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This chapter summarizes some of the unique features of Big Data analysis.
These features are shared neither by low-dimensional data nor by small sam-
ples. Big Data pose new computational challenges and hold great promises for
understanding population heterogeneity as in personalized medicine or ser-
vices. High dimensionality introduces spurious correlations, incidental endo-
geneity, noise accumulation, and measurement error. These unique features are
very distinguished and statistical procedures should be designed with these
issues in mind. To illustrate, a method called a sparsest solution in high-
confidence set is introduced which is generally applicable to high-dimensional
statistical inference. This method, whose properties are briefly examined, is
natural as the information about parameters contained in the data is summa-
rized by high-confident sets and the sparsest solution is a way to deal with
the noise accumulation issue.

43.1 Introduction

The first decade of this century has seen the explosion of data collection in
this age of information and technology. The technological revolution has made
information acquisition easy and cheap through automated data collection
processes. Massive data and high dimensionality characterize many contem-
porary statistical problems from biomedical sciences to engineering and social
sciences. For example, in disease classification using microarray or proteomics
data, tens of thousands of expressions of molecules or proteins are potential
predictors; in genome-wide association studies, hundreds of thousands of SNPs
are potential covariates; in machine learning, tens of thousands of features
are extracted from documents, images and other objects; in spatial-temporal
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508 Features of Big Data

problems encountered in economics and earth sciences, time series from hun-
dreds or thousands of regions are collected. When interactions are considered,
the dimensionality grows even more quickly. Other examples of massive data
include high-resolution images, high-frequency financial data, fMRI data, e-
commerce data, marketing data, warehouse data, functional and longitudinal
data, among others. For an overview, see Hastie et al. (2009) and Bühlmann
and van de Geer (2011).

Salient features of Big Data include both large samples and high dimen-
sionality. Furthermore, Big Data are often collected over different platforms or
locations. This generates issues with heterogeneity, measurement errors, and
experimental variations. The impacts of dimensionality include computational
cost, algorithmic stability, spurious correlations, incidental endogeneity, noise
accumulations, among others. The aim of this chapter is to introduce and ex-
plain some of these concepts and to offer a sparsest solution in high-confident
set as a viable solution to high-dimensional statistical inference.

In response to these challenges, many new statistical tools have been devel-
oped. These include boosting algorithms (Freund and Schapire, 1997; Bickel
et al., 2006), regularization methods (Tibshirani, 1996; Chen et al., 1998; Fan
and Li, 2001; Candès and Tao, 2007; Fan and Lv, 2011; Negahban et al., 2012),
and screening methods (Fan and Lv, 2008; Hall et al., 2009; Li et al., 2012).
According to Bickel (2008), the main goals of high-dimensional inference are
to construct as effective a method as possible to predict future observations, to
gain insight into the relationship between features and response for scientific
purposes, and hopefully, to improve prediction.

As we enter into the Big Data era, an additional goal, thanks to large
sample size, is to understand heterogeneity. Big Data allow one to apprehend
the statistical properties of small heterogeneous groups, termed “outliers”
when sample size is moderate. It also allows us to extract important but weak
signals in the presence of large individual variations.

43.2 Heterogeneity

Big Data enhance our ability to find commonalities in a population, even in the
presence of large individual variations. An example of this is whether drinking
a cup of wine reduces health risks of certain diseases. Population structures
can be buried in the presence of large statistical noise in the data. Neverthe-
less, large sample sizes enable statisticians to mine such hidden structures.
What also makes Big Data exciting is that it holds great promises for un-
derstanding population heterogeneity and making important discoveries, say
about molecular mechanisms involved in diseases that are rare or affecting
small populations. An example of this kind is to answer the question why
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chemotherapy is helpful for certain populations, while harmful or ineffective
for some other populations.

Big Data are often aggregated from different sites and different platforms.
Experimental variations need to be accounted for before their full analysis. Big
Data can be thought of as a mixture of data arising from many heterogeneous
populations. Let k be the number of heterogeneous groups, X be a collection
of high-dimensional covariates, and y be a response. It is reasonable to regard
Big Data as random realizations from a mixture of densities, viz.

p1f1(y;θ1(x)) + · · ·+ pkfk(y;θk(x)),

in which fj(y;θj(x)) is the conditional density of Y given X = x in population
j ∈ {1, . . . , k}, and the function θj(x) characterizes the dependence of the
distribution on the covariates. Gaussian mixture models are a typical example;
see, e.g., Khalili and Chen (2007) or Städler et al. (2010).

