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Vast Volatility Matrix Estimation Using
High-Frequency Data for Portfolio Selection

Jianqing FAN, Yingying LI, and Ke YU

Portfolio allocation with gross-exposure constraint is an effective method to increase the efficiency and stability of portfolios selection among
a vast pool of assets, as demonstrated by Fan, Zhang, and Yu. The required high-dimensional volatility matrix can be estimated by using
high-frequency financial data. This enables us to better adapt to the local volatilities and local correlations among a vast number of assets
and to increase significantly the sample size for estimating the volatility matrix. This article studies the volatility matrix estimation using
high-dimensional, high-frequency data from the perspective of portfolio selection. Specifically, we propose the use of “pairwise-refresh
time” and “all-refresh time” methods based on the concept of “refresh time” proposed by Barndorff-Nielsen, Hansen, Lunde, and Shephard
for the estimation of vast covariance matrix and compare their merits in the portfolio selection. We establish the concentration inequalities of
the estimates, which guarantee desirable properties of the estimated volatility matrix in vast asset allocation with gross-exposure constraints.
Extensive numerical studies are made via carefully designed simulations. Comparing with the methods based on low-frequency daily data,
our methods can capture the most recent trend of the time varying volatility and correlation, hence provide more accurate guidance for
the portfolio allocation in the next time period. The advantage of using high-frequency data is significant in our simulation and empirical
studies, which consist of 50 simulated assets and 30 constituent stocks of Dow Jones Industrial Average index.

KEY WORDS: Concentration inequalities; High-frequency data; Portfolio allocation; Refresh time; Risk assessment; Volatility matrix
estimation.

1. INTRODUCTION

The mean-variance efficient portfolio theory by Markowitz
(1952, 1959) has had a profound impact on modern finance.
Yet, its applications to practical portfolio selection face a num-
ber of challenges. It is well known that the selected portfolios
depend too sensitively on the expected future returns and volatil-
ity matrix. This leads to the puzzle postulated by Jagannathan
and Ma (2003) why no short-sale portfolio outperforms the ef-
ficient Markowicz portfolio. The sensitivity on the dependence
can be effectively addressed by the introduction of the constraint
on the gross exposure of portfolios (Fan, Zhang, and Yu 2011).
Their results not only give a theoretical answer to the puzzle
postulated by Jagannathan and Ma (2003) but also pave a way
for optimal portfolio selection in practice.

The second challenge of the implementation of Markowitz’s
portfolio selection theory is the intrinsic difficulty of the esti-
mation of the large volatility matrix. This is well documented
in the statistics and econometrics literature even for the static
large covariance matrix (Bickel and Levina 2008; Fan, Fan, and
Lv 2008; Lam and Fan 2009; Rothman, Levina, and Zhu 2009).
The additional challenge comes from the time-varying nature
of a large volatility matrix. For a short and medium holding
period (1 day or 1 week, say), the expected volatility matrix in
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the near future can be very different from the average of the ex-
pected volatility matrix over a long time horizon (the past 1 year,
say). As a result, even if we know exactly the realized volatility
matrix in the past, the bias can still be large. This calls for a
stable and robust portfolio selection. The portfolio allocation
under the gross-exposure constraint provides a needed solution.
To reduce the bias of the forecasted expected volatility matrix,
we need to shorten the learning period to better capture the dy-
namics of the time-varying volatility matrix, adapting better to
the local volatility and correlation. But this is at the expense of
a reduced sample size. The wide availability of high-frequency
data provides sufficient amount of data for reliable estimation
of the volatility matrix.

Recent years have seen dramatic developments in the study of
high-frequency data in estimating integrated volatility. Statisti-
cians and econometricians have been focusing on the interesting
and challenging problem of volatility estimation in the pres-
ence of market microstructure noise and asynchronous tradings,
which are the stylized features of high-frequency financial data.
The progress is very impressive with a large literature. In partic-
ular, in the one-dimensional case when the focus is on estima-
tion of integrated volatility, Aı̈t-Sahalia, Mykland, and Zhang
(2005) discussed a subsampling scheme; Zhang, Mykland, and
Aı̈t-Sahalia (2005) proposed a two-scale estimate which was
extended and improved by Zhang (2006) to multiple scales; Fan
and Wang (2007) separated jumps from diffusions in presence
of market microstructural noise using a wavelet method; the ro-
bustness issues were addressed by Li and Mykland (2007); the
realized kernel methods were proposed and thoroughly studied
by Barndorff-Nielsen et al. (2009, 2011); Jacod et al. (2009)
proposed a preaveraging approach to reduce the market mi-
crostructral noise; Xiu (2010) demonstrated that a simple quasi-
likelihood method achieves the optimal rate of convergence for
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estimating integrated volatility. For estimation of integrated co-
variation, the nonsynchronized trading issue was first addressed
by Hayashi and Yoshida (2005) in the absence of the microstruc-
tural noise; the kernel method with refresh time idea was first
proposed by Barndorff-Nielsen, Hansen, Lunde, and Shephard
(2008); Zhang (2011) extended the two-scale method to study
the integrated covariation using a previous tick method; Aı̈t-
Sahalia, Fan, and Xiu (2010) extended the quasi-maximum like-
lihood method; Kinnebrock, Podolskij, and Christensen (2010)
extended the preaveraging technique. For the high-dimensional
case, Wang and Zou (2010) estimated volatility matrix when
sparsity condition is satisfied; Hautsch, Kyj, and Oomen (2009)
studied a blocking and regularization approach; Tao et al. (2011)
aggregated daily integrated volatility matrix via a factor model;
Zheng and Li (2011) studied the empirical spectral distribution
of the volatility matrix.

The aim of this article is to study the volatility matrix esti-
mation using high-dimensional, high-frequency data from the
perspective of financial engineering. Specifically, our main top-
ics are how to extract the covariation information from high-
frequency data for asset allocation and how effective they
are. Two particular strategies are proposed for handling the
nonsynchronized trading: “pairwise-refresh” and “all-refresh”
schemes. The former retains many more data points and esti-
mates covariance matrix element-by-element, which is often not
positive semidefinite, whereas the latter retains far fewer data
points and the resulting covariance matrix is more often positive
semidefinite. As a result, the former has a better elementwise
estimation error and is better in controlling risk approxima-
tion mentioned in the first paragraph of the introduction. How-
ever, the merits between the two methods are not that simple.
In implementation, we need to project the estimate of covari-
ance matrices onto the space of the semipositive definite ma-
trices. The projections distort the accuracy of the elementwise
estimation. As a result, the pairwise-refresh scheme does not
have much more advantage than the all-refresh method, though
the former is very easy to implement. However, both methods
significantly outperform the methods based on low-frequency
data, since they adapt better to the time-varying volatilities
and correlations. The comparative advantage is more dramatic
when there are rapid changes of the volatility matrix over time.
This will be demonstrated in both simulation and empirical
studies.

As mentioned before and demonstrated in Section 2, the accu-
racy of portfolio risk relative to the theoretically optimal portfo-
lio is governed by the maximum elementwise estimation error.
How does this error grow with the number of assets? Thanks
to the concentration inequalities derived in this article, it grows
only at the logarithmic order of the number of assets. This gives
a theoretical endorsement why the portfolio selection problem
is feasible for vast portfolios.

The article is organized as follows. Section 2 gives an
overview of portfolio allocation using high-frequency data.
Section 3 studies the volatility matrix estimation using high-
frequency data from the perspective of asset allocation, where
the analytical results are presented. How well our idea works
in simulation and empirical studies can be found in Sec-
tions 4 and 5, respectively. Conclusions are given in Sec-

tion 6. Technical conditions and proofs are relegated to the
Appendix.

2. CONSTRAINED PORTFOLIO OPTIMIZATION WITH
HIGH-FREQUENCY DATA

2.1 Problem Setup

Consider a pool of p assets, with log-price processes X
(1)
t ,

X
(2)
t , . . . , X

(p)
t . Denote by Xs = (X(1)

s , . . . , X
(p)
s )T the vector of

the log-price processes at time s. Suppose they follow a diffusion
process, namely,

dXt = µt dt + S1/2
t dWt (1)

where Wt is the vector of p-dimensional standard Brownian
motions. The drift vector µt and the instantaneous variance
St can be stochastic processes and are assumed to be continuous.

A given portfolio with the allocation vector w at time t and a
holding period τ has the log-return wT

∫ t+τ

t
dXs with variance

(risk)

Rt,τ (w) = wT �t,τ w, (2)

where wT 1 = 1 and

�t,τ =
∫ t+τ

t

EtSudu, (3)

with Et denoting the conditional expectation given the history up
to time t. Let w+ be the proportion of long positions and w− be
the proportion of the short positions. Then, ‖w‖1 = w+ + w− is
the gross exposure of the portfolio. To simplify the problem,
following Jagannathan and Ma (2003) and Fan et al. (2011),
we consider only the risk optimization problem. In practice, the
expected return constraint can be replaced by the constraints
of sectors or industries, to avoid unreliable estimates of the
expected return vector. For a short-time horizon, the expected
return is usually negligible. Following Fan et al. (2011), we
consider the following risk optimization under gross-exposure
constraints:

min wT �t,τ w, s.t.‖w‖1 ≤ c and wT 1 = 1, (4)

where c is the total exposure allowed. Note that using w+ −
w− = 1, problem (4) puts equivalently the constraint on the
proportion of the short positions: w− ≤ (c − 1)/2. As noted by
Jagannathan and Ma (2003), the constrained optimization prob-
lem (4) is equivalent to unconstrained risk optimization with
a regularized covariance matrix. Other methods of regulariza-
tion are also possible to handle the noise-accumulation problem
(e.g., the shrinkage method of Ledoit and Wolf (2004)).

The problem (4) involves the conditional expected volatility
matrix (3) in the future. Unless we know exactly the dynamic
of the volatility process, which is usually unknown, even if we
observed the entire continuous paths up to the current time t.
As a result, we rely on the approximation even with ideal data
that we were able to observe the processes continuously without
error. The typical approximation is

τ−1�t,τ ≈ h−1
∫ t

t−h

Sudu (5)
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for an appropriate window width h and we estimate∫ t

t−h
Sudu based on the historical data at the time interval

[t − h, t].
Approximation (5) holds reasonably well when τ and h are

both small. This relies on the continuity assumptions: local time-
varying volatility matrices are continuous in time. The approx-
imation is also reasonable when both τ and h are large. This
relies on the ergodicity assumption so that both quantities will
be approximately ESu, when the stochastic volatility matrix
Su is ergodic. The approximation is not good when τ is small,
whereas h is large as long as Su is time varying, whether the
stochastic volatility Su is stationary or not. In other words, when
the holding time horizon τ is short, as long as Su is time varying,
we can only use a short-time window [t − h, t] to estimate �t,τ .
The recent arrivals of high-frequency data make this problem
feasible.

