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Estimating False Discovery Proportion Under
Arbitrary Covariance Dependence

Jianqing FAN, Xu HAN, and Weijie GU

Multiple hypothesis testing is a fundamental problem in high-dimensional inference, with wide applications in many scientific fields. In
genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any single-nucleotide polymorphisms
(SNPs) are associated with some traits and those tests are correlated. When test statistics are correlated, false discovery control becomes
very challenging under arbitrary dependence. In this article, we propose a novel method—based on principal factor approximation—that
successfully subtracts the common dependence and weakens significantly the correlation structure, to deal with an arbitrary dependence
structure. We derive an approximate expression for false discovery proportion (FDP) in large-scale multiple testing when a common threshold
is used and provide a consistent estimate of realized FDP. This result has important applications in controlling false discovery rate and FDP.
Our estimate of realized FDP compares favorably with Efron’s approach, as demonstrated in the simulated examples. Our approach is further
illustrated by some real data applications. We also propose a dependence-adjusted procedure that is more powerful than the fixed-threshold
procedure. Supplementary material for this article is available online.

KEY WORDS: Arbitrary dependence structure; False discovery rate; Genome-wide association studies; High-dimensional inference;
Multiple hypothesis testing.

1. INTRODUCTION

Multiple hypothesis testing is a fundamental problem in mod-
ern research for high-dimensional inference, with wide appli-
cations in scientific fields, such as biology, medicine, genetics,
neuroscience, economics, and finance. For example, in genome-
wide association studies, massive amount of genomic data (e.g.,
single-nucleotide polymorphism (SNPs), expression quantita-
tive trait loci (eQTLs)) are collected and tens of thousands of
hypotheses are tested simultaneously to find if any of these
genomic data are associated with some observable traits (e.g.,
blood pressure, weight, some disease); in finance, thousands of
tests are performed to see which fund managers have winning
ability (Barras, Scaillet, and Wermers 2010).

False discovery rate (FDR) was introduced in the celebrated
article by Benjamini and Hochberg (1995) for large-scale mul-
tiple testing. By definition, FDR is the expected proportion of
falsely rejected null hypotheses among all of the rejected null
hypotheses. The classification of tested hypotheses can be sum-
marized in Table 1.

Various testing procedures have been developed for control-
ling FDR, among which there are two major approaches. One
is to compare the p-values with a data-driven threshold as in
Benjamini and Hochberg (1995). Specifically, let p(1) ≤ p(2) ≤
· · · ≤ p(p) be the ordered observed p-values of p hypotheses. De-
fine k = max{i : p(i) ≤ iα/p} and reject H 0

(1), . . . , H
0
(k), where

α is a specified control rate. If no such i exists, reject no hy-
pothesis. The other related approach is to fix a threshold value
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t, estimate the FDR, and choose t so that the estimated FDR is
no larger than α (Storey 2002). Finding such a common thresh-
old is based on a conservative estimate of FDR. Specifically, let
̂FDR(t) = p̂0t/(R(t) ∨ 1), whereR(t) is the number of total dis-
coveries with the threshold t and p̂0 is an estimate of p0. Then,
solve t such that ̂FDR(t) ≤ α. The equivalence between the two
methods has been theoretically studied by Storey, Taylor, and
Siegmund (2004) and Ferreira and Zwinderman (2006).

Both procedures have been shown to control the FDR for in-
dependent test statistics. However, in practice, test statistics are
usually correlated. Although Benjamini and Yekutieli (2001)
and Clarke and Hall (2009) argued that when the null distribu-
tion of test statistics satisfies some conditions, the dependence
case in the multiple testing is asymptotically the same as the
independence case, multiple testing under general dependence
structures is still a very challenging and important open problem.
Efron (2007) pioneered the work in the field and noted that corre-
lation must be accounted for in deciding which null hypotheses
are significant because the accuracy of FDR techniques will be
compromised in high correlation situations. There are several
articles that show that the Benjamini–Hochberg (B–H) proce-
dure or Storey’s procedure can control FDR under some special
dependence structures, for example, positive regression depen-
dence on subsets (Benjamini and Yekutieli 2001) and weak de-
pendence (Storey, Taylor, and Siegmund 2004). Sarkar (2002)
also showed that FDR can be controlled by a generalized step-
wise multiple testing procedure under positive regression de-
pendence on subsets. However, even if the procedures are valid
under these special dependence structures, they will still suffer
from efficiency loss without considering the actual dependence
information. In other words, there are universal upper bounds
for a given class of covariance matrices.

In this article, we develop a procedure for high-dimensional
multiple testing, which can deal with any arbitrary dependence
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Table 1. Classification of tested hypotheses

Number Number
Number not rejected rejected Total

True null U V p0

False null T S p1

p − R R p

structure and fully incorporate the covariance information. This
is in contrast with previous articles that considers multiple test-
ing under special dependence structures; for example, Sun and
Cai (2009) developed a multiple testing procedure where param-
eters underlying test statistics follow a hidden Markov model,
and Leek and Storey (2008) and Friguet, Kloareg, and Causeur
(2009) studied multiple testing under the factor models. More
specifically, consider the test statistics

(Z1, . . . , Zp)T ∼ N ((µ1, . . . , µp)T ,�),

where � is known and p is large. We would like to simulta-
neously testH0i : µi = 0 versusH1i : µi �= 0 for i = 1, . . . , p.
Note that � can be any nonnegative definite matrix. Our proce-
dure is called principal factor approximation (PFA). The basic
idea is to first take out the principal factors that derive the strong
dependence among observed data Z1, . . . , Zp and to account
for such dependence in calculation of false discovery proportion
(FDP). This is accomplished by the spectral decomposition of �

and taking out the largest common factors so that the remaining
dependence is weak. We then derive the asymptotic expression
of the FDP, defined as V/R, which accounts for the strong de-
pendence. The realized but unobserved principal factors that
derive the strong dependence are then consistently estimated.
The estimate of the realized FDP is obtained by substituting the
consistent estimate of the unobserved principal factors.

We are especially interested in estimating FDP under the
high-dimensional sparse problem, that is, p is very large, but the
number of µi �= 0 is very small. In Section 2, we will explain
the situation under which � is known. Sections 3 and 4 present
the theoretical results and the proposed procedures. In Sec-
tion 5, the performance of our procedures is critically evaluated
by various simulation studies. Section 6 is about the real data
analysis. All the proofs are relegated to the Appendix and the
Supplementary material.

2. MOTIVATION OF THE STUDY

In genome-wide association studies, consider p SNP genotype
data for n individual samples, and further suppose that a response
of interest (i.e., gene expression level or a measure of phenotype
such as blood pressure or weight) is recorded for each sample.
The SNP data are conventionally stored in an n× p matrix
X = (xij ), with rows corresponding to individual samples and
columns corresponding to individual SNPs . The total number
n of samples is in the order of hundreds, and the number p of
SNPs is in the order of tens of thousands.

Let Xj and Y denote, respectively, the random variables that
correspond to the jth SNP coding and the outcome. The biologi-
cal question of the association between genotype and phenotype
can be restated as a problem in multiple hypothesis testing, that

is, the simultaneous tests for each SNP j of the null hypothesis
Hj of no association between the SNP Xj and Y . Let {Xij }ni=1

be the sample data of Xj , {Y i}ni=1 be the independent sample
random variables of Y . Consider the marginal linear regression
between {Y i}ni=1 and {Xij }ni=1:

(αj , βj ) = argminaj ,bj
1

n

n∑
i=1

E
(
Y i − aj − bjX

i
j

)2
,

j = 1, . . . , p. (1)

where expectation is taken conditionally given {Xij }ni=1.

We wish to simultaneously test the hypotheses

H0j : βj = 0 versus H1j : βj �= 0, j = 1, . . . , p (2)

to see which SNPs are correlated with the phenotype.
Recently, statisticians have shown increasing interest in the

high-dimensional sparse problem: although the number of hy-
potheses to be tested is large, the number of false nulls (βj �= 0)
is very small. For example, among 2000 SNPs, there are maybe
only 10 SNPs that contribute to the variation in phenotypes or
certain gene expression level. Our purpose is to find these 10
SNPs by multiple testing with some statistical accuracy.

Because of the sample correlations among {Xij }i=n,j=pi=1,j=1 , the
least-square estimators {β̂j }pj=1 for {βj }pj=1 in (1) are also cor-
related. The following result describes the joint distribution of
{β̂j }pj=1. The proof is straightforward.

Proposition 1. Let β̂j be the least-square estimator for βj
in (1) based on n data points, rkl be the sample correlation
between Xk and Xl and skk be the sample standard deviation
of Xk . Assume that the conditional distribution of Y i given
Xi1, . . . , X

i
p is N (µ(Xi1, . . . , X

i
p), σ 2). Then, conditioning on

{Xij }i=n,j=pi=1,j=1 , the joint distribution of {β̂j }pj=1 is (β̂1, . . . , β̂p)T ∼
N ((β1, . . . , βp)T ,�∗), where the (k, l)th element in �∗ is �∗

kl =
σ 2rkl/(nskksll).