When the sample size is moderate, data from small groups with small pj
rarely occur. Should such data be sampled, they are usually regarded as sta-
tistical outliers or buried in the larger groups. There are insufficient amounts
of data to infer about θj(x). Thanks to Big Data, when n is so large that npj
is also large, there are sufficient amounts of data to infer about commonality
θj(x) in this rare subpopulation. In this fashion, Big Data enable us to dis-
cover molecular mechanisms or genetic associations in small subpopulations,
opening the door to personalized treatments. This holds true also in consumer
services where different subgroups demand different specialized services.

The above discussion further suggests that Big Data are paramountly im-
portant in understanding population heterogeneity, a goal that would be illu-
sory when the sample size is only moderately large. Big Data provide a way
in which heterogeneous subpopulations can be distinguished and personalized
treatments can be derived. It is also an important tool for the discovery of
weak population structures hidden in large individual variations.

43.3 Computation

Large-scale computation plays a vital role in the analysis of Big Data. High-
dimensional optimization is not only expensive but also unstable in computa-
tion, in addition to slowness in convergence. Algorithms that involve iterative
inversions of large matrices are infeasible due to instability and computational
costs. Scalable and stable implementations of high-dimensional statistical pro-
cedures must be sought. This relies heavily on statistical intuition, large-scale
screening and small-scale optimization. An example is given in Fan et al.
(2009).

Large numbers of observations, which can be in the order of tens of thou-
sands or even millions as in genomics, neuro-informatics, marketing, and online
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learning studies, also give rise to intensive computation. When the sample size
is large, the computation of summary statistics such as correlations among all
variables is expensive. Yet statistical methods often involve repeated evalua-
tions of such functions. Parallel computing and other updating techniques are
required. Therefore, scalability of techniques to both dimensionality and the
number of cases should be borne in mind when developing statistical proce-
dures.

43.4 Spurious correlation

Spurious correlation is a feature of high dimensionality. It refers to variables
that are not correlated theoretically but whose sample correlation is high. To
illustrate the concept, consider a random sample of size n = 50 of p inde-
pendent standard N (0, 1) random variables. Thus the population correlation
between any two random variables is zero and their corresponding sample
correlation should be small. This is indeed the case when the dimension is
small in comparison with the sample size. When p is large, however, spurious
correlations start to appear. To illustrate this point, let us compute

r̂ = max
j≥2

ˆcorr(Z1, Zj)

where ˆcorr(Z1, Zj) is the sample correlation between variables Z1 and Zj .
Similarly, we can compute

R̂ = max
|S|=5

ˆcorr(Z1,ZS), (43.1)

which is the maximum multiple correlation between Z1 and ZS with 1 /∈ S,
namely, the correlation between Z1 and its best linear predictor using ZS . In
the implementation, we use the forward selection algorithm to compute R̂,
which is no larger than R̂ but avoids computing all

(
p
5

)
multiple R2 in (43.1).

This experiment is repeated 200 times.
The empirical distributions of r̂ and R̂ are shown in Figure 43.1. The

spurious correlation r̂ is centered around .45 for p = 1000 and .55 for p =
10,000. The corresponding values are .85 and .91 when the multiple correlation
R̂ is used. Theoretical results on the order of the spurious correlation r̂ are
given in Cai and Jiang (2012) and Fan et al. (2012), but the order of R̂ remains
unknown.

The impact of spurious correlation includes false scientific discoveries and
false statistical inferences. In terms of scientific discoveries, Z1 and ZŜ are
practically indistinguishable when n = 50, given that their correlation is
around .9 for a set Ŝ with |Ŝ| = 5. If Z1 represents the expression of a gene
that is responsible for a disease, we can discover five genes Ŝ that have a sim-
ilar predictive power even though they are unrelated to the disease. Similarly,
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FIGURE 43.1
Illustration of spurious correlation. Left panel: a typical realization of Z1 with
its most spuriously correlated variable (p = 1000); middle and right panels:
distributions of r̂ and R̂ for p = 1000 and p = 10,000. The sample size is
n = 50.

if the genes in Ŝ are truly responsible for a disease, we may end up wrongly
pronouncing Z1 as the gene that is responsible for the disease.

