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Vast Portfolio Selection With Gross-Exposure
Constraints

Jianqing FAN, Jingjin ZHANG, and Ke YU

This article introduces the large portfolio selection using gross-exposure constraints. It shows that with gross-exposure constraints, the
empirically selected optimal portfolios based on estimated covariance matrices have similar performance to the theoretical optimal ones and
there is no error accumulation effect from estimation of vast covariance matrices. This gives theoretical justification to the empirical results
by Jagannathan and Ma. It also shows that the no-short-sale portfolio can be improved by allowing some short positions. The applications to
portfolio selection, tracking, and improvements are also addressed. The utility of our new approach is illustrated by simulation and empirical
studies on the 100 Fama–French industrial portfolios and the 600 stocks randomly selected from Russell 3000.

KEY WORDS: Mean-variance efficiency; Portfolio improvement; Portfolio optimization; Risk assessment; Risk optimization; Short-sale
constraint.

1. INTRODUCTION

Portfolio selection and optimization have been a fundamen-
tal problem in finance ever since Markowitz (1952, 1959) laid
down the groundbreaking work on the mean-variance analy-
sis. Markowitz posed the mean-variance analysis by solving a
quadratic optimization problem. This approach has had a pro-
found impact on the financial economics and is a milestone of
modern finance. It leads to the celebrated capital asset pricing
model (CAPM), developed by Sharpe (1964), Lintner (1965),
and Black (1972). However, there are documented facts that the
Markowitz portfolio is very sensitive to errors in the estimates
of the inputs, namely the expected return and the covariance
matrix. The problem gets more severe when the portfolio size
is large.

To appreciate the challenge of dimensionality, suppose that
we have a pool of 2000 candidate assets and wish to select
some for investment. The covariance matrix alone involves over
2,000,000 unknown parameters. Yet, the sample size n is usu-
ally no more than 400 (about 1.5 years’ daily data). Now, each
element in the covariance matrix is estimated with the accuracy
of order O(n− 1

2 ) or 0.05. Aggregating them over millions of
estimates can lead to devastating effects, resulting in adverse
performance in the selected portfolio. As a result, the allocation
vector that we get based on the empirical data can be very differ-
ent from the allocation vector we want based on the theoretical
inputs. Hence, the optimal portfolio does not perform well in
empirical applications, and it is very important to find a robust
portfolio that does not depend on the aggregation of estimation
errors.

Several techniques have been suggested to reduce the sensi-
tivity of the Markowitz optimal portfolios to input uncertainty.
Chopra and Ziemba (1993) proposed a James–Stein estimator
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for the means and Ledoit and Wolf (2003) proposed to shrink
the sample covariance matrix. Fan, Fan, and Lv (2008) stud-
ied the covariance matrix estimated based on the factor model
and demonstrated that the resulting allocation vector signifi-
cantly outperforms the allocation vector based on the sample
covariance. Pesaran and Zaffaroni (2008) investigated how the
optimal allocation vector depends on the covariance matrix with
a factor structure when portfolio size is large. However, these
techniques, while reducing the sensitivity of input vectors in the
mean-variance allocation, are inadequate to address the adverse
effect due to the accumulation of estimation errors, particularly
when portfolio size is large.

Various efforts have been made to modify the Markowitz
mean-variance optimization problem to make the resulting al-
location depend less sensitively on the input vectors. De Roon,
Nijman, and Werker (2001) considered testing-variance span-
ning with the no-short-sale constraint. Goldfarb and Iyengar
(2003) studied some robust portfolio optimization problems.
Jagannathan and Ma (2003) imposed the no-short-sale con-
straint on the Markowitz mean-variance optimization problem
and gave an insightful explanation and demonstration of why
the constraints help. However, as to be shown in this article, the
optimal no-short-sale portfolio is not diversified enough. The
constraint on gross exposure needs relaxing to enlarge the pools
of admissible portfolios. We will provide statistical insights into
the question why the constraint prevents the risks or utilities of
selected portfolios from the accumulation of statistical estima-
tion errors. This is a prominent contribution of this article in
addition to the utilities of our formulation in portfolio selection,
tracking, and improvement. Our result provides a theoretical
insight into the phenomenon, observed by Jagannathan and Ma
(2003), why the wrong constraint helps on risk reduction for
large portfolios.

We approach the utility optimization problem by introduc-
ing a gross-exposure constraint on the allocation vector. A
sketch of the idea appeared in Fan (2007). This not only makes
the Markowitz problem more practical, but also bridges the
gap between the no-short-sale utility optimization problem of
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Jagannathan and Ma (2003) and the unconstrained utility op-
timization problem of Markowitz (1952, 1959). As the gross-
exposure parameter increases from 1 to infinity, our utility opti-
mization progressively ranges from no-short-sale constraint to
no constraint on short sales. We will demonstrate that for a wide
range of the constraint parameters, the optimal portfolio does not
sensitively depend on the estimation errors of the input vectors.
The oracle and empirical optimal portfolios, based, respectively,
on the true and estimated parameters, have approximately the
same utility. In addition, the empirical and theoretical risks are
also approximately the same for any allocation vector satis-
fying the gross-exposure constraint. The extent to which the
gross-exposure constraint impacts on utility approximations is
explicitly unveiled. These theoretical results are demonstrated
by several simulation and empirical studies. They lend further
support to the conclusions made by Jagannathan and Ma (2003)
in their empirical studies.

Our approach has important implications in practical portfolio
selection and allocation. Monitoring and managing a portfolio
of many stocks is not only time consuming but also expensive.
Therefore, it is ideal to pick a reasonable number of assets to
mitigate these two problems. Ideally, we would like to construct
a robust portfolio of a reasonably small size to reduce trading,
rebalancing, monitoring, and research costs. We also want to
control the gross exposure of the portfolio to avoid too extreme
long and short positions. As demonstrated later, the exposure
constrained optimization problem (2.1) provides a good solution
to the problem.

The article is organized as follows. Section 2 introduces the
constrained utility optimization and demonstrates that the esti-
mation error has a limited impact on the utility optimization. Its
applications to portfolio tracking and selection are discussed in
Section 3. The proposed techniques are illustrated by simula-
tion studies in Section 4 and by real data in Section 5. Section 6
concludes and all technical proofs and conditions are relegated
to the Appendix.

2. PORTFOLIO OPTIMIZATION WITH
GROSS-EXPOSURE CONSTRAINTS

Suppose we have p assets with returns R1, . . . , Rp to be
managed. Let R be the return vector, � be its associated co-
variance matrix, and w be its portfolio allocation vector, satis-
fying wT 1 = 1. Then, the variance of the portfolio return wT R
is given by wT �w.

2.1 Constraints on Gross Exposure

For a given portfolio with allocation w, the total proportions
of long and short positions are

w+ = (‖w‖1 + 1)/2 and w− = (‖w‖1 − 1)/2,

respectively, since w+ + w− = ‖w‖1 and w+ − w− = 1. The
constraint ‖w‖1 ≤ c prevents extreme positions in the portfolio.
When c = 1, this means that no short sales are allowed. When
c = ∞, there is no constraint on short sales. As a generaliza-
tion to the work by Markowitz (1952), Jagannathan and Ma
(2003), and Fan (2007), our utility optimization problem with

gross-exposure constraint is

maxw E[U (wT R)]

such that wT 1 = 1, ‖w‖1 ≤ c, Aw = a. (2.1)

The utility function U (·) can also be replaced by any risk mea-
sures such as those in Artzner et al. (1999), and in this case, the
utility maximization should be risk minimization.