The approximation error in (5) cannot usually be evaluated
unless we have a specific parametric model on the stochastic
volatility matrix Su. However, this is at the risk of model mis-
specifications and nonparametric approach is usually preferred
for high-frequency data. With p2 elements approximated, which
can be in the order of hundreds of thousands or millions, a natural
question to ask is whether these errors accumulate and whether
the result (risk) is stable. The gross-exposure constraint gives a
stable solution to the problem as shown by Fan et al. (2011).

We would like to close this section by noting that formulation
(4) is a one-period, not a multi-period, portfolio optimization
problem.

2.2 Risk Approximations With Gross-Exposure
Constraints

The utility of gross-exposure constraint can easily be seen
through the following inequality. Let �̂t,τ be an estimated co-
variance matrix and

R̂t,τ (w) = wT �̂t,τ w (6)

be estimated risk of the portfolio. Then, for any portfolio with
gross exposure ‖w‖1 ≤ c, we have

|R̂t,τ (w) − Rt,τ (w)| ≤
p∑

i=1

p∑
j=1

|σ̂i,j − σi,j ||wi ||wj |

≤ |�t,τ − �̂t,τ |∞‖w‖2
1

≤ |�t,τ − �̂t,τ |∞c2, (7)

where σ̂i,j and σi,j are respectively the (i, j ) elements of �̂t,τ and
�t,τ , and

|�t,τ − �̂t,τ |∞ = max
i,j

|σ̂i,j − σi,j |

is the maximum elementwise estimation error. Risk approxima-
tion (7) reveals that there is no large error accumulation effect
when gross exposure c is moderate.

From now on, we drop the dependence of t and τ whenever
there is no confusion. This facilitates the notation.

Fan et al. (2011) showed further that the risks of optimal
portfolios are indeed close. Let

wopt = argminwT 1=1, ||w||1≤cR(w),

ŵopt = argminwT 1=1, ||w||1≤cR̂(w) (8)

be, respectively, the theoretical (oracle) optimal allocation vec-
tor we want and the estimated optimal allocation vector we get.
Then, R(wopt) is the theoretical minimum risk and R(ŵopt) is
the actual risk of our selected portfolio, whereas R̂(ŵopt) is our
perceived risk, which is the quantity known to financial econo-
metricians. They showed that

|R(ŵopt) − R(wopt)| ≤ 2apc2, (9)

|R(ŵopt) − R̂(ŵopt)| ≤ apc2, (10)

|R(wopt) − R̂(ŵopt)| ≤ apc2, (11)

with ap = |�̂ − �|∞, which usually grows slowly with the
number of assets p. These reveal that the three relevant risks
are in fact close as long as the gross-exposure parameter c is
moderate and the maximum elementwise estimation error ap is
small.

The above risk approximations hold for any estimate of
covariance matrix. It does not even require �̂ a semipositive def-
inite matrix. This facilitates significantly the method of covari-
ance matrix estimation. In particular, the elementwise estimation
methods are allowed. In fact, since the approximation errors in
(9), (10), and (11) are all controlled by the maximum element-
wise estimation error, it can be advantageous to use elementwise
estimation methods. This is particularly the case for the high-
frequency data where trading is nonsynchronized. The synchro-
nization can be done pairwisely or for all assets. The former
retains much more data than the latter, as shown in the next
section.

3. COVARIANCE MATRIX ESTIMATION USING
HIGH-FREQUENCY DATA

3.1 All-Refresh Method and Pairwise-Refresh Method

Estimating high-dimensional volatility matrix using high-
frequency data is a challenging task. One of the challenges is the
nonsynchronicity of trading. Several synchronization schemes
have been studied. The refresh time method was proposed by
Barndorff-Nielsen et al. (2008) and the previous tick method
was used by Zhang (2011). The former uses more efficiently the
available data and will be used in this article.

The idea of refresh time is to wait until all assets are traded
at least once at time v1 (say) and then use the last price traded
before or at v1 of each asset as its price at time v1. This yields
one synchronized price vector at time v1. The clock now starts
again. Wait until all assets are traded at least once at time v2 (say)
and again use the previous tick price of each asset as its price
at time v2. This yields the second synchronized price vector at
time v2. Repeat the process until all available trading data are
synchronized. Clearly, the process discards a large portion of
the available trades. We will refer this synchorization scheme as
the “all-refresh time.” (The method is called all-refresh method
for short.) Barndorff-Nielsen et al. (2008) advocated the kernel
method to estimate integrated volatility matrix after synchro-
nization; this can also be done by using other methods.

A more efficient method to use the available sample is the
pairwise-refresh time scheme, which synchronizes the trading
for each pair of assets separately. (The method is called pairwise-
refresh method for short.) The pairwise-refresh scheme makes
far more efficient use of the rich information in high-frequency
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data, and enables us to estimate each element in the volatility
matrix more precisely, which helps improve the efficiency of
the selected portfolio. We will study the merits of these two
methods. A third synchronization scheme is the blocking
scheme of Hautsch et al. (2009) by grouping stocks with similar
liquidities. The pairwise-refresh approach corresponds to the
case with one-stock per group.

The pairwise estimation method allows us to use a wealth
of univariate integrated volatility estimators such as those men-
tioned in the Introduction. For any given two assets with log-
price processes X

(i)
t and X

(j )
t , with pairwise-refresh times, the

synchronized prices of X
(i)
t + X

(j )
t and X

(i)
t − X

(j )
t can be com-

puted. With the univariate estimate of the integrated volatilities
̂< X(i) + X(j ) > and ̂< X(i) − X(j ) >, the integrated covaria-

tion can be estimated as

σ̂i,j = ̂

〈
X(i), X(j )

〉 = ( ̂

〈
X(i) + X(j )

〉− ̂

〈
X(i) − X(j )

〉)
/4. (12)

In particular, the diagonal elements are estimated by the method
itself. When the two-scale realized volatility (TSRV) (Zhang et
al. 2005) is used, this results in the two-scale realized covariance
(TSCV) estimate (Zhang 2011).

3.2 Pairwise-Refresh Method and TSCV

We now focus on the pairwise estimation method. To facilitate
the notation, we reintroduce it.

We consider two log-price processes X and Y that satisfy

dXt = µ
(X)
t dt + σ

(X)
t dB

(X)
t and dYt = µ

(Y )
t dt + σ

(Y )
t dB

(Y )
t ,

(13)
where cor(B(X)

t , B
(Y )
t ) = ρ

(X,Y )
t . For the two processes X and Y ,

consider the problem of estimating 〈X, Y 〉T with T = 1. Denote
by Tn the observation times of X and Sm the observation times of
Y . Denote the elements in Tn and Sm by {τn,i}ni=0 and {θm,i}mi=0,
respectively, in an ascending order (τn,0 and θm,0 are set to be
0). The actual log prices are not directly observable, but are
observed with microstructure noises:

Xo
τn,i

= Xτn,i
+ εX

i , and Y o
θm,i

= Yθm,i
+ εY

i , (14)

where Xo and Y o are the observed transaction prices in the
logarithmic scale, and X and Y are the latent log prices govern by
the stochastic dynamics (13). We assume that the microstructure
noise εX

i and εY
i processes are independent of the X and Y

processes and that

εX
i

i.i.d.∼ N
(
0, η2

X

)
and εY

i

i.i.d.∼ N
(
0, η2

Y

)
. (15)

Note that this assumption is mainly for the simplicity of pre-
sentation; as we can see from the proof, one can, for example,
easily replace the identical Gaussian assumption with the not
necessarily identically distributed (but are of the same variance)
sub-Gaussian assumption without affecting our results.

The pairwise-refresh time V = {v0, v1, . . . , vñ} can be ob-
tained by setting v0 = 0, and

vi = max
{

min{τ ∈ Tn : τ > vi−1}, min{θ ∈ Sm : θ > vi−1}
}
,

where ñ is the total number of refresh times in the interval (0, 1].
The actual sample times for the two individual processes X and
Y that correspond to the refresh times are

ti = max{τ ∈ Tn : τ ≤ vi} and si = max{θ ∈ Sm : θ ≤ vi},
which are indeed the previous-tick measurement.

We study the property of the TSCV based on the asynchronous
data:

̂〈X, Y 〉1 = [Xo, Y o](K)
1 − n̄K

n̄J

[
Xo, Y o

](J )
1 , (16)

where

[Xo, Y o](K)
1 = 1

K

ñ∑
i=K

(
Xo

ti
− Xo

ti−K

)(
Y o

si
− Y o

si−K

)
and n̄K = (ñ − K + 1)/K . As discussed by Zhang (2011), the
optimal choice of K has order K = O(ñ2/3), and J can be taken
to be a constant such as 1.

When either the microstructure error or the asynchronicity
exists, the realized covariance is seriously biased. An asymp-
totic normality result in Zhang (2011) reveals that TSCV can
simultaneously remove the bias due to the microstructure error
and the bias due to the asynchronicity. However, this result is
not adequate for our application to the vast volatility matrix esti-
mation. To understand its impact on ap, we need to establish the
concentration inequality. In particular, for a sufficiently large
|x| = O((log p)α), if

max
i,j

P {√n|σij − σ̂ij | > x} < C1 exp
(− C2x

1/α
)
, (17)

for some positive constants C1, C2, and α, then

ap = |� − �̂|∞ = OP

(
(log p)α√

n

)
. (18)

We will show in the next section that the result indeed holds for
some α which depends on the tail of the volatility process and
n replaced by the minimum of the subsample size (n̄K ∼ (ñ)

1
3 ).

Hence the impact of the number of assets is limited, only of the
logarithmic order.

3.3 Concentration Inequalities

Inequality (17) requires the conditions on both diagonal ele-
ments and off-diagonal elements. Technically, they are treated
differently. For the diagonal cases, the problem corresponds to
the estimation of integrated volatility and there is no issue of
asynchronicity. TSCV (16) reduces to TSRV (Zhang et al. 2005),
which is explicitly given by

̂〈X,X〉1 = [Xo,Xo
](K)

1 − n̄K

n̄J

[
Xo,Xo

](J )
1 , (19)

where [Xo,Xo](K)
1 = 1

K

∑n
i=K (Xo

ti
− Xo

ti−K
)2 and n̄K = (n −

K + 1)/K. As shown by Zhang et al. (2005), the optimal choice
of K has order K = O(n2/3) and J can be taken to be a constant
such as 1.

To facilitate the reading, we relegate the technical conditions
and proofs to the Appendix. The following two results establish
the concentration inequalities for the integrated volatility and
integrated covariation.

Theorem 1. Let X process be as in (13), and n be the total
number of observations for the X process during the time interval
(0,1]. Under Conditions 1–4 in the Appendix

(A) if σ
(X)
t ≤ Cσ < ∞ for all t ∈ [0, 1], then for all large n,

for x ∈ [0, cn1/6],

P

{
n1/6| ̂〈X,X〉1 −

∫ 1

0
σ

(X)
t

2
dt | > x

}
≤ 4 exp{−Cx2}
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for positive constants c and C. A set of candidate values
for c and C are given in (A.25).