We now examine the impact of spurious correlation on statistical inference.
Consider a linear model

Y = X>β + ε, σ2 = var(ε).

The residual variance based on a selected set Ŝ of variables is

σ̂2 =
1

n− |Ŝ|
Y>(In −PŜ)Y, PŜ = XŜ(X>ŜXŜ)−1X>Ŝ .

When the variables are not data selected and the model is unbiased, the
degree of freedom adjustment makes the residual variance unbiased. However,
the situation is completely different when the variables are data selected. For
example, when β = 0, one has Y = ε and all selected variables are spurious.
If the number of selected variables |Ŝ| is much smaller than n, then

σ̂2 =
1

n− |Ŝ|
(1− γ2

n)‖ε‖2 ≈ (1− γ2
n)σ2,

where γ2
n = ε>PŜε/‖ε‖2. Therefore, σ2 is underestimated by a factor of γ2

n.
Suppose that we select only one spurious variable. This variable must

then be mostly correlated with Y or, equivalently, ε. Because the spurious
correlation is high, the bias is large. The two left panels of Figure 43.2 depict
the distributions of γn along with the associated estimates of σ̂2 for different
choices of p. Clearly, the bias increases with the dimension, p.

When multiple spurious variables are selected, the biases of residual vari-
ance estimation become more pronounced, since the spurious correlation gets
larger as demonstrated in Figure 43.1. To illustrate this, consider the linear
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FIGURE 43.2
Distributions of spurious correlations. Left panel: Distributions of γn for the
null model when |Ŝ| = 1 and their associated estimates of σ2 = 1 for various
choices of p. Right panel: Distributions of γn for the model Y = 2X1 +.3X2 +ε
and their associated estimates of σ2 = 1 for various choices of |Ŝ| but fixed
p = 1000. The sample size n = 50. Adapted from Fan et al. (2012).

model Y = 2X1 + .3X2 + ε and use the stepwise selection method to recruit
variables. Again, the spurious variables are selected mainly due to their spu-
rious correlation with ε, the unobserved but realized vector of random noises.
As shown in the two right panels of Figure 43.2, the spurious correlation is
very large and σ̂2 gets notably more biased when |Ŝ| gets larger.

Underestimation of residual variance leads the statistical inference astray.
Variables are declared statistically significant that are not in reality, and this
leads to faulty scientific conclusions.

43.5 Incidental endogeneity

High dimensionality also gives rise to incidental endogeneity. Scientists collect
covariates that are potentially related to the response. As there are many
covariates, some of those variables can be incidentally correlated with the
residual noise. This can cause model selection inconsistency and incorrect
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selection of genes or SNPs for understanding molecular mechanism or genetic
associations.

Let us illustrate this problem using the simple linear model. The idealized
model for variable selection is that there is a small subset S0 of variables that
explains a large portion of the variation in the response Y , viz.

Y = X>β0 + ε, E(εX) = 0, (43.2)

in which the true parameter vector β0 has support S0. The goal of variable
selection is to find the set S0 and estimate the regression coefficients β0.

To be more concrete, let us assume that the data generating process is
Y = X1 +X2 + ε, so that S0 = {1, 2}. As we do not know which variables are
related to Y in the joint model, we collect as many covariates as possible that
we deem to be potentially related to Y , in the hope of including all members
in S0. Some of those Xj are incidentally correlated with Y − X1 − X2 or ε.
This makes model (43.2) invalid. The rise of incidental endogeneity is due to
high dimensionality, making the specifications E(εX) = 0 invalid for some
collected covariates, unintentionally. The more covariates are collected, the
more unlikely this assumption is.

