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Nonparametric Independence Screening in Sparse
Ultra-High-Dimensional Varying Coefficient Models

Jianqing FAN, Yunbei MA, and Wei DAI

The varying coefficient model is an important class of nonparametric statistical model, which allows us to examine how the effects of
covariates vary with exposure variables. When the number of covariates is large, the issue of variable selection arises. In this article, we
propose and investigate marginal nonparametric screening methods to screen variables in sparse ultra-high-dimensional varying coefficient
models. The proposed nonparametric independence screening (NIS) selects variables by ranking a measure of the nonparametric marginal
contributions of each covariate given the exposure variable. The sure independent screening property is established under some mild
technical conditions when the dimensionality is of nonpolynomial order, and the dimensionality reduction of NIS is quantified. To enhance
the practical utility and finite sample performance, two data-driven iterative NIS (INIS) methods are proposed for selecting thresholding
parameters and variables: conditional permutation and greedy methods, resulting in conditional-INIS and greedy-INIS. The effectiveness
and flexibility of the proposed methods are further illustrated by simulation studies and real data applications.

KEY WORDS: Conditional permutation; False positive rates; Sparsity; Sure independence screening; Variable selection.

1. INTRODUCTION

The development of information and technology drives big
data collections in many areas of advanced scientific research
ranging from genomic and health science to machine learning
and economics. The collected data frequently have an ultra-
high dimensionality p that can diverge at nonpolynomial (NP)
rate with the sample size n, namely, log(p) = O(nρ) for some
ρ > 0. For example, in biomedical research such as genomewide
association studies for some mental diseases, millions of sin-
gle nucleotide polymorphisms (SNPs) are potential covariates.
Traditional statistical methods face significant challenges when
dealing with such high-dimensional problems.

With the sparsity assumption, variable selection helps im-
prove the accuracy of estimation and gain scientific insights.
Many variable selection techniques have been developed,
such as bridge regression (Frank and Friedman 1993), lasso
(Tibshirani 1996), smoothly clipped absolute deviation (SCAD)
and folded concave penalty (Fan and Li 2001), the elastic net
(Zou and Hastie 2005), adaptive lasso (Zou 2006), and the
Dantzig selector (Candes and Tao 2007). Methods on the im-
plementation of folded concave penalized least square include
the local linear approximation algorithm in Zou and Li (2008)
and the plus algorithm in Zhang (2010). However, due to the
simultaneous challenges of computational expediency, statisti-
cal accuracy, and algorithmic stability, these methods do not
perform well in ultra-high-dimensional settings.

To tackle these problems, Fan and Lv (2008) introduced a
sure independence screening (SIS) method to select important
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variables in ultra-high-dimensional linear regression models via
marginal correlation learning. Hall and Miller (2009) extended
the method to the generalized correlation ranking, which was
further extended by Fan, Feng, and Song (2011) to ultra-high-
dimensional additive models, resulting in nonparametric inde-
pendence screening (NIS). On a different front, Fan and Song
(2010) extended the SIS idea to ultra-high-dimensional gen-
eralized linear models and devised a useful technical tool for
establishing the sure screening results and bounding false se-
lection rates. Other related methods include data-tilling method
(Hall, Titterington, and Xue 2009), marginal partial likelihood
method (MPLE; Zhao and Li 2012), robust screening methods
by rank correlation (Li et al. 2012), and distance correlation (Li,
Zhong, and Zhu 2012). Inspired by these previous work, our
study will focus on variable screening in nonparametric varying
coefficient models with NP dimensionality.

It is well known that nonparametric models are flexible
enough to reduce modeling biases, but suffer from the so-called
“curse of dimensionality.” A remarkably simple and powerful
nonparametric model for dimensionality reduction is the varying
coefficient model,

Y = βT (W )X + ε, (1)

where Y is the response, W is some univariate observable ex-
posure variable, X = (X1, . . . , Xp)T is the vector of covariates,
and ε is the random noise with conditional mean 0 and finite
conditional variance. An intercept term (i.e., X0 ≡ 1) can be in-
troduced if necessary. The covariates X enter the model linearly,
and the regression coefficient functions β(·) vary smoothly with
the exposure variable W. The model retains general nonparamet-
ric characteristics and allows nonlinear interactions between the
exposure variable and the covariates. It arises frequently in eco-
nomics, finance, epidemiology, medical science, and ecology,
among others. For an overview, see Fan and Zhang (2008).

