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The Centers for Disease Control and Prevention currently recommends a 2-tier serologic approach to Lyme
disease laboratory diagnosis, comprised of an initial serum enzyme immunoassay (EIA) for antibody to
Borrelia burgdorferi followed by supplementary IgG and IgM Western blotting of EIA-positive or -equivocal
samples. Western blot accuracy is limited by subjective interpretation of weakly positive bands, false-positive
IgM immunoblots, and low sensitivity for detection of early disease. We developed an objective alternative
second-tier immunoassay using a multiplex microsphere system that measures VlsE1-IgG and pepC10-IgM
antibodies simultaneously in the same sample. Our study population comprised 79 patients with early acute
Lyme disease, 82 patients with early-convalescent-phase disease, 47 patients with stage II and III disease, 34
patients post-antibiotic treatment, and 794 controls. A bioinformatic technique called partial receiver-operator
characteristic (ROC) regression was used to combine individual antibody levels into a single diagnostic score
with a single cutoff; this technique enhances test performance when a high specificity is required (e.g., >95%).
Compared to Western blotting, the multiplex assay was equally specific (95.6%) but 20.7% more sensitive for
early-convalescent-phase disease (89.0% versus 68.3%, respectively; 95% confidence interval [95% CI] for
difference, 12.1% to 30.9%) and 12.5% more sensitive overall (75.0% versus 62.5%, respectively; 95% CI
for difference, 8.1% to 17.1%). As a second-tier test, a multiplex assay for VlsE1-IgG and pepC10-IgM
antibodies performed as well as or better than Western blotting for Lyme disease diagnosis. Prospective
validation studies appear to be warranted.

Lyme disease (LD) is the most common vector-borne dis-
ease in the United States, with a reported incidence of nearly
35,000 new cases annually (10, 21). There are three disease
stages: stage I is the early acute phase, characterized by a rash
(erythema migrans [EM]) that occurs in at least 70% of pa-
tients; stage II represents early disseminated infection, includ-
ing lymphocytic meningitis, cranial neuropathy, radiculopathy,
and Lyme carditis; and stage III represents late disseminated
infection, such as Lyme arthritis, axonal peripheral neuropa-
thy, and encephalomyelitis (39). Diagnosis of stage I disease is
based on clinical, not serological, criteria, while stages II and
III typically require serologic confirmation (37). Despite the
predominance of stage I disease, more than 3.4 million tests for
LD were ordered in 2008 in the United States (A. Hinckley,
Centers for Disease Control and Prevention [CDC], personal
communication). Overuse of serology has led to significant
problems with false-positive results and misdiagnosis (38).

When first introduced for LD diagnosis, whole-cell enzyme
immunoassays (EIAs) and indirect immunofluorescence assays

(IFAs) for serum antibodies to Borrelia burgdorferi suffered
from a lack of standardization, poor reproducibility, and high
false-positive rates (11, 25). Following the Second National
Conference on the Serologic Diagnosis of Lyme Disease (27 to
29 October 1994; Dearborn, MI), a 2-tier serologic approach
was recommended, comprised of an initial serum EIA or IFA
for antibody to B. burgdorferi followed by supplementary IgG
and IgM Western blotting of positive or indeterminate samples
(9). Furthermore, only IgG blots were recommended for sero-
logic diagnosis more than 30 days after disease onset. Although
Western blotting is very sensitive for stage II and III disease,
multiple limitations to blot accuracy have been identified: a low
sensitivity for stage I disease, false-positive IgM immunoblots,
and subjective interpretation of weakly positive bands (1, 5).
Western blotting is also labor-intensive and expensive. The
goal of the current study was to develop an objective alterna-
tive to Western blotting as a second-tier assay.

Diagnostic serology has evolved and now utilizes recombi-
nant and synthetic peptide antigens, such as C6, the 26-mer
invariant portion of VlsE1 (variable major protein-like se-
quence 1); recombinant VlsE1 itself; and pepC10, a 10-mer
conserved portion of OspC (2). These surface antigens are
expressed by Borrelia burgdorferi during the early phase of
mammalian infection (39). The predominant immune re-
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sponses to C6 and VlsE1 are IgG mediated, even in early
disease, while pepC10 generates an early and sometimes last-
ing IgM response (2, 5, 28). While more specific than whole-
cell EIAs, these new assays might not be as specific as Western
blotting (5, 40). Although the results are preliminary, microar-
rays for serologic detection of products of expressed open
reading frames represent a promising new technology (3). Di-
agnostic alternatives to serology remain limited. Cultures of
blood and body fluids for B. burgdorferi demonstrate low sen-
sitivity (1). PCR assays for B. burgdorferi DNA from synovial
fluid and skin are often positive prior to antibiotic therapy but
require invasive procedures to obtain suitable samples and are
prone to false-positive results if contamination risk is not rig-
orously controlled (1). At present, no assays for direct detec-
tion of B. burgdorferi have been approved by the Food and
Drug Administration (19).