Does incidental endogeneity arise in practice? Can the exogeneity assump-
tion E(εX) = 0 be validated? After data collection, variable selection tech-
niques such as the Lasso (Tibshirani, 1996; Chen et al., 1998) and folded
concave penalized least squares (Fan and Li, 2001; Zou and Li, 2008) are
frequently used before drawing conclusions. The model is rarely validated. In-
deed, the residuals were computed based only on a small set of the selected
variables. Unlike with ordinary least squares, the exogeneity assumption in
(43.2) cannot be validated empirically because most variables are not used to
compute the residuals. We now illustrate this fact with an example.

Consider the gene expressions of 90 western Europeans from the interna-
tional “HapMap” project (Thorisson et al., 2005); these data are available
on ftp://ftp.sanger.ac.uk/pub/genevar/. The normalized gene expres-
sion data were generated with an Illumina Sentrix Human-6 Expression Bead
Chip (Stranger et al., 2007). We took the gene expressions of CHRNA6, cholin-
ergic receptor, nicotinic, alpha 6, as the response variable, and the remain-
ing expression profiles of 47,292 as covariates. The left panel of Figure 43.3
presents the correlation between the response variable and its associated co-
variates.

Lasso is then employed to find the genes that are associated with the
response. It selects 23 genes. The residuals ε̂ are computed, which are based
on those genes. The right panel of Figure 43.3 displays the distribution of the
sample correlations between the covariates and the residuals. Clearly, many of
them are far from zero, which is an indication that the exogeneity assumption
in (43.2) cannot be validated. That is, incidental endogeneity is likely present.
What is the consequence of this endogeneity? Fan and Liao (2012) show that
this causes model selection inconsistency.
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FIGURE 43.3
Distributions of sample correlations. Left panel: Distributions of the sample
correlation ˆcorr(Xj , Y ) (j = 1, . . ., 47,292). Right panel: Distribution of the
sample correlation ˆcorr(Xj , ε̂), in which ε̂ represents the residuals after the
Lasso fit.

How do we deal with endogeneity? Ideally, we hope to be able to select
consistently S0 under only the assumption that

Y = X>S0βS0,0 + ε, E(εXS0) = 0,

but this assumption is too weak to recover the set S0. A stronger assumption
is

Y = X>S0βS0,0 + ε, E(ε|XS0) = 0. (43.3)

Fan and Liao (2012) use over identification conditions such as

E(εXS0) = 0 and E(εX2
S0) = 0 (43.4)

to distinguish endogenous and exogenous variables, which are weaker than the
condition in (43.3). They introduce the Focused Generalized Method of Mo-
ments (FGMM) which uses the over identification conditions to select consis-
tently the set of variables S0. The readers can refer to their paper for technical
details. The left panel of Figure 43.4 shows the distribution of the correlations
between the covariates and the residuals after the FGMM fit. Many of the
correlations are still non-zero, but this is fine, as we assume only (43.4) and
merely need to validate this assumption empirically. For this data set, FGMM
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FIGURE 43.4
Left panel: Distribution of the sample correlation ˆcorr(Xj , ε̂), in which ε̂ rep-
resents the residuals after the FGMM fit. Right panel: Distribution of the
sample correlation ˆcorr(Xj , ε̂) for only selected 5 genes by FGMM.

selects five genes. Therefore, we need only validate 10 empirical correlations
specified by conditions (43.4). The empirical correlations between the resid-
uals after the FGMM fit and the five selected covariates are zero, and their
correlations with squared covariates are small. The results are displayed in
the right panel of Figure 43.4. Therefore, our model assumptions and model
diagnostics are consistent.

43.6 Noise accumulation

When a method depends on the estimation of many parameters, the estimation
errors can accumulate. For high-dimensional statistics, noise accumulation
is more severe and can even dominate the underlying signals. Consider, for
example, a linear classification which assigns the class label 1(x>β > 0) for
each new data point x. This rule can have high discrimination power when
β is known. However, when an estimator β̂ is used instead, the classification
rule can be as bad as a random guess due to the accumulation of errors in
estimating the high-dimensional vector β̂.
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As an illustration, we simulate n data points respectively from the pop-
ulation N (µ0, Ip) and N (µ1, Ip), in which p = 4500, µ0 = 0, and µ1 is a
realization of a mixture of point mass 0 with probability .98 and the standard
double exponential distribution with probability .02. Therefore, most compo-
nents have no discriminative power, yet some components are very powerful in
classification. Indeed, among 2% or 90 realizations from the double exponen-
tial distributions, several components are very large, and many components
are small.