When the dimensionality p is finite, Fan, Zhang, and Zhang
(2001) proposed the generalized likelihood ratio (GLR) test to
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select variables in the varying coefficient model (1). For the
time-varying coefficient model, a special case of (1) with the
exposure variable being the time t, Wang, Li, and Huang (2008)
applied the basis function approximations and the SCAD penalty
to address the problem of variable selection. In the NP dimen-
sional setting, Lian (2011) used the adaptive group lasso penalty
in time-varying coefficient models. These methods still face the
aforementioned challenges of designing a robust algorithm with
reasonable computational cost while achieving statistical preci-
sion. While existing theory and estimation methods are not di-
rectly applicable in the ultra-high-dimensional regime, we aim
to address this need, both theoretically and practically.

In this article, we consider nonparametric screening by rank-
ing a measure of the marginal nonparametric contributions of
each covariate given the exposure variable. For each covariate
Xj (j = 1, . . . , p), we fit marginal regressions of the response
Y against it conditioning on W:

min
aj ,bj

E[(Y − aj − bjXj )2|W ]. (2)

Let aj (W ) and bj (W ) be the solution to (2) and ânj (W ) and
b̂nj (W ) be their nonparametric estimates as defined later in (6).
Then we rank the importance of each covariate in the joint model
according to a measure of marginal utility (which is equivalent
to the goodness of fit) in its marginal model. Under some reason-
able conditions, the magnitude of these marginal contributions
provides useful probes of the importance of variables in the joint
varying coefficient model. This is an important extension of SIS
(Fan and Lv 2008) to a more flexible class of varying coeffi-
cient models. Along with previously established understanding
toward (generalized) linear models and additive models, this
work is another useful building block of the universality of the
sure screening framework.

The sure screening property and false selection rate of NIS
can be established under certain technical conditions. As will be
shown later, our assumptions are much weaker than in previous
work. In some special cases, NIS can even be model selection
consistent. In establishing these results, three factors play impor-
tant roles: the approximation error in modeling nonparametric
components, the stochastic error in estimating the nonparamet-
ric components, and the tail distributions of the variables. We
also propose two NIS methods in an iterative framework, fol-
lowing Fan and Lv (2008) and Fan, Feng, and Song (2011). One
is the conditional-INIS, in which we propose the novel condi-
tional random permutation to determine a data-driven screening
threshold. It is worth mentioning that this conditional permu-
tation idea is not limited to varying coefficient models, and is
applicable to other settings. The other is called greedy-INIS that
adopts a greedy approach in the variable screening step. They
both serve to effectively control the false positive (FP) and false
negative (FN) rate with enhanced performance.

This article is organized as follows. In Section 2, we fit each
marginal nonparametric regression model via B-spline basis
approximation and screen variables by ranking a measure of
these estimators. In Section 3, we establish the sure screening
property and model selection consistency under certain technical
conditions. Iterative NIS procedures (namely, conditional-INIS
and greedy-INIS) are developed in Section 4. In Section 5, a set
of numerical studies are conducted to evaluate the performance
of our proposed methods.

2. MODELS AND NONPARAMETRIC MARGINAL
SCREENING METHOD

In this section, we study the varying coefficient model with
the conditional linear structure as in (1). Assume that the func-
tional coefficient vector β(·) = (β1(·), . . . , βp(·))T is sparse. Let
M∗ = {j : E[β2

j (W )] > 0} be the true sparse model with non-
sparsity size sn = |M∗|. We allow p to grow with n and denote
it by pn whenever necessary.