The extra constraints Aw = a are related to the constraints
on percentage of allocations on each sector or industry. It can
also be the constraint on the expected return of the portfolio or
factor exposures. For example, the portfolios can be constrained
without exposure (market-neutral) to the market risk such as
the returns of S&P500. The problem (2.1) has independently
investigated in several fields from different angles. See Fan,
Zhang, and Yu (2008), which is an earlier draft of this article,
DeMiguel et al. (2008), and Brodie et al. (2009).

2.2 Utility and Risk Approximations

It is well known that when the return vector R ∼ N (µ,�) and
U (x) = 1 − exp(−Bx), with B being the absolute risk aversion
parameter, the utility optimization is equivalent to maximizing
the Markowitz mean-variance function:

M(µ,�) = wT µ − λwT �w, (2.2)

where λ = B/2. The solution to (2.2) is wopt = c1�
−1µ +

c2�
−11 with c1 and c2 depending on µ and � as well. The

solution depends sensitively on the input vectors µ and �, and
their accumulated estimation errors. The problem can result in
extreme positions, which make it impractical.

These two problems disappear when the gross-exposure con-
straint ‖w‖1 ≤ c is imposed for a moderate c. The sensitivity of
utility function to the estimation errors can easily be bounded
as

|M(µ̂, �̂) − M(µ,�)| ≤ ‖µ̂ − µ‖∞‖w‖1

+ λ‖�̂ − �‖∞‖w‖2
1, (2.3)

where ‖µ̂ − µ‖∞ and ‖�̂ − �‖∞ are the maximum componen-
twise estimation errors. Therefore, as long as each element is
estimated well, the overall utility is approximated well without
the accumulation of estimation errors. The story is very differ-
ent in the case that there is no constraint on the short sale in
which c = ∞. In this case, the estimation error does accumu-
late and is negligible only for a portfolio with a moderate size,
as demonstrated by Fan et al. (2008).

Specifically, if we consider the risk minimization with no-
short-sale constraint, then analogously to (2.3), we have

|R(w, �̂) − R(w,�)| ≤ ‖�̂ − �‖∞‖w‖2
1, (2.4)

where the risk is defined by R(w,�) = wT �w. The right-hand
side of (2.4) obtains its minimum when ‖w‖1 = 1, the no-short-
sale portfolio. In this case,

|R(w, �̂) − R(w,�)| ≤ ‖�̂ − �‖∞. (2.5)

The inequality (2.5) is the mathematics behind the conclu-
sions in Jagannathan and Ma (2003). In particular, we see easily
that estimation errors from (2.5) do not accumulate in the risk.
Even when the constraint is wrong (excluding the optimal port-
folio), we lose somewhat the theoretical optimal risk due to the

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 1
2:

17
 0

7 
Se

pt
em

be
r 

20
12

 



594 Journal of the American Statistical Association, June 2012

limited space of portfolios, yet we gain substantially the reduc-
tion in the error accumulation of statistical estimation. As a re-
sult, the actual risks of the empirical optimal portfolios selected
based on wrong constraints can outperform the Markowitz
portfolio.

2.3 Risk Optimization: Some Theory

As it is very hard to estimate accurately the expected returns
µ, the focus is shifted to the risk minimization in empirical fi-
nance. From now on, we consider the risk minimization problem

min
wT 1=1, ‖w‖1≤c

wT �w. (2.6)

This is a simple quadratic programming problem and can be
computed easily for each given c. The problem with linear con-
straints can be solved similarly.

To simplify the notation, we let

R(w) = wT �w, Rn(w) = wT �̂w, (2.7)

be, respectively, the theoretical and empirical portfolio risks
with allocation w, where �̂ is an estimated covariance matrix
based on the data with sample size n. Let

wopt = argminwT 1=1, ||w||1≤cR(w),

ŵopt = argminwT 1=1, ||w||1≤cRn(w) (2.8)

be, respectively, the theoretical optimal allocation vector we
want and the empirical optimal allocation vector we get.

Theorem 1. Let an = ‖�̂ − �‖∞. Then, we have (without
any conditions)

|R(wopt) − Rn(ŵopt)| ≤ anc
2,

|R(ŵopt) − Rn(ŵopt)| ≤ anc
2,

|R(ŵopt) − R(wopt)| ≤ 2anc
2,

and E{Rn(ŵopt)} ≤ R(wopt) ≤ R(ŵopt).

Theorem 1 shows the theoretical minimum risk R(wopt) (also
called the oracle risk) and the actual risk R(ŵopt) of the invested
portfolio that are approximately the same as long as the c is
not too large and the accuracy of estimated covariance matrix
is not too poor. Both of these risks are unknown. The empirical
minimum risk Rn(ŵopt) is known, and can be overly optimistic
(too small). But it is close to both the theoretical risk and the
actual risk. The results hold without any conditions on �̂. In
particular, elementwise estimation of covariance matrix is al-
lowed. The concept of risk approximation is similar to persistent
(Greenshtein and Ritov 2004).

In Theorem 1, we do not specify the rate an. This depends on
the model assumption and method of estimation. For example,
one can use the factor model to estimate the covariance matrix
as in Jagannathan and Ma (2003), Ledoit and Wolf (2003), and
Fan et al. (2008). One can also estimate the covariance via the
dynamic equicorrelation model of Engle and Kelly (in press) or,
more generally, dynamically equifactor loading models. One can
also aggregate the large covariance matrix estimation based on
the high-frequency data (Barndorff-Nielsen and Shephard 2002;
Zhang, Mykland, and Aı̈t-Sahalia 2005; Barndorff-Nielsen et al.
2011).

To understand the impact of the portfolio size p on the accu-
racy an, let us consider the sample covariance matrix Sn based
on a sample {Rt }nt=1 over n periods.

We assume herewith that p is large relative to sample size to
reflect the size of the portfolio, that is, p = pn → ∞. When p
is fixed, the following results hold trivially.

Theorem 2. Under Condition 1 in the Appendix, we have

‖Ŝn − �‖∞ = Op

(√
log p

n

)
.

This theorem shows that the portfolio size enters into the max-
imum estimation error only at the logarithmic order. Hence, the
portfolio size does not play a significant role in risk minimiza-
tion as long as the constraint on gross exposure is in place.

In general, the uniform convergence result in Theorem 2 typ-
ically holds as long as the estimator of each element of the
covariance matrix is root-n consistent with exponential tails.

Theorem 3. Let σij and σ̂ij be the (i, j )th element of the
matrices � and �̂, respectively. If for a sufficiently large x,

max
i,j

P {√n|σij − σ̂ij | > x} < exp(−Cx1/a),

for two positive constants a and C, then

‖� − �̂‖∞ = OP

(
(log p)a√

n

)
. (2.9)

In addition, if Condition 2 in the Appendix holds, then (2.9)
holds for the sample covariance matrix, and if Condition 3 holds,
then (2.9) holds for a = 1/2.