The distance-based classifier, which classifies x to class 1 when

‖x− µ1‖2 ≤ ‖x− µ0‖2 or β>(x− µ) ≥ 0,

where β = µ1 − µ0 and µ = (µ0 + µ1)/2. Letting Φ denote the cumulative
distribution function of a standard Normal random variable, we find that the
misclassification rate is Φ(−‖µ1−µ0‖/2), which is effectively zero because by
the Law of Large Numbers,

‖µ1 − µ0‖ ≈
√

4500× .02× 1 ≈ 9.48.

However, when β is estimated by the sample mean, the resulting classification
rule behaves like a random guess due to the accumulation of noise.

To help the intuition, we drew n = 100 data points from each class and
selected the best m features from the p-dimensional space, according to the
absolute values of the components of µ1; this is an infeasible procedure, but
can be well estimated when m is small (Fan and Fan, 2008). We then projected
the m-dimensional data on their first two principal components. Figure 43.5
presents their projections for various values of m. Clearly, when m = 2, these
two projections have high discriminative power. They still do when m = 100,
as there are noise accumulations and also signal accumulations too. There
are about 90 non-vanishing signals, though some are very small; the expected
values of those are approximately 9.48 as noted above. When m = 500 or
4500, these two projections have no discriminative power at all due to noise
accumulation. See also Hall et al. (2005) for a geometric representation of high
dimension and low sample size data for further intuition.

43.7 Sparsest solution in high confidence set

To attenuate the noise accumulation issue, we frequently impose the sparsity
on the underlying parameter β0. At the same time, the information on β0

contained in the data is through statistical modeling. The latter is summarized
by confidence sets of β0 in Rp. Combining these two pieces of information, a
general solution to high-dimensional statistics is naturally the sparsest solution
in high-confidence set.
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FIGURE 43.5
Scatter plot of projections of observed data (n = 100 from each class) onto the
first two principal components of the m-dimensional selected feature space.

43.7.1 A general setup

We now elaborate the idea. Assume that the Big Data are collected in the form
(X1, Y1), . . . , (Xn, Yn), which can be regarded as a random sample from the
population (X, Y ). We wish to find an estimate of the sparse vector β0 ∈ Rp
such that it minimizes L(β) = E{L(X>β, Y )}, in which the loss function
is assumed convex in the first argument so that L(β) is convex. The setup
encompasses the generalized linear models (McCullagh and Nelder, 1989)
with L(θ, y) = b(θ) − θy under the canonical link where b(θ) is a model-
dependent convex function, robust regression with L(θ, y) = |y− θ|, the hinge
loss L(θ, y) = (1 − θy)+ in the support vector machine (Vapnik, 1999) and
exponential loss L(θ, y) = exp(−θy) in AdaBoost (Freund and Schapire, 1997;
Breiman, 1998) in classification in which y takes values ±1, among others. Let

Ln(β) =
1

n

n∑
i=1

L(X>i β, Yi)

be the empirical loss and L′n(β) be its gradient. Given that L′(β0) = 0, a
natural confidence set is of form

Cn = {β ∈ Rp : ‖L′n(β)‖∞ ≤ γn}
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for some given γn that is related to the confidence level. Here L′n(β) = 0 can
be regarded as the estimation equations. Sometimes, it is handy to construct
the confidence sets directly from the estimation equations.

In principle, any norm can be used in constructing confidence set. However,
we take the L∞-norm as it is the conjugate norm to the L1-norm in Hölder’s
inequality. It also makes the set Cn convex, because |L′n(β)| is nondecreasing
in each argument. The tuning parameter γn is chosen so that the set Cn has
confidence level 1− δn, viz.

Pr(β0 ∈ Cn) = Pr{‖L′n(β0)‖∞ ≤ γn} ≥ 1− δn. (43.5)

The confidence region Cn is called a high confidence set because δn → 0 and
can even be zero. Note that the confidence set is the interface between the data
and parameters; it should be applicable to all statistical problems, including
those with measurement errors.