(B) if the tail behavior of σ
(X)
t can be described as

P

{
sup

0≤t≤1
σ

(X)
t ≥ Cσ

}
≤ kσ exp

{− aCb
σ

}
, for any Cσ > 0

with positive constants kσ , a and b, then for all large n,
for x ∈ [0, cn

4+b
6b ],

P

{
n1/6| ̂〈X,X〉1 −

∫ 1

0
σ

(X)
t

2
dt | > x

}
≤ (4 + kσ ) exp{−C · x

2b
4+b }.

A set of candidate values for c and C are given in (A.26).

Theorem 2. Let X and Y be as in (13), and ñ be the total
number of refresh times for the processes X and Y during the
time interval (0,1]. Under Conditions 1–5 in the Appendix,

(A) if σ
(i)
t ≤ Cσ < ∞ for all t ∈ [0, 1] and i = X and Y ,

then for all large ñ, for x ∈ [0, cñ1/6],

P

{
ñ1/6| ̂〈X, Y 〉1 −

∫ 1

0
σ

(X)
t σ

(Y )
t ρ

(X,Y )
t dt | > x

}
≤ 8 exp{−Cx2}

for positive constants c and C. A set of candidate values
for c and C are given in (A.29).

(B) if the tail behavior of σ
(i)
t for i = X or Y satisfy

P

{
sup

0≤t≤1
σ

(i)
t ≥ Cσ

}
≤ kσ exp

{−aCb
σ

}
, for any Cσ > 0

with positive constants kσ , a, and b, then for all large ñ,
for x ∈ [0, cñ

4+b
6b ],

P

{
ñ1/6| ̂〈X, Y 〉1 −

∫ 1

0
σ

(X)
t σ

(Y )
t ρ

(X,Y )
t dt | > x

}
≤ (8 + 2kσ ) exp

{− Cx
2b

4+b

}
.

A set of candidate values for c and C are given in (A.30).

3.4 Error Rates on Risk Approximations

Having had the above concentration inequalities, we can now
readily give an upper bound of the risk approximations. Con-
sider the p log-price processes as in Section 2.1. Suppose the
processes are observed with the market microstructure noises.
Let ñ(i,j ) be the observation frequency obtained by the pairwise-
refresh method for two processes X(i) and X(j ) and ñ∗ be the ob-
servation frequency obtained by the all-refresh method. Clearly,
ñ(i,j ) is typically much larger than ñ∗. Hence, most elements are
estimated more accurately using the pairwise-refresh method
than using the all-refresh method. On the other hand, for less liq-
uidly traded pairs, its observation frequency of pairwise-refresh
time cannot be an order of magnitude larger than ñ∗.

Using (18), an application to Theorems 1 and 2 to each ele-
ment in the estimated integrated covariance matrix yields

apairwise−refresh
p = |�̂pairwise − �|∞ = OP

(
(log p)α

ñ
1/6
min

)
, (20)

where α is 1
2 when the volatility processes are bounded and

is a constant depending on the tail behavior of the volatility

processes when they are unbounded, and ñmin = mini,j ñ(i,j ) is
the minimum number of observations of the pairwise-refresh
time.

Note that based on our proofs which do not rely on any
particular properties of pairwise-refresh times, our results of
Theorems 1 and 2 are applicable to all-refresh method as well,
with the observation frequency of the pairwise-refresh times
replaced by that of the all-refresh times. Hence, using the all-
refresh time scheme, we have

aall−refresh
p = |�̂all−refresh − �|∞ = OP

(
(log p)α

ñ
1/6
∗

)
, (21)

with the same α as above. Clearly, ñmin is larger than ñ∗. Hence,
the pairwise-refresh method gives a somewhat more accurate
estimate in terms of the maximum elementwise estimation error.

3.5 Projections of Estimated Volatility Matrices

The risk approximations (9)–(11) hold for any solutions to (8)
whether the matrix �̂ is positive semidefinite or not. However,
convex optimization algorithms typically require the positive
semidefiniteness of the matrix �̂. Yet, the estimates based on
the elementwise estimation sometimes cannot all satisfy this
and even the ones from all-refresh method can have the same
problem when TSCV is applied. This leads to the issue of how to
project a symmetric matrix onto the space of positive semidefi-
nite matrices.

There are two intuitive methods for projecting a p × p sym-
metric matrix A onto the space of positive semidefinite
matrices. Consider the singular value decomposition: A =
�T diag(λ1, . . . , λp)�, where � is an orthogonal matrix, con-
sisting of p eigenvectors. The two intuitive appealing projection
methods are

A+
1 = �T diag(λ+

1 , . . . , λ+
n )�, (22)

where λ+
j is the positive part of λj , and

A+
2 = (A + λ−

minIp)/(1 + λ−
min), (23)

where λ−
min is the negative part of the minimum eigenvalue. For

both projection methods, the eigenvectors remain the same as
those of A. When A is positive semidefinite matrix, we have
obviously that A1 = A2 = A.

In applications, we apply the above transformations to the es-
timated correlation matrix A rather than directly to the volatility
matrix estimate �̂. The correlation matrix A has diagonal ele-
ments of 1. The resulting matrix under projection method (23)
apparently still satisfies this property, whereas the one under
projection method (22) does not. As a result, projection method
(23) keeps the integrated volatility of each asset intact.

In our initial simulation and empirical studies, we ap-
plied both projections. It turns out that there is no significant
difference between the two projection methods in terms of
results. We decided to apply only projection (23) in all nu-
merical studies.

3.6 Comparisons Between Pairwise- and All-Refresh
Methods

The pairwise-refresh method keeps far richer information in
the high-frequency data than the all-refresh method. Thus, it is
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expected to estimate each element more precisely. Yet, the esti-
mated correlation matrix is typically not positive semidefinite.
As a result, projection (23) can distort the accuracy of element-
wise estimation. On the other hand, the all-refresh method more
often gives positive semidefinite estimates. Therefore, projec-
tion (23) has less impact on the all-refresh method than on the
pairwise-refresh method.

Risk approximations (9)–(11) are only the upper bounds. The
upper bounds are controlled by ap, which has rates of con-
vergence govern by (20) and (21). While the average number
of observations of pairwise-refresh time is far larger than the
number of observations ñ∗ of the all-refresh time, the minimum
number of observations of the pairwise-refresh time ñmin is not
much larger than ñ∗. Therefore, the upper bounds (20) and (21)
are approximately of the same level. This together with the dis-
tortion due to projection do not leave much advantage for the
pairwise-refresh method.

4. SIMULATION STUDIES

In this section, we simulate the market trading data using a
reasonable stochastic model. As the latent prices and dynamics
of simulations are known, our study on the risk profile is fa-
cilitated. In particular, we would like to verify our theoretical
results and to quantify the finite sample behaviors.

In this section and the next, the risk refers to the stan-
dard deviation of portfolio’s returns. To avoid ambiguity, we
call

√
R(wopt) the theoretical optimal risk or oracle risk,√

R̂(ŵopt) the perceived optimal risk, and
√

R(ŵopt) the actual
risk of the perceived optimal allocation.

4.1 Design of Simulations

A slightly modified version of the simulation model in
Barndorff-Nielsen et al. (2008) is used to generate the latent
price processes of p traded assets. It is a multivariate factor
model with stochastic volatilities. Specifically, the latent log
prices X

(i)
t follow

dX
(i)
t = µ(i)dt + ρ(i)σ

(i)
t dB

(i)
t +

√
1 − (ρ(i))2σ

(i)
t dWt+ν(i)dZt ,

i = 1, . . . , p, (24)

where the elements of B, W, and Z are independent standard
Brownian motions. The spot volatility obeys the independent
Ornstein–Uhlenbeck processes:

d

(i)
t = α(i)

(
β

(i)
0 − 


(i)
t

)
dt + β

(i)
1 dU

(i)
t , (25)

where 

(i)
t = log σ

(i)
t and U

(i)
t is an independent Brownian

motion.
The number of assets p is taken to be 50. Slightly

modified from Barndorff-Nielsen et al. (2008), the
parameters are set to be (µ(i), β

(i)
0 , β

(i)
1 , α(i), ρ(i)) =

(0.03x
(i)
1 , −x

(i)
2 , 0.75x

(i)
3 , −1/40x

(i)
4 ,−0.7) and ν(i) =

exp(β(i)
0 ), where x

(i)
j is an independent realization from the

uniform distribution on [0.7, 1.3]. The parameters are kept
fixed in the simulations.

Model (24) is used to generate the latent log-price values with
initial values X

(i)
0 = 1 (log price) and 


(i)
0 from its stationary

distribution. The Euler scheme is used to generate latent price
at the frequency of once per second. To account for the market

microstructure noise, the Gaussian noises ε
(i)
t

i.i.d.∼ N (0, ω2) with
ω = 0.0005 are added. Therefore, like (14), the observed log
prices are X

o(i)
t = X

(i)
t + ε

(i)
t .

To model the nonsynchronicity, p independent Poisson pro-
cesses with intensity parameters λ1, λ2, . . . , λp are used to sim-
ulate the trading times of the assets. Motivated by the U.S. equity
trading dataset (the total number of seconds in a common trad-
ing day of the U.S. equity is 23, 400), we set the trading inten-
sity parameters λi’s to be 0.02i × 23400 for i = 1, 2, . . . , 50,
meaning that the average numbers of trading times for each asset
are spread out in the arithmetic sequence of the interval [468,
23,400].

4.2 An Oracle Investment Strategy and Risk
Assessment

An oracle investment strategy is usually a decent benchmark
for other portfolio strategies to compare with. There are several
oracle strategies. The one we choose is to make portfolio al-
location based on the covariance matrix estimated using latent
prices at the finest grid (one per second). Latent prices are the
noise-free prices of each asset at every time points (one per
second), which are unobservable in practice and are available
to us only in the simulation. Therefore, for each asset, there are
23, 400 latent prices in a normal trading day. We will refer to
the investment strategy based on the latent prices as the oracle
or latent strategy. This strategy is not available for the empirical
studies.

The assessment of risk is based on the high-frequency data.
For a given portfolio strategy, its risk is computed based on
the latent prices at every 15 minutes for the simulation studies,
whereas for the empirical studies, the observed prices at every 15
minutes are used to assess its risk. This mitigates the influence
of the microstructure noises. For the empirical study, we do not
hold positions overnight therefore are immune to the overnight
price jumps (we will discuss the details in Section 5).