Given the complex nature of the host immune response to B.
burgdorferi infection, the use of multiple serologic assays has
been proposed to enhance either test sensitivity or specificity
(2, 6, 12, 17, 34, 35). Tests derived from continuous data gen-
erate binary (positive or negative) results when a cutoff value is
chosen to achieve a desired specificity (e.g., 99%). Combining
binary test results by using Boolean “OR” logic, such as de-
tecting either IgG antibody to VlsE1 or IgM antibody to
pepC10 by kinetic EIA, can generate a more sensitive but less
specific assay than the individual test components (2). In con-
trast, combining tests by using Boolean “AND” logic may pro-
duce a more specific but less sensitive assay (35).

Some potentially useful information about specific antibody
levels is lost in creating a binary test. For some antibody com-
binations, multivariate regression models can outperform stan-
dard binary assays: they can identify the most important diag-
nostic tests among multiple options and weight their individual
contributions when calculating an overall diagnostic score (31).
Regression models can be used for either disease classification
(i.e., disease or no disease) or prediction (i.e., probability of
disease). Our analyses focus on using receiver-operator char-
acteristic (ROC) regression models to improve disease classi-
fication. ROC curves plot the tradeoff between sensitivity and
specificity as the test cutoff is varied; in general, the greater the
area under the ROC curve (AUC), the better the test. Recent
publications have explored the use of ROC curves to compare
and optimize the performance of diagnostic tests (30, 32). Full
ROC regression analysis optimizes classifier performance by
maximizing the area under the entire ROC curve (29). Partial
ROC regression is a relatively new bioinformatic technique
that can augment test performance within clinically significant
portions of the ROC curve (e.g., 95% specificity or higher)
(14). We chose to evaluate partial ROC regression models for
LD diagnosis because of the need for high test specificity.

The multiplex is a device that can perform multiple antibody
assays simultaneously with the same serum sample (20), mak-
ing this platform attractive for LD diagnosis. We developed a
new multiplex immunoassay for VlsE1-IgG and pepC10-IgM
antibodies, interpreted using partial ROC regression tech-
niques, as an objective alternative to Western blotting.

MATERIALS AND METHODS

Study population. Data set A consisted of the following: (i) 79 prospectively
collected sera from patients with culture-proven, early-acute-phase LD (stage I;

EM) and 78 early-convalescent-phase sera from the same patients; (ii) 4 retro-
spectively collected convalescent-phase samples from patients with culture-
proven EM; (iii) 47 prospectively collected sera from patients with stage II and
III LD (16 with early neurological disease, 2 with myocarditis, and 29 with Lyme
arthritis); and (iv) 34 retrospectively collected sera obtained following treatment
for extracutaneous disease (n � 16) and erythema migrans (n � 18) (A. Steere,
Boston, MA, and the CDC, Fort Collins, CO). Of the 16 patients with early
neurological disease, most had more than one disease manifestation, including
facial palsy (n � 11), meningitis (n � 7), radiculopathy (n � 4), and optic neuritis
(n � 2). All prospectively collected sera were obtained during prior investiga-
tions and evaluated retrospectively for this study. All patients from data set A
had histories consistent with exposure to North American B. burgdorferi and met
the CDC case definition for Lyme disease (7, 8).

Data set B consisted of 446 consecutive uncharacterized samples submitted to
the New York State Department of Health (NYSDOH) for routine LD serology
between 2006 and 2007 (S. J. Wong, Albany, NY); no clinical data were available
for the patients. Of the latter samples, 164 were standard 2-tier serology positive.

Samples were collected with informed consent during previous studies (set A)
or for nonresearch purposes (set B). This research was approved by the institu-
tional review boards of Saint Francis Medical Center, Trenton, NJ, and the
NYSDOH, Albany, NY; samples were deidentified prior to testing, and require-
ments for additional informed consent were waived. Laboratory personnel were
blind to the multiplex diagnostic score when performing other assays.

Controls. Uninfected controls included 300 healthy blood donors from New
Mexico (where LD is not endemic), 300 healthy blood donors from New England
(where LD is endemic), 99 patients from New Mexico undergoing routine
screening examinations, and 95 patients with potentially cross-reacting condi-
tions from an area where LD is endemic. The latter conditions included Epstein-
Barr virus infection (20), toxoplasmosis (10), rheumatoid arthritis (10), anti-
nuclear antibody-positive status (10), leptospirosis (10), syphilis (10), rubella
(10), and other conditions (15).

Stratification of immune responses. Initial samples collected less than 6
months after the start of treatment for stage II or III disease were considered
representative of the maximal immune response (group 1), while samples col-
lected 6 or more months after the beginning of treatment were considered
representative of a waning immune response (group 2) (33). Similarly, early-
convalescent-phase samples collected less than 30 days after the start of antibi-
otic treatment were considered representative of the maximal immune response
(group 1), while samples collected 30 or more days after the beginning of
treatment were considered representative of a waning immune response (group
2) (18). The immune responses of those with untreated early acute disease were
considered separately.

Recombinant VlsE1 and pepC10 antigens. Recombinant VlsE1 protein was
produced using Escherichia coli Sure2 with a pVlsE1-His3 fusion protein
plasmid construct (supplied by S. Norris, University of Texas Medical School,
Houston, TX) and was purified using His and heparin affinity columns (27).
Synthetic pepC10 (PVVAESPKKP-OH) was obtained from NeoMPS, Inc.
(San Diego, CA).