The set Cn is the summary of the data information about β0. If in addition
we assume that β0 is sparse, then a natural solution is the intersection of these
two pieces of information, namely, finding the sparsest solution in the high-
confidence region, viz.

min
β∈Cn

‖β‖1 = min
‖L′n(β)‖∞≤γn

‖β‖1. (43.6)

This is a convex optimization problem. Here, the sparsity is measured by the
L1-norm, but it can also be measured by other norms such as the weighted
L1-norm (Zou and Li, 2008). The idea is related to that in Negahban et al.
(2012), where a nice framework for analysis of high-dimensional M -estimators
with decomposable regularizers is established for restricted convex losses.

43.7.2 Examples

The Danzig selector (Candès and Tao, 2007) is a specific case of problem (43.6)
in which the loss is quadratic L(x, y) = (x − y)2 and δn = 0. This provides
an alternative view to the Danzig selector. If L(x, y) = ρ(|x− y|) for a convex
function ρ, then the confidence set implied by the data is

Cn = {β ∈ Rp : ‖ρ′(|Y −Xβ|)X> svn(Y −Xβ)‖∞ ≤ γn}

and the sparsest solution in the high confidence set is now given by

min ‖β‖1, subject to ‖ρ′(|Y −Xβ|)X> svn(Y −Xβ)‖∞ ≤ γn.

In particular, when ρ(θ) = θ and ρ(θ) = θ2/2, they correspond to the L1-loss
and L2-loss (the Danzig selector).

Similarly, in construction of sparse precision Θ = Σ−1 for the Gaussian
graphic model, if L(Θ,Sn) = ‖ΘSn− Ip‖2F where Sn is the sample covariance
matrix and ‖·‖F is the Frobenius norm, then the high confidence set provided
by the data is

Cn = {Θ : ‖Sn · (ΘSn − Ip)‖∞ ≤ γn},
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where · denotes the componentwise product (a factor 2 of off-diagonal ele-
ments is ignored). If we construct the high-confidence set based directly on
the estimation equations L′n(Θ) = ΘSn− Ip, then the sparse high-confidence
set becomes

min
‖ΘSn−Ip‖∞≤γn

‖vec(Θ)‖1.

If the matrix L1-norm is used in (43.6) to measure the sparsity, then the
resulting estimator is the CLIME estimator of Cai et al. (2011), viz.

min
‖ΘSn−Ip‖∞≤γn

‖Θ‖1.

If we use the Gaussian log-likelihood, viz.

Ln(Θ) = − ln(|Θ|) + tr(ΘSn),

then L′n(Θ) = −Θ−1 + Sn and Cn = {‖Θ−1 − Sn‖∞ ≤ γn}. The sparsest
solution is then given by

min
‖Θ−1−Sn‖∞≤γn

‖Θ‖1.

If the relative norm ‖A‖∞ = ‖Θ1/2AΘ1/2‖∞ is used, the solution can be
more symmetrically written as

min
‖Θ1/2SnΘ1/2−Ip‖∞≤γn

‖Θ‖1.

In the construction of the sparse linear discriminant analysis from two
Normal distributions N (µ0,Σ) and N (µ1,Σ), the Fisher classifier is linear
and of the form 1{β>(X − µ) > 0}, where µ = (µ0 + µ1)/2, δ = µ1 − µ0,
and β = Σ−1δ. The parameters µ and δ can easily be estimated from the
sample. The question is how to estimate β, which is assumed to be sparse. One
direct way to construct confidence interval is to base directly the estimation
equations L′n(β) = Snβ − δ̂, where Sn is the pooled sample covariance and δ̂
is the difference of the two sample means. The high-confidence set is then

Cn = {β : ‖Snβ − δ̂‖∞ ≤ γn}. (43.7)

Again, this is a set implied by data with high confidence. The sparsest solution
is the linear programming discriminant rule by Cai et al. (2011).