2.4 Relation With Covariance Regularization

By the Lagrange multiplier method, problem (2.6) is to min-
imize

wT �̂w/2 + λ1(‖w‖1 − c) + λ2(1 − wT 1).

Let g be the subgradient vector of the function ‖w‖1, whose
ith element being −1, 1, or any values in [−1, 1] depend-
ing on whether wi is positive, negative, or zero. Then, the
Karush–Kuhn–Tucker conditions for the constrained optimiza-
tion (2.6) are

�̂w + λ1g − λ21 = 0, (2.10)

λ1(c − ‖w‖1) = 0, λ1 ≥ 0, (2.11)

in addition to the constraints wT 1 = 1 and ‖w‖1 ≤ c. Let w̃ be
the solution to (2.10) and (2.11).

Theorem 4. The constrained portfolio optimization (2.6) is
equivalent to the mean-variance problem

min
wT 1=1

wT �̃cw, (2.12)

with the regularized covariance matrix

�̃c = �̂ + λ1(g̃1T + 1g̃T ), (2.13)

where g̃ is the subgradient evaluated at w̃ and λ1 is the Lagrange
multiplier defined by (2.10) and (2.11).

The result is of a similar spirit of Jagannathan and Ma (2003)
and DeMiguel et al. (2008).
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2.5 Choice of Gross-Exposure Parameter

The gross-exposure parameter c is typically given by in-
vestors. As referees pointed out, a data-driven choice will be
helpful for investors. Let m be the number of data used in the
testing period. A natural estimate of the risk profile with gross
exposure c is to use the first n − m data points to get a sample
covariance matrix and hence the allocation vectors {ŵc}. Then,
compute the risk profile

R(c; n − m,m) = m−1
n∑

t=n−m+1

(
ŵT

c Rt

)2
, (2.14)

in which the learning period up to time n − m and the testing
period of length m are stressed. The function R(c; n − m,m) is
useful for investors to choose c. The optimal data-driven choice
is the one that minimizes the function.

In practice, one is not willing to use a large m. This leaves
the risk evaluation (2.14) unstable. To increase the reliability of
risk evaluations, we can use

R(c) = K−1
K∑

j=1

R(c; n − jm,m). (2.15)

This increases the testing period by a factor of K times and was
advocated by Fan and Yao (2003). For example, if K = 4 and
m = n/10, 40% of data are used in the evaluation of the risks
in (2.15), while only 10% are used in (2.14).

3. PORTFOLIO TRACKING AND ASSET SELECTION

The risk minimization problem (2.6) has important applica-
tions in portfolio tracking and asset selection. It also allows one
to improve the utility of existing portfolios. We first illustrate
its connection to a penalized least-square problem, upon which
the whole solution path can easily be found (Efron et al. 2004)
and then outline its applications in finance.

3.1 Connection With Regression Problem

Markowitz’s risk minimization problem can be recast as a
regression problem. By using the fact that the sum of total
weights is one, we have

var(wT R) = min
b

E(wT R − b)2

= min
b

E(Y − w1X1 − · · · − wp−1Xp−1 − b)2,

(3.1)

where Y = Rp and Xj = Rp − Rj (j = 1, . . . , p − 1). Find-
ing the optimal weight w is the same as finding the regression
coefficient w∗ = (w1, . . . , wp−1)T .

The gross-exposure constraint ‖w‖1 ≤ c can now be ex-
pressed as ‖w∗‖1 ≤ c − |1 − 1T w∗|. The latter cannot be ex-
pressed as

‖w∗‖1 ≤ d, (3.2)

for a given constant d. Thus, problem (2.6) is similar to

min
b,‖w∗‖1≤d

E(Y − w∗T X − b)2, (3.3)

where X = (X1, . . . , Xp−1)T . But they are not equivalent. The
latter depends on the choice of asset Y , while the former does
not.

Efron et al. (2004) developed an efficient algorithm by using
the least-angle regression (LARS), called the LARS-LASSO
algorithm, to efficiently find the whole solution path w∗

opt(d),
for all d ≥ 0, to (3.3). The number of nonvanishing weights
varies as d ranges from 0 to ∞. It recruits successively more
assets and gradually all assets.

3.2 Portfolio Tracking and Asset Selection

If the variable Y is the portfolio to be tracked, problem (3.3)
can be interpreted as finding a limited number of stocks with
a gross-exposure constraint to minimize the expected tracking
error. As d increases, the number of selected stocks increases,
the tracking error decreases, but the short percentage increases.
With the LARS-LASSO algorithm, we can plot the expected
tracking error and the number of selected stocks, against d. This
enables us to make an optimal decision on how many stocks
to pick to manage the trade-off among the expected tracking
errors, the number of selected stocks, and short positions.

3.3 An Approximate Solution Path to Risk Minimization

The solution path to (3.3) also provides a nearly optimal
solution path to the problem (2.6). For example, the allocation
with −w∗

opt(d) on the first p − 1 stocks and the rest on the last
stock is a feasible allocation vector to the problem (2.6) with

c = d + |1 − 1T w∗
opt(d)|. (3.4)

This will not be the optimal solution to the problem (2.6) as
it depends on the choice of Y . However, when Y is properly
chosen, the solution is nearly optimal, as to be demonstrated.
For example, by taking Y to be the no-short-sale portfolio, then
problem (3.3) with d = 0 is the same as the solution to problem
(2.6) with c = 1. We can then use (3.3) to provide a nearly
optimal solution.

In summary, to compute (2.6) for all c, we first find the so-
lution with c = 1 using a quadratic programming. This yields
the optimal no-short-sale portfolio. We then take this portfolio
as Y in problem (3.3) and apply the LARS-LASSO algorithm
to obtain the solution path −w∗

opt(d). Finally, compute the gross
exposure of the portfolio with w∗

opt(d) on the first p − 1 stocks
and the rest on the optimal no-short-sale portfolio, called it c,
namely regard the aforementioned portfolio as an approximate
solution to the problem (2.6). This yields the whole solution path
to the problem (2.6). As shown in Figure 1(a) and the empirical
studies, the approximation is indeed quite accurate.

In the above algorithm, one can also take a tradable index or
an electronically traded fund (ETF) in the set of stocks under
consideration as Y and apply the same technique to obtain a
nearly optimal solution. We have experimented this and obtained
good approximations too.

4. SIMULATION STUDIES

In this section, we use simulations to verify our theoretical
results and to quantify the finite sample behaviors. In particular,
we would like to demonstrate that the risk profile of the optimal
no-short-sale portfolio can be improved substantially and that
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Figure 1. Comparisons of optimal portfolios selected by the exact and approximate algorithms with a known covariance matrix. (a) The risks
for the exact algorithm (dashed line) and the LARS (approximate) algorithm. (b) The number of stocks picked by the optimization problem (2.6)
as a function of the gross-exposure coefficient c. (c) The actual risk (dashed line) and the empirical risk (solid) of the portfolio selected based on
the sample covariance matrix (n = 252). (d) The same as (c) except n = 756. The online version of this figure is in color.

the LARS algorithm yields a good approximate solution to the
risk minimization with gross-exposure constraint. In addition,
we would like to demonstrate that when the covariance matrix
is estimated reasonably accurately, the risk that we want (the
oracle risk,

√
R(wopt)) and the risk that we get (the actual risk

of the empirical optimal portfolio,
√

R(ŵopt)) are approximately
the same for a wide range of the exposure coefficient. However,
the story is very different when the constraint is loose. All the
simulation studies are out-of-sample studies.

