a simple
and useful diagnostic test statistic to check if an array has been
properly normalized. The test statistic can also be used as a
criterion for selecting a normalization method for a given
array—the one with smallest test statistic (most consistent
replications) is the most preferable. The variances of associated
differences can be estimated by using smoothing techniques
(3) and empirical Bayes method (7). Details will be posted on
the web as a forthcoming article. Within-array replications have
also been used to improve the precision with which the
genewise variances are estimated and thereby improve infer-
ence methods designed to identify differentially expressed
genes (8).

Selecting Significant Genes

An important statistical question is to select differentially
expressed genes between the test and reference samples or

Fig. 1. Asterisks, schematic representation
of microarray strategy and steps for
statistical analysis (marked with *).
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more complex comparisons (9). The first step is to select a
proper test statistic. It is usually a modification of a t test
statistic, such as that in Significance Analysis of Microarrays
(10), a modified one-sample (2) and two-sample t test in
refs. 10, 11, F-statistic (7), or an empirical Bayes procedure
(12, 13). A marked feature is the sparsity—only a small
fraction of genes are differentially expressed. In choosing a test
statistic, the procedures taking care of sparsity features are
usually more powerful for microarray applications with
increased sensitivity and specificity.
After a test statistic has been selected, the next step is to

compute the P of the test statistic. Because of simultaneous
inferences in the order of thousands, we need to select genes
with associated Ps of order 10�3 or 10�4. Looking up normal
or t tables relies predominately on mathematical assumptions
rather than on the data. It is not robust to the mathematical
assumptions. Resampling techniques, such as permutation or
bootstrapping, are frequently used. Balanced permutation and
sieved permutation methods can be found in refs. 10, 11 for
estimating Ps. Due to limited number of arrays, permutation
does not provide enough resolution for computing Ps in an
order of 10�3 or 10�4. This is accomplished by the marginal
aggregation method (2, 10, 14) via the assumption that the
marginal distributions of test statistics are approximately the
same under the null hypotheses. The assumption allows us to
pull all permuted test statistics together to compute Ps, which
improves the resolution of computing Ps by a factor of
thousands or more.
With estimated Ps, a statistical task is then to find significantly

differentially expressed genes. For simultaneous testing of
hypotheses of thousands or tens of thousands, the probability
of making at least one false discovery (positives) might not be
relevant. Controlling the false discovery rate (15) or local false
discovery rate (16) is far more relevant (15–17). There are many
statistical papers on controlling different aspects of false
discovery rate. Storey et al. (15) and Dudoit et al. (17) provided
an overview of these statistical methods in genomic applica-
tions. These techniques require Ps to be estimated very
accurately, usually in the order of 10�6. Alternatively, one can
choose a testing procedure, which picks significant genes when
the test statistics exceed a certain critical value or their associ-
ated Ps are less than a threshold, and then estimate the false
discovery rate (2, 10, 11). For example, suppose that there are
100 genes with estimated Ps < 0.001 among 15,000 genes, the
expected number of false discovered genes is no larger than
0.001 � 15,000 = 15, giving an estimated false discovery rate of
15/100 = 15% among 100 selected genes (2).

Tumor Classification and Clustering

An important application of microarray techniques is to find
biomarkers for clinical and pathologic tumor classification.
This is exemplified by the work of Inamura et al. (18). Inamura
et al. analyzed tumor and normal lung samples by hierarchical
clustering with the nonnegative matrix factorization approach
and divided lung squamous cell carcinoma into two distinct
subclasses, which showed the significant differences in clinical
outcome and molecular characteristics (18).
Classification is also referred to as supervised learning. Many

statistical learning techniques have been proposed for classifi-
cation and clustering. These include tree and forest-based

methods (19, 20), margin-based classifiers, such as boosting
and supporting vector machine (20), and receiver operating
characteristic regression (20). Using normalized microarray
data as input vectors, classification rules can be built. Svrakic
et al. (21) gave a comprehensive overview on genomic appli-
cations of these classification methods.
In tumor classification, we hope to select only tens of genes

or biomarkers that have high discriminative power with low
misclassification rate. This not only provides molecular and
genomic understanding on how these genes are related to
different classes of tumor but also reduces misclassification
rates for prediction. A method of shrunken centroids of gene
expression profiles has been proposed for selecting genes that
are important for tumor classification (22). Statistical variable
selection methods, such as penalized divergence for misclassi-
fication, can also be used for selecting important genes and
other biomarkers (23).
Clustering, also called unsupervised learning, algorithms are

frequently used to group genes with similar expression profiles
(21). This facilitates our visualization of coexpressions of genes
and also allows us to cluster arrays with similar expression
patterns. An important component of clustering algorithms,
such as the hierarchical and K-mean algorithms, is to define
appropriate metrics in an input space (21, 22). The input
vectors can be either the expression profiles across different
arrays for grouping genes with similar expression patterns
across different subjects or the expression profiles across
different genes for clustering subjects with similar microarray
data. Commonly used metrics include the Euclidean distance
and Pearson correlation. With these metrics, the hierarchical
and K-mean algorithms can be applied for clustering. This is
often presented as dendrograms or color-coded representation
of similarly expressed genes.