For ease of notation, let Z1, . . . , Zp be the standardized ran-
dom variables of β̂1, . . . , β̂p, that is,

Zi = β̂i

SD(β̂i)
= β̂i

σ/(
√
nsii)

, i = 1, . . . , p. (3)

In the previous equation, we implicitly assume that σ is known
and the above standardized random variables are Z-test statistics.
The estimate of residual variance σ 2 will be discussed in Section
6 via refitted cross-validation (RCV; Fan, Guo, and Hao 2012).
Then, conditioning on {Xij },

(Z1, . . . , Zp)T ∼ N ((µ1, . . . , µp)T ,�), (4)

where µi = √
nβisii/σ and � has the (k, l)th element as rkl . Si-

multaneously testing (2) based on (β̂1, . . . , β̂p)T is thus equiv-
alent to testing

H0j : µj = 0 versus H1j : µj �= 0, j = 1, . . . , p (5)

based on (Z1, . . . , Zp)T .
In (4), � is the population covariance matrix of

(Z1, . . . , Zp)T , and is known based on the sample data {Xij }.
The covariance matrix � can have arbitrary dependence struc-
ture. We would like to clarify that � is known and there is no
estimation of the covariance matrix ofX1, . . . , Xp in this setup.
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3. ESTIMATING FALSE DISCOVERY PROPORTION

From now on, assume that among all the p null hypotheses,
p0 of them are true and p1 hypotheses (p1 = p − p0) are false,
and p1 is supposed to be very small compared to p. For ease
of presentation, we let p be the sole asymptotic parameter, and
assume p0 → ∞ when p → ∞. For a fixed rejection threshold
t, we will reject those p-values no greater than t and regard them
as statistically significant. Because of its powerful applicabil-
ity, this procedure has been widely adopted; see, for example,
Storey (2002), Efron (2007, 2010), among others. Our goal is
to estimate the realized FDP for a given t in a multiple testing
problem (5) based on the observations (4) under an arbitrary
dependence structure of �. Our methods and results have direct
implications on the situation in which � is unknown, the set-
ting studied by Efron (2007, 2010) and Friguet, Kloareg, and
Causeur (2009). In the latter case, � needs to be estimated with
certain accuracy.

3.1 Approximation of FDP

Define the following empirical processes:

V (t) = #{true null Pi : Pi ≤ t},
S(t) = #{false null Pi : Pi ≤ t}, and

R(t) = #{Pi : Pi ≤ t},
where t ∈ [0, 1]. Then, V (t), S(t), and R(t) are the number
of false discoveries, the number of true discoveries, and the
number of total discoveries, respectively. Obviously, R(t) =
V (t) + S(t), and V (t), S(t), and R(t) are all random variables,
depending on the test statistics (Z1, . . . , Zp)T . Moreover, R(t)
is observed in an experiment, but V (t) and S(t) are both unob-
served.

By definition, FDP(t) = V (t)/R(t) and FDR(t) =
E[V (t)/R(t)]. One of the interests is to control FDR(t)
at a predetermined rate α, say 15%. There are also substantial
research interests in the statistical behavior of the number
of false discoveries V (t) and the false discovery proportion
FDP(t), which are unknown but realized given an experiment.
One may even argue that controlling FDP is more relevant,
since it is directly related to the current experiment.

We now approximate V (t)/R(t) for the high-
dimensional sparse case p1 
 p. Suppose (Z1, . . . , Zp)T ∼
N ((µ1, . . . , µp)T ,�) in which � is a correlation matrix. We
need the following definition for weakly dependent normal
random variables; other definitions can be found in Farcomeni
(2007).

Definition 1. Suppose (K1, . . . , Kp)T ∼ N ((θ1, . . . , θp)T ,
A). Then,K1, . . . , Kp are called weakly dependent normal vari-
ables, if

lim
p→∞p

−2
∑
i,j

|aij | = 0, (6)

where aij denote the (i, j )th element of the covariance matrix
A.

Our procedure is called PFA. The basic idea is to decompose
any dependent normal random vector as a factor model with
weakly dependent normal random errors. The details are shown
as follows. First, apply the spectral decomposition to the covari-

ance matrix �. Suppose the eigenvalues of � are λ1, . . . , λp
that have been arranged in decreasing order. If the correspond-
ing orthonormal eigenvectors are denoted as γ 1, . . . , γ p, then

� =
p∑
i=1

λiγ iγ
T
i . (7)

If we further denote A = ∑p

i=k+1 λiγ iγ
T
i for an integer k, then

‖A‖2
F = λ2

k+1 + · · · + λ2
p, (8)

where ‖ · ‖F is the Frobenius norm. Let L = (
√
λ1γ 1,

. . . ,
√
λkγ k), which is a p × k matrix. Then, the covariance

matrix � can be expressed as

� = LLT + A, (9)

and Z1, . . . , Zp can be written as

Zi = µi + bTi W +Ki, i = 1, . . . , p, (10)

where bi = (bi1, . . . , bik)T , (b1j , . . . , bpj )T = √
λjγ j , the fac-

tors are W = (W1, . . . ,Wk)T ∼ Nk(0, Ik), and the random er-
rors are (K1, . . . , Kp)T ∼ N (0,A). Furthermore, W1, . . . ,Wk

are independent of each other and independent of K1, . . . , Kp.
Changing a probability if necessary, we can assume that (10)
is the data-generation process. In expression (10), {µi = 0}
correspond to the true null hypotheses, while {µi �= 0} corre-
spond to the false ones. Note that although (10) is not exactly
a classical multifactor model because of the existence of de-
pendence among K1, . . . , Kp, we can nevertheless show that
(K1, . . . , Kp)T is a weakly dependent vector if the number of
factors k is appropriately chosen.

We now discuss how to choose k such that (K1, . . . , Kp)T

is weakly dependent. Denote by aij the (i, j )th element in the
covariance matrix A. If we have

p−1
(
λ2
k+1 + · · · + λ2

p

)1/2 −→ 0 as p → ∞, (11)

then by the Cauchy–Schwartz inequality

p−2
∑
i,j

|aij | ≤ p−1‖A‖F

= p−1(λ2
k+1 + · · · + λ2

p

)1/2 −→ 0 as p → ∞.

Note that
∑p

i=1 λi = tr(�) = p, so that (11) is self-normalized.
Note also that the left-hand side of (11) is bounded byp−1/2λk+1,
which tends to zero whenever λk+1 = o(p1/2). Therefore, we
can assume that λk > cp1/2 for some c > 0. In particular, if
λ1 = o(p1/2), the matrix � is weakly dependent and k = 0. In
practice, we always choose the smallest k such that√

λ2
k+1 + · · · + λ2

p

λ1 + · · · + λp
< ε

holds for a predetermined small ε, say, 0.01.

Theorem 1. Suppose (Z1, . . . , Zp)T ∼ N ((µ1, . . . , µp)T ,
�). Choose an appropriate k such that

(C0)

√
λ2
k+1 + · · · + λ2

p

λ1 + · · · + λp
= O(p−δ) for δ > 0.
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Let
√
λjγ j = (b1j , . . . , bpj )T for j = 1, . . . , k. Then,

lim
p→∞

{
FDP(t)

−
∑

i∈{true null}[�(ai(zt/2 + ηi)) +�(ai(zt/2 − ηi))]∑p

i=1[�(ai(zt/2 + ηi + µi)) +�(ai(zt/2 − ηi − µi))]

}
= 0 a.s.,

(12)

where ai = (1 − ∑k
h=1 b

2
ih)−1/2, ηi = bTi W with bi = (bi1, . . . ,

bik)T and W ∼ Nk(0, Ik) in (10), and �(·) and zt/2 = �−1(t/2)
are the cumulative distribution function and the t/2 lower quan-
tile of a standard normal distribution, respectively.

Note that condition (C0) implies thatK1, . . . , Kp are weakly
dependent random variables, but (11) converges to zero at some
polynomial rate of p.

Theorem 1 gives an asymptotic approximation for FDP(t) un-
der general dependence structure. To the best of our knowledge,
it is the first result to explicitly spell out the impact of de-
pendence. It is also closely connected with the existing results
for independence case and weak dependence case. Let bih = 0
for i = 1, . . . , p and h = 1, . . . , k in (10) and K1, . . . , Kp be
weakly dependent or independent normal random variables,
then it reduces to the weak dependence case or independence
case, respectively. In the above two specific cases, the numerator
of (12) is just p0t . Storey (2002) used an estimate for p0, result-
ing in an estimator of FDP(t) as p̂0t/R(t). This estimator has
been shown to control the FDR under independency and weak
dependency. However, for general dependency, Storey’s proce-
dure will not work well because it ignores the correlation effect
among the test statistics, as shown by (12). Further discussions
for the relationship between our result and the other leading
research for multiple testing under dependence are shown in
Section 3.4.

The results in Theorem 1 can be better understood by some
special dependence structures as follows. These specific cases
are also considered by Roquain and Villers (2011), Finner, Dick-
haus, and Roters (2007), and Friguet, Kloareg, and Causeur
(2009) under somewhat different settings.

Example 1. [Equal Correlation] If � has ρij = ρ ∈ [0, 1)
for i �= j , then we can write

Zi = µi + √
ρW +

√
1 − ρKi i = 1, . . . , p,

where W ∼ N (0, 1), Ki ∼ N (0, 1), and W and all Ki’s are in-
dependent of each other. Thus, we have

lim
p→∞

⎡⎣FDP(t)

− p0[�(d(zt/2 + √
ρW )) +�(d(zt/2 − √

ρW ))]∑p

i=1[�(d(zt/2 + √
ρW + µi)) +�(d(zt/2 − √

ρW − µi))]

⎤⎦
= 0 a.s.,

where d = (1 − ρ)−1/2.
Note that Delattre and Roquain (2011) studied the FDP in

a particular case of equal correlation. They provided a slightly
different decomposition of {Zi}pi=1 in the proof of Lemma 3.3
where the errors Ki’s have a sum equal to 0. Finner, Dickhaus,

and Roters (2007) in their Theorem 2.1 also showed a result
similar to Theorem 1 for the equal correlation case.

Example 2. [Multifactor Model] Consider a multifactor
model

Zi = µi + ηi + a−1
i Ki, i = 1, . . . , p, (13)

where ηi and ai are defined in Theorem 1 andKi ∼ N (0, 1) for
i = 1, . . . , p. All the Wh’s and Ki’s are independent of each
other. In this model, W1, . . . ,Wk are the k common factors. By
Theorem 1, expression (12) holds.