4.3 Out-of-Sample Optimal Allocation

One of the main purposes of this article is to investigate
the comparative advantage of the high-frequency-based meth-
ods against the low-frequency-based methods, especially in the
context of portfolio investment. Hence, it is essential for us to
run the following out-of-sample investment strategy test which
includes both the high-frequency- and low-frequency-based ap-
proaches. Moreover, since in the empirical studies, we do not
know the latent asset prices, the out-of-sample test should be
designed so that it can also be conducted in the empirical studies.

We simulate the prices of 50 traded assets as described in
Section 4.1 for the duration of 200 trading days (numbered as
day 1, day 2, . . . , day 200) and record all the tick-by-tick trading
times and trading prices of the assets.

We start investing 1 unit of capital into the pool of assets with
low-frequency- and high-frequency-based strategies from day
101 (the portfolios are bought at the opening of day 101). For the
low-frequency strategy, we use the previous 100 trading days’
daily closing prices to compute the sample covariance matrix
and to make the portfolio allocation accordingly with the gross-
exposure constraints. For the high-frequency strategies, we use
the previous h = 10 trading days’ tick-by-tick trading data. For
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the all-refresh strategy, we use all-refresh time to synchronize
the trades of the assets before applying TSCV to estimate the
integrated volatility matrix and make the portfolio allocation,
while for the pairwise-refresh high-frequency strategy, we use
pairwise-refresh times to synchronize each pair of assets and
apply TSCV to estimate the integrated covariance for the cor-
responding pair. With projection technique (23), the resulting
TSCV integrated volatility matrix can always be transformed to
a positive semidefinite matrix which facilitates the optimization.

We run two investment plans. In the first plan, the portfolio
is held for τ = 1 trading day before we reestimate the covaria-
tion structure and adjust the portfolio weights accordingly. The
second plan is the same as the first one except for the fact that
the portfolio is held for τ = 5 trading days before rebalancing.

In the investment horizon (which is from day 101 to day 200 in
this case), we record the 15-minute portfolio returns based on the
latent prices of the assets, the variation of the portfolio weights
across 50 assets, and other relevant characteristics. While it
appears that 100 trading days is short, calculating 15-minute
returns increases the size of the relevant data for computing the
risk by a factor of 26.

We study those portfolio features for a whole range of gross-
exposure constraint c from c = 1, which stands for the no-short-
sale portfolio strategy, to c = 3. This is usually the relevant range
of gross exposure for investment purpose.

The standard deviations and other characteristics of the strat-
egy for τ = 1 are presented in Table 1 (the case τ = 5 gives
similar comparisons and hence is omitted). The standard de-
viations, which are calculated based on the 15-minute returns
as mentioned before, represent the actual risks of the strategy.
As we only optimize the risk profile, we should not look sig-
nificantly on the returns of the optimal portfolios. They cannot
even be estimated with good accuracy over such a short invest-
ment horizon. Figures 1 and 2 provide graphical details to these
characteristics for both τ = 1 and τ = 5.

Table 1. The out-of-sample performance of daily-rebalanced optimal
portfolios with gross-exposure constraint

Std Dev Max Min No. of No. of
Methods % Weight Weight Long Short

Low-frequency sample covariance matrix estimator
c = 1 (No short) 16.69 0.19 −0.00 13 0
c = 2 16.44 0.14 −0.05 28.5 20
c = 3 16.45 0.14 −0.05 28.5 20

High-frequency all-refresh TSCV covariance matrix estimator
c = 1 (No short) 16.08 0.20 −0.00 15 0
c = 2 14.44 0.14 −0.05 30 19
c = 3 14.44 0.14 −0.05 30 19

High-frequency pairwise-refresh TSCV covariance matrix estimator
c = 1 (No short) 15.34 0.18 −0.00 15 0
c = 2 12.72 0.13 −0.03 31 18
c = 3 12.72 0.13 −0.03 31 18

NOTE: We simulate one trial of intra-day trading data for 50 assets, make portfolio
allocations for 100 trading days, and rebalance daily. The standard deviations and other
characteristics of these portfolios are recorded. All the characteristics are annualized (Max
Weight, median of maximum weights; Min Weight, median of minimum weights; No. of
Long, median of numbers of long positions whose weights exceed 0.001; No. of Short,
median of numbers of short positions whose absolute weights exceed 0.001).

From Table 1 and Figures 1 and 2, we see that for both
holding lengths τ = 1 and τ = 5, the all-refresh TSCV and
pairwise-refresh TSCV approaches outperform significantly the
low-frequency one in terms of risk profile for the whole range
of the gross-exposure constraints. This supports our theoreti-
cal results and intuitions. First, the shorter estimation window
allows these two high-frequency approaches to deliver consis-
tently better results than the low-frequency one. Second, the
pairwise-refresh method outperforms the all-refresh method, as
expected. Finally, both the low-frequency strategy and the high-
frequency strategies outperform significantly the equal-weight
portfolio (see Figures 1 and 2).

All the risk curves attain their minimum around c = 1.2 (see
Figures 1 and 2), which meets our expectation again, since
that must be the point where the marginal increase in estimation
error outpaces the marginal decrease in specification error. This,
coupled with the result we get in Empirical Studies section, will
give us some guidelines about what gross-exposure constraint
to use in investment practice.

In terms of portfolio weights, neither the low-frequency nor
the high-frequency optimal no-short-sale portfolios are well di-
versified with all approaches assigning a concentrated weight of
around 20% to one individual asset. Their portfolio risks can be
improved by relaxing the gross-exposure constraint (see Figures
1 and 2).

5. EMPIRICAL STUDIES

Risk minimization problem (6) has important applications
in asset allocation. We demonstrate its application in the stock
portfolio investment in the 30 Dow Jones Industrial Average (30
DJIA) constituent stocks.

To make asset allocation, we use the high-frequency data
of the 30 DJIA stocks from January 1, 2008, to September 30,
2008. These stocks are highly liquid. The period covers the birth
of financial crisis in 2008.

At the end of each holding period of τ = 1 or τ = 5 trading
days in the investment period (from May 27, 2008, to September
30, 2008), the covariance of the 30 stocks is estimated according
to the different estimators. They are the sample covariance of the
previous 100 trading days’ daily return data (low-frequency), the
all-refresh TSCV estimator of the previous 10 trading days, and
the pairwise-refresh TSCV estimator of the previous 10 trading
days. These estimated covariance matrices are used to construct
optimal portfolios with a range of exposure constraints. For
τ = 5, we do not count the overnight risks of the portifolio. The
reason is that the overnight price jumps are often due to the
arrival of news and are irrelevant of the topics of our study. The
standard deviations and other characteristics of these portfolio
returns for τ = 1 are presented in Table 2 together with the stan-
dard deviation of an equally weighted portfolio of the 30 DJIA
stocks rebalanced daily. The standard deviations are for the 15
minutes returns, which represent the actual risks. Figures 3 and
4 provide the graphical details to these characteristics for both
τ = 1 and τ = 5.

Table 2 and Figures 3 and 4 reveal that in terms of the
portfolio’s actual risk, the all-refresh TSCV and pairwise-
refresh TSCV strategies perform at least as well as the
low-frequency-based strategy when the gross exposure is small
and outperform the latter significantly when the gross exposure
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Figure 1. Out-of-sample performance of daily-rebalanced optimal portfolios based on high-frequency and low-frequency estimation of the
integrated covariance matrix. (a) Annualized risk of portfolios. (b) Maximum weight of allocations. (The online version of this figure is in color.)

is large. Both facts support our theoretical results and intuitions.
Given 10 times the length of covariance estimation window, the
low-frequency approach still cannot perform better than the
high-frequency TSCV approaches, which affirms our belief that
the high-frequency TSCV approaches can significantly shorten

the necessary covariance estimation window and capture better
the short-term time-varying covariation structure (or the “local”
covariance). These results, together with the ones presented in
the Simulation Studies section, lend strong support to the above
statement.
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Figure 2. Out-of-sample performance of optimal portfolios based on high-frequency and low-frequency estimation of the integrated covariance
matrix with holding period τ = 5. (a) Annualized risk of portfolios, (b) maximum weight of allocations. (The online version of this figure is in
color.)
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Table 2. The out-of-sample performance of daily-rebalanced optimal
portfolios of the 30 DJIA stocks

Std Dev Max Min No. of No. of
Methods % Weight Weight Long Short

Low-frequency sample covariance matrix estimator
c = 1 (No short) 12.73 0.50 −0.00 8 0
c = 2 14.27 0.44 −0.12 16 10
c = 3 15.12 0.45 −0.18 18 12

High-frequency all-refresh TSCV covariance matrix estimator
c = 1 (No short) 12.55 0.40 −0.00 8 0
c = 2 12.36 0.36 −0.10 17 12
c = 3 12.50 0.36 −0.10 17 12

High-frequency pairwise-refresh TSCV covariance matrix estimator
c = 1 (No short) 12.54 0.39 −0.00 9 0
c = 2 12.23 0.35 −0.08 17 12
c = 3 12.34 0.35 −0.08 17 12

Unmanaged index
30 DJIA equally weighted 22.12

As the gross-exposure constraint increases, the portfolio risk
of the low-frequency approach increases drastically relative to
the ones of the high-frequency TSCV approaches. The reason
could be a combination of the fact that the low-frequency ap-
proach does not produce a well-conditioned estimated covari-
ance due to the lack of data and the fact that the low-frequency
approach can only attain the long-run covariation but cannot
capture well the “local” covariance dynamics. The portfolio risk
of the high-frequency TSCV approaches increased only moder-
ately as the gross-exposure constraint increases. From financial

practitioner’s standpoint, that is also one of the comparative
advantages of high-frequency TSCV approaches, which means
that investors do not need to be much concerned about the choice
of the gross-exposure constraint while using the high-frequency
TSCV approaches.

It can be seen that both the low-frequency and high-frequency
optimal no-short-sale portfolios are not diversified enough.
Their risk profiles can be improved by relaxing the gross-
exposure constraint to around c = 1.2, that is, 10% short po-
sitions and 110% long positions are allowed. The no-short-sale
portfolios under all approaches have the maximum portfolio
weight of 22%–50%. As the gross-exposure constraint relaxes,
the pairwise-refresh TSCV approach has its maximum weight
reaching the smallest value around 30%–34%, while the low-
frequency approach goes down to only around 40%. This is
another comparative advantage of the high-frequency approach
in practice, as a portfolio with less weight concentration is typ-
ically considered more preferable.