Multiplex microsphere assay. The AtheNA Multi-Lyte test system (Zeus Sci-
entific, Inc., Branchburg, NJ) is a sandwich immunoassay based on flow cyto-
metric separation of fluorescent microparticles by use of Luminex xMAP tech-
nology (Luminex Corp., Austin, TX) (20). Briefly, multiple sets of 5.6-�m
polystyrene beads are each impregnated with fluorescent dyes that give them
distinct spectral signatures (20). For this study, VlsE1 and pepC10 antigens were
covalently bound to the surfaces of separate sets of beads. All patient samples
and assay controls were diluted 1:21 by combining 10 �l of specimen with 200 �l
of the specimen diluent and mixing them for 30 s on a shaker plate at 800 rpm.
A 50-�l mixture of bead sets containing VlsE1-conjugated microspheres, 4 cal-
ibrators, and a bead set to detect nonspecific binding was added to each filtration
well, resuspended by vortexing and sonication for 30 s each, and then incubated
with 10 �l of diluted specimen for 30 min. All incubation steps required mixing
on a shaker plate as described above, followed by vacuum washing with 200 �l of
phosphate-buffered saline (PBS) three times. The bead sets were incubated with
150 �l of phycoerythrin (PE)-labeled goat anti-human IgG gamma antibody
(Moss Inc., Pasadena, MD) for 30 min and then vacuum washed. A 50-�l mixture
containing 2 additional bead sets was added to each filtration well: 1 set was
conjugated with VlsE1, and the other was conjugated with pepC10. The bead sets
were resuspended as described above, and another 10 �l of diluted specimen was
added to each well and incubated for 30 min. The bead sets were vacuum washed,
and 150 �l of PE-labeled goat anti-human IgM mu (Moss, Inc.) was added to
each well and incubated for 30 min. After being vacuum washed, the bead sets
were resuspended in 150 �l of PBS and the results were read by a flow cytometer.
Using a proprietary method, IgG and IgM levels were measured simultaneously,
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using a single excitation laser and a single reporter molecule (PE). Antibody
levels were measured in AtheNA units (AU), but the test combination (AtheNA
bioinformatic score [BIS]) was computed using the algorithm described below
and rescaled such that a score of �1.0 was considered positive; interpretive
software is available through the corresponding author. All patient specimens
were processed by S. J. Wong at the NYSDOH; control specimens were pro-
cessed by both Zeus Scientific, Inc., and the NYSDOH.

Routine tests. All specimens were tested with the following assays: (i) Zeus
whole-cell EIA, (ii) IgG and IgM Western blotting for whole-cell EIA-positive
and -equivocal specimens (MarDx Diagnostics, Inc., Carlsbad, CA), and (iii) C6
IgG/IgM EIA (Immunetics, Inc., Boston, MA). All assays were performed in
accordance with the manufacturers’ instructions. Western blots were interpreted
in accordance with current CDC guidelines for 2-tier testing (9).

Multiplex assay precision. For standardization purposes, individual cutoffs for
VlsE1-IgG and pepC10-IgM antibodies were determined in AU by Zeus Scien-
tific, Inc. (Branchburg, NJ). The cutoff for VlsE1-IgG, 31 AU/ml, was 8 standard
deviations above the mean for 25 healthy controls from an area where LD is not
endemic, while the cutoff for pepC10-IgM, 24 AU/ml, was 4 standard deviations
above the mean. There were 3 testing sites and 2 technicians at each site. Five
serum standards were prepared, with antibody concentrations ranging from neg-
ative and near the cutoff to highly positive. Each standard was run in triplicate
twice each day for 5 consecutive days by each technician at each location.

Statistical methods. A broad selection of second-tier classifiers was created to
provide alternatives to Western blotting. Each multivariate classifier, including
partial ROC regression models, generated a composite score for each sample by
using a weighted linear combination of pepC10-IgM and VlsE1-IgG antibody
levels measured by the multiplex assay. Examples of second-tier classifiers in-
cluded VlsE1-IgG alone, pepC10-IgM alone, binary combinations of pepC10-
IgM and VlsE1-IgG using individual antibody cutoffs, and combinations of an-
tibody levels by logistic likelihood regression, full ROC regression, partial ROC
regression trained using the 95% to 100% specificity portion of the ROC curve
(95% pROC), and partial ROC regression trained using the 60% to 100%
specificity portion of the ROC curve (60% pROC). See Appendix A for a
detailed description of the partial ROC regression technique. The 95% pROC
analysis focused on achieving high specificity, while the 60% pROC analysis
emphasized high sensitivity.

To determine the optimal training set, each classifier was trained on each
disease stage from data set A, using all samples from a given stage. A classifier
trained on one disease stage from data set A was then tested against the other
disease stages in data set A and against data set B. Training controls consisted of
249 sera from an area where LD is not endemic, and testing controls consisted
of 545 samples from blood donors from both areas where LD is endemic and
those where it is not endemic, as well as samples from patients with potential
cross-reacting conditions. Partial ROC areas were used to identify the optimal
disease stage for training purposes; otherwise, classifier sensitivity and specificity
were used to compare performances. A median bootstrap method was used to
generate 95% confidence intervals for the differences between classifier sensi-
tivities, specificities, and partial ROC areas (16).