2.1 Marginal Regression

For j = 1, . . . , p, let aj (W ) and bj (W ) be the minimizer of
the following marginal regression problem:

min
aj (W ),bj (W )∈L2(P )

E[(Y − aj (W ) − bj (W )Xj )2|W ], (3)

where P denotes the joint distribution of (Y,W, X) and L2(P )
is the class of square integrable functions under the measure P.
By some algebra, we have that the minimizer of (3) is

bj (W ) = cov[Xj, Y |W ]

var[Xj |W ]
, aj (W ) = E[Y |W ] − bj (W )E[Xj |W ].

Let a0(W ) = E[Y |W ], we rank the marginal utility of covariates
by

uj = ‖aj (W ) + bj (W )Xj‖2 − ‖a0(W )‖2,

where ‖f ‖2 = Ef 2. It can be seen that

uj = E
[
b2

j (W )(Xj − E[Xj |W ])2] = E

[
(cov[Xj, Y |W ])2

var[Xj |W ]

]
.

(4)

For each j = 1, . . . , p, if var[Xj |W ] = 1, then uj has the
same quantity as the measure of marginal functional coefficient
‖bj (W )‖2. On the other hand, this marginal utility is closely
related to the conditional correlation between Xj ’s and Y , as
uj = 0 if and only if cov[Xj, Y |W ] = 0 almost surely.

2.2 Marginal Regression Estimation With B-Spline

To obtain an estimate of the marginal utility uj , j = 1, . . . , p,
we approximate aj (W ) and bj (W ) by functions in Sn, the space
of polynomial splines of degree l ≥ 1 on W , a compact set. Let
{Bk, k = 1, . . . , Ln} denote its normalized B-spline basis, where
Ln is the number of basis functions. Note that ‖Bk‖∞ ≤ 1,

where ‖ · ‖∞ is the sup norm. Then

aj (W ) ≈
Ln∑
k=1

ηjkBk(W ), j = 0, . . . , p,

bj (W ) ≈
Ln∑
k=1

θjkBk(W ), j = 1, . . . , p,

where {θjk}Ln

k=1 and {ηjk}Ln

k=1 are scalar coefficients.
We now consider the following sample version of the marginal

regression problem:

min
ηj ,θ j ∈RLn

1

n

n∑
i=1

(Yi − B(Wi)ηj − B(Wi)θ jXji)
2, (5)

where ηj = (ηj1, . . . , ηjLn
)T , θ j = (θj1, . . . , θjLn

)T , and B(·) =
(B1(·), . . . , BLn

(·)).
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It is easy to show that the minimizers of (5) are given by(̂
η T

j , θ̂
T

j

)T = (
QT

nj Qnj

)−1
QT

nj Y,

where

Qnj = (Bn,�nj ) =

⎛⎜⎜⎝
B(W1), Xj1B(W1)

...
...

B(Wn), XjnB(Wn)

⎞⎟⎟⎠
is an n × 2Ln matrix. As a result, the estimates of aj and bj ,
j = 1, . . . , p, are given by

ânj (W ) = B(W )̂ηj = (
B(W ), 0T

Ln

)(
QT

nj Qnj

)−1
QT

nj Y,

b̂nj (W ) = B(W )̂θ j = (
0T

Ln
, B(W )

)(
QT

nj Qnj

)−1
QT

nj Y, (6)

where 0Ln
is an Ln-dimension vector with all entries 0. Similarly,

we have the estimate of the intercept function a0 by

ân0(W ) = B(W )̂η0 = B(W )
(
BT

n Bn

)−1
BT

n Y, (7)

where

η̂0 = arg min
η0∈RLn

1

n

n∑
i=1

(Yi − B(Wi)η0)2.

We now define an estimate of the marginal utility uj as

ûnj = ‖̂anj (W) + b̂nj (W)Xj‖2
n − ‖̂an0(W)‖2

n

= 1

n

n∑
i=1

(̂anj (Wi) + b̂nj (Wi)Xji)
2 − 1

n

n∑
i=1

(̂an0(Wi))
2,

where W = (W1, . . . ,Wn)T . Note that throughout this article,
whenever two vectors a and b are of the same length, ab denotes
the componentwise product. Given a predefined threshold value
τn, we select a set of variables as follows:

Mτn
= {1 ≤ j ≤ p : ûnj ≥ τn}.