Another interesting fact is that the equally weighted daily-
rebalanced portfolio of the 30 DJIA stocks carries an annualized
return of only −10% while DJIA went down 13.5% during
the same period (May 27, 2008, to Sep 30, 2008), giving an
annualized return of −38.3%. The cause of the difference is that
we intentionally avoided holding portfolios overnight, hence
the portfolios are not affected by the overnight price jumps. In
the turbulent financial market of May to September 2008, our
portfolio strategies are not affected by the numerous sizeable
downward jumps. Those jumps are mainly caused by the news of
distressed economy and corporations. The moves could deviate
far from what the previously held covariation structure dictates.
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Figure 3. Out-of-sample performance of daily-rebalanced optimal portfolios for 30 DJIA constituent stocks with investment period from May
27, 2008, to September 30, 2008 (89 trading days). (a) Annualized risk of portfolios. (b) Maximum weight of allocations. (The online version of
this figure is in color.)
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Figure 4. Out-of-sample performance of 5-day-rebalanced optimal portfolios for 30 DJIA constituent stocks with investment period from
May 27, 2008, to September 30, 2008 (89 trading days). (a) Annualized risk of portfolios. (b) Maximum weight of allocations. (The online
version of this figure is in color.)

6. CONCLUSION

We advocate the portfolio selection with gross-exposure con-
straint (Fan et al. 2011). It is less sensitive to the error of co-
variance estimation and mitigates the noise accumulation. The
out-of-sample portfolio performance depends on the expected
volatility in the holding period. It is at best approximated and the
gross-exposure constraints help reducing the error accumulation
in the approximations.

Two approaches are proposed for the use of high-frequency
data to estimate the integrated covariance: “all-refresh” and
“pairwise-refresh” methods. The latter retains far more data
on average and hence estimates more precisely element-by-
element. Yet, the pairwise-refresh estimates are often not posi-
tive semidefinite and projections are needed for the convex opti-
mization algorithms. The projection distorts somewhat the per-
formance of the pairwise-refresh strategies. New optimization
algorithms need to be developed in order to take full advantage
of pairwise-refresh. Further investigations on the relative mer-
its of “pairwise-refresh,” “blocking approach,” and “all-refresh”
are needed.

The use of high-frequency financial data increases signifi-
cantly the available sample size for volatility estimation, and
hence shortens the time window for estimation, adapts better to
local covariations. Our theoretical observations are supported by
the empirical studies and simulations, in which we demonstrate
convincingly that the high-frequency-based strategies outper-
form the low-frequency-based one in general.

With the gross-exposure constraint, the impact of the size of
the candidate pool for portfolio allocation is limited. We derive
the concentration inequalities to demonstrate this theoretically.
Simulation and empirical studies also lend further support to it.

APPENDIX: CONDITIONS AND PROOFS

Conditions

We derive our theoretical results under the following conditions. For
simplicity, we state the conditions for integrated covariation (Theorem
2). The conditions for integrated volatility (Theorem 1) are simply the
ones with Y = X.

Condition 1. The drift processes are such that µ
(X)
t = µ

(Y )
t = 0 for

all t ∈ [0, 1].
Condition 2. σ

(i)
t , i = X, Y are continuous stochastic processes

which are either bounded by 0 < Cσ < ∞, or such that the tail behavior
can be described by

P

{
sup

0≤t≤1
σ (i)

t ≥ Cσ

}
≤ kσ exp

{
− aCb

σ

}
, for any Cσ > 0,

with positive constants kσ , a, and b.
Condition 3. The observation times are independent with the X

and Y processes. The synchronized observation times for the X
and Y processes satisfy sup1≤j≤ñ ñ · (vj − vj−1) ≤ C� ≤ ∞, where
C� is a nonrandom constant, ñ is the observation frequency, and
V = {v0, v1, . . . , vñ} is the set of refresh times of the processes X and
Y .

Condition 4. For the TSCV parameters, we consider the case when
J = 1 (n̄J = ñ) and n̄K = O(ñ1/3) such that 1

2 · ñ1/3 ≤ n̄K ≤ 2 · ñ1/3.

Condition 5. The processes εX and εY are independent.

Remark 1. Conditions 1 and 4 are imposed for simplicity. They can
be removed at the expenses of lengthier proofs. For a short horizon
and high-frequency, whether Condition 1 holds or not has little impact
on the investment. For estimating integrated volatility, the synchro-
nized time becomes observation time {τn,j } and Conditions 3 and 4
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become

sup
1≤j≤n

n · (τn,j − τn,j−1) ≤ C� < ∞ (A.1)

and 1
2 · n1/3 ≤ n̄K ≤ 2 · n1/3.

Remark 2. Note that indeed, in the derivations of the Theorems 1
and 2, σ

(X)
t and σ

(Y )
t are only required to be càdlàg. In other words, the

continuity assumption is not needed for the concentration inequalities
to hold. The continuity of the volatility processes is only needed in
approximation (5) in our study, it can be removed or relaxed for other
applications of the concentration inequalities.

Lemmas

We need the following three lemmas for the proofs of Theorems
1 and 2. In particular, Lemma 2 is exponential type of inequality for
any dependent random variables that have a finite moment generating
function. It is useful for many statistical learning problems. Lemma 3 is
a concentration inequality for the realized volatility based on discretely
observed latent process.

Lemma 1. When Z ∼ N (0, 1), for any |θ | ≤ 1
4 , E exp{θ (Z2 −

1)} ≤ exp(2θ 2).
Proof. Using the moment generating function of Z2 ∼ χ 2

1 , we have

E exp{θ (Z2 − 1)} = exp

{
− 1

2
log(1 − 2θ ) − θ

}
.

Let g(x) = log(1 − x) + x + x2 with |x| ≤ 1/2. Then, g′(x) =
x(1 − 2x)/(1 − x) is nonnegative when x ∈ [0, 1/2] and negative when
x ∈ [−1/2, 0). In other words, g(x) has a minimum at point 0, namely
g(x) ≥ 0 for |x| ≤ 1/2. Consequently, for |θ | ≤ 1/4, log(1 − 2θ ) ≥
−2θ − (2θ )2. Hence, E exp{θ (Z2 − 1)} ≤ exp(2θ2). �

Lemma 2. For a set of random variables Xi , i = 1, . . . , K , and an
event A, if there exists two positive constants C1 and C2 such that for
all |θ | ≤ C1,

E (exp(θXi)IA) ≤ exp(C2θ
2), (A.2)

then for wi’s being weights satisfying
∑K

i=1 |wi | ≤ w ∈ [1,∞), we
have

P

⎛
⎝
⎧⎨
⎩
∣∣∣∣∣∣

K∑
i=1

wiXi

∣∣∣∣∣∣ > x

⎫⎬
⎭ ∩ A

⎞
⎠

≤ 2 exp

(
− x2

4C2w2

)
, when 0 ≤ x ≤ 2C1C2.

Proof. By the Markov inequality, for 0 ≤ ξ ≤ C1/w and w∗ =∑K

i=1 |wi |, we have

P

⎛
⎝
⎧⎨
⎩
∣∣∣∣∣∣

K∑
i=1

wiXi

∣∣∣∣∣∣ > x

⎫⎬
⎭ ∩ A

⎞
⎠

≤ exp(−ξx)E

⎛
⎝exp

⎛
⎝ξ

∣∣∣∣∣∣
K∑

i=1

wiXi

∣∣∣∣∣∣
⎞
⎠IA

⎞
⎠

≤ exp(−ξx)w∗−1
K∑

i=1

|wi |E (exp(ξw|Xi |)IA)

≤ 2 exp
(
C2ξ

2w2 − ξx
)
. (A.3)

Taking ξ = x/(2C2w
2), we have

P

⎛
⎝
⎧⎨
⎩
∣∣∣∣∣∣

K∑
i=1

wiXi

∣∣∣∣∣∣ > x

⎫⎬
⎭ ∩ A

⎞
⎠ ≤ 2 exp

(
− x2

4C2w2

)
,

when 0 ≤ x ≤ 2C1C2. (A.4)

�
Lemma 3. (A Concentration Inequality for Realized Volatility)

Let ˜[X, X]1 =∑n

i=1(Xvi
− Xvi−1 )2 be the realized volatility based on

the discretely observed X process from model (1) of the univariate case:
dXt = µtdt + σtdWt . Under Conditions 1–3,

(A) if σ
(X)
t ≤ Cσ < ∞ for all t ∈ [0, 1], then for all large n, for

x ∈ [0, c
√

n],

P

⎧⎨
⎩n1/2

∣∣∣∣∣∣ ˜[X, X]1 −
∫ 1

0
σ 2

t dt

∣∣∣∣∣∣ > x

⎫⎬
⎭ ≤ 2 exp{−Cx2},

where the constants c and C can be taken as in (A.7).
(B) If the tail behavior of σ

(X)
t satisfies,

P
{

sup
0≤t≤1

σ (X)
t ≥ Cσ

}
≤ kσ exp

{
− aCb

σ

}
, for any Cσ > 0

with positive constants kσ , a, and b, then for all large n, for
x ∈ [0, cn

4+b
2b ],

P

⎧⎨
⎩n1/2

∣∣∣∣∣∣ ˜[X, X]1 −
∫ 1

0
σ 2

t dt

∣∣∣∣∣∣ > x

⎫⎬
⎭

≤ (2 + kσ ) exp
{

− Cx
2b

4+b

}
.

A set of candidate values for c and C are given in (A.8).

Proof. For any constant Cσ > 0, define a stopping time �Cσ
:=

inf{t : sup0≤s≤t σs > Cσ } ∧ 1. Let

σ̃s =
{

σs, when s ≤ �Cσ

Cσ , when s > �Cσ

and X̃t = ∫ t

0 σ̃sdWs . By time change for martingales, [see, for example,
Theorem 4.6 of chapter 3 of Karatzas and Shreve (2000)], if τt =
inf{s : [X̃]s ≥ t} where [X̃]s is the quadratic variation process, then
Bt := X̃τt

is a Brownian-motion with regard to {Fτt
}0≤t≤∞. We then

have that

E exp

⎛
⎝θ

⎛
⎝X̃2

t −
∫ t

0
σ̃ 2

s ds

⎞
⎠
⎞
⎠ = E exp

(
θ
(
B2

[X̃]t
− [X̃]t

))
.

Note further that for any t, [X̃]t is a stopping time with regard to
{Fτs

}0≤s≤∞, and the process exp(θ (B2
s − s)) is a submartingale for any

θ . By the optional sampling theorem, using [X̃]u ≤ C2
σ u (bounded

stopping time), we have

E exp
(
θ
(
B2

[X̃]u
− [X̃]u

))
≤ E exp

(
θ
(
B2

C2
σ u

− C2
σ u
))

.