Classifier sensitivities were compared at both Western blot specificity (95.6%)
and 99.0% specificity among 545 testing controls, corresponding to 69.2% spec-
ificity and 93.6% specificity, respectively, among the 78 EIA-reactive testing
controls (the target population for second-tier assays). Classifier performance
was compared at 99% specificity because the latter value generates a higher test
accuracy in low-incidence settings (2, 15). Our primary end point was to deter-
mine if the overall sensitivity of the multiplex assay used as a second-tier test was
noninferior to Western blotting (margin, �10%; two-tailed � � 0.05) at 95.6%
specificity. As a secondary end point, the overall specificity of the multiplex assay
was compared to that of Western blotting by bootstrapping at an equivalent
sensitivity. Post-antibiotic-treatment sera (group 2) were excluded from the anal-
ysis of primary and secondary end points because their significance was uncer-
tain.

Within-site variance was determined using one-way analysis of variance
(ANOVA). Because only three test sites were utilized, calculating between-site
variance using 2 degrees of freedom might significantly overestimate its true
value. Therefore, between-site variance was estimated by dividing the sums of
squares between sites by 60, the number of test repetitions at each site.

In addition to the bootstrap technique, differences in classifier performance
were assessed using the Wilcoxon rank sum test where appropriate. All reported
P values were calculated using the latter test unless stated otherwise. MATLAB
software was used to estimate regression models, perform the ANOVA, and
make statistical comparisons (MathWorks, Natick, MA).

RESULTS

Choice of training set among samples from patients with
disease. Table 1 evaluates the impact of using training data
from different disease stages to maximize the AUC between
95% and 100% specificities and between 60% and 100% spec-
ificities. We observed no significant advantage to using training
data from one disease stage to maximize the AUC for any
other disease stage for a given partial ROC classifier; the same
observation held true for logistic likelihood regression and full
ROC regression classifiers (data not shown). Therefore, we
were not able to identify disease stage-specific classifiers. By
training the 95% pROC classifier using stage II and III data
and the 60% pROC classifier using early-acute-phase data, we
were able to validate both classifiers against early-convales-
cent-phase data with little risk of overfitting (i.e., overestimat-
ing the true performance).

Choice of training quantile for controls. We evaluated the
following specificity quantiles to train partial ROC regression
classifiers: 60% to 100%, 80% to 100%, 90% to 100%, and
95% to 100% specificities. The overall sensitivity at Western
blot specificity (95.6%) was the same using either the 60% to
100% or 80% to 100% specificity quantile but fell as the spec-
ificity quantile narrowed to between 90% and 100% (data not
shown). A more detailed comparison of the 60% pROC and
95% pROC classifiers is described below.

Classifier scatterplot. The log-log scatterplot in Fig. 1 dem-
onstrates VlsE1-IgG and pepC10-IgM antibody levels by dis-
ease stage and illustrates the ability of the 95% pROC and
60% pROC regression classifiers to distinguish EIA-reactive
case-patients from controls; these samples represent the target
population of a second-tier assay.

Heuristic comparison of classifier performances. The ROC
curves in Fig. 2A provide a heuristic means by which to com-
pare classifier performances among EIA-reactive early-conva-
lescent-phase sera (76 EIA-positive and 2 EIA-equivocal sera)
and controls (57 EIA-positive and 21 EIA-equivocal sera).
Between 80% and 100% specificities, the 95% pROC and

TABLE 1. Partial ROC regression model performance by disease
stage, as measured by the partial AUCa

Specificity quantile and
disease stage (no. of cases)

Classifier training set

EA EC II/III EC�II/IIIb

95% to 100% specificity
training quantile

EA (79) 0.4036 0.4087 0.4144 0.4133
EC (82) 0.7296 0.7341 0.7645 0.7436
II/III (47) 0.9252 0.9352 0.9640 0.9580
EC�II/IIIb (129) 0.8010 0.8067 0.8373 0.8216

60% to 100% specificity
training quantile

EA (79) 0.5973 0.5976 0.5875 0.5948
EC (82) 0.8558 0.8558 0.8434 0.8558
II/III (47) 0.9815 0.9814 0.9836 0.9824
EC�II/IIIb (129) 0.9016 0.9016 0.8948 0.9017

a Each partial AUC was rescaled by dividing the measured partial AUC by the
maximum possible AUC for a given specificity quantile. Abbreviations: EA, stage
I, early acute phase; EC, stage I, early convalescent phase; II/III, stages II and
III; EC�II/III, combined data sets.

b Represents all group 1 sera.
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logistic regression models outperformed other classifiers, in-
cluding single-antibody assays. Between 60% and 80% speci-
ficities, the 60% pROC and VlsE1-IgG classifiers demon-
strated greater sensitivity than the other models, including
Western blotting. Potential binary combinations of VlsE1-IgG
and pepC10-IgM antibodies are represented by golden dots in
each panel of Fig. 2; by varying the cutoff for each antibody
separately, we could generate a range of sensitivities while
maintaining the same specificity (or vice versa). The partial
ROC regression models displayed in Fig. 2A appear more
sensitive than most possible binary combinations at any given
specificity.