Time Course and Regulatory Networks

To monitor transient gene expression patterns, temporal
progression of a disease, or response to a treatment, gene
expression data are obtained from the same tissue or cells at
different time points. An important statistical question is
whether genes have been differentially expressed at certain time
points after treatment. The Hotelling T2 test can be used to
check whether the expression profiles remain constant over
time. This identifies genes that have expressed over the time
course of experiments. At any time points, some genes are up-
regulated or down-regulated and some keep unchanged.
Patterns of expressions over time courses are important for
understanding expression pathways. A further improvement is
to account the uncertainty of measurements at each time point.
One-sample t test statistic can be used to assess whether the
expression of a gene is up-regulated or down-regulated or
unchanged at each given time point. Then, the patterns of
expression over time course can be statistically identified using
a simple classification technique (21), which provides useful
tools for understanding the regulatory process and biochemical
pathways. Schulte et al. (24) showed differential gene expres-
sion patterns, including immediate early genes, ‘‘delayed’’
genes, and effector genes in TrkA- and TrkB-expressing
neuroblastomas. This finding displayed the distinct regulation
kinetics with regards to induction of immediate early genes
and downstream molecular targets.

Analysis ofMicroarray Data
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Microarray techniques have also been used to study the
casual inferences about genetic variation, gene networks,
interactions in regulatory processes, and biochemical pathways.
They provide useful tools for understanding interactions,
associations, and networks among genes (25).

Customized Arrays

Attractive advantages of customized microarrays are the
ability to do focused array experiments on a smaller scale by
limiting the number of genes being. This enables researchers to
focus only on hundreds of genes of primary interest with more
reliable measurements (larger DNA spots) and within-array
replications. The selection biases and within-array replications
in customized arrays provide an ideal platform for semilinear
in-slide model normalization (3). The simplified image
analysis and data analysis together with low cost give hope
that this powerful technology will become a standard
molecular biology tool for routine use in the clinical setting.

Analysis of Affymetrix Array Data

Affymetrix GeneChip arrays (Affymetrix, Santa Clara, CA)
obtain the expression profile of a mRNA of a gene by the
combined intensity information from probes in a probe set,
which consists of 11 to 20 probe different 25-mer oligonucleo-
tides, interrogating a different part of the sequence of a gene.
Several techniques have been proposed for extracting expres-
sion profiles from the information at probe level. These include
the detection signals prominently featured in Affymetrix
GeneChip Operating Software, the model-based expression
index (26), and the robust multichip average (27).
Normalization is needed to account for the overall brightness

of scanned images and other experimental variations. Several
methods have been proposed for normalizing data at probe
level, and their effects on the analysis of gene expressions have
been examined. The quantile normalization is frequently used

for probe level normalization (28). However, most researchers
use detection signals from MAS 5.0 as starting points for their
investigation. The techniques for probe level normalization are
not effective for data at detection signal level. Semilinear in-
slide model has been effectively extended to normalize
detection signals to account of intensity effect (11).
After data have been properly normalized, statistical

techniques can be applied to select significant genes (11).
The essential difference between data from cDNA and
Affymetrix GeneChip is that the test and reference expression
profiles are paired in cDNA arrays but not in Affymetrix
arrays. Thus, two-sample test statistics should be used for
selecting significantly expressed genes using Affymetrix arrays
(11). Replications (at least two) should also be made for
control sample to reduce measurement errors and to improve
the sensitivity and specificity in the downstream statistical
analysis. With the average expression profiles of control arrays,
log ratios of expression profiles between the test and reference
arrays for all genes can be computed (11). The downstream
statistical analysis, such as tumor classification and biochem-
ical expression pathways, can be analogously analyzed in the
same way as the cDNA microarray.

Conclusion

Microarrays provide powerful tools for simultaneously
monitoring mRNA expression in many areas of biomedical
research. In these research endeavors, innovative statistical
techniques and computing software are essential for the success
of scientific investigations. Many of these software and
procedures are available in the open source and development
platform ‘‘bioconductor.’’ This significantly facilitates the tools
available for genomic and cancer research.
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