4.1 A Simulated Fama–French Three-Factor Model

Let Ri be the excessive return over the risk-free interest rate
of the ith stock. Fama and French (1993) identified three key
factors that capture the cross-sectional risk in the U.S. equity
market. The first factor is the excess return of the proxy of the
market portfolio and the other two factors are related to the

market capitalizations and book-to-market ratios. More specif-
ically, we assume that the excess return follows the following
three-factor model:

Ri = bi1f1 + bi2f2 + bi3f3 + εi, i = 1, . . . , p, (4.1)

where {bij } are the factor loadings of the ith stock on the factor
fj and εi is the idiosyncratic noise, independent of the three
factors. We assume further that the idiosyncratic noises are in-
dependent of each other, whose marginal distributions are the
Student’s t with degree of freedom 6 and standard deviation σi .

To facilitate the presentation, we write the factor model (4.1)
in the matrix form

R = Bf + ε, (4.2)

where B is the factor loading coefficient matrix. Throughout
this simulation, we assume that E(ε|f) = 0 and cov(ε|f) =
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Table 1. Parameters used in the simulation

Parameters for factor loadings Parameters for factor returns

µb covb µf covf

0.7828 0.02914 0.02387 0.010184 0.02355 1.2507 −0.0350 −0.2042
0.5180 0.02387 0.05395 −0.006967 0.01298 −0.0350 0.3156 −0.0023
0.4100 0.01018 −0.00696 0.086856 0.02071 −0.2042 −0.0023 0.1930

diag(σ 2
1 , . . . , σ 2

p). Then, model (4.2) implies that R has the co-
variance

� = cov(Bf) + cov(ε) = Bcov(f)BT + diag
(
σ 2

1 , . . . , σ 2
p

)
.

(4.3)

We simulate the n-period returns of p assets as follows. See
Fan et al. (2008) for additional details. First of all, the factor
loadings are generated from the trivariate normal distribution

N (µb, covb), where the parameters are given in Table 1. Once
the factor loadings are generated, they are taken as the param-
eters and thus kept fixed throughout simulations. The levels
of idiosyncratic noises are generated from a gamma distribu-
tion with the shape parameter 3.3586 and the scale parameter
0.1876, conditioned on the noise level of at least 0.1950. The
returns of the three factors over n periods are drawn from the
trivariate normal distribution N (µf , covf ), with the parameters
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Figure 2. Risk improvement of the 200 equally weighted portfolio by modifying the weights of the portfolio using (3.3). As the exposure
parameter d increases, more weights are modified and the risks of new portfolios decrease. (a) The empirical and actual risks of the modified
portfolios are plotted against exposure parameter d, based on the sample covariance matrix. (b) The number of stocks whose weights are modified
as a function of d. (c) and (d) are the same as (a) and (b) except that the covariance matrix is estimated based on the factor model. The online
version of this figure is in color.
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given in Table 1. The parameters are calibrated to the market
data of 30 industrial portfolios from May 1, 2002, to August 29,
2005, and are taken from Fan et al. (2008). Thus, our numer-
ical experiments simulate the portfolio returns, which are less
volatile than individual stocks. They allow a larger choice of c.

4.2 Accuracy of LARS Approximation

As mentioned in Section 3.3, the LARS algorithm provides
an approximate solution. The first question is then the accuracy
of the approximation. As a by-product, we also demonstrate that
the optimal no-short-sale portfolio is not diversified enough and
can be significantly improved.

To demonstrate this, we took 100 stocks with covariance
matrix given by (4.3). For each given c in the interval [1, 3],
we applied a quadratic programming algorithm to solve prob-
lem (2.6) and obtained its associated minimum portfolio risk,

depicted in Figure 1(a). We also employed the LARS algorithm
using the optimal no-short-sale portfolio as Y , with d ranging
from 0 to 3. This yields a solution path along with its associated
portfolio risk path. The risk profiles are in fact very close. The
number of stocks for the optimal no-short-sale portfolio is 9.
As c increases, the number of stocks picked by (2.6) also in-
creases, as demonstrated in Figure 1(b) and the portfolio gets
more diversified.

The approximated and exact solutions have very similar risk
functions. Figure 1(a) shows that the optimal no-short-sale port-
folio is very conservative and can be improved drastically as the
constraint relaxes. At c = 2 (corresponding to 18 stocks with
50% short positions and 150% long positions), the risk decreases
from 8.1% to 4.9%. The decrease in risks slows down drasti-
cally after that point. This shows that the optimal no-short-sale
constraint portfolio can be improved substantially by using our
method.
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Figure 3. The 10%, 50%, and 90% quantiles of the actual risks of the 101 empirically chosen portfolios for each given gross-exposure
parameter c are shown in (a) sample covariance matrix and (b) factor model for the case with 200 stocks. They indicate the sampling variability
among 101 simulations. The theoretical optimal risk, the median of the actual risks, and the median of the empirical risks of 101 empirically
selected portfolios are also summarized in (c) based on the sample covariance matrix and (d) based on the factor model. The online version of
this figure is in color.
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The next question is whether the improvement can be realized
with the estimated covariance matrix. To illustrate this, we sim-
ulated n = 252 from the three-factor model (4.1) and estimated
the covariance matrix by the sample covariance matrix. The ac-
tual and empirical risks of the selected portfolio for a typical
simulated dataset are depicted in Figure 1(c). For a range up
to c = 1.7, they are approximately the same. The range widens
when the covariance matrix is estimated with a better accuracy.
To demonstrate this effect, we show in Figure 1(d) the case
with sample size n = 756. However, when the gross-exposure
parameter is large, they can differ substantially.

4.3 Portfolio Improvement

To demonstrate further how much our method can be used to
improve the existing portfolio, we assume that the current port-
folio is an equally weighted portfolio among 200 stocks. This
is the portfolio Y . The returns of these 200 stocks are simulated
from model (4.1) over a period of n = 252. The theoretical risk

of this equally weighted portfolio is 13.58%, while the empirical
risk of this portfolio is 13.50% for a typical realization. Here,
the typical sample refers to the one that has the median value
of the empirical risks among 200 simulations. This particular
simulated dataset is used for the further analysis.

We now pretend that this equally weighted portfolio is the
one that an investor holds and the investor seeks possible im-
provement in the efficiency by modifying some of the weights.
The investor employs the LARS-LASSO technique (3.3), tak-
ing the equally weighted portfolio as Y and the 200 stocks as
potential X. Figure 2 depicts the empirical and actual risks, and
the number of stocks whose weights are modified to improve
the risk profile of equally weighted portfolio.