Figure 2B compares classifier performances among 2-tier
test-positive samples from data set B. Because no classifier for
data set B could generate a sensitivity that exceeded that of
Western blotting, we could determine only the relative sensi-
tivities of alternative classifiers for that data set; real differ-
ences between classifiers may be muted by this sensitivity ceil-
ing. Data set B (Fig. 2B) demonstrated the same relative
sensitivities among classifiers between 80% and 100% speci-
ficities as those with data set A (Fig. 2A). The partial ROC
regression classifiers in Fig. 2B also appear more sensitive than
most possible binary combinations at any given specificity.

Statistical comparison of classifier performances. In order
to identify the best model(s), we compared classifier sensitiv-
ities for two data sets at two different specificities (Table 2).
Because the proposed multiplex assay is part of a 2-tiered
approach, it was necessary to consider all early-convalescent-
phase sera from data set A in calculating overall test perfor-
mance. Among early-convalescent-phase sera, the 95% pROC
and logistic regression classifiers provided the best sensitivity at
99% specificity; combining antibody levels using these regres-
sion techniques generated 65.9% sensitivity, compared to

53.7% for VlsE-IgG alone and 48.8% for pepC10-IgM alone
(P � 0.05 by bootstrapping for each antibody).

At Western blot specificity (95.6%), the 60% pROC and full
ROC classifiers provided optimal sensitivity among early-con-
valescent-phase sera and were statistically superior to (i) West-
ern blotting (difference in sensitivity, 20.7%; 95% confidence
interval [95% CI], 12.1% to 30.9%), (ii) the 95% pROC model
(difference in sensitivity, 9.7%; 95% CI, 4.0% to 16.2%), and
(iii) the logistic model (difference in sensitivity, 11.0%; 95%
CI, 4.8% to 17.7%). The performance of VlsE1-IgG assay
alone at 95.6% specificity was inconsistent between data sets: it
was equal to that of the 60% pROC model with data set A but
significantly less sensitive than this model with data set B (P �
0.05 by bootstrapping); in contrast, the performance of the
60% pROC model appeared robust for the choice of data sets.
IgM antibody to pepC10 was the least sensitive assay with both
data sets at 95.6% specificity.

Differences in classifier performance can also be ex-
pressed in terms of specificity at a fixed sensitivity. Compar-
ing the specificity of regression classifiers to that of binary
combinations is difficult because there is a range of separate
cutoffs for VlsE1-IgG and pepC10-IgM antibodies that to-
gether can generate the same sensitivity but produce differ-
ent specificities. To aid in comparisons, we identified a sin-
gle cutoff value in AtheNA units for both antibodies, such
that the overall sensitivity of the binary combination was
equal to that of the 95% pROC classifier among samples
from data set A; although the test sensitivity was 70.2% for
both classifiers, the specificity of the 95% pROC model was
1.3% higher than that of the binary combination (95.6%
versus 94.3%; 95% CI for the difference, 0.6% to 2.2%). The
latter difference translated to a 9% improvement in speci-
ficity among EIA-reactive controls. When the sensitivity of

FIG. 1. Log-log scatterplot of VlsE1-IgG and pepC10-IgM antibody levels in EIA-reactive sera from case patients (n � 193) and controls (n �
78) from data set A. All antibody levels are reported in AtheNA units. Specimens above and to the right of each classifier curve are positive by
that classifier. Abbreviations: Early60pROC, 60% pROC trained on early-acute-phase sera; Late95pROC, 95% pROC trained on disease stage
II and III sera; Early Conv, early convalescent phase; stages II/III, stage II and III sera; Post Treat, post-antibiotic-treatment (group 2) sera.
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the 95% pROC classifier was statistically equivalent to that
of Western blotting (124/208 samples [59.6%] versus 130/
208 samples [62.5%]; 95% CI for the difference, �8.3% to
�2.4% among stages I through III combined), the regres-
sion model was 3.5% more specific than Western blotting
(99.1% versus 95.6%; 95% CI for the difference, 1.9% to
5.1%); this difference translated to a 24.4% improvement in
specificity among EIA-reactive controls.

Assay precision. For VlsE-IgG, the within-site coefficient of
variation ranged from 19.2% for negative samples to 5.8% for
highly positive samples; the between-site coefficient of variation
ranged from 13.4% for moderately positive samples to 11.6% for
negative samples and 5.4% for highly positive samples. For
pepC10-IgM, the within-site coefficient of variation ranged from
15.3% for negative samples to 9.8% for highly positive samples;

the between-site coefficient of variation ranged from 10.6% for
low-positive samples to 7.5% for negative samples and 1.3% for
highly positive samples. The dynamic range for each antibody was
approximately 4 log AtheNA units (data not shown).

Comparison of multiplex assay to Western blotting. The
standard 2-tier model enjoys a specificity advantage over sin-
gle-tier assays: because only EIA-reactive samples are evalu-
ated further, sera positive by Western blotting but negative by
EIA are eliminated from consideration. Some studies suggest
that Western blot specificity is improved 8% to 9% by includ-
ing a first-tier evaluation (11, 18, 25). The same phenomenon
was observed when the multiplex assay utilized a 60% pROC
classifier as the second tier of a 2-tiered approach: an initial
EIA improved the overall specificity of the multiplex assay by
10.3% (i.e., from 85.3% to 95.6%).