Therefore, note that �Xi = �X̃i on the set of {�Cσ
= 1}, we have that,

under Condition 3,

E

⎛
⎝ exp

⎧⎨
⎩θ

√
n

⎛
⎝(�Xi)

2 −
∫ vi

vi−1

σ 2
t dt

⎞
⎠
⎫⎬
⎭I{�Cσ =1}|Fvi−1

⎞
⎠

≤ E exp

{
θ
√

n

(
B2

C2
σ C�
n

− C2
σ C�

n

)}

= E exp

{
θ

C2
σ C�√

n
(Z2 − 1)

}
, (A.5)

where Z ∼ N (0, 1) and �Xi = Xvi
− Xvi−1 .
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It follows from the law of iterated expectations and (A.5) that

E

⎛
⎝exp

⎧⎨
⎩θ

√
n

⎛
⎝ ˜[X, X]1 −

∫ 1

0
σ 2

t dt

⎞
⎠
⎫⎬
⎭I{�Cσ =1}

⎞
⎠

= E

⎡
⎣
⎛
⎝exp

⎧⎨
⎩θ

√
n

⎛
⎝ n−1∑

i=1

(�Xi)
2 −

∫ vn−1

0
σ 2

t dt

⎞
⎠
⎫⎬
⎭I{�Cσ =1}

⎞
⎠

·E
⎛
⎝ exp

⎧⎨
⎩θ

√
n

⎛
⎝�X2

n −
∫ vn

vn−1

σ 2
t dt

⎞
⎠
⎫⎬
⎭I{�Cσ =1}|Fvn−1

⎞
⎠
⎤
⎦

≤ E

⎛
⎝exp

⎧⎨
⎩θ

√
n

⎛
⎝ n−1∑

i=1

(�Xi)
2 −

∫ vn−1

0
σ 2

t dt

⎞
⎠
⎫⎬
⎭I{�Cσ =1}

⎞
⎠

×E exp

{
θ

C2
σ C�√

n
(Z2 − 1)

}
,

where Z ∼ N (0, 1). Repeating the process above, we obtain

E

⎛
⎝exp

⎧⎨
⎩θ

√
n

⎛
⎝ ˜[X, X]1 −

∫ 1

0
σ 2

t dt

⎞
⎠
⎫⎬
⎭I{�Cσ =1}

⎞
⎠

≤
(

E exp

{
θ

C2
σ C�√

n
(Z2 − 1)

})n

.

By Lemma 1, we have for |θ | ≤
√

n

4C2
σ C�

,

E

⎛
⎝exp

⎧⎨
⎩θ

√
n

⎛
⎝ ˜[X, X]1−

∫ 1

0
σ 2

t dt

⎞
⎠
⎫⎬
⎭I{�Cσ =1}

⎞
⎠≤ exp

{
2θ 2C4

σ C2
�

}
.

(A.6)
By Lemma 2, we have,

P

⎛
⎝
⎧⎨
⎩n1/2

∣∣∣∣∣∣ ˜[X, X]1 −
∫ 1

0
σ 2

t dt

∣∣∣∣∣∣ > x

⎫⎬
⎭ ∩ {�Cσ

= 1}
⎞
⎠

≤ 2 exp

{
− x2

8C4
σ C2

�

}
, (A.7)

when 0 ≤ x ≤ C2
σ C�

√
n. This proves the first half of the theorem.

For the second half,

P

⎧⎨
⎩n1/2

∣∣∣∣∣∣ ˜[X, X]1 −
∫ 1

0
σ 2

t dt

∣∣∣∣∣∣ > x

⎫⎬
⎭

≤ P

⎧⎨
⎩n1/2

∣∣∣∣∣∣ ˜[X, X]1−
∫ 1

0
σ 2

t dt

∣∣∣∣∣∣ > x, �Cσ
= 1

⎫⎬
⎭+P {�Cσ

< 1}

≤ exp{−θx}E
⎛
⎝exp

⎧⎨
⎩θ

√
n

⎛
⎝
∣∣∣∣∣∣ ˜[X, X]1 −

∫ 1

0
σ 2

t dt

⎞
⎠
∣∣∣∣∣∣
⎫⎬
⎭I{�Cσ =1}

⎞
⎠

+ P {�Cσ
< 1} for nonnegative θ

≤ 2 exp

{
− x2

8C4
σ C2

�

}
+ kσ exp

{
− aCb

σ

}
,

when 0 ≤ x ≤ C2
σ C�

√
n.

Now, let Cσ = ( x2

8aC2
�

)
1

4+b , we have that when 0 ≤ x ≤ (8a)
−2
b · C� ·

n
4+b
2b ,

P

⎧⎨
⎩n1/2

∣∣∣∣∣∣ ˜[X, X]1 −
∫ 1

0
σ 2

t dt

∣∣∣∣∣∣ > x

⎫⎬
⎭

≤ (2 + kσ ) exp
{

− 8
−b
4+b · a

4
4+b · C

−2b
4+b

� · x
2b

4+b

}
. (A.8)

�

Proof of Theorem 1

We first prove the results conditioning on the set of observation
times V . Recall notation introduced in Sections 3.2 and 3.3. Let
n be the observation frequency. For simplicity of notation, with-
out ambiguity, we will write τn,i as τi and σ

(X)
t as σt . Again let

�Cσ
:= inf{t : sup0≤s≤t σs > Cσ } ∧ 1. Denote the TSRV based on the

latent process by

˜〈X, X〉(K)

1 = ˜[X,X]
(K)

1 − n̄K

n̄J

˜[X,X]1

(J )
, (A.9)

where ˜[X,X]
(K)

1 = K−1
∑n

i=K (Xτi
− Xτi−K

)2. Then, from the defini-
tion, we have,

̂〈X, X〉1 = ˜[X, X]
(K)

1 + ˜[εX, εX]
(K)

1 + 2 ˜[X, εX]
(K)

1

− n̄K

n̄J

(
˜[X, X]

(J )

1 + ˜[εX, εX]
(J )

1 + 2 ˜[X, εX]
(J )

1

)

= 1

K

K−1∑
l=0

V
(l)
K − n̄K

n̄J

˜[X, X]
(J )

1 + R1 + R2, (A.10)

where R1 = ˜[εX, εX]
(K)

1 − n̄K

n̄J

˜[εX, εX]
(1)

1 , R2 = 2 ˜[X, εX]
(K)

1 −
2 n̄K

n̄J

˜[X, εX]
(1)

1 , and

V
(l)
K =

n̄K∑
j=1

(XτjK+l
− Xτ(j−1)K+l

)2, for l = 0, 1, . . . , K − 1.

Note that we have assumed that n̄K = n−K+1
K

is an integer above, to
simplify the presentation.

Recall that we consider the case when J = 1, or n̄J = n. Let

I1 = 1

K

K−1∑
l=0

√
n̄K

⎛
⎝V

(l)
K −

∫ 1

0
σt

2dt

⎞
⎠−

(
n̄K

n

) 3
2

· √
n

⎛
⎝˜[X,X]

(1)

1

−
∫ 1

0
σt

2dt

⎞
⎠+ √

n̄KR1 + √
n̄KR2, (A.11)

and I2 = − n̄
3/2
K

n

∫ 1
0 σt

2dt . We are interested in

√
n̄K

⎛
⎝̂〈X, X〉1 −

∫ 1

0
σt

2dt

⎞
⎠ = I1 + I2.

The key idea is to compute the moment generating functions for each
term in I1 and then to use Lemma 2 to conclude.

For the first term in I1, since V
(l)
k is a realized volatility based on

discretely observed X process, with observation frequency satisfying
sup1≤i≤n̄K

n̄K · (τiK+l − τ(i−1)K+l) ≤ C�, we have, by (A.6) in Lemma

3, for |θ | ≤
√

n̄K

4C2
σ C�

,

E

⎛
⎝ exp

⎧⎨
⎩θ

√
n̄K (V (l)

K −
∫ 1

0
σ 2

t dt

⎞
⎠
⎫⎬
⎭I{�Cσ =1}

⎞
⎠ ≤ exp

{
2θ 2C4

σ C2
�

}
.

(A.12)

For the second term in I1, we have obtained in (A6) that

E

⎛
⎝exp

⎧⎨
⎩θ

√
n

⎛
⎝˜[X,X]

(1)

1 −
∫ 1

0
σt

2dt

⎞
⎠
⎫⎬
⎭I{�Cσ =1}

⎞
⎠

≤ exp
{

2θ 2C4
σ C2

�

}
, when |θ | ≤

√
n

4C2
σ C�

. (A.13)
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We introduce an auxiliary sequence an that grows with n at a mod-
erate rate to facilitate our presentation in the following. In particular,
we can set an = n1/12. Let us now deal with R1, the third term in I1.
Note that from the definition

√
n̄KR1

=
√

n̄K

K

⎧⎨
⎩

n∑
i=K

(εi − εi−K )2 − n − K + 1

n

n∑
i=1

(εi − εi−1)2

⎫⎬
⎭

=
√

n̄K (n − K + 1)

K
√

n
· 2√

n

n∑
i=1

εiεi−1 −
√

n̄K

√
n − K + 1

K

· 2√
n − K + 1

n∑
i=K

εiεi−K −
√

n̄K

√
K − 1an

K

· 1

an

√
K − 1

K−1∑
i=1

(
ε2
i − η2

X

)
−

√
n̄K

√
K − 1an

K

· 1

an

√
K − 1

n−1∑
n−K+1

(
ε2
i − η2

X

)
+

√
n̄K (K − 1)an

K
√

n

· 1

an

√
n

n∑
i=1

(
ε2
i − η2

X

)
+

√
n̄K (K − 1)an

K
√

n
· 1

an

√
n

n−1∑
i=0

(
ε2
i − η2

X

)
.

(A.14)

The first two terms in (A.14) are not sums of independent variables.
But they can be decomposed into sums of independent random variables
and the moment generating functions can be computed. To simplify the
argument without losing the essential ingredient, let us focus on the
first term of (A.14). We have the following decomposition

n∑
i=1

εiεi−1 =
∑
oddi

εiεi−1 +
∑
eveni

εiεi−1,

and the summands in each terms of the right-hand side are now inde-
pendent. Therefore, we need only to calculate the moment generating
function of εiεi−1.

For two independent normally distributed random variables X ∼
N (0, σ 2

X) and Y ∼ N (0, σ 2
Y ), it can easily be computed that

E(exp{θn−1/2XY }) =
(

1

1 − σ 2
Xσ 2

Y θ 2/n

)1/2

≤ exp
{
σ 2

Xσ 2
Y θ 2/n

}
when |θ | ≤

√
n√

2σXσY

,

where we have used the fact that log(1 − x) ≥ −2x when 0 ≤ x ≤ 1
2 .

Hence, by independence, it follows that (we assume n is even to
simplify the presentation)

E exp

⎧⎨
⎩2θn−1/2

∑
oddi

εiεi−1

⎫⎬
⎭ =

(
1

1 − 4η4
Xθ 2/n

)n/4

≤ exp
{

2η4
Xθ 2
}
, when |θ | ≤

√
n

2
√

2η2
X

. (A.15)

The second term in R1 works similarly and has the same bound. For
example, when n̄K is even, one can have the following decomposition

n∑
i=K

εiεi−K =
n̄K /2∑
j=1

2jK−1∑
i=2jK−K

εiεi−K +
n̄K /2∑
j=1

2jK+K−1∑
i=2jK

εiεi−K.