The risk profile of the equally weighted portfolio can be im-
proved substantially. When the sample covariance is used, at
d = 1, Figure 2(a) reveals that the empirical risk is only about
one half of the equally weighted portfolio, while Figure 2(b)
shows that the number of stocks whose weights have been
modified is only 4. The total percentage of short positions is
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Figure 4. This is similar to Figure 3 except p = 500. The sample covariance matrix is always degenerate under this setting (n = 252).
Nevertheless, for the given range of c, the gross-constrained portfolio performs normally. The same captions as Figure 3 are used. The online
version of this figure is in color.
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only about 48%. The actual risk of this portfolio is very close
to the empirical one, giving an actual risk reduction of nearly
50%. At d = 2, corresponding to about 130% of short positions,
the empirical risk is reduced by a factor of about 3. Increasing
the gross-exposure parameter only slightly reduces the empir-
ical risk, but quickly increases the actual risk. Applying our
criterion to the empirical risk, which is known at the time of
decision making, one would have chosen a gross-exposure pa-
rameter somewhat less than 1.5 (the place where the empirical
risk fails to decrease quickly), realizing a sizable reduction in
the actual risk.

Similar conclusions can be made for the covariance matrix
based on the factor model. In this case, the covariance matrix is
estimated more accurately, and hence, the empirical and actual
risks are closer for a wider range of the gross-exposure parameter
d. This is consistent with our theory. The substantial gain in this
case is because the factor model is correct and hence incurs
no modeling biases in estimating covariance matrices. For the
real financial data, however, the accuracy of the factor model is
unknown. As soon as d ≥ 3, the empirical reduction in risk is
not significant.

4.4 Risk Approximations

We now use simulations to demonstrate the closeness of the
risk approximations with the gross-exposure constraints. The
factor model (4.1) is used to generate the returns of p stocks
over a period of n = 252 days. The number of simulations is

101. The covariance matrix is estimated by either the sample
covariance or the factor model (4.3), whose coefficients are
estimated from the sample. We examined two cases: p = 200
and p = 500. The first case corresponds to a nondegenerate
sample covariance matrix, whereas the second case corresponds
to a degenerate one.

We first examine the case p = 200 with a sample of size 252.
Figure 3(a) summarizes the 10th, 50th, and 90th percentiles of
the actual risks of empirically selected portfolios among 101
simulations. They summarize the distributions of these actual
risks. The sampling variation is indeed small. It is clear from
Figure 3(c) that the theoretical risk fails to decrease noticeably
when c = 3 and increasing the gross exposure will not improve
the theoretical optimal risk profile very much. In fact, for the
true covariance, the global minimum variance (GMV) portfolio
has c = 4.22, which involves 161% of short positions and a
minimum risk of 2.68%. For any c ≥ 4.22, the theoretical risk
is constant. On the other hand, increasing gross exposure c
makes it harder to estimate the theoretical allocation vector. As
a result, the actual risk increases when c gets larger. When c gets
larger (beyond the scale plotted here), the actual risk increases
steadily, while the empirical risk decreases.

Combining the results of both the top and bottom panels,
Figure 3 gives a comprehensive overview of the risk approx-
imations. The top panel shows the sampling variability of the
actual risks, whereas the bottom panel depicts the approximation
errors of the actual risks (biases). For example, when c is small,
both approximation errors and sampling variabilities are small,

Table 2. Returns and risks based on 100 Fama–French industrial portfolios

Mean SD Sharpe Max. Min. No. of long No. of short
Methods (%) (%) ratio weight weight positions positions

Sample covariance matrix estimator
No short (c = 1) 19.51 10.14 1.60 0.27 –0.00 6 0
Exact (c = 1.5) 21.04 8.41 2.11 0.25 –0.07 9 6
Exact (c = 2) 20.55 7.56 2.28 0.24 –0.09 15 12
Exact (c = 3) 18.26 7.13 2.09 0.24 –0.11 27 25
Approx. (c = 2, Y = NS) 21.16 7.89 2.26 0.32 –0.08 9 13
Approx. (c = 3, Y = NS) 19.28 7.08 2.25 0.28 –0.11 23 24
GMV portfolio 17.55 7.82 1.82 0.66 –0.32 52 48

Factor-based covariance matrix estimator
No short (c = 1) 20.40 10.19 1.67 0.21 –0.00 7 0
Exact (c = 1.5) 22.05 8.56 2.19 0.19 –0.05 11 8
Exact (c = 2) 21.11 7.96 2.23 0.18 –0.05 17 18
Exact (c = 3) 19.95 7.77 2.14 0.17 –0.05 35 41
Approx. (c = 2, Y = NS) 21.71 8.07 2.28 0.24 –0.04 10 19
Approx. (c = 3, Y = NS) 20.12 7.84 2.14 0.18 –0.05 33 43
GMV portfolio 19.90 7.93 2.09 0.43 –0.14 45 55

Covariance estimation from RiskMetrics
No short (c = 1) 15.45 9.27 1.31 0.30 –0.00 6 0
Exact (c = 1.5) 15.96 7.81 1.61 0.29 –0.07 9 5
Exact (c = 2) 14.99 7.38 1.58 0.29 –0.10 13 9
Exact (c = 3) 14.03 7.34 1.46 0.29 –0.13 21 18
Approx. (c = 2, Y = NS) 15.56 7.33 1.67 0.34 –0.08 9 11
Approx. (c = 3, Y = NS) 15.73 6.95 1.78 0.30 –0.11 20 20
GMV portfolio 13.99 9.47 1.12 0.78 –0.54 53 47

Unmanaged index
Equal weighted 10.86 16.33 0.46 0.01 0.01 100 0
CRSP 8.2 17.9 0.26
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whereas the approximation errors dominate the sampling vari-
ability when the global exposure parameter is large. It is clear
that the risk approximations are much more accurate for the
covariance matrix estimation based on the factor model. This
is somewhat expected as the data-generating process is a factor
model.

We now consider the case where there are 500 potential
stocks, with only a year of data (n = 252). In this case, the
sample covariance matrix is always degenerate. Therefore, the
global minimum portfolio based on the sample covariance al-
ways has zero empirical risk. On the other hand, with the
gross-exposure constraint, the actual and empirical risks approx-
imate quite well for a wide range of gross-exposure parameters
(Figure 4). To gauge the relative scale of the range, we note that
for the given theoretical covariance, the global minimum port-
folio has c = 4.01, which involves 150% of short positions with
the minimum risk of 1.69%. The optimal no-short-sale portfo-

lio, selected from 500 stocks, has an actual risk of 6.47%, which
is not much smaller than 7.35%, selected from 200 stocks.