Note that the covariance matrix for model (13) is

� = LLT + diag
(
a−2

1 , . . . , a−2
p

)
. (14)

When {aj } is not a constant, columns of L are not necessarily
eigenvectors of �. In other words, when the principal component
analysis is used, the decomposition of (9) can yield a different
L and condition (11) can require a different value of k. In this
sense, there is a subtle difference between our approach and
that in Friguet, Kloareg, and Causeur (2009) when the principal
component analysis is used. Theorem 1 should be understood
as a result for any decomposition (9) that satisfies condition
(C0). Because we use principal components as approximated
factors, our procedure is called PFA. In practice, if one knows
that the test statistics come from a factor model structure (13),
a multiple testing procedure based on the factor analysis (14) is
preferable, since formula (12) becomes exact. In this case, the
matrices L from the principal analysis (9) and from the factor
analysis (14) are approximately the same when p is large, under
some mild conditions. On the other hand, when such a factor
structure is not granted, the principal component analysis is
more advantageous, due in part, to computational expediency
and theoretical support (Theorem 1).

In Theorem 1, since FDP is bounded by 1, taking expectation
on both sides of Equation (12) and by the Portmanteau lemma,
we have the convergence of FDR:

Corollary 1. Under the assumptions in Theorem 1,

lim
p→∞

⎧⎨⎩FDR(t) − E

×
[ ∑

i∈{true null}{�(ai(zt/2 + ηi)) +�(ai(zt/2 − ηi))}∑p

i=1{�(ai(zt/2 + ηi + µi)) +�(ai(zt/2 − ηi − µi))}
]⎫⎬⎭ = 0.

(15)

The expectation on the left-hand side of (15) is with respect
to standard multivariate normal variables (W1, . . . ,Wk)T ∼
Nk(0, Ik).

The proof of Theorem 1 is based on the following result.

Proposition 2. Under the assumptions in Theorem 1,

lim
p→∞

[
p−1R(t) − p−1

p∑
i=1

[�(ai(zt/2 + ηi + µi))

+�(ai(zt/2 − ηi − µi))]

]
= 0 a.s., (16)
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lim
p→∞

[
p−1

0 V (t) − p−1
0

∑
i∈{true null}

[�(ai(zt/2 + ηi))

+�(ai(zt/2 − ηi))]

]
= 0 a.s. (17)

The proofs of Theorem 1 and Proposition 2 are given in the
Appendix.

3.2 Estimating Realized FDP

In Theorem 1 and Proposition 2, the summation over the set
of true null hypotheses is unknown. However, due to the high
dimensionality and sparsity, both p and p0 are large and p1 is
relatively small. Therefore, we can use

p∑
i=1

[�(ai(zt/2 + ηi)) +�(ai(zt/2 − ηi))] (18)

as a conservative surrogate for∑
i∈{true null}

[�(ai(zt/2 + ηi)) +�(ai(zt/2 − ηi))]. (19)

Since only p1 extra terms are included in (18), the substitution
is accurate enough for many applications.

Recall that FDP(t) = V (t)/R(t), in which R(t) is observ-
able and known. Thus, only the realization of V (t) is un-
known. The mean of V (t) is E[

∑
i∈{true null} I (Pi ≤ t)] = p0t ,

since the p-values corresponding to the true null hypotheses
are uniformly distributed. However, the dependence structure
affects the variance of V (t), which can be much larger than
the binomial formula p0t(1 − t). Owen (2005) has theoreti-
cally studied the variance of the number of false discoveries.
In our framework, expression (18) is a function of iid stan-
dard normal variables. Given t, the variance of (18) can be
obtained by simulations and hence variance of V (t) is approxi-
mated via (18). Relevant simulation studies will be presented in
Section 5.

In recent years, there has been substantial interest in the real-
ized random variable FDP itself in a given experiment, instead of
controlling FDR, as we are usually concerned about the number
of false discoveries given the observed sample of test statistics,
rather than an average of FDP for hypothetical replications of
the experiment. See Genovese and Wasserman (2004), Mein-
shausen (2006), Efron (2007), Friguet, Kloareg, and Causeur
(2009), etc. In our problem, by Proposition 2, it is known that
V (t) is approximately

p∑
i=1

[�(ai(zt/2 + ηi)) +�(ai(zt/2 − ηi))]. (20)

Let

FDPA(t) =
( p∑
i=1

[�(ai(zt/2 + ηi)) +�(ai(zt/2 − ηi))]

)
/R(t),

if R(t) �= 0 and FDPA(t) = 0 when R(t) = 0. Given observa-
tions z1, . . . , zp of the test statistics Z1, . . . , Zp, if the unob-
served but realized factors W1, . . . ,Wk can be estimated by

Ŵ1, . . . , Ŵk , then we can obtain an estimator of FDPA(t) by

F̂DP(t)

= min

( p∑
i=1

[�(ai(zt/2 + η̂i)) +�(ai(zt/2 − η̂i))], R(t)

)
/R(t),

(21)

when R(t) �= 0 and F̂DP(t) = 0 when R(t) = 0. Note that in
(21), η̂i = ∑k

h=1 bihŴh is an estimator for ηi = bTi W.
The following procedure is one practical way to estimate

W = (W1, . . . ,Wk)T based on the data. For observed values
z1, . . . , zp, we choose the smallest 90% of |zi |’s, say. For ease
of notation, assume the first m zi’s have the smallest absolute
values. Then, approximately

Zi = bTi W +Ki, i = 1, . . . , m. (22)

The approximation from (10) to (22) stems from the intuition
that large |µi |’s tend to produce large |zi |’s as Zi ∼ N (µi, 1)
1 ≤ i ≤ p and the sparsity makes approximation errors negli-
gible. Finally, we apply the robust L1-regression to the equa-
tion set (22) and obtain the least-absolute deviation estimates
Ŵ1, . . . , Ŵk . We use L1-regression rather than L2-regression
because there might be nonzero µi involved in Equation (22)
and L1 is more robust to the outliers than L2. Other possible
methods include using penalized method such as least absolute
shrinkage and selection operator (LASSO) or smoothly clipped
absolute deviation (SCAD) to explore the sparsity. For example,
one can minimize

p∑
i=1

(
Zi − µi − bTi W

)2 +
p∑
i=1

pλ(|µi |)

with respect to {µi}pi=1 and W, where pλ(·) is a folded-concave
penalty function (Fan and Li 2001).

The estimator (21) performs significantly better than Efron’s
(2007) estimator in our simulation studies. One difference is
that in our setting � is known. The other is that we give a better
approximation as shown in Section 3.4.

Efron (2007) proposed the concept of conditional FDR. Con-
sider E(V (t))/R(t) as one type of FDR definitions (see Efron
2007, expression (46)). The numeratorE(V (t)) represents over-
replications of the experiment, and equals a constant p0t . But
if the actual correlation structure in a given experiment is taken
into consideration, then Efron (2007) defines the conditional
FDR as E(V (t)|A)/R(t), where A is a random variable that
measures the dependency information of the test statistics. Esti-
mating the realized value of A in a given experiment by Â, one
can have the estimated conditional FDR as E(V (t)|Â)/R(t).
Following Efron’s proposition, Friguet, Kloareg, and Causeur
(2009) gave the estimated conditional FDR byE(V (t)|Ŵ)/R(t),
where Ŵ is an estimate of the realized random factors W in a
given experiment.

Our estimator in (21) for the realized FDP in a given exper-
iment can be understood as an estimate of conditional FDR.
Note that (19) is actually E(V (t)|{ηi}pi=1). By Proposition 2, we
can approximate V (t) by E(V (t)|{ηi}pi=1). Thus, the estimate of
conditional FDRE(V (t)|{̂ηi}pi=1)/R(t) is directly an estimate of
the realized FDP V (t)/R(t) in a given experiment.
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3.3 Asymptotic Justification

Let w = (w1, . . . , wk)T be the realized values of {Wh}kh=1,
and ŵ be an estimator for w. We now show in Theorem 2 that
F̂DP(t) in (21) based on a consistent estimator ŵ has the same
convergence rate as ŵ under some mild conditions.

Theorem 2. If the following conditions are satisfied:

(C1) R(t)/p > H for H > 0 as p → ∞,
(C2) min1≤i≤p min(|zt/2 + bTi w|, |zt/2 − bTi w|) ≥ τ > 0,
(C3) ‖ŵ − w‖2 = Op(p−r ) for some r > 0,

then |̂FDP(t) − FDPA(t)| = O(‖ŵ − w‖2).

In Theorem 2, (C2) is a reasonable condition because zt/2
is a large negative number when threshold t is small and bTi w
is a realization from a normal distribution N (0,

∑k
h=1 b

2
ih) with∑k

h=1 b
2
ih < 1. Thus, zt/2 + bTi w or zt/2 − bTi w is unlikely close

to zero.
Theorem 3 shows the asymptotic consistency of L1-

regression estimators under model (22). Portnoy (1984b) proved
the asymptotic consistency for robust regression estimation
when the random errors are iid. However, that proof does not
work here because of the weak dependence of random errors.
Our result allows k to grow with m, even at a faster rate of
o(m1/4) imposed by Portnoy (1984b).