The last four terms are sums of independent χ 2-distributed random
variables and their moment generating functions can easily be bounded

by using Lemma 1. Taking the term 1
an

√
K−1

∑K−1
i=1 (ε2

i − η2
X) for exam-

ple, we have

E

⎛
⎝ exp

⎧⎨
⎩ θ

an

√
K − 1

K−1∑
i=1

(
ε2
i − η2

X

)⎫⎬
⎭
⎞
⎠

≤ exp
{

2η4
Xθ 2/a2

n

}
when |θ | ≤ an

√
K − 1

4η2
X

.

For the term R2, we have,

√
n̄KR2 = 2ann̄K

n

1

an

⎛
⎝ n∑

i=1

�Xiεi−1 −
n∑

i=1

�Xiεi

⎞
⎠

+ 2

an

an

√
n̄K

K

⎛
⎝ n∑

i=K

�(K)Xiεi −
n∑

i=K

�(K)Xiεi−K

⎞
⎠, (A.16)

where �Xi = Xτi
− Xτi−1 , and �(K)Xi = Xτi

− Xτi−K
. The first term

above satisfies

E

⎛
⎝ exp

⎧⎨
⎩ θ

an

n∑
i=1

�Xiεi

⎫⎬
⎭I{�Cσ =1}

⎞
⎠

= E

⎛
⎝ exp

⎧⎨
⎩

n∑
i=1

(
θ

an

�Xi

)2

η2
X/2

⎫⎬
⎭I{�Cσ =1}

⎞
⎠

≤
(
E
(

exp
{
θ 2η2

XC2
σ C�Z2/2na2

n

}))n

=
(

1

1 − η2
XC2

σ C�θ 2/na2
n

)n/2

≤ exp
{
η2

XC2
σ C�θ 2/a2

n

}
, when |θ | ≤

√
nan√

2C�Cσ ηX

, (A.17)

where in the second line we have again used the optional sampling
theorem and law of iterated expectations as in the derivations of Lemma
3; Z denotes a standard normal random variable. The second term in
R2 works similarly and has the same bound. For the third term, by
conditioning on the X-process first, we have

E

[
exp

{
anθ

√
n̄K

K

n∑
i=K

�(K)Xiεi

}
I{�Cσ =1}

]

= E

⎡
⎣exp

⎧⎨
⎩a2

nθ
2n̄K

2K2

K−1∑
l=0

n̄K∑
j=1

(
�(K)XjK+l

)2
η2

X

⎫⎬
⎭ I{�Cσ =1}

⎤
⎦

≤ �K−1
l=0

⎧⎨
⎩E

⎡
⎣ exp

⎧⎨
⎩a2

nθ
2n̄Kη2

X

2K

n̄K∑
j=1

(
�(K)XjK+l

)2

⎫⎬
⎭

× I{�Cσ =1}

⎤
⎦
⎫⎬
⎭

1
K

≤ �K−1
l=0

⎧⎨
⎩
⎛
⎝1 − a2

nθ
2η2

X

K
C2

σ C�

⎞
⎠−n̄K /2⎫⎬

⎭
1
K

≤ exp

{
a2

nθ
2n̄Kη2

X

K
C2

σ C�

}
when |θ | ≤

√
K√

2C�anηCσ

,

(A.18)

where we have used the Hölder’s inequality above. The fourth term
works similarly and has the same bound.

Combining the results for all the terms (A.12)–(A.18) together, ap-
plying Lemma 2 to I1, we conclude that the conditions for Lemma 2
are satisfied with A = {�Cσ

= 1}, C1 = C1,x

√
n̄K ,

C1,x = min

⎧⎨
⎩ 1

4C2
σ C�

,

√
n/n̄K

2
√

2η2
X

,
an

√
(K − 1)/n̄K

4η2
X

,
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an

√
n/n̄K√

2C�ηXCσ

,

√
K/n̄K√

2C�anηCσ

⎫⎬
⎭ (A.19)

= 1

4C2
σ C�

for big enough n

and

C2 = max

{
2C4

σ C2
�, 2η4

X, 2η4
X/a2

n, η
2
XC2

σ C�/a2
n,

a2
nn̄Kη2

X

K
C2

σ C�

}
(A.20)

= max
{

2C4
σ C2

�, 2η4
X

}
for big enough n

= 2C4
σ C2

� for the typical case when C� ≥ 1 and Cσ ≥ ηX.

Let w = 8, which is larger, when n is sufficiently large, than

1

K

K−1∑
l=0

1 +
(

n̄K

n

)3/2

︸ ︷︷ ︸
coef. in the first two terms of I1

+ 2
√

n̄K

√
n

K
+ 2

√
n̄Kan√
K

+ 2
√

n̄Kan√
n︸ ︷︷ ︸

controls coefficients in (A.14)

+ 4ann̄K

n
+ 4

an︸ ︷︷ ︸
coefficients in (A.16)

.

Set CI1 = (4C2w
2)−1. By Lemma 2, when 0 ≤ x ≤ 2C1,xC2

√
n̄K ,

P
(
{|I1| > x} ∩

{
�Cσ

= 1
})

≤ 2 exp(−CI1x
2).

Hence when 0 ≤ x ≤ 4C1,xC2
√

n̄K ,

P

({
|I1| >

x

2

}
∩
{
�Cσ

= 1
})

≤ 2 exp

(
−CI1

4
x2

)
. (A.21)

For the term I2, let CI2 = 23/2C2
σ , we have, by Condition 4,

I2 = n̄
3/2
K

n

∫ 1

0
σt

2dt ≤ CI2/
√

n, on the set {�Cσ
= 1}. (A.22)

Hence

P

({
|I2| >

x

2

}
∩
{
�Cσ

= 1
})

≤
{

0, if x > 2CI2/
√

n

1, if x ≤ 2CI2/
√

n.

Since for all large n, 1 ≤ 2 exp(−CI1 4C2
I2

4n
), which is smaller than

2 exp(−CI1 x2

4 ) when x ≤ 2CI2√
n

, we have that for all large n,

P

({
|I2| >

x

2

}
∩
{
�Cσ

= 1
})

≤ 2 exp

(
− CI1

4
x2

)
. (A.23)

Combining (A.21) and (A.23), we have, when 0 ≤ x ≤
4C1,xC2

√
n̄K ,

P

({
√

n̄K

∣∣∣∣∣̂〈X,X〉1 −
∫ 1

0
σt

2dt

∣∣∣∣∣ > x

}
∩
{
�Cσ

= 1
})

= P
(
{|I1 + I2| > x} ∩

{
�Cσ

= 1
})

≤ P
(
{|I1| > x/2} ∩

{
�Cσ

= 1
})

+ P
(
{|I2| > x/2} ∩

{
�Cσ

= 1
})

≤ 4 exp

(
− CI1

4
x2

)
.

By Condition 4 again, we have, when 0 ≤ x ≤ cn1/6,

P

({
n1/6

∣∣∣∣∣̂〈X, X〉1 −
∫ 1

0
σt

2dt

∣∣∣∣∣ > x

}
∩
{
�Cσ

= 1
})

≤ P

({
√

n̄K

∣∣∣∣∣̂〈X, X〉1 −
∫ 1

0
σt

2dt

∣∣∣∣∣ > x/
√

2

}
∩
{
�Cσ

= 1
})

≤ 4 exp(−Cx2), (A.24)

where c = 4
√

2C1,xC2
√

n̄K, and C = CI1
8 = (32C2w

2)−1. For big
enough n and the typical case when C� ≥ 1 and Cσ ≥ ηX , we have

c = 2
√

2C2
σ C� and C = 1

64w2C4
σ C2

�

. (A.25)

Notice that this conditional result depends only on the observation
frequency n and not on the locations of the observation times as long
as Condition 3 is satisfied, (A.24) holds unconditionally on the set of
the observation times. This proves the first half of the Theorem 1 when
�Cσ

≡ 1.
For the second half of the theorem, we have

P

(
n1/6

∣∣∣∣∣̂〈X, X〉1 −
∫ 1

0
σt

2dt

∣∣∣∣∣ > x

)

= P

({
n1/6

∣∣∣∣∣̂〈X,X〉1 −
∫ 1

0
σt

2dt

∣∣∣∣∣ > x

}
∩
{
�Cσ

= 1
})

+ P

({
�Cσ

< 1

})

< 4 exp

(
− x2

64w2C4
σ C2

�

)
+ kσ exp

{
− aCb

σ

}
,

when 0 ≤ x ≤ 2
√

2C2
σ C�n1/6.

Letting Cσ = ( x2

64w2aC2
�

)
1

4+b , we have, when 0 ≤ x ≤
2

3b−12
2b C�(w2a)

−2
b · n

4+b
6b ,

P

{
n1/6

∣∣∣∣∣ ˜[X, X]1 −
∫ 1

0
σ 2

t dt

∣∣∣∣∣ > x

}

≤ (4 + kσ ) exp
{

− (64w2)
−b
4+b · a

4
4+b · C

−2b
4+b

� · x
2b

4+b

}
. (A.26)

Remark 3. In the above proof, we have demonstrated by using a
sequence an that goes to ∞ at a moderate rate that one can eliminate
the impact of the small order terms on the choices of the constants,
as long as the terms have their moment generating functions satisfy
inequalities of form (A.2). We will use this technique again in the next
subsection.

Proof of Theorem 2

We again conduct all the analysis assuming that the observation
times are given. Our final result holds because the conditional result
does not depend on the locations of the observation times as long as
Condition 3 is satisfied.

Recall notation for the observation times as introduced in Section
3.2. Define

Z+ = X + Y and Z− = X − Y.

Z+ and Z− are diffusion processes with volatilities satisfying Condi-
tion 2. To see this, let W+ and W− be processes such that

dW+
t = σ

(X)
t dB

(X)
t + σ

(Y )
t dB

(Y )
t√(

σ
(X)
t

)2
+
(
σ

(Y )
t

)2
+ 2ρtσ

(X)
t σ

(Y )
t
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and

dW−
t = σ

(X)
t dB

(X)
t − σ

(Y )
t dB

(Y )
t√(

σ
(X)
t

)2
+
(
σ

(Y )
t

)2
− 2ρtσ

(X)
t σ

(Y )
t

.

W+ and W− are standard Brownian motions by Levy’s characterization
of Brownian motion [see, for example, Theorem 3.16, chapter 3 of
Karatzas and Shreve (2000)]. Write

σZ+
t =

√(
σ

(X)
t

)2
+
(
σ

(Y )
t

)2
+ 2ρtσ

(X)
t σ

(Y )
t

and

σZ−
t =

√(
σ

(X)
t

)2
+
(
σ

(Y )
t

)2
− 2ρtσ

(X)
t σ

(Y )
t ,

we have

dZ+ = σZ+
t dW+

t and dZ− = σZ−
t dW−

t

with

0 ≤ σZ+
t , σ Z−

t ≤ 2Cσ

when σ
(X)
t , σ

(Y )
t are bounded by Cσ , or

P

{
sup

0≤t≤1
σZ+

t ≥ 2Cσ

}
≤ P

{
sup

0≤t≤1
σX

t ≥ Cσ

}

+ P

{
sup

0≤t≤1
σY

t ≥ Cσ

}
≤ 2kσ exp

{
− aCb

σ

}
,

when σX
t , σY

t are such that their tail probabilities are bounded as in
Condition 2.