Alternatively, we can rank the covariates by the residual sum
of squares of marginal nonparametric regressions, which is de-
fined as

v̂nj = ‖Y − ânj (W) − b̂nj (W)Xj‖2
n,

and we select variables as follows:

Mνn
= {1 ≤ j ≤ p : v̂nj ≤ νn},

where νn is a predefined threshold value.
It is worth noting that ranking by marginal utility ûnj is equiv-

alent to ranking by the measure of goodness of fit v̂nj . To see
the equivalence, first note that

‖̂anj (W) + b̂nj (W)Xj‖2
n = 1

n
YT Qnj

(
QT

nj Qnj

)−1
QT

nj Y, (8)

and

1

n

n∑
i=1

Yi (̂anj (Wi) + b̂nj (Wi)Xji)

= 1

n
YT Qnj

(
QT

nj Qnj

)−1
QT

nj Y. (9)

It follows from (8) and (9) that

v̂nj = ‖Y‖2
n − ‖̂an0(W)‖2

n − ûnj . (10)

Since the first two terms on the right-hand side of (10) do not
vary in j, selecting variables with large marginal utility ûnj is the
same as picking those that yield small marginal residual sum of
squares v̂nj .

To bridge uj and ûnj , we define the population version of the
marginal regression using B-spline basis. From now on, we will
omit the argument in B(W ) and write B whenever the context
is clear. Let ãj (W ) = Bη̃j and b̃j (W ) = Bθ̃ j , where η̃j and θ̃ j

are the minimizer of

min
ηj ,θ j ∈RLn

E[(Y − Bηj − Bθ jXj )2],

and ã0(W ) = Bη̃0, where η̃0 is the minimizer of

min
η0∈RLn

E[(Y − Bη0)2].

It can be seen that

(ãj (W ), b̃j (W ))T = diag(B, B)
(
E
[
QT

j Qj

])−1
E
[
QT

j Y
]
,

ã0(W ) = B(E[BT B])−1E[BT Y ],

where Qj = (B, Xj B). Then we can define

ũj = ‖ãj (W ) + b̃j (W )Xj‖2 − ‖ã0(W )‖2

= E[YQj ]
(
E
[
QT

j Qj

])−1
E
[
QT

j Y
]

− E[YB](E[BT B])−1E[BT Y ].

3. SURE SCREENING

In this section, we establish the sure screening properties
of the proposed method for model (1). Recall that by (4) the
population version of marginal utility quantifies the relationship
between Xj ’s and Y as follows:

uj = E

[
(cov[Xj, Y |W ])2

var[Xj |W ]

]
, j = 1, . . . , p.

Then the following two conditions guarantee that the marginal
signal of the active components {uj }j∈M∗ does not vanish.

(i) Suppose for j = 1, . . . , p, var[Xj |W ] is uniformly
bounded away from 0 and infinity on W , where W is the
compact support of W. That is, there exist some positive
constants h1 and h2, such that 0 < h1 ≤ var[Xj |W ] ≤
h2 < ∞.

(ii) minj∈M∗ E[(cov[Xj, Y |W ])2] ≥ c1Lnn
−2κ , for some

κ > 0 and c1 > 0.

Then under conditions (i) and (ii),

min
j∈M∗

uj ≥ c1Lnn
−2κ/h2. (11)

Note that in condition (ii), the number of basis functions Ln

is not intrinsic. By the Remark 1, Ln should be chosen in cor-
respondence to the smoothness condition of the nonparametric
component. Therefore, condition (ii) depends only on κ and
smoothness parameter d in condition (iv). We keep Ln here to
make the relationship more explicit.

3.1 Sure Screening Properties

The following conditions (iii)–(vii) are required for the B-
spline approximation in marginal regressions and establishing
the sure screening properties.
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(iii) The density function g of W is bounded away from zero
and infinity on W . That is, 0 < T1 ≤ g(W ) ≤ T2 < ∞
for some constants T1 and T2.