5. EMPIRICAL STUDIES

5.1 Fama–French 100 Portfolios

We use the daily returns of 100 industrial portfolios formed
on the basis of size and book-to-market ratio from the web-
site of Kenneth French from January 2, 1998, to December 31,
2007. These 100 portfolios are formed by the two-way sort of
the stocks in the Center for Research in Security Prices (CRSP)
database, according to the market equity and the ratio of book
equity to market equity, 10 categories in each variable. At the
end of each month from 1998 to 2007, the covariance matrix of
the 100 assets is estimated according to three estimators, that
is, the sample covariance, Fama–French three-factor model, and
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Figure 5. Characteristics of invested portfolios as a function of exposure constraints (c) from the Fama–French 100 industrial portfolios
formed on the basis of size and book-to-market ratio from January 2, 1998, to December 31, 2007. (a) Annualized risk of portfolios. (b) Sharpe
ratio of portfolios. (c) Maximum weight of allocations. (d) Annualized return of portfolios. The online version of this figure is in color.
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the RiskMetrics with λ = 0.97, using the past 12 months’ daily
return data. These covariance matrices are then used to con-
struct optimal portfolios under various exposure constraints.
The portfolios are then held for one month and rebalanced at
the beginning of the next month. The means, standard devia-
tions, and other characteristics of these portfolios are recorded
and presented in Table 2. These represent the actual returns and
the actual risks. The optimal portfolios with the gross-exposure
constraints pick certain numbers of assets each month. The av-
erage numbers of assets over the study period are presented in
Table 2.

First of all, the optimal no-short-sale portfolios, while select-
ing about six assets from the 100 portfolios, are not diversified
enough. Their risks can easily be improved by relaxing the
gross-exposure constraint with c = 2. This is shown in Table 2
and Figure 5(a), no matter which method is used to estimate the
covariance matrix. The risk stops decreasing drastically when
c = 2.5. Interestingly, the Sharpe ratios peak around c = 2.5
stocks too. After that point, the Sharpe ratio actually falls for
the covariance estimation based on the sample covariance and
the factor model.

For c < 2.5, the portfolios selected using the RiskMetrics
have lower risks. In comparison with the sample covariance
matrix, the RiskMetrics estimates the covariance matrix using
a much smaller effective time window. As a result, the biases
are usually smaller than the sample covariance matrix. Since
each asset is a portfolio in this study, its risk is smaller than
stocks. Hence, the covariance matrix can be estimated more
accurately with the RiskMetrics in this study. This explains
why the resulting selected portfolios, by using the RiskMetrics,
have smaller risks. However, their associated returns tend to be
smaller too. As a result, their Sharpe ratios are actually smaller.
The Sharpe ratios actually peak at around c = 1.5 assets.

It is surprising to see that the unmanaged equally weighted
portfolios, which invests 1% on each of the 100 industrial port-
folios, are far from optimal in terms of the risk during the study
period. The value-weighted index CRSP does not fare much
better. They are all outperformed by the optimal portfolios with
gross-exposure constraints during the study period. This is in
line with our theory. Indeed, the equally weighted portfolio and
the CRSP index are two specific members of the no-short-sale
portfolio, and should be outperformed by the optimal no-short-
sale portfolio, if the covariance matrix is estimated with reason-
able accuracy.

5.2 Russell 3000 Stocks

We now apply our techniques to study the portfolio behavior
using Russell 3000 stocks. The study period is from January 2,
2003, to December 31, 2007. To avoid computation burden and
the issues of missing data, we picked 600 stocks randomly from
1000 stocks in the 3000 stocks that constitute Russell 3000 on
December 31, 2007. These 1000 stocks have least percentages of
missing data in the 5-year study period. This forms the universe
of the stocks under our study.

At the end of each month from 2003 to 2007, the covariance
of the 600 stocks is estimated, according to various estimators,
using the past 24 months’ daily returns. As a result, the sam-
ple covariance matrix is degenerate. We use these covariance

Table 3. Returns and risks based on 600 stock portfolios

SD Max. Min. No. of long No. of short
Methods (%) weight weight positions positions

Sample covariance matrix estimator
No short 9.28 0.14 0.00 53 0
c = 2 8.20 0.11 −0.06 123 67
c = 3 8.43 0.09 −0.07 169 117
c = 4 8.94 0.10 −0.08 201 154
c = 5 9.66 0.12 −0.10 225 181
c = 6 10.51 0.13 −0.10 242 201
c = 7 11.34 0.14 −0.11 255 219
c = 8 12.20 0.17 −0.12 267 235

Factor-based covariance matrix estimator
No short 9.08 0.12 0.00 54 0
c = 2 8.31 0.06 −0.03 188 120
c = 3 8.65 0.05 −0.03 314 272
c = 4 8.66 0.05 −0.03 315 273
c = 5 8.66 0.05 −0.03 315 273
c = 6 8.66 0.05 −0.03 315 273
c = 7 8.66 0.05 −0.03 315 273
c = 8 8.66 0.05 −0.03 315 273

Covariance estimation from RiskMetrics
No short 9.78 0.40 0.00 31 0
c = 2 8.44 0.12 −0.06 119 63
c = 3 8.95 0.11 −0.07 191 133
c = 4 9.43 0.12 −0.09 246 192
c = 5 10.04 0.12 −0.10 279 233
c = 6 10.53 0.12 −0.11 300 258
c = 7 10.92 0.13 −0.11 311 272
c = 8 11.06 0.13 −0.10 315 277

matrices to construct optimal portfolios under various gross-
exposure constraints and hold these portfolios for one month.
The daily returns of these portfolios are recorded, and hence,
the standard deviations are computed.

Table 3 summarizes the risks of the optimal portfolios con-
structed using three different methods of estimating the covari-
ance matrix and using six different gross-exposure constraints.
The global minimum portfolio, which does not exist empirically
but is approximated by c = 8, is not efficient for vast portfolios
due to the accumulation of errors in the estimated covariance
matrix. This can be seen easily from Figure 6. The ex-post an-
nualized volatilities of constructed portfolios using the sample
covariance and the RiskMetrics shoot up quickly (beyond c = 2).
The risk continues to grow if we relax further the gross-exposure
constraint, which is beyond the range of our pictures. This pro-
vides further evidence to support the claim of Jagannathan and
Ma (2003).

The optimal no-short-sale portfolios are not efficient in terms
of ex-post risk calculation. These can be improved, when portfo-
lios are allowed to have 50% short positions, say, corresponding
to c = 2. This is because the no-short-sale portfolios are not
diversified enough. The risk approximations are still accurate
when c ≤ 2. On the other hand, the optimal no-short-sale port-
folios outperform substantially the global minimum portfolio
(proxied by c = 8), which is consistent with the conclusion
drawn by Jagannathan and Ma (2003) and with our risk approx-
imation theory.
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Figure 6. Risks of the optimal portfolios as a function of the gross-
exposure constraint. They are the annualized volatilities as a function
of the gross-exposure parameter c. The online version of this figure is
in color.

The risks of optimal portfolios tend to be smaller and sta-
ble, when the covariance matrix is estimated from the factor
model. For vast portfolios, such an estimation of covariance
matrix tends to be the most stable among the three methods that
we considered here. As a result, its associated portfolio risks
tend to be the smallest among the three methods. As the covari-
ance matrix estimated by the RiskMetrics uses a shorter time
window than that based on the sample covariance matrix, the
resulting estimates tend to be even more unstable. As a result,
its associated optimal portfolios tend to have the highest risks.