FIG. 2. (A) Classifier performances among EIA-reactive sera from patients with early-convalescent-phase disease for data set A (n � 78) and
among EIA-reactive controls (n � 78). (B) Classifier performances among standard 2-tier test-positive samples from data set B (n � 164) and
among EIA-reactive controls (n � 78). Abbreviations: Early60pROC, 60% pROC regression classifier trained using early-acute-phase sera;
Late95pROC, 95% pROC regression classifier trained using stage II/III sera; LateLR, logistic regression model trained using stage II/III sera;
VlsE, VlsE1-IgG; PepC10, pepC10-IgM. See the text for an explanation of the binary points.
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Employing the 60% pROC classifier as the second tier of a
2-tiered model, the multiplex assay was 20.7% more sensitive
than Western blotting for early-convalescent-phase disease
(Table 3) and 12.5% more sensitive for stages I through III
combined (156/208 samples [75%] versus 130/208 samples
[62.5%]; 95% CI for the difference, 8.1% to 17.1%; P � 0.008).
Because the early-acute-phase and convalescent-phase sera in
our study were not from independent groups, we also evalu-
ated classifier performance by using only early-convalescent-
phase and stage II/III sera (constituting all group 1 samples).
The multiplex assay was 16.3% more sensitive than Western

blotting with the latter group (120/129 samples [93.0%] versus
99/129 samples [76.7%]; 95% CI for the difference, 10.0% to
23.4%; P � 0.014).

The false-positive rates of both assays were identical (Table
4). Although positive assays among healthy blood donors from
areas of endemicity might be related to past B. burgdorferi
infection, the majority of false-positive results in our study
were due to IgM rather than IgG blots; prior infection might
have resulted in more positive IgG blots than we observed (41).

Four multiplex-positive samples from patients with stage
II/III disease were EIA positive in our laboratory but Western
blot negative by standard 2-tier criteria (MarDx, Carlsbad,
CA) (9). There was enough serum remaining to retest 3 of the
4 samples at a second reference laboratory (A. Steere, Massa-
chusetts General Hospital, Boston, MA), using a Western blot
with a VlsE stripe from a different manufacturer (Viralab,
Oceanside, CA). On retesting, sera from 2 patients with early
neurological disease were positive by EIA and IgM blotting but
failed to meet standard 2-tier criteria because they were col-
lected 45 and 64 days after disease onset (37); it is likely that
both patients had Lyme disease because (i) recent studies
suggest that IgM blots may be useful for diagnosis of neuro-
logical disease within 6 weeks of onset (40) and (ii) the first
patient demonstrated an IgG-VlsE band and the second pa-

TABLE 2. Sensitivities of classifiers used as second-tier assays with
2 data sets at 2 different specificitiesa,b

Sample group and classifier

Sensitivity at
specificity of:

99% 95.6%

All early convalescent-phase sera from
data set A (n � 82)

Logistic regressionc 0.6585 0.7805
95% pROCc 0.6585 0.7927
60% pROCd 0.6098 0.8902
Full ROC regressiond 0.5976 0.8902
VlsE1-IgG 0.5366 0.8902
Western blotting (IgG and IgM) NAe 0.6829

Two-tier test-positive sera from data set
B (n � 164)f

Logistic regressionc 0.6951 0.8963
95% pROCc 0.7134 0.8963
60% pROCd 0.5854 0.9268
Full ROC regressiond 0.5793 0.9268
VlsE1-IgG 0.5305 0.8354
Western blotting (IgG and IgM) NAe 1.00

a All 545 testing controls were used for analysis.
b See the text for pepC10-IgM data.
c Partial ROC regression (95% to 100% specificity quantile) and logistic clas-

sifiers were trained using all stage II/III sera from data set A.
d Partial ROC regression (60% to 100% specificity quantile) and full ROC re-

gression classifiers were trained using all early-acute-phase sera from data set A.
e NA, not applicable.
f All sensitivities for data set B are reported relative to that of Western

blotting.

TABLE 3. Sensitivity of Western blotting versus multiplex assay by disease stage

Stage (no. of cases)

Sensitivity (no. �%� of positive samples)

IgG blotting IgM blotting Either IgG or IgM
blotting 2-Tier blottinga Multiplex assayb

Early acute phase (79) 6 (7.6) 29 (36.7) 31 (39.2) 31 (39.2) 36 (45.7)
Early convalescent phase (82) 17 (20.7) 60 (73.2) 63 (76.8) 56 (68.3) 73 (89.0)c

Stages II and III combinedd (47) 39 (83.0) 32 (68.1) 45 (95.7) 43 (91.5) 47 (100)
Neuro/carditise (stage II) (18) 11 (61.1) 13 (72.2) 16 (88.8) 15 (83.3) 18 (100)
Arthritis (stage III) (29) 28 (96.6) 19 (65.5) 29 (100) 28 (96.6) 29 (100)