Theorem 3. Suppose (22) is a correct model. Let ŵ be the
L1-regression estimator:

ŵ ≡ argminβ∈Rk
m∑
i=1

∣∣Zi − bTi β
∣∣, (23)

where bi = (bi1, . . . , bik)T . Let w = (w1, . . . , wk)T be the real-
ized values of {Wh}kh=1. Suppose k = O(mκ ) for 0 ≤ κ < 1 − δ.
Under the assumptions

(C4)
∑p

j=k+1 λ
2
j ≤ η for η = O(m2κ ),

(C5)

lim
m→∞ sup

‖u‖=1
m−1

m∑
i=1

I
(∣∣bTi u

∣∣ ≤ d
) = 0

for a constant d > 0,
(C6) amax/amin ≤ S for some constant S when m → ∞, where

1/ai is the standard deviation of Ki ,
(C7) amin = O(m(1−κ)/2).

We have ‖ŵ − w‖2 = Op(
√

k
m

).

(C4) is stronger than (C0) in Theorem 1 as (C0) only requires∑p

j=k+1 λ
2
j = O(p2−2δ). (C5) ensures the identifiability of β,

which is similar to Proposition 3.3 in Portnoy (1984a). (C6) and
(C7) are imposed to facilitate the technical proof.

We now briefly discuss the role of the factor k. To make the
approximation in Theorem 1 hold, we need k to be large. On the
other hand, to make the realized factors estimable with reason-
able accuracy, we hope to choose a small k as demonstrated in
Theorem 3. Thus, the practical choice of k should be done with
care.

Since m is chosen as a certain large proportion of p, com-
bination of Theorem 2 and Theorem 3 thus shows the asymp-

totic consistency of F̂DP(t) based on L1-regression estimator of
w = (w1, . . . , wk)T in model (22):

|̂FDP(t) − FDPA(t)| = Op

(√
k

m

)
.

The result in Theorem 3 is based on the assumption that (22)
is a correct model. In the following, we will show that even if
(22) is not a correct model, the effects of misspecification are
negligible when p is sufficiently large. To facilitate the mathe-
matical derivations, we instead consider the least-square estima-
tor. Suppose we are estimating W = (W1, . . . ,Wk)T from (10).
Let X be the design matrix of model (10). Then, the least-square
estimator for W is ŴLS = W + (XTX)−1XT (µ + K), where
µ = (µ1, . . . , µp)T and K = (K1, . . . , Kp)T . Instead, we esti-
mate W1, . . . ,Wk based on the simplified model (22), which
ignores sparse {µi}. Then, the least-square estimator for W is
Ŵ

∗
LS = W + (XTX)−1XTK = W, in which we use the orthog-

onality between X and var(K). The following result shows that
the effect of misspecification in model (22) is negligible when
p → ∞ and when the least-square estimator is consistent.

Theorem 4. The bias due to ignoring nonnulls is controlled
by

‖ŴLS − W‖2 = ‖ŴLS − Ŵ
∗
LS‖2 ≤ ‖µ‖2

( k∑
i=1

λ−1
i

)1/2

.

In Theorem 1, we can choose appropriate k such that λk >
cp1/2 as noted in Theorem 1. Therefore,

∑k
i=1 λ

−1
i → 0 as p →

∞ is a reasonable condition. When {µi}pi=1 are truly sparse, it is
expected that ‖µ‖2 grows slowly or is even bounded so that the
bound in Theorem 4 is small. ForL1-regression, it is expected to
be even more robust to the outliers in the sparse vector {µi}pi=1.

3.4 Dependence-Adjusted Procedure

A problem of the method used thus far is that the ranking of
statistical significance is completely determined by the ranking
of the test statistics {|Zi |}. This is undesirable and can be ineffi-
cient for the dependent case: the correlation structure should also
be taken into account. We now show how to use the correlation
structure to improve the signal-to-noise ratio.

Note that by (10), Zi − bTi W ∼ N (µi, a
−2
i ), where ai is de-

fined in Theorem 1. Since a−1
i ≤ 1, the signal-to-noise ratio

increases, which makes the resulting procedure more powerful.
Thus, if we know the true values of the common factors W =
(W1, . . . ,Wk)T , we can use ai(Zi − bTi W) as the test statis-
tics. The dependence-adjusted p-values 2�(−|ai(Zi − bTi W)|)
can then be used. Note that this testing procedure has different
thresholds for different hypotheses based on the magnitude of
Zi , and has incorporated the correlation information among hy-
potheses. In practice, givenZi , the common factors {Wh}kh=1 are
realized but are unobservable. As shown in Section 3.2, they can
be estimated. The dependence-adjusted p-values are then given
by

2�
( − ∣∣ai(Zi − bTi Ŵ

)∣∣) (24)

for ranking the hypotheses, where Ŵ = (Ŵ1, . . . , Ŵk)T is an
estimate of the principal factors. We will show in Section 5
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by simulation studies that this dependence-adjusted procedure
is more powerful. The “factor-adjusted multiple testing proce-
dure” in Friguet, Kloareg, and Causeur (2009) shares a similar
idea.

3.5 Relation With Other Methods

Efron (2007) proposed a novel parametric model for V (t),

V (t) = p0t

[
1 + 2A

(−zt/2)φ(zt/2)√
2t

]
, (25)

where A ∼ N (0, α2) for some real number α and φ(·) stands
for the probability density function of the standard normal dis-
tribution. The correlation effect is explained by the dispersion
variate A. His procedure is to estimate A from the data and use

p0t

[
1 + 2Â

(−zt/2)φ(zt/2)√
2t

]/
R(t) (26)

as an estimator for realized FDP(t). Note that the above expres-
sions are adaptations from his procedure for the one-sided test
to our two-sided test setting. In his simulation, the above estima-
tor captures the general trend of the FDP, but it is not accurate
and deviates from the true FDP with large amount of variabil-
ity. Consider our estimator F̂DP(t) in (21). Write η̂i = σiQi ,
where Qi ∼ N (0, 1). When σi → 0 for ∀i ∈ {true null}, by the
second-order Taylor expansion,

F̂DP(t) ≈ p0t

R(t)

[
1 +

∑
i∈{true null}

σ 2
i

(
Q2
i − 1

) (−zt/2)φ(zt/2)

p0t

]
.

(27)

By comparison with Efron’s estimator, we can see that

Â = 1√
2p0

∑
i∈{true null}

[̂
η2
i − E

(̂
η2
i

)]
. (28)

Thus, our method is more general.
Leek and Storey (2008) considered a general framework for

modeling the dependence in multiple testing. Their idea is to
model the dependence via a factor model and reduce the mul-
tiple testing problem from dependence to independence case
via accounting the effects of common factors. They also pro-
vided a method of estimating the common factors. In contrast,
our problem is different from Leek and Storey’s and we esti-
mate common factors from PFA and other methods. In addition,
we provide the approximated FDP formula and its consistent
estimate.

Friguet, Kloareg, and Causeur (2009) followed closely the
framework of Leek and Storey (2008). They assumed that the
data come directly from a multifactor model with independent
random errors, and then used the expectation–maximization
(EM) algorithm to estimate all the parameters in the model and
obtained an estimator for FDP(t). In particular, they subtracted
ηi out of (13) based on their estimate from the EM algorithm to
improve the efficiency. However, the ratio of estimated number
of factors to the true number of factors in their studies varies
according to the dependence structures by their EM algorithm,
thus leading to inaccurate estimated FDP(t). Moreover, it is
hard to derive theoretical results based on the estimator from
their EM algorithm. Compared with their results, our procedure
does not assume any specific dependence structure of the test

statistics. What we do is to decompose the test statistics into an
approximate factor model with weakly dependent errors, derive
the factor loadings, and estimate the unobserved but realized
factors by L1-regression. Since the theoretical distribution of
V (t) is known, estimator (21) performs well based on a good
estimation for W1, . . . ,Wk .

4. APPROXIMATE ESTIMATION OF FDR

In this section, we propose some ideas that can asymptotically
control the FDR, not the FDP, under arbitrary dependency. Al-
though their validity is yet to be established, promising results
reveal in the simulation studies. Therefore, they are worth some
discussion and serve as a direction of our future work.

Suppose that the number of false null hypothesesp1 is known.
If the signal µi for i ∈ {false null} is strong enough such that

�(ai(zt/2 + ηi + µi)) +�(ai(zt/2 − ηi − µi)) ≈ 1, (29)

then asymptotically the FDR is approximately given by

FDR(t)

= E

{ ∑p

i=1[�(ai(zt/2 + ηi)) +�(ai(zt/2 − ηi))]∑p

i=1[�(ai(zt/2 + ηi)) +�(ai(zt/2 − ηi))] + p1

}
,

(30)

which is the expectation of a function ofW1, . . . ,Wk . Note that
FDR(t) is a known function and can be computed by Monte
Carlo simulation. For any predetermined error rate α, we can
use the bisection method to solve t so that FDR(t) = α. Since k
is not large, the Monte Carlo computation is sufficiently fast for
most applications.

The requirement (29) is not very strong. First of all, �(3) ≈
0.9987, so (29) will hold if any number inside the�(·) is greater
than 3. Second, 1 − ∑k

h=1 b
2
ih is usually very small. For ex-

ample, if it is 0.01, then ai = (1 − ∑k
h=1 b

2
ih)−1/2 ≈ 10, which

means that if either zt/2 + ηi + µi or zt/2 − ηi − µi exceed 0.3,
then (29) is approximately satisfied. Since the effect of sample
size n is involved in the problem in Section 2, (29) is not a very
strong condition on the signal strength {βi}.

Note that Finner, Dickhaus, and Roters (2007) considered a
“Dirac uniform model,” where the p-values corresponding to
a false hypothesis are exactly equal to 0. This model might
be potentially useful for FDR control. The calculation of (30)
requires the knowledge of the proportionp1 of signal in the data.
Since p1 is usually unknown in practice, there is also future
research interest in estimating p1 under arbitrary dependency.