6. CONCLUSION

The portfolio optimization with the gross-exposure constraint
bridges the gap between the optimal no-short-sale portfolio and
no constraint on short sale in the Markowitz’s framework. The
gross-exposure constraint helps control the discrepancies be-
tween the empirical risk, which can be overly optimistic, the
oracle risk, which is not obtainable, and the actual risk of the
selected portfolio, which is unknown. We demonstrated that for
a range of gross-exposure parameters, these three risks are actu-
ally very close. The approximation errors are controlled by the
worst elementwise estimation error of the covariance matrix.
There is no accumulation of estimation errors.

We provided theoretical insights into the observation made
by Jagannathan and Ma (2003) that the optimal no-short-sale
portfolio has smaller actual risk than that for the global min-
imum portfolio, and offered empirical evidence to strengthen
the conclusion. We demonstrated that the optimal no-short-sale
portfolio is not diversified enough. It is still a conservative port-
folio that can be improved by allowing some short positions.
This is demonstrated by our empirical studies and supported
by our risk approximation theory. Increasing gross exposure
somewhat does not excessively increase the risk approximation
errors, but increases significantly the space of allowable portfo-
lios and hence decreases drastically the oracle and actual risks.

Practical portfolio choices always involve constraints on
individual assets. This is commonly understood as an effort of re-
ducing the risks of the selected portfolios. Our theoretical result
provides further mathematical insights to support such a state-
ment. The constraints on individual assets also put a constraint
on the gross exposure and hence control the risk approximation
errors, which makes the empirical and actual risks closer.

APPENDIX: CONDITIONS AND PROOFS

Throughout this appendix, we assume that µ = ERt and S =
E(RtRT

t ) are independent of t. Let Ft be the filtration generated by
the process {Rt }.

Condition 1. Let Yt be the [p(p + 1)/2]-dimensional vector con-
structed from the symmetric matrix RtRT

t − S. Assume that µ = 0 and
Yt follows the vector autoregressive model:

Yt = A1Yt−1 + · · · + AkYt−k + εt ,

for coefficient matrices A1, . . . , Ak , with E{εt |Ft } = 0 and
supt E‖εt‖∞ < ∞. Assume, in addition, that supt E‖Aj Yt‖∞ =
Op(n1/2) for all 1 ≤ j ≤ k and ‖b(j )‖1 < ∞, where b(j ) is the jth row
of matrix B−1, with B = I − A1 − · · · − Ak .

The conditions are imposed to facilitate the technical proof.
They are not weakest possible. In particular, the condition such as
maxt E‖εt‖∞ < ∞ can be relaxed by replacing an upper bound de-
pending on p such as log p, and the conclusion continues to hold with
some simple modifications. The assumptions on matrices {Aj } can eas-
ily be checked when they are diagonal. In particular, the assumption
holds when {Rt } are a sequence of independently identically distributed
random vectors. Since we assume µ = 0, the sample covariance matrix
refers to the second moment.

Before introducing Condition 2, let us introduce the strong mixing
coefficient α(k) of the process {Rt }, which is given by

α(k) = sup
t

sup{|P (AB) − P (A)P (B)| : A ∈ σ (Rs , s ≤ t),

B ∈ σ (Rs , s ≥ t + k)},
where σ (Rs , s ≤ t) is the sigma algebra generated by {Rs , s ≤ t}.

Condition 2. Suppose that ‖Rt‖∞ < B for a constant B > 0 and that
as q → ∞, α(q) = O(exp(−Cq1/b)) and a > (b + 1)/2 in Theorem 3.
In addition, log n = O(log p).

Condition 3. Let ηt be RtiRtj − ERt iRtj or Rti − ERt i (we sup-
press its dependence on i and j). Assume that there exist nonnegative
constants a, b, and B and a function ρ(·) such that

|cov(ηs1 · · · ηsu , ηt1 · · · ηtv )| ≤ Bu+v[(u + v)!]bvρ(t1 − su),

for all i and j and any 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤ tv ≤ n, where

∞∑
s=0

(s + 1)kρ(s) ≤ Bk(k!)a, for all k > 0,

and

E|ηt |k ≤ (k!)νBk, for all k > 0.

In addition, we assume that log p = o(n1/(2a+2b+3)).

For autoregressive (AR) and autoregressive conditional het-
eroscedastic (ARCH) processes, Neumann and Paparoditis (2008)
showed that this covariance weak dependence condition holds with
a = 1, b = 0, and ρ(s) = hs for some h < 1.

Proof of Theorem 1. First of all, it is easy to see that

|Rn(w) − R(w)| = |wT (�̂ − �)w| ≤ an‖w‖2
1, (A.1)

which is bounded by anc
2. This proves the second inequality.
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To prove the first inequality, by using R(wopt) − R(ŵopt) ≤ 0, we
have that

R(wopt) − Rn(ŵopt) = R(wopt) − R(ŵopt) + R(ŵopt) − Rn(ŵopt)

≤ R(ŵopt) − Rn(ŵopt)

≤ anc
2,

where the last inequality follows from (A.1). Similarly, it follows from
Rn(wopt) − Rn(ŵopt) ≥ 0 that

R(wopt) − Rn(ŵopt) = R(wopt) − Rn(wopt) + Rn(wopt) − Rn(ŵopt)

≥ R(wopt) − Rn(wopt)

≥ −anc
2.

Combining the last two results, the third inequality follows.
Now, let us prove the third inequality. Using again R(ŵopt) −

R(wopt) ≥ 0 and Rn(ŵopt) − Rn(wopt) ≤ 0, we have

R(ŵopt) − R(wopt) = R(ŵopt) − Rn(ŵopt) + Rn(ŵopt) − Rn(wopt)

+ Rn(wopt) − R(wopt)

≤ R(ŵopt) − Rn(ŵopt) + Rn(wopt) − R(wopt)

≤ 2sup||w||≤c|Rn(w) − R(w)|. (A.2)

This together with (A.1) proves the third inequality. The last inequality
follows from the fact that

E{Rn(ŵopt)} ≤ E{Rn(wopt)} = R(wopt).

This completes the proof. �
We need the following lemma to prove Theorem 2.

Lemma 1. Let ξ 1, . . . , ξ n be a series of p-dimensional random vec-
tors. Assume that ξ t is Ft adaptive and each component is a martingale
difference: E(ξ t+1|Ft ) = 0. Then, for any p ≥ 3 and r ∈ [2, ∞], we
have for some universal constant C

E

∥∥∥∥∥
n∑

t=1

ξ t

∥∥∥∥∥
2

r

≤ C min[r, log p]
n∑

t=1

E||ξ t ||2r , (A.3)

where ||ξ t ||r is the lr norm of the vector ξ t in Rp .
This is an extension of the Nemirovski’s inequality to the martingale

difference sequence. The proof follows similar arguments on page 188
of Emery, Nemirovski, and Voiculescu (2000) and Dumbgen et al.
(2010).

Proof of Lemma 1. Let V (x) = ||x||2r . Then, there exists a universal
constant C such that

V (x + y) ≤ V (x) + yT V ′(x) + CrV (y),

where V ′(x) is the gradient vector of V (x). Using this, we have

V

(
n∑

t=1

ξ t

)
≤ V

(
n−1∑
t=1

ξ t

)
+ ξ T

n V ′
(

n−1∑
t=1

ξ t

)
+ CrV (ξ n). (A.4)

Since ξ n is a martingale difference and V ′(
∑n−1

t=1 ξ t ) is Fn−1 adaptive,
we have

Eξ T
n V ′

(
n−1∑
t=1

ξ t

)
= 0.