Posttreatmentf stages II and III (16) 13 (81.25) 4 (25) 13 (81.3) 13 (81.3) 16 (100)
Posttreatmentf stage I (18) 4 (22.2) 9 (50.0) 10 (55.6) 4 (22.2) 11 (61.1)g

a Standard 2-tier criteria were used for blot interpretation (9). Only IgG blots were used for diagnosis more than 30 days after disease onset.
b Employed as a second-tier test, using the 60% pROC classifier trained on early acute disease; the cutoff was set at 95.6% specificity.
c Difference in sensitivity versus 2-tier blot results, 20.7% (95% CI, 12.1 to 30.9%; P � 0.0009).
d All samples were group 1 sera. The difference in sensitivity of the multiplex assay versus 2-tier blotting was 8.5% (95% CI, 1.8% to 17.8%; P � 0.042).
e Early neurological disease or myocarditis.
f Post-antibiotic-treatment samples were group 2 sera.
g Difference in sensitivity versus 2-tier blot results, 38.9% (95% CI, 6.7% to 61.7%; P � 0.041).

TABLE 4. False-positive rates of Western blotting
versus multiplex assaya

Control group (no. of patients)

No. (%) of false-
positive results

Western
blot

Multiplex
assay

Blood donors from area of endemicity (300) 15 (5.0) 18 (6.0)
Blood donors from area where LD is not

endemic (150)
7 (4.7) 2 (1.3)

Donors with cross-reacting conditions (95) 2 (2.1) 4 (4.2)

Total (545) 24 (4.4) 24 (4.4)

a The cutoff for the 60% partial ROC classifier was set to generate the same
false-positive rate as that for Western blotting.
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tient had EM. A third patient, seen in 1982, had EM and
flu-like symptoms followed 1 month later by the onset of facial
palsy and meningitis; serologic testing was not available at that
time. Serology in the current study was positive only by EIA,
but additional serum was not available for retesting by the
second reference laboratory. The fourth sample came from a
patient with arthritis and was positive by both EIA and IgG
blotting on repeat testing. It is possible that differences in
Western blot reagents could have contributed to the discordant
results between reference laboratories. On the whole, our re-
sults suggest no significant difference in test performance be-
tween the multiplex assay and Western blotting for the 47
group 1 sera from patients with stage II/III disease (Table 3).
Although the multiplex assay was marginally more sensitive
than Western blotting for post-antibiotic-treatment sera
(group 2), persistently positive serology by either method was
not indicative of treatment failure.

The multiplex assay was slightly more sensitive than the C6
IgG/IgM EIA among Western blot-positive sera from data set
B (93% versus 86%) and among early-convalescent-phase sera
from data set A (89% versus 85%), although neither difference
was statistically significant. The multiplex assay was otherwise
equivalent to C6 IgG/IgM EIA and was equally specific (96%).

DISCUSSION

The current study evaluated a multiplex microsphere assay
for LD diagnosis using VlsE1-IgG and pepC10-IgM antibod-
ies. Because multiplex systems can perform multiple tests si-
multaneously in the same sample well, this technology lends
itself particularly to the study of LD, an illness with a complex
multiantibody host immune response (39). We explored the
use of regression classifiers to generate a single diagnostic
score from two separate antibody levels; given the importance
of high specificity for diagnostic tests for Lyme disease (39),
partial ROC regression models were utilized to maximize mul-
tiplex performance at specificities of �95%. The multiplex
assay used in this study performed as well as or better than
Western blotting as a second-tier test.

When the sensitivities of the 95% pROC regression model
and Western blotting were equivalent, the 95% pROC model
was 3.5% more specific than Western blotting (95% CI, 1.9%
to 5.1%). When the specificities of the 60% pROC regression
model and Western blotting were equivalent, the 60% pROC
regression model was significantly more sensitive than Western
blotting, being 20.7% more sensitive for early-convalescent-
phase disease (95% CI, 12.1% to 30.9%) and 12.5% more
sensitive overall (95% CI, 8.1% to 17.1%); about 2/3 of the
improvement in overall sensitivity was related to better detec-
tion of early-convalescent-phase disease.

No one classifier was superior under all conditions. If the
objective of testing is to rule out Lyme disease in a low-risk
setting, then the 95% pROC model is a reasonable choice
because of its high specificity; in some instances, the pretest
risk of LD may be low enough to justify deferring testing
altogether (Appendix B). If the clinical picture suggests stage
II or III Lyme disease, then the 60% pROC model may be
preferred because of its high sensitivity.

Logistic likelihood regression analysis is one of the most
commonly used statistical methods for both disease classifica-

tion and prediction; it has been used to interpret the antibody
response to B. burgdorferi by Western blotting (24), kinetic EIA
(34), and flagellin-based EIA (13). Unlike logistic models,
which maximize the likelihood of disease at a given specificity,
ROC regression methods maximize the AUC (29). Pepe et al.
(31) demonstrated that regression models that optimize the
AUC can offer advantages over logistic models when selected
biomarkers are combined. Data from set A demonstrated that
full ROC regression and 60% partial ROC regression models
were significantly more sensitive than the logistic model at
Western blot specificity (95.6%), reinforcing the value of AUC
optimization methods for classifier development.