5. SIMULATION STUDIES

In the simulation studies, we consider p = 2000, n = 100,
σ = 2, the number of false null hypotheses p1 = 10, and the
nonzero βi = 1, unless stated otherwise. We will present six
different dependence structures for � of the test statistics
(Z1, . . . , Zp)T ∼ N ((µ1, . . . , µp)T ,�). Following the setting
in Section 2, � is the correlation matrix of a random sam-
ple of size n of p-dimensional vector Xi = (Xi1, . . . , Xip), and
µj = √

nβj σ̂j /σ , j = 1, . . . , p. The data-generating process
vector Xi’s are as follows.
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• [Equal correlation] Let XT = (X1, . . . , Xp)T ∼
Np(0,�), where � has diagonal element 1 and off-
diagonal element 1/2.

• [Fan & Song’s model] For X = (X1, . . . , Xp), let {Xk}1900
k=1

be iid N (0, 1) and

Xk=
10∑
l=1

Xl(−1)l+1/5+
√

1 − 10

25
εk, k = 1901, . . . , 2000,

where {εk}2000
k=1901 are standard normally distributed.

• [Independent Cauchy] For X = (X1, . . . , Xp), let
{Xk}2000

k=1 be iid. Cauchy random variables with location
parameter 0 and scale parameter 1.

• [Three factor model] For X = (X1, . . . , Xp), let

Xj = ρ
(1)
j W

(1) + ρ
(2)
j W

(2) + ρ
(3)
j W

(3) +Hj,

whereW (1) ∼ N (−2, 1),W (2) ∼ N (1, 1),W (3) ∼ N (4, 1),
ρ

(1)
j , ρ

(2)
j , ρ

(3)
j are iid U (−1, 1), and Hj are iid N (0, 1).

• [Two factor model] For X = (X1, . . . , Xp), let

Xj = ρ
(1)
j W

(1) + ρ
(2)
j W

(2) +Hj,

where W (1) and W (2) are iid N (0, 1), ρ(1)
j and ρ(2)

j are iid
U (−1, 1), and Hj are iid N (0, 1).

• [Nonlinear factor model] For X = (X1, . . . , Xp), let

Xj = sin
(
ρ

(1)
j W

(1)) + sgn
(
ρ

(2)
j

)
exp

(∣∣ρ(2)
j

∣∣W (2)) +Hj,

where W (1) and W (2) are iid N (0, 1), ρ(1)
j and ρ(2)

j are iid
U (−1, 1), and Hj are iid N (0, 1).

Fan and Song’s model was considered by Fan and Song (2010)
for high-dimensional variable selection. This model is close to

the independent case but has some special dependence struc-
ture. Note that although we have used the term “factor model”
above to describe the dependence structure, it is not the factor
model for the test statistics Z1, . . . , Zp directly. The covariance
matrix of these test statistics is the sample correlation matrix of
X1, . . . , Xp.

We examine the effectiveness of our method in several as-
pects. We first examine the goodness of approximation in Theo-
rem 1 by comparing the marginal distributions and variances. We
then compare the accuracy of FDP estimates with other meth-
ods. Finally, we demonstrate the improvement of the power with
dependence adjustment.

5.1 Distributions of FDP and Its Approximation

Without loss of generality, we consider a dependence struc-
ture based on the two-factor model above. Let n = 100, p1 =
10, and σ = 2. Let p vary from 100 to 1000 and t be either 0.01
or 0.005. The distributions of FDP(t) and its approximated ex-
pression in Theorem 1 are plotted in Figure 1. The convergences
of the distributions are self-evidenced. Table 2 summarizes the
total variation distance between the two distributions.

5.2 Variance of V(t)

Variance of false discoveries in the correlated test statistics is
usually large compared with that of the independent case that
is p0t(1 − t), due to correlation structures. Thus, the ratio of
variance of false discoveries in the dependent case to that in the
independent test statistics can be considered as a measure of cor-
relation effect (see Owen 2005). Estimating the variance of false
discoveries is an interesting problem. With approximation (17),
this can easily be computed. In Table 3, we compare the true
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Figure 1. Comparison for the distribution of the FDP with that of its approximated expression, based on the two-factor model over 10,000
simulations. From the top row to the bottom, p = 100, 500, 1000, respectively. The first two columns correspond to t = 0.01 and the last two
correspond to t = 0.005.
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Table 2. Total variation distance between the distribution of FDP and
the limiting distribution of FDP in Figure 1. The total variation

distance is calculated based on “TotalVarDist” function with
“smooth” option in R software

p = 100 p = 500 p = 1000

t = 0.01 0.6668 0.1455 0.0679
t = 0.005 0.6906 0.2792 0.1862

variance of the number of false discoveries, the variance of ex-
pression (19) (which is infeasible in practice), and the variance
of expression (18) under six different dependence structures. It
shows that the variance computed based on expression (18) ap-
proximately equals the variance of number of false discoveries.
Therefore, we provide a fast and alternative method to estimate
the variance of number of false discoveries in addition to the
results in Owen (2005). Note that the variance for independent
case is merely less than 2. The impact of dependence is very
substantial.

5.3 Comparing Methods of Estimating FDP

Under different dependence structures, we compare FDP val-
ues using our procedure PFA in Equation (30) without taking
expectation and with p1 known, Storey’s procedure with p1

known ((1 − p1)t/R(t)), and B–H procedure. Note that B–H
procedure is an FDR control procedure rather than an FDP esti-
mating procedure. The B–H FDP is obtained by using the mean
of “True FDP” in Table 4 as the control rate in B–H proce-
dure. Table 4 shows that our method performs much better than
Storey’s procedure and the B–H procedure, especially under
strong dependence structures (rows 1, 4, 5, and 6), in terms of
both mean and variance of the distribution of FDP. Recall that
the expected value of FDP is the FDR. Table 3 also compares
the FDR of three procedures by looking at the averages. Note
that the actual FDR from B–H procedure under dependence is
much smaller than the control rate, which suggests that B–H
procedure can be quite conservative under dependence.

5.4 Comparison With Efron’s Methods

We now compare the estimated values of our method PFA
(21) and Efron’s (2007) estimator with true values of FDP, un-
der six different dependence structures. Efron’s (2007) estimator
is developed for estimating FDP under unknown �. In our sim-
ulation study, we have used a known � for Efron’s estimator

Table 3. Comparison for variance of number of false discoveries
(column 2), variance of expression (19) (column 3), and variance of

expression (18) (column 4) with t = 0.001 based on 10,000
simulations

Dependence structure var(V (t)) var(V ) var(V.up)

Equal correlation 180.9673 178.5939 180.6155
Fan & Song’s model 5.2487 5.2032 5.2461
Independent Cauchy 9.0846 8.8182 8.9316
Three-factor model 81.1915 81.9373 83.0818
Two-factor model 53.9515 53.6883 54.0297
Nonlinear factor model 48.3414 48.7013 49.1645

Table 4. Comparison of FDP values for our method based on
Equation (30) without taking expectation (PFA) with Storey’s

procedure and Benjamini–Hochberg’s procedure under six different
dependence structures, where p = 2000, n = 200, t = 0.001, and
βi = 1 for i ∈ {falsenull}. The computation is based on 10,000

simulations. The means of FDP are listed with the standard deviations
in the brackets

True FDP PFA Storey B–H

Equal correlation 6.67% 6.61% 2.99% 3.90%
(15.87%) (15.88%) (10.53%) (14.58%)

Fan & Song’s model 14.85% 14.85% 13.27% 14.46%
(11.76%) (11.58%) (11.21%) (13.46%)

Independent Cauchy 13.85% 13.62% 11.48% 13.21%
(13.60%) (13.15%) (12.39%) (15.40%)

Three-factor model 8.08% 8.29% 4.00% 5.46%
(16.31%) (16.39%) (11.10%) (16.10%)

Two-factor model 8.62% 8.50% 4.70% 5.87%
(16.44%) (16.27%) (11.97%) (16.55%)

Nonlinear factor model 6.63% 6.81% 3.20% 4.19%
(15.56%) (15.94%) (10.91%) (15.31%)

for fair comparisons. The results are depicted in Figures 2 and
3 and Table 5. Figure 2 shows that our estimated values cor-
rectly track the trends of FDP with smaller amount of noise. It
also shows that both our estimator and Efron’s estimator tend
to overestimate the true FDP, since FDPA(t) is an upper bound
of the true FDP(t). They are close only when the number of
false nulls p1 is very small. In the current simulation setting, we
choose p1 = 50 compared with p = 1000, therefore, it is not a
very sparse case. However, even under this case, our estimator
still performs very well for six different dependence structures.
Efron’s (2007) estimator is illustrated in Figure 2 with his sug-
gestions for estimating parameters, which captures the general
trend of true FDP but with large amount of noise. Figure 3
shows that the relative errors (REs) of PFA concentrate around
0, which suggests good accuracy of our method in estimating
FDP. Table 5 summarizes the REs of the two methods.

5.5 Dependence-Adjusted Procedure

We compare the dependence-adjusted procedure described
in Section 3.4 with the testing procedure based only on the
observed test statistics without using correlation information.