In fact, let �Cσ
:= inf{t : sup0≤s≤t σ

(X)
s > Cσ or sup0≤s≤t σ

(Y )
s >

Cσ } ∧ 1. We have P {�Cσ
< 1} ≤ P {sup0≤t≤1 σX

t ≥ Cσ } +
P {sup0≤t≤1 σY

t ≥ Cσ } ≤ 2kσ exp{−aCb
σ }.

For the observed Z+ and Z− processes, we have

Z+,o
vi

= Xo
ti

+ Y o
si

= Z+
vi

+ εi,+ and

Z−,o
vi

= Xo
ti

− Y o
si

= Z−
vi

+ εi,−,

where ti and si are the last ticks at or before vi and

εi,+ = Xti − Xvi
+ Ysi − Yvi

+ εX
i + εY

i ,

εi,− = Xti − Xvi
− Ysi + Yvi

+ εX
i − εY

i .

Note that ̂〈X, Y 〉1 = 1
4 ( ̂〈Z+, Z+〉1 − ̂〈Z−, Z−〉1). We can first prove

analogous results as in Theorem 1 for ̂〈Z+, Z+〉1 and ̂〈Z−, Z−〉1, then
use the results to obtain the final conclusion for TSCV.

For ̂〈Z+, Z+〉1, the derivation is different from that of Theorem 1
only for the terms that involve the noise, namely

√
n̄KR1 and

√
n̄KR2.

Write �̃Xi = Xti − Xvi
and �̃Yi = Ysi − Yvi

. Then, the first term in√
n̄KR1 becomes

√
n̄K

√
ñ

K
· 2√

ñ

ñ∑
i=1

εi,+εi−1,+ =
√

n̄K

√
ñ

K
· 2√

ñ

×
ñ∑

i=1

(
�̃Xi�̃Xi−1 + �̃Xi�̃Yi−1 + �̃Xi

(
εX
i−1 + εY

i−1

)
+ �̃Yi�̃Xi−1 + �̃Yi�̃Yi−1 + �̃Yi

(
εX
i−1 + εY

i−1

)
+
(
εX
i + εY

i

)
×�̃Xi−1 +

(
εX
i + εY

i

)
�̃Yi−1 +

(
εX
i + εY

i

)(
εX
i−1 + εY

i−1

))
.

The only OP (1) term is the last term, which involves
only independent normals, and can be dealt with the same
way as before (again assume ñ is even for simplicity of

presentation):

E exp

{
2θñ−1/2

∑
odd i

(
εX
i + εY

i

)(
εX
i−1 + εY

i−1

)}

= E exp

{
2θñ−1/2

∑
even i

(
εX
i + εY

i

)(
εX
i−1 + εY

i−1

)}

=

⎛
⎜⎝ 1

1 − 4
(
η2

X + η2
Y

)2
θ 2/ñ

⎞
⎟⎠

ñ/4

≤ exp
{

2
(
η2

X + η2
Y

)2
θ 2
}
, when |θ | ≤

√
ñ

2
√

2
(
η2

X + η2
Y

) .

The other terms are of a smaller order of magnitude. By applying an
añ sequence which grows moderately with ñ as in Proof of Theorem
1 (we can set añ = ñ1/12), we can see easily that as long as we can
show that the moment generating functions of these terms can indeed
be suitably bounded as in (A.2), their exact bounds do not have effect
on our choice of C1, C2, or ω. To show the bounds for the moment
generating functions, first note that, for any positive number a and real
valued b, by the optional sampling theorem (applied to submartingales
exp(aB2

s ) and exp(b�̃yBs) with stopping time [X]u ≤ C2
σ u for real

number �̃y), we have

E

(
exp{a(�̃Xi)

2}I{�Cσ =1}|Fi−1

)

≤
(

E
(

exp
{
aC2

σ C�Z2/ñ
}))

for Z ∼ N (0, 1)

=
(

1

1 − 2aC2
σ C�/ñ

)1/2

, (A.27)

where Fi is the information collected up to time vi . Inequality (A.27)
holds when �̃Xi is replaced by �̃Yi . Similarly,

E

(
exp{b�̃Xi�̃Yi−1}I{�Cσ =1}|Fi−2

)

≤ E

(
E(exp{b�̃Xi�̃Yi−1}I{�Cσ =1}|Fi−1)|Fi−2

)

≤ E

(
exp{b2C�C2

σ (�̃Yi−1)2/2ñ}I{�Cσ =1}|Fi−2

)

≤
(

1

1 − b2C4
σ C2

�/ñ2

)1/2

. (A.28)

Inequalities (A.27) and (A.28) can be used to obtain the bounds we
need. For example, by (A.28) and the law of iterated expectations,

E

(
exp

{
θ
∑
oddi

�̃Xi�̃Yi−1

}
I{�Cσ =1}

)
≤
(

1

1 − θ2C4
σ C2

�/ñ2

)ñ/4

≤ exp
{
θ 2C4

σ C2
�

/
2ñ
}

when |θ | ≤ ñ√
2C2

σ C�

,

and by independence, normality of the noise, the law of iterated expec-
tations, and (A.27), we have

E

(
exp

{
θ

añ

ñ∑
i=1

�̃Xi

(
εX
i−1 + εY

i−1

)}
I{�Cσ =1}

)

= E

(
exp

{
ñ∑

i=1

( θ

añ

�̃Xi

)2(
η2

X + η2
Y

)/
2

}
I{�Cσ =1}

)

≤
⎛
⎝ 1

1 −
(
η2

X + η2
Y

)
θ 2C2

σ C�/ña2
ñ

⎞
⎠ñ/2

≤ exp
{(

η2
X + η2

Y

)
C2

σ C�θ 2/a2
ñ

}
,
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when |θ | ≤
√

ñañ

Cσ

√
2C�(η2

X + η2
Y )

.

Similar results can be found for the other terms above, with the same
techniques.

The second term in
√

n̄KR1 works similarly and has the same bound.
The other terms in

√
n̄KR1 (with η2

X replaced by η2
X + η2

Y ) and the whole
term of

√
n̄KR2 are of order op(1) and have good tail behaviors. Again,

by using a sequence añ, we can conclude that their exact bounds will
not matter in our choice of the constants and we only need to show
that their moment generating functions are appropriately bounded as
in (A.2). The arguments needed to prove the inequalities of form (A.2)
for each elements in these terms are similar to those presented in the
above proofs, and are omitted here.

Hence, by still letting w = 8 and redefining

C1,x = 1

4(2Cσ )2C�

and

C2 = max
{

2(2Cσ )4C2
�, 2
(
η2

X + η2
Y

)2}
= 32C4

σ C2
�

for the typical case when Cσ ≥ ηX, ηY ,

we have, when 0 ≤ x ≤ c′ñ1/6,

P

({
ñ1/6

∣∣∣∣∣ ̂〈Z+, Z+〉1 −
∫ 1

0
σZ+

t

2
dt

∣∣∣∣∣ > x

}⋂
{�Cσ

= 1}
)

≤ 4 exp(−C ′x2),

and

P

({
ñ1/6

∣∣∣∣∣ ̂〈Z−, Z−〉1 −
∫ 1

0
σZ−

t

2
dt

∣∣∣∣∣ > x

}⋂
{�Cσ

= 1}
)

≤ 4 exp(−C ′x2),

where c′ = 4
√

2C1,xC2 and C ′ = (32C2w
2)−1.

Finally, for the TSCV, when 0 ≤ x ≤ cñ1/6,

P

({
ñ1/6

∣∣∣∣∣̂〈X, Y 〉1 −
∫ 1

0
σ (X)

t σ (Y )
t ρ(X,Y )

t dt

∣∣∣∣∣ > x

}⋂
{�Cσ

= 1}
)

≤ P

({
ñ1/6

∣∣∣∣∣ ̂〈Z+, Z+〉1 −
∫ 1

0
σZ+

t

2
dt

∣∣∣∣∣ > 2x

}⋂
{�Cσ

= 1}
)

+ P

({
ñ1/6

∣∣∣∣∣ ̂〈Z−, Z−〉1 −
∫ 1

0
σZ−

t

2
dt

∣∣∣∣∣ > 2x

}⋂
{�Cσ

= 1}
)

≤ 8 exp(−Cx2),

where c = c′/2 = 2
√

2C1,xC2 and C = 4C ′ = (8C2w
2)−1. For big

enough n and the typical case when C� ≥ 1 and Cσ ≥ ηX , we have

c = 4
√

2C2
σ C� and C =

(
256w2C4

σ C2
�

)−1
. (A.29)

This completes the proof of the first half of the statement of Theorem
2, when �Cσ

≡ 1.
For the second half of the theorem, we have

P

(
ñ1/6

∣∣∣∣∣̂〈X, Y 〉1 −
∫ 1

0
σ (X)

t σ (Y )
t ρ(X,Y )

t dt

∣∣∣∣∣ > x

)

= P

({
ñ1/6

∣∣∣∣∣̂〈X, Y 〉1 −
∫ 1

0
σ (X)

t σ (Y )
t ρ(X,Y )

t dt

∣∣∣∣∣ > x

}

∩ {�Cσ
< 1}

)
+ P ({�Cσ

< 1})

< 8 exp
(
−
(

256w2C4
σ C2

�

)−1
x2
)

+ 2kσ exp
{

− aCb
σ

}
,

when 0 ≤ x ≤ 4
√

2C2
σ C�ñ1/6.

Let Cσ = ( x2

256w2aC2
�

)
1

4+b , the above inequality becomes

P

{
ñ1/6

∣∣∣∣∣̂〈X, Y 〉1 −
∫ 1

0
σ (X)

t σ (Y )
t ρ(X,Y )

t dt

∣∣∣∣∣ > x

}

≤ (8 + 2kσ ) exp
{

− (256w2)
−b
4+b · a

4
4+b · C

−2b
4+b

� · x
2b

4+b

}
, (A.30)

when 0 ≤ x ≤ 2
5b−12

2b C�(w2a)
−2
b · ñ

4+b
6b . �

Remark 4. Note that the argument is not restricted to TSCV based
on the pairwise-refresh times—it works the same (only with ñ re-
placed by ñ∗, the observation frequency of the all-refresh method)
for the case when the synchronization scheme is chosen to be the all-
refresh method, as long as the sampling conditions (Conditions 3–4) are
satisfied.

[Received November 2010. Revised October 2011.]
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