The above method of constructing confidence is neither unique nor the
smallest. Observe that (through personal communication with Dr Emre Barut)

‖Snβ − δ̂‖∞ = ‖(Sn −Σ)β + δ − δ̂‖∞ ≤ ‖(Sn −Σ)‖∞‖β‖1 + ‖δ − δ̂‖∞.

Therefore, a high confidence set can be taken as

Cn = {‖Snβ − δ̂‖∞ ≤ γn,1‖β‖1 + γn,2}, (43.8)

where γn,1 and γn,2 are the high confident upper bound of ‖(Sn −Σ)‖∞ and

‖δ− δ̂‖∞. The set (43.8) is smaller than the set (43.7), since a further bound
‖β‖1 in (43.8) by a constant γn,3 yields (43.7).
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43.7.3 Properties

Let β̂ be a solution to (43.6) and ∆̂ = β̂− β0. As in the Danzig selection, the
feasibility of β0 implied by (43.5) entails that

‖β0‖1 ≥ ‖β̂‖1 = ‖β0 + ∆̂‖1. (43.9)

Letting S0 = supp(β0), we have

‖β0 + ∆̂‖1 = ‖(β0 + ∆̂)S0‖1 + ‖∆̂Sc0‖1 ≥ ‖β0‖1 − ‖∆̂S0‖1 + ‖∆̂Sc0‖1.

This together with (43.9) yields

‖∆̂S0‖1 ≥ ‖∆̂Sc0‖1, (43.10)

i.e., ∆̂ is sparse or “restricted”. In particular, with s = |S0|,

‖∆̂‖2 ≥ ‖∆̂S0‖2 ≥ ‖∆̂S0‖1/
√
s ≥ ‖∆̂‖1/(2

√
s), (43.11)

where the last inequality uses (43.10). At the same time, since β̂ and β0 are
in the feasible set (43.5), we have

‖L′n(β̂)− L′n(β0)‖∞ ≤ 2γn

with probability at least 1− δn. By Hölder’s inequality, we conclude that

|[L′n(β̂)− L′n(β0)]>∆̂| ≤ 2γn‖∆̂‖1 ≤ 4
√
sγn‖∆̂‖2 (43.12)

with probability at least 1− δn, where the last inequality utilizes (43.11). By
using the Taylor’s expansion, we can prove the existence of a point β∗ on
the line segment between β0 and β̂ such that L′n(β̂) − L′n(β0) = L′′n(β∗)∆̂.
Therefore,

|∆̂>L′′n(β∗)∆̂| ≤ 4
√
sγn‖∆̂‖2.

Since Cn is a convex set, β∗ ∈ Cn. If we generalize the restricted eigenvalue
condition to the generalized restricted eigenvalue condition, viz.

inf
‖∆S0‖1≥‖∆Sc0‖1

inf
β∈Cn

|∆>L′′n(β)∆|/‖∆‖22 ≥ a, (43.13)

then we have
‖∆̂‖2 ≤ 4a−1

√
sγn. (43.14)

The inequality (43.14) is a statement on the L2-convergence of β̂, with prob-
ability at least 1− δn. Note that each component of

L′n(β̂)− L′n(β0) = L′n(β0 + ∆̂)− L′n(β0)

in (43.12) has the same sign as the corresponding component of ∆̂. Condition
(43.13) can also be replaced by the requirement

inf
‖∆S0‖1≥‖∆Sc0‖1

∣∣∣[L′n(β0 + ∆)− L′n(β0)]>∆
∣∣∣ ≥ a‖∆‖2.

This facilitates the case where L′′n does not exist and is a specific case of
Negahban et al. (2012).
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43.8 Conclusion

Big Data arise from many frontiers of scientific research and technological de-
velopments. They hold great promise for the discovery of heterogeneity and
the search for personalized treatments. They also allow us to find weak pat-
terns in presence of large individual variations.

Salient features of Big Data include experimental variations, computa-
tional cost, noise accumulation, spurious correlations, incidental endogeneity,
and measurement errors. These issues should be seriously considered in Big
Data analysis and in the development of statistical procedures.

As an example, we offered here the sparsest solution in high-confidence sets
as a generic solution to high-dimensional statistical inference and we derived a
useful mean-square error bound. This method combines naturally two pieces
of useful information: the data and the sparsity assumption.
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