Table 5. Means and standard deviations of the relative error (RE)
between true values of FDP and estimated FDP under the six

dependence structures in Figure 2. REP and REE are the REs of our
PFA estimator and Efron’s (2007) estimator, respectively. RE is

defined in Figure 3

REP REE

Mean SD Mean SD

Equal correlation 0.0241 0.1262 1.4841 3.6736
Fan & Song’s model 0.0689 0.1939 1.2521 1.9632
Independent Cauchy 0.0594 0.1736 1.3066 2.1864
Three-factor model 0.0421 0.1657 1.4504 2.6937
Two-factor model 0.0397 0.1323 1.1227 2.0912
Nonlinear factor model 0.0433 0.1648 1.3134 4.0254
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1028 Journal of the American Statistical Association, September 2012

Figure 2. Comparison of true values of false discovery proportion (FDP) with estimated FDP by Efron’s (2007) procedure (gray crosses) and
our PFA method (black dots) under six different dependence structures, with p = 1000, p1 = 50, n = 100, σ = 2, t = 0.005, and βi = 1 for
i ∈ {falsenull} based on 1000 simulations. The Z-statistics with absolute value less than or equal to x0 = 1 are used to estimate the dispersion
variate A in Efron’s (2007) estimator. The unconditional estimate of FDR(t) is p0t/R(t) shown as green triangles. The online version of this
figure is in color.
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Figure 3. Histograms of the relative error (RE) between true values of FDP and estimated FDP by our PFA method under the six dependence
structures in Figure 2. RE is defined as (F̂DP(t) − FDP(t))/FDP(t) if FDP(t) �= 0 and 0 otherwise.
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Table 6. Comparison of dependence-adjusted procedure with fixed threshold procedure under six different
dependence structures, where p = 1000, n = 100, σ = 1, p1 = 200, nonzero βi simulated from U (0, 1), and

k = n− 3 over 1000 simulations

Fixed-threshold procedure Dependence-adjusted procedure

FDR FNR Threshold FDR FNR Threshold

Equal correlation 17.06% 4.82% 0.06 17.34% 0.35% 0.001
Fan & Song’s model 6.69% 6.32% 0.0145 6.73% 1.20% 0.001
Independent Cauchy 7.12% 0.45% 0.019 7.12% 0.13% 0.001
Three-factor model 5.46% 3.97% 0.014 5.53% 0.31% 0.001
Two-factor model 5.00% 4.60% 0.012 5.05% 0.39% 0.001
Nonlinear factor model 6.42% 3.73% 0.019 6.38% 0.68% 0.001

The latter is to compare the original Z-statistics with a fixed
threshold value and is labeled as “fixed threshold procedure”
in Table 6. With the same FDR level, a procedure with smaller
false nondiscovery rate (FNR) is more powerful, where FNR =
E[T/(p − R)] using the notation in Table 1.

In Table 6, without loss of generality, for each dependence
structure we fix threshold value 0.001 and reject the hypothe-
ses when the dependence-adjusted p-values (24) are smaller
than 0.001. Then, we find the corresponding threshold value
for the fixed threshold procedure such that the FDR in the
two testing procedures are approximately the same. The FNR
for the dependence-adjusted procedure is much smaller than
that of the fixed threshold procedure, which suggests that the
dependence-adjusted procedure is more powerful. Note that in
Table 6, p1 = 200 compared with p = 1000, implying that the
better performance of the dependence-adjusted procedure is not
limited to a sparse situation. This is expected since subtract-
ing common factors out results in the problem having a higher
signal-to-noise ratio.

6. REAL DATA ANALYSIS

Our proposed multiple testing procedures are now applied
to the genome-wide association studies, in particular the eQTL
mapping. It is known that the expression levels of gene CCT8
are highly related to Down Syndrome phenotypes. In our anal-
ysis, we use more than two million SNP genotype data and
CCT8 gene expression data for 210 individuals from three dif-
ferent populations, testing which SNPs are associated with the
variation in CCT8 expression levels. The SNP data are from

the International HapMap project, which include 45 Japanese
in Tokyo, Japan (JPT), 45 Han Chinese in Beijing, China
(CHB), 60 Utah residents with ancestry from northern and
western Europe (CEU), and 60 Yoruba in Ibadan, Nigeria
(YRI). The Japanese and Chinese population are further grouped
together to form the Asian population (JPTCHB). To save
space, we omit the description of the data preprocessing proce-
dures. Interested readers can find more details from the Web
sites: http://pngu.mgh.harvard.edu/purcell/plink/res.shtml and
ftp://ftp.sanger.ac.uk/pub/genevar/, and the article by Bradic,
Fan, and Wang (2010).

We further introduce two sets of dummy variables (d1,d2)
to recode the SNP data, where d1 = (d1,1, . . . , d1,p) and
d2 = (d2,1, . . . , d2,p), representing three categories of polymor-
phisms, namely, (d1,j , d2,j ) = (0, 0) for SNPj = 0 (no poly-
morphism), (d1,j , d2,j ) = (1, 0) for SNPj = 1 (one nucleotide
has polymorphism), and (d1,j , d2,j ) = (0, 1) for SNPj = 2 (both
nucleotides have polymorphisms). Let {Y i}ni=1 be the indepen-
dent sample random variables of Y , {di1,j }ni=1 and {di2,j }ni=1 be
the sample values of d1,j and d2,j , respectively. Thus, instead
of using model (1), we consider two marginal linear regression
models between {Y i}ni=1 and {di1,j }ni=1:

min
α1,j ,β1,j

1

n

n∑
i=1

E
(
Y i − α1,j − β1,j d

i
1,j

)2
, j = 1, . . . , p (31)

and between {Y i}ni=1 and {di2,j }ni=1:

min
α2,j ,β2,j

1

n

n∑
i=1

E
(
Y i − α2,j − β2,j d

i
2,j

)2
, j = 1, . . . , p. (32)

Figure 4. σ̂ of the three populations with respect to the selected model sizes, derived by using refitted cross-validation (RCV).
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Figure 5. Empirical distributions and fitted normal density curves of the Z-values for each of the three populations. Because of dependency,
the Z-values are no longer N (0, 1) distributed. The empirical distributions, instead, are N (0.12, 1.222) for CEU, N (0.27, 1.392) for JPT and
CHB, and N (−0.04, 1.662) for YRI, respectively. The density curve for CEU is closest to N (0, 1) and the least dispersed among the three. The
online version of this figure is in color.

For ease of notation, we denote the recoded n× 2p dimensional
design matrix as X. The missing SNP measurement is imputed
as 0 and the redundant SNP data are excluded. Finally, the
logarithm-transform of the raw CCT8 gene expression data are
used. The details of our testing procedures are summarized as
follows.

• To begin with, consider the full model Y = α + Xβ + ε,
where Y is the CCT8 gene expression data, X is the n× 2p
dimensional design matrix of the SNP codings, and εi ∼
N (0, σ 2), i = 1, . . . , n are the independent random errors.
We adopt the RCV (Fan, Guo, and Hao 2012) technique to
estimate σ by σ̂ , where LASSO is used in the first (variable
selection) stage.

• Fit the marginal linear models (31) and (32) for each (re-
coded) SNP and obtain the least-square estimate β̂j for
j = 1, . . . , 2p. Compute the values of Z-statistics using
formula (3), except that σ is replaced by σ̂ .

• Calculate the p-values based on the Z-statistics and com-
pute R(t) = #{Pj : Pj ≤ t} for a fixed threshold t.

• Apply eigenvalue decomposition to the population co-
variance matrix � of the Z-statistics. By Proposition

1, � is the sample correlation matrix of (d1,1, d2,1, . . . ,

d1,p, d2,p)T . Determine an appropriate number of factors
k and derive the corresponding factor loading coefficients
{bih}i=2p, h=k

i=1, h=1 .
• Order the absolute-valued Z-statistics and choose the first
m = 95% × 2p of them. Apply L1-regression to the equa-
tion set (22) and obtain its solution Ŵ1, . . . , Ŵk . Insert
them into (21) and get the estimated FDP(t).

For each intermediate step of the above procedure, the outcomes
are summarized in the following figures. Figure 4 illustrates the
trend of the RCV-estimated standard deviation σ̂ with respect
to different model sizes. Our result is similar to that in Fan,
Guo, and Hao (2012), in that although σ̂ is influenced by the
selected model size, it is relatively stable and thus provides rea-
sonable accuracy. The empirical distributions of the Z-values
are presented in Figure 5, together with the fitted normal den-
sity curves. As pointed out in Efron (2007, 2010), due to the
existence of dependency among the Z-values, their densities
are either narrowed or widened and are not N (0, 1) distributed.
The histograms of the p-values are further provided in Figure 6,
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Figure 6. Histograms of the p-values for each of the three populations.
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Figure 7. Number of total discoveries, estimated number of false discoveries, and estimated FDP as functions of thresholding t for CEU
population (row 1), JPT and CHB (row 2), and YRI (row 3). The x-coordinate is − log t , the minus log10-transformed thresholding.

giving a crude estimate of the proportion of the false nulls for
each of the three populations.

The main results of our analysis are presented in Figure 7
which depicts the number of total discoveries R(t), the esti-
mated number of false discoveries V̂ (t), and the estimated false
discovery proportion F̂DP(t) as functions of (the minus log10-
transformed) thresholding t for the three populations. As can
be seen, in each case both R(t) and V̂ (t) are decreasing when
t decreases, but F̂DP(t) exhibits zigzag patterns and does not
always decrease along with t, which results from the cluster ef-
fect of the p-values. A closer study of the outputs further shows
that for all populations, the estimated FDP has a general trend
of decreasing to the limit of around 0.1–0.2, which backs up the

intuition that a large proportion of the smallest p-values should
correspond to the false nulls (true discoveries) when Z-statistics
is very large; however, in most other thresholding values, the
estimated FDPs are at a high level. This is possibly due to small
signal-to-noise ratios in eQTL studies.

The results of the selected SNPs, together with the esti-
mated FDPs, are depicted in Table 7. It is worth mentioning
that Deutsch et al. (2005) and Bradic, Fan, and Wang (2010)
had also worked on the same CCT8 data to identify the signifi-
cant SNPs in CEU population. Deutsch et al. (2005) performed
association analysis for each SNP using analysis of variance
(ANOVA), while Bradic, Fan, and Wang (2010) proposed the
penalized composite quasi-likelihood variable selection method.
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Table 7. Information of the selected SNPs and the associated FDP for a particular threshold. Note that the density
curve of the Z-values for CEU population is close to N (0, 1), so the approximate F̂DP(t) equals pt/R(t) ≈ 0.631.