Western blotting was only 69.2% specific among our EIA-
reactive control sera, reducing its overall specificity to 95.6%;
this specificity is lower than that reported by other investiga-
tors (5, 40). Of all false-positive Western blots in the current
study, 79% were due solely to IgM antibody, illustrating the
limitations associated with that assay (36). If achieving 99%
specificity among the healthy population is an important
benchmark from a public health perspective (2), then specific-
ity among our EIA-reactive controls would need to be im-
proved to at least 93.6%. Second-tier approaches have been
proposed that eliminate IgM blotting by using IgG Western
blots in conjunction with a VlsE band (5). The multiplex assay
described above offers another alternative.

There are multiple limitations to the current study. The
number of patients with stage II and III disease was insufficient
to detect significant differences in assay performance. Some
samples from data set A and all samples from data set B were
collected retrospectively, potentially biasing the study popula-
tion (30). We were unable to produce stage-specific classifiers,
but it is possible that expanding the number of antibodies
assayed might help to achieve that goal (e.g., IgGs to DbpA
and BmpA). Although we detected benefits from utilizing
VlsE1-IgG and pepC10-IgM antibodies together, we cannot
extrapolate our results to other antibody combinations. Each
test panel requires careful evaluation of classifier performance
over a range of acceptable specificities. Because there was no
clinical information accompanying the sera in data set B, we
cannot be certain how many 2-tier test-positive patients actu-
ally had Lyme disease. We did not assess the role of paired
acute- and convalescent-phase serology; demonstrating expan-
sion of the IgG immune response by Western blotting may be
helpful in diagnosing recent disease (40).

A full decision-analytic evaluation comparing the multiplex
assay to Western blotting is warranted but is beyond the scope
of this study. We did not calculate costs or benefits related to
different clinical outcomes, nor did we provide a means to
determine the pretest probability of LD. Formal decision anal-
ysis requires these elements, along with knowledge of intrinsic
test performance, to help guide test utilization (Appendix B).
Integrating pretest risk assessment into clinical workflow is a
goal that has not yet been realized; computer-based decision
support systems may soon assist with that assessment (23).

A prospective study using the current multiplex assay, par-
ticularly for patients with stage II or III disease, would address
the above methodological issues and provide guidance to help
integrate clinical with laboratory information. The score that
we create through our regression model can be expressed as a
likelihood ratio and utilized in a Bayesian context (i.e., pretest
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and posttest probabilities). We believe that the multiplex plat-
form with employment of ROC regression techniques offers
substantial promise for improving Lyme disease diagnosis.

APPENDIX A

Partial ROC regression classifier. The score function is derived from
a linear combination of test results, 	TY, where D is the disease,
Y1, . . ., Yk is a set of k diagnostic tests for D, Y is a vector of
diagnostic test results y1, . . ., yk, D
 is not D, 	 is a vector of coef-
ficients 	1, . . ., 	k for Y, and 	T is the transpose of 	. For a given
cutoff value, c, a test is positive if 	TY � c.

With ROC regression, the test panel and 	 coefficients are chosen
simultaneously to maximize the AUC of the empirical ROC, as ap-
proximated by the following equation:

AUC(	) �
1

nDnH �i � D, j � H I�	TYi � 	TYj

where I is the indicator function, N is the total number of study
subjects, nD is the number of patients with disease D, nH is the number
of healthy controls, nD � nH � N, i � 1, . . ., nD, i � D are patients
with disease, j � 1, . . ., nH, and j � H are healthy controls. The ROC
curve is smoothed using the sigmoid function as follows:

Sn�x � 1/�1 � exp� � x�

wherein bias related to values of x close to zero is reduced by intro-
ducing a series of positive numbers, �n, such that Sn(x) � S(x/�n) and
�n approaches zero as n approaches infinity (29). An optimal set of 	
coefficients is determined by an iterative gradient descent algorithm
using the sigmoid maximum rank correlation estimator (SMRC) de-
scribed by Ma and Huang (22, 29), as follows:

	(optimal) � argmax �Rn (	) �
1

nDnH �i � D, j � H Sn�	
T �Yi � Yj��.

Raw test results are transformed into a likelihood ratio, and a logistic
likelihood model is used to select the initial 	 coefficients and anchor
marker. If feature selection is desired, then a gradient LASSO is
applied to the SMRC; for tuning, an L1 constraint of �u is chosen
using a V-fold cross-validation technique (26, 29). If the regression
features are already known, as in the current study, then the SMRC
alone is used to optimize 	.

If t0 is the maximum false-positive rate permitted by a physician
interpreting the tests and is a multiple of 1/nH, then the 	 coefficients
and test panel are chosen simultaneously through partial ROC regres-
sion in order to generate the largest area below the partial ROC curve
for the (1 � t0) quantile of individuals without disease; the score cutoff,
c, is chosen such that SH(c) � t0 (the survival function of patients
without disease with a score of c) when the score function 	TYj � c.
The features are fitted to a truncated set of controls by using the above
sigmoid maximum rank correlation estimator and gradient LASSO
(14, 26, 29, 34). If the features are already known, then the SMRC
estimator alone is used to optimize 	; we observed estimator conver-
gence within 100 iterations.

APPENDIX B

Test/no-test cutoff � [1 � B(sensitivity)/C(1 � specificity)]�1;
where B is the regret associated with failing to treat disease, C is the

regret associated with treating someone without disease, and the sen-
sitivity and specificity of a given test are known (4).
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