(iv) Functions {aj }pj=0 and {bj }pj=1 belong to a class of func-
tions B, whose rth derivative f (r) exists and is Lipschitz
of order α. That is,

B = {
f (·) :

∣∣f (r)(s) − f (r)(t)
∣∣ ≤ M|s − t |α

for s, t ∈ W}
,

for some positive constant M, where r is a nonnegative
integer and α ∈ (0, 1] such that d = r + α > 0.5.

(v) Suppose for j = 1, . . . , p, there exists positive con-
stants K1 and r1 ≥ 2, such that

P(|Xj | > t |W ) ≤ exp(1 − (t/K1)r1 ),

uniformly on W , for any t ≥ 0. Furthermore, let
m(X∗) = E[Y |X,W ], where X∗ = (XT ,W )T . Suppose
there exists some positive constants K2 and r2 satisfying
r1r2/(r1 + r2) ≥ 1, such that

P(|m(X∗)| > t |W ) ≤ exp(1 − (t/K2)r2 ),

uniformly on W , for any t ≥ 0.
(vi) The random errors {εi}ni=1 are iid with conditional mean

0, and there exists some positive constants K3 and r3

satisfying r1r3/(r1 + r3) > 1, such that

P(|ε| > t |W ) ≤ exp(1 − (t/K3)r3 ),

uniformly on W , for any t ≥ 0.
(vii) There exists some constant ξ ∈ (0, 1/h2) such that

L−2d−1
n ≤ c1(1/h2 − ξ )n−2κ/M1.

Conditions (v) and (vi) are requirements for the tail distribu-
tion of each covariate Xj , the conditional mean function m(X∗),
and the noise ε, to establish the sure screening property. Our as-
sumptions are much weaker in comparison with previous work
on high-dimensional varying coefficient models by Wang, Li,
and Huang (2008), which assumes all the covariates to be uni-
formly bounded. It is also weaker than NIS in Fan, Feng, and
Song (2011), which assumes the conditional mean function to
be bounded. Condition (vii) is to make sure that the marginal
signal level of important variables is of the same rate as that of
their B-spline approximations.

Proposition 1. Under conditions (i)–(v), there exists a posi-
tive constant M1 such that

uj − ũj ≤ M1L
−2d
n .

In addition, when condition (vii) also holds, we have

min
j∈M∗

ũj ≥ c1ξLnn
−2κ . (12)

Remark 1. It follows from Proposition 1 that the minimum
signal level of {ũj }j∈M∗ is approximately the same as {uj }j∈M∗ ,
provided that the approximation error is negligible. It also shows
that the number of basis functions Ln should be chosen as

Ln ≥ Cn2κ/(2d+1),

for some positive constant C. In other words, the smoother the
underlying function is (i.e., the larger d is), the smaller Ln we
can take.

The following Theorem 1 provides the sure screening prop-
erties of the NIS method proposed in Section 2.2.

Theorem 1. Suppose conditions (i)–(vi) hold.

(i) If n1−4κL−3
n → ∞ as n → ∞, then for any c2 > 0, there

exist some positive constants c3 and c4 such that

P

(
max

1≤j≤p
|̂unj − ũj | ≥ c2Lnn

−2κ

)
≤ 12pnLn

{
(2 + Ln) exp

(−c3n
1−4κL−3

n

)
+ 3Ln exp

(−c4L
−3
n n

)}
. (13)

(ii) If condition (vii) also holds, then by taking τn =
c5Lnn

−2κ with c5 = c1ξ/2, there exist positive constants
c6 and c7 such that

P
(M∗ ⊂ M̂τn

)
≥ 1 − 12snLn

{
(2 + Ln) exp

(−c6n
1−4κL−3

n

)
+ 3Ln exp

(−c7L
−3
n n

)}
.

Remark 2. According to Theorem 1, we can handle NP di-
mensionality

p = o
(

exp
{
n1−4κL−3

n

})
.