Therefore, our high estimated FDP is reasonable

Population Threshold No. of discoveries Estimated FDP Selected SNPs

JPTCHB 1.61 × 10−9 5 0.1535 rs965951 rs2070611
rs2832159 rs8133819
rs2832160

YRI 1.14 × 10−9 2 0.2215 rs9985076 rs965951
CEU 6.38 × 10−4 4 0.8099 rs965951 rs2832159

rs8133819 rs2832160

Table 8. Information of the selected SNPs for a particular threshold based on the dependence-adjusted procedure.
The number of factors k in Equation (24) equals 10. The estimated FDP is based on estimator (21) by applying PFA

to the adjusted Z-values. ∗ is the indicator for SNP equal to 2 and otherwise is the indicator for 1

Population Threshold No. of discoveries Estimated FDP Selected SNPs

JPTCHB 2.89 × 10−4 5 0.1205 rs965951 rs2070611
rs2832159 rs8133819
rs2832160

YRI 8.03 × 10−5 4 0.2080 rs7283791 rs11910981
rs8128844 rs965951

CEU 5.16 × 10−2 6 0.2501 rs464144* rs4817271
rs2832195 rs2831528*
rs1571671* rs6516819*

Their findings were different as well, for the first group identi-
fied four SNPs (exactly the same as ours) that have the small-
est p-values but the second group only discovered one SNP
rs965951 among those four, arguing that the other three SNPs
make little additional contributions conditioning on the presence
of rs965951. Our results for CEU population coincide with that
of the latter group, in the sense that the FDR is high in our
findings and our association study is marginal rather than joint
modeling among several SNPs.

Table 8 lists the SNP selection based on the dependence-
adjusted procedure. For JPTCHB, with slightly smaller esti-
mated FDP, the dependence-adjusted procedure selects the same
SNPs with the group selected by the fixed-threshold procedure,
which suggests that these five SNPs are significantly associated
with the variation in gene CCT8 expression levels. For YRI,
rs965951 is selected by both the procedures, but the dependence-
adjusted procedure selects other three SNPs which do not appear
in Table 7. For CEU, the selections based on the two procedures
are quite different. However, since the estimated FDP for CEU
is much smaller in Table 8 and the signal-to-noise ratio of the
test statistics is higher from the dependence-adjusted procedure,
the selection group in Table 8 seems more reliable.

7. DISCUSSION

We have proposed a new method (PFA) for high-dimensional
multiple testing where the test statistics have an arbitrary de-
pendence structure. For multivariate normal test statistics with
a known covariance matrix, we can express the test statistics
as an approximate factor model with weakly dependent random
errors, by applying spectral decomposition to the covariance
matrix. We then obtain an explicit expression for the FDP in
large-scale simultaneous tests. This result has important appli-

cations in controlling FDP and FDR. We also provide a pro-
cedure to estimate the realized FDP, which, in our simulation
studies, correctly tracks the trend of FDP with smaller amount
of noise.

To take into account the dependence structure in the test statis-
tics, we propose a dependence-adjusted procedure with different
threshold values for magnitude of Zi in different hypotheses.
This procedure has been shown in simulation studies to be more
powerful than the fixed threshold procedure. An interesting re-
search question is how to take advantage of the dependence
structure such that the testing procedure is more powerful or
even optimal under arbitrary dependence structures.

While our procedure is based on a known correlation ma-
trix, we would expect that it can be adapted to the case with
estimated covariance matrix. The question is then how accurate
the covariance matrix should be so that a simple substitution
procedure will give an accurate estimate of FDP.

We provide a simple method to estimate the realized principal
factors. A more accurate method is probably the use of the
penalized least-square method to explore the sparsity and to
estimate the realized principal factor.

APPENDIX

Lemma 1 is fundamental to our proof of Theorem 1 and Proposi-
tion 2. The result is known in probability, but has the formal statement
and proof in Lyons (1988).

Lemma 1 (Strong Law of Large Numbers for Weakly Correlated
Variables). Let {Xn}∞

n=1 be a sequence of real-valued random variables
such that E|Xn|2 ≤ 1. If |Xn| ≤ 1 a.s. and

∑
N≥1

1
N
E| 1

N

∑
n≤N Xn|2 <

∞, then limN→∞ 1
N

∑
n≤N Xn = 0 a.s.
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Proof of Proposition 2: Note that Pi = 2�(−|Zi |). Based on the
expression of (Z1, . . . , Zp)T in (10), {I (Pi ≤ t |W1, . . . ,Wk)}pi=1 are
dependent random variables. Nevertheless, we want to prove

p−1
p∑
i=1

[I (Pi ≤ t |W1, . . . ,Wk) − P (Pi ≤ t |W1, . . . ,Wk)]
p→∞−→ 0 a.s.

(A.1)

Letting Xi = I (Pi ≤ t |W1, . . . ,Wk) − P (Pi ≤ t |W1, . . . ,Wk), by
Lemma 1 the conclusion (A.1) is correct if we can show

var

(
p−1

p∑
i=1

I (Pi ≤ t |W1, . . . ,Wk)

)
= Op(p−δ) for some δ > 0.

To begin with, note that

var

(
p−1

p∑
i=1

I (Pi ≤ t |W1, . . . ,Wk)

)

= p−2
p∑
i=1

var(I (Pi ≤ t |W1, . . . ,Wk))

+ 2p−2
∑

1≤i<j≤p
cov(I (Pi ≤ t |W1, . . . ,Wk), I (Pj ≤ t |W1, . . . ,Wk)).

Since var(I (Pi ≤ t |W1, . . . ,Wk)) ≤ 1
4 , the first term in the right-hand

side of the last equation isOp(p−1). For the second term, the covariance
is given by

P (Pi ≤ t, Pj ≤ t |W1, . . . ,Wk) − P (Pi ≤ t |W1, . . . ,Wk)P

× (Pj ≤ t |W1, . . . ,Wk)

= P (|Zi | < −�−1(t/2), |Zj | < −�−1(t/2)|W1, . . . ,Wk)

−P (|Zi | < −�−1(t/2)|W1, . . . ,Wk)P (|Zj |
< −�−1(t/2)|W1, . . . ,Wk).

To simplify the notation, let ρkij be the correlation between Ki and
Kj . Without loss of generality, we assume ρkij > 0 (for ρkij < 0, the
calculation is similar). Denote by

c1,i = ai(−zt/2 − ηi − µi), c2,i = ai(zt/2 − ηi − µi).

Then, from the joint normality, it can be shown that

P (|Zi | < −�−1(t/2), |Zj | < −�−1(t/2)|W1, . . . ,Wk)

= P (c2,i/ai < Ki < c1,i/ai, c2,j /aj < Kj < c1,j /aj )

=
∫ ∞

−∞

[
�

(
(ρkij )

1/2z+ c1,i

(1 − ρkij )1/2

)
−�

(
(ρkij )

1/2z+ c2,i

(1 − ρkij )1/2

)]
(A.2)

×
[
�

(
(ρkij )

1/2z+ c1,j

(1 − ρkij )1/2

)
−�

(
(ρkij )

1/2z+ c2,j

(1 − ρkij )1/2

)]
φ(z)dz.

Next, we will use Taylor expansion to analyze the joint probability
further. We have shown that (K1, . . . , Kp)T ∼ N (0,A) are weakly de-
pendent random variables. Let covkij denote the covariance of Ki and
Kj , which is the (i, j )th element of the covariance matrix A. We also let
bkij = (1 − ∑k

h=1 b
2
ih)

1/2(1 − ∑k

h=1 b
2
jh)

1/2. By the Hölder inequality,

p−2
p∑

i,j=1

|covkij |1/2 ≤ p−1/2

(
p∑

i,j=1

|covkij |2
)1/4

=
[
p−2

(
p∑

i=k+1

λ2
i

)1/2]1/4

→ 0

as p → ∞. For each �(·), we apply Taylor expansion with respect to
(covkij )

1/2,

�

(
(ρkij )

1/2z+ c1,i

(1 − ρkij )1/2

)
= �

(
(covkij )

1/2z+ (bkij )
1/2c1,i

(bkij − covkij )1/2

)

= �(c1,i) + φ(c1,i)(b
k
ij )

−1/2z(covkij )
1/2

+ 1

2
φ(c1,i)c1,i(b

k
ij )

−1(1 − z2)covkij + R(covkij ),

where R(covkij ) is the Lagrange residual term in the Taylor’s expan-
sion, and R(covkij ) = f (z)O(|covkij |3/2) in which f (z) is a polynomial
function of z with the highest order as 6.

Therefore, we have (A.2) equals

[�(c1,i) −�(c2,i)][�(c1,j ) −�(c2,j )]

+ (φ(c1,i) −φ(c2,i))(φ(c1,j ) −φ(c2,j ))(b
k
ij )

−1covkij +O(|covkij |3/2),

where we have used the fact that
∫ ∞

−∞ zφ(z)dz = 0,
∫ ∞

−∞(1 −
z2)φ(z)dz = 0, and the finite moments of standard normal distribution
are finite. Now since P (|Zi | < −�−1(t/2)|W1, . . . ,Wk) = �(c1,i) −
�(c2,i), we have

cov(I (Pi ≤ t |W1, . . . ,Wk), I (Pj ≤ t |W1, . . . ,Wk))

= (φ(c1,i) − φ(c2,i))(φ(c1,j ) − φ(c2,j ))aiajcovkij +O(|covkij |3/2).