By taking the expectation on both sides of (A.4), we have

EV

(
n∑

t=1

ξ t

)
≤ EV

(
n−1∑
t=1

ξ t

)
+ CrEV(ξ n).

Iteratively applying the above formula, we have

E

∥∥∥∥∥
n∑

t=1

ξ t

∥∥∥∥∥
2

r

≤ Cr

n∑
t=1

‖ξ t‖2
r . (A.5)

This proves the first half of the inequality (A.3).

To prove the inequality (A.3), without loss of generality, assume that
r ≥ log p. Let r ′ = log p > 1. Then, for any x in the p-dimensional
space,

‖x‖r ≤ ‖x‖r ′ ≤ p
1
r′ − 1

r ||x||r .
Hence, from (A.5),

E

∥∥∥∥∥
n∑

t=1

ξt

∥∥∥∥∥
2

r

≤ E

∥∥∥∥∥
n∑

t=1

ξ t

∥∥∥∥∥
2

r ′

≤ C log p

n∑
t=1

E||ξ t ||2r ′

≤ C log p

n∑
t=1

p
2( 1

r′ − 1
r )

E||ξ t ||2r .

Using the simple fact p
2
r′ = e2, we complete the proof of the

inequality (A.3). �
Proof of Theorem 2. Applying Lemma 1, with r = ∞, we have

E

∥∥∥∥∥n−1
n∑

t=1

ξ t

∥∥∥∥∥
2

∞
≤ C log p

n
max

t
E‖ξ t‖2

∞, (A.6)

for all t, where E‖ξ t‖2
∞ = E(max1≤j≤p ξ 2

tj ). As a result, from Condition
1, an application of (A.6) to p(p + 1)/2 element of εt yields

E‖(n − k)−1
n∑

t=k+1

(Yt − A1Yt−1 − · · · − AkYt−k)‖2
∞

≤ C log p2

n − k
max

t
E‖εt‖2

∞.

Note that each of the summation (n − k)−1
∑n

t=k+1 Yt−j (for j ≤ k) is
approximately the same as n−1

∑n

t=1 Yt since k is finite, by appealing
to Condition 1. Hence, we can easily show that∥∥∥∥∥Bn−1

n∑
t=1

Yt

∥∥∥∥∥
∞

= Op

(√
log p

n

)
.

From the assumption on the matrix B, we can easily deduce that∥∥∥∥∥n−1
n∑

t=1

Yt

∥∥∥∥∥
∞

= Op

(√
log p

n

)
.

Rearranging this into matrix form, we conclude that∥∥∥∥∥n−1
n∑

t=1

RtRT
t − S

∥∥∥∥∥
∞

= Op

(√
log p

n

)
.

�

Proof of Theorem 3. Note that from the union bound of probability,
we have for any D > 0,

P {√n‖� − �̂‖∞ > D(log p)a} ≤ p2 max
i,j

P {√n|σij − σ̂ij | > D(log p)a}.
From the assumption of the theorem, the above probability is bounded
by

p2 exp
(−C[D(log p)a]1/a

) = p2p−CD1/a

,

which tends to zero when D is large enough. This proves the first part
of the theorem.

We now prove the second part of the α-mixing process. Let ξt be an
Ft -adaptive random variable with Eξt = 0 and assume that |ξt | ≤ B for
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all t. Then, from theorem 1.3 of Bosq (1998), for any integer q ≤ n/2,
we have

P (|ξ̄n| > ε) ≤ 4 exp

(
− qε2

8B2

)
+ 22(1 + 4B/ε)1/2qα ([n/(2q)]) ,

(A.7)
where ξ̄n = n−1

∑n

t=1 ξt . Taking εn = 4BD(log p)a/
√

n and q =
n(log p)1−2a/2, we obtain from (A.7) that

P (|ξ̄n| > εn) = 4p−D2 + o(n3/2)α((log p)2a−1).

Now, from the assumption on the mixing coefficient α(·), we conclude
that for a sufficiently large D,

P (|ξ̄n| > εn) = o(p−2), (A.8)

for a > (b + 1)/2.
Applying (A.8) to ξt = RtiRtj − ERt iRtj with a sufficiently large D,

we have

P

(
n−1

n∑
t=1

|RtiRtj − ERiRj | > εn

)
= o(p−2).

This together with the first part of the proof of Theorem 2 yield that∥∥∥∥∥n−1
n∑

t=1

RtRT
t − S

∥∥∥∥∥
∞

= Op (εn) ,

where we borrow the notation from the proof of Theorem 2. Similarly,
by an application of (A.8), we obtain

‖R̄n − µ‖∞ = Op (εn) .

Combining the last two results, we prove the second part of the theorem.
The proof of the third part of the theorem follows similar steps. From

Theorem 1 of Doukhan and Neumann (2007), under Condition 3, we
have

P

(∥∥∥∥∥
n∑

t=1

ηt

∥∥∥∥∥ >
√

nx

)
≤ exp(−C min{x2, (

√
nx)c}),

for some C > 0, where c = 1/(a + b + 2). Now, taking x =
D(log p)1/2, we have

x2/(
√

nx)c = O((log p)1−c/2/nc/2) = o(1),

since log p = o(n1/(2µ+2ν+3)). Thus, the exponent is as large as

C min{x2, (
√

nx)c} ≥ CD2 log p,

for a sufficiently large n. Consequently,

P

(∥∥∥∥∥
n∑

t=1

ηt

∥∥∥∥∥ > D
√

n log p

)
≤ exp(−CD2 log p) = o(p−2),

for a sufficiently large D. Now, substituting the definition of ηt , we
have

P

(
n−1

n∑
t=1

|RtiRtj − ERiRj | > D
√

(log p)/n

)
= o(p−2), (A.9)

P

(
n−1

n∑
t=1

|Rti − ERi | > D
√

(log p)/n

)
= o(p−2). (A.10)

Combining the results of (A.9) and (A.10) and using the same argument
as proving the first part of Theorem 2, we have∥∥∥∥∥n−1

n∑
t=1

RtRT
t − S

∥∥∥∥∥
∞

= Op(
√

(log p)/n)

and ∥∥∥∥∥n−1
n∑

t=1

Rt − µ

∥∥∥∥∥
∞

= Op(
√

(log p)/n).

The conclusion follows from these two results. �
Proof of Theorem 4. First of all, note that the solution to problem

(2.12) is given by

wopt = �̃
−1
c 1/1T �̃

−1
c 1.

By using w̃T 1 = 1 and g̃T w̃ = ‖w̃‖1, we have

�̃cw̃ = �̂w̃ + λ1g̃ + λ1‖w̃‖11

= (λ2 + λ1c)1,

in which the last equality uses (2.10) and (2.11). Thus, w̃ = (λ2 +
λ1c)�̃

−1
c 1, which has the same direction wopt. Since 1T w̃ = 1, they

must be equal. This completes the proof. �
[Received September 2011. Revised February 2012.]
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