It shows that the number of spline bases Ln also affects the
order of dimensionality: the smaller Ln is, the higher dimen-
sionality we can handle. On the other hand, Remark 1 points out
that it is required Ln ≥ Cn2κ/(2d+1) to have a good bias property.
This means that the smoother the underlying function is (i.e., the
larger d is), the smaller Ln we can take, and consequently higher
dimensionality can be handled. The compatibility of these two
requirements requires that κ < (d + 0.5)/(4d + 5), which im-
plies that κ < 1/4. We can take Ln = O(n1/(2d+1)), which is the
optimal convergence rate for nonparametric regression (Stone
1982). In this case, the allowable dimensionality can be as high
as p = o(exp{n 2(d−1)

2d+1 }).
3.2 False Selection Rates

According to (12), the ideal case for vanishing FP rate is when

max
j /∈M∗

ũj = o(Lnn
−2κ )

so that there is a natural separation between important and unim-
portant variables. By Theorem 1(i), when (13) tends to zero, we
have with probability tending to 1 that

max
j /∈M∗

ûnj ≤ cLnn
−2κ , for any c > 0.

Consequently, by choosing τn as in Theorem 1(ii), NIS can
achieve the model selection consistency under this ideal situa-
tion, that is,

P (M̂τn
= M∗) = 1 − o(1).

In particular, this ideal situation occurs under the partial orthog-
onality condition, that is, {Xj }j∈M∗ is independent of {Xi}i /∈M∗
given W, which implies uj = 0 for j �∈ M∗
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In general, the model selection consistency cannot be
achieved by a single step of marginal screening. The marginal
probes cannot separate important variables from unimportant
variables. The following Theorem 2 quantifies how the size of
selected models is related to the matrix of basis functions and
the thresholding parameter τn.

Theorem 2. Under the same conditions in Theorem 1, for any
τn = c5Lnn

−2κ , there exist positive constants c8 and c9 such that

P {|M̂τn
| ≤ O(n2κλmax(�))}

≥ 1 − 12pnLn

{
(2 + Ln) exp

(−c8n
1−4κL−3

n

)
+ 3Ln exp

(−c9nL−3
n

)}
,

where � = E[QT Q], and Q = (Q1, . . . , Qp) is a functional vec-
tor of 2pnLn dimension.

According to Theorem 2, the number of selected variables
and thus the false selection rate are related to the correlation
structure of the covariance matrix. As long as λmax(�) is of
polynomial order, the number of selected variables is also of
polynomial order. In the special case where all the covariates
are independent, the matrix � is block diagonal with jth block
E[QT

j Qj ], and therefore λmax(�) = O(L−1
n ).

4. ITERATIVE NONPARAMETRIC INDEPENDENCE
SCREENING

As Fan and Lv (2008) pointed out, in practice the NIS would
still suffer from FN (i.e., miss some important predictors that
are marginally weakly correlated but jointly correlated with
the response) and FP (i.e., select some unimportant predictors
that are highly correlated with the important ones). Therefore,
we adopt an iterative framework to enhance the performance
of NIS. We repeatedly apply the large-scale variable screening
(NIS) followed by a moderate-scale variable selection, where
we use group-SCAD penalty in Wang, Li, and Huang (2008) as
our selection strategy. In the NIS step, we propose two methods
to determine a data-driven threshold for screening, which result
in conditional-INIS and greedy-INIS, respectively.

4.1 Conditional-INIS Method

The conditional-INIS method builds upon conditional ran-
dom permutation in determining the threshold τn. Recall the
random permutation used in Fan, Feng, and Song (2011), which
generalizes that in Zhao and Li (2012). Randomly permute Y
to get Yπ = (Yπ1, . . . , Yπn

)T and compute ûπ
nj , where π is a

permutation of {1, . . . , n}, based on the randomly coupled data
{(Yπi

,Wi, Xi)}ni=1 that has no relationship between covariates
and response. So these estimates serve as the baseline of the
marginal utilities under the null model (no relationship). To
control the false selection rate at q/p under the null model, one
would choose the screening threshold be τjq , the qth-ranked
magnitude of {̂uπ

nj , j = 1, . . . , p}. Thus, the NIS step selects
variables {j : ûnj ≥ τjq}. In practice, one frequently uses q = 1,
namely, the largest marginal utility under the null model.

When the correlations among covariates are large, there will
be hardly any differentiability between the marginal utilities of
the true variables and the false ones. This makes the selected
variable set very large to begin with and hard to proceed the rest

of iterations with limited FPs. For