In the last line, (φ(c1,i) − φ(c2,i))(φ(c1,j ) − φ(c2,j ))aiaj is bounded
by some constant except on a countable collection of measure zero
sets. Let Ci be defined as the set {zt/2 + ηi + µi = 0} ∪ {zt/2 − ηi −
µi = 0}. On the set Cci , (φ(c1,i) − φ(c2,i))ai converges to zero as ai →
∞. Therefore, (φ(c1,i) − φ(c2,i))(φ(c1,j ) − φ(c2,j ))aiaj is bounded by
some constant on (

⋃p

i=1 Ci)
c.

By the Cauchy–Schwartz inequality and (C0) in Theorem 1,
p−2

∑
i,j |covki,j | = O(p−δ). Also, we have |covkij |3/2 < |covkij |. On the

set (
⋃p

i=1 Ci)
c, we conclude that

var

(
p−1

p∑
i=1

I (Pi ≤ t |W1, . . . ,Wk)

)
= Op(p−δ).

Hence, by Lemma 1, for fixed (w1, . . . , wk)T ,

p−1
p∑
i=1

{I (Pi ≤ t |W1 = w1, . . . ,Wk = wk) − P (Pi ≤ t |W1

= w1, . . . ,Wk = wk)} p→∞−→ 0 a.s. (A.3)

If we define the probability space on which (W1, . . . ,Wk) and
(K1, . . . , Kp) are constructed as in (10) to be (�,F, ν), with F and
ν being the associated σ−algebra and (Lebesgue) measure, then in a
more formal way, (A.3) is equivalent to

p−1
p∑
i=1

{I (Pi(ω) ≤ t |W1 = w1, . . . ,Wk = wk) − P (Pi ≤ t |W1

= w1, . . . ,Wk = wk)} p→∞−→ 0

for each fixed (w1, . . . , wk)T and almost every ω ∈ �, leading further
to

p−1
p∑
i=1

{I (Pi(ω) ≤ t) − P (Pi ≤ t |W1(ω), . . . ,Wk(ω))} p→∞−→ 0

for almost every ω ∈ �, which is the definition for

p−1
p∑
i=1

{I (Pi ≤ t) − P (Pi ≤ t |W1, . . . ,Wk)} p→∞−→ 0 a.s.

Therefore,

lim
p→∞

p−1
p∑
i=1

{I (Pi ≤ t) − [�(ai(zt/2 + ηi + µi))

+ �(ai(zt/2 − ηi − µi))]} = 0 a.s.
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With the same argument, we can show

lim
p→∞

p−1
0

{
V (t) −

∑
i∈{true null}

[�(ai(zt/2 + ηi)) +�(ai(zt/2 − ηi))]

}
= 0 a.s.

for the high-dimensional sparse case. The proof of Proposition 2 is now
complete.

Proof of Theorem 1:
For ease of notation, denote

∑p

i=1[�(ai(zt/2 + ηi + µi)) +�(ai(zt/2 −
ηi − µi))] as R̃(t) and

∑
i∈{true null}[�(ai(zt/2 + ηi)) +�(ai(zt/2 − ηi))]

as Ṽ (t), then

lim
p→∞

{
FDP(t)

−
∑

i∈{true null}[�(ai(zt/2 + ηi)) +�(ai(zt/2 − ηi))]∑p

i=1[�(ai(zt/2 + ηi + µi)) +�(ai(zt/2 − ηi − µi))]

}

= lim
p→∞

{
V (t)

R(t)
− Ṽ (t)

R̃(t)

}
= lim

p→∞
(V (t)/p0)[(R̃(t) − R(t))/p] + (R(t)/p)[(V (t) − Ṽ (t))/p0]

R(t)R̃(t)/(p0p)
= 0 a.s.

by the results in Proposition 2 and the fact that both p−1
0 V (t) and

p−1R(t) are bounded random variables. The proof of Theorem 1 is
complete. �

Proof of Theorem 2: Letting

�1 =
p∑
i=1

[
�(ai(zt/2 + bTi ŵ)) −�(ai(zt/2 + bTi w))

]
and

�2 =
p∑
i=1

[
�(ai(zt/2 − bTi ŵ)) −�(ai(zt/2 − bTi w))

]
,

we have

F̂DP(t) − FDPA(t) = (�1 +�2)/R(t).

Consider�1 = ∑p

i=1 �1i . By the mean value theorem, there exists ξi in
the interval of (bTi ŵ, bTi w), such that �1i = φ(ai(zt/2 + ξi))aibTi (ŵ −
w), where φ(·) is the standard normal density function.

Next, we will show that φ(ai(zt/2 + ξi))ai is bounded by a constant.
Without loss of generality, we discuss about the case in (C2) when
zt/2 + bTi w < −τ . By (C3), we can choose sufficiently large p such
that zt/2 + ξi < −τ/2. For the function g(a) = exp(−a2x2/8)a, g(a)
is maximized when a = 2/x. Therefore,

√
2πφ(ai(zt/2 + ξi))ai < ai exp(−a2

i τ
2/8) ≤ 2 exp(−1/2)/τ.

For zt/2 + bTi w > τ , we have the same result. In both cases, we can
use a constant D such that φ(ai(zt/2 + ξi))ai ≤ D.

By the Cauchy–Schwartz inequality, we have
∑p

i=1 |bih| ≤
(p

∑p

i=1 b
2
ih)

1/2 = (pλh)1/2. Therefore, by the Cauchy–Schwartz in-
equality and the fact that

∑k

h=1 λh < p, we have

|�1| ≤ D

p∑
i=1

[ k∑
h=1

|bih||ŵh − wh|
]

≤ D

k∑
h=1

(pλh)
1/2|ŵh − wh|

≤ D
√
p

( k∑
h=1

λh

k∑
h=1

(ŵh − wh)
2

)1/2

< Dp‖ŵ − w‖2.

By (C1) in Theorem 2, R(t)/p > H for H > 0 when p → ∞. There-
fore, |�1/R(t)| = O(‖ŵ − w‖2). For �2, the result is the same. The
proof of Theorem 2 is now complete. �

Proof of Theorem 3: The proof is technical. To save space, it is
relegated to the supplementary material.

Proof of Theorem 4: Note that ‖ŴLS − Ŵ
∗
LS‖2 =

‖(XT X)−1XTµ‖2. By the definition of X, we have XT X = �,
where � = diag(λ1, . . . , λk). Therefore, by the Cauchy–Schwartz
inequality,

‖ŴLS − Ŵ
∗
LS‖2 =

[ k∑
i=1

(√
λiγ

T
i µ

λi

)2
]1/2

≤ ‖µ‖2

( k∑
i=1

1

λi

)1/2

.

The proof is complete. �

SUPPLEMENTARY MATERIAL

Proof of Theorem 3: This supplement consists of the proof of
Theorem 3. (pdf)

[Received November 2010. Revised October 2011.]
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Comment
Larry WASSERMAN

1. INTRODUCTION

Fan, Hu, and Gu (FHG) have derived some elegant methods
and theory for controlling the false discovery proportion (FDP)
in the case of dependent test statistics. The work is very interest-
ing and the technical tools that are developed will no doubt be
useful in other contexts. The article raises some general ques-
tions: should we be doing hypothesis testing in these problems?
should we interpret coefficients in linear models? and should
we use marginal regression?

2. TESTING MARGINAL REGRESSION
COEFFICIENTS

When I was a student, I learned a few rules of thumb that I
teach in my courses:

1. Do not use hypothesis testing unless it is absolutely nec-
essary. Focus on estimation, confidence intervals, or pre-
diction error instead.

2. The parameters in a linear model are meaningless unless
(a) the model is exactly correct and (b) there are no unob-
served confounding variables.

3. The coefficients of a marginal regression are difficult to
interpret. Even if the coefficients in a linear model are well
defined and interpretable (which is itself rare), the coef-
ficients in the marginal regression are unrelated to them.
You can have a huge regression effect and a zero marginal
effect. Conversely, you can have a tiny regression effect
and a huge marginal effect. In more traditional language,
correlation is not causation.

Instead of asking “which parameter coefficients are signif-
icant,” we can ask (and answer) the simpler question: what

Larry Wasserman Department of Statistics and the Machine Learn-
ing Department, Carnegie Mellon University, Pittsburgh, PA 15213-3891
(E-mail: larry@stat.cmu.edu).

is a good sparse linear predictor? We can answer this with,
say, the Lasso coupled with cross-validation estimates of pre-
diction risk. No tests and no interpreting coefficients. This is
consistent with the view espoused by Breiman (2001). I am not
suggesting that hypothesis testing and interpreting parameters
are always bad. But I do wonder if we, as a field, have put too
much attention on interpreting and testing parameters lately. I
would be very interested in hearing the authors’ views on this
point.

3. OTHER RANDOM COMMENTS

1. The example in Section 6 is quite interesting. But why use
the Lasso to estimate σ? Is it even reasonable to assume
that σ is constant?

2. If one is going to use FDP control, then it is worth not-
ing that, simultaneously, Genovese and Wasserman (2006)
and van der Laan, Dudoit, and Pollard (2004) proposed a
very simple method that works for arbitrary dependence.
The method is as follows:
(a) Find the test statistics R rejected by some method that

controls α-familywise error (such as Bonferroni).
(b) Add the next k test statistics to the rejection set where

k is chosen so that k/(k + |R|) = c.
(c) It follows that P (FDP > c) ≤ α.
How does this compare to the proposed methods?

3. Romano and Wolf (2007) proposed some methods for con-
trolling FDP. Are there any connections with the method
in FHG?

© 2012 American Statistical Association
Journal of the American Statistical Association

September 2012, Vol. 107, No. 499, Theory and Methods
DOI: 10.1080/01621459.2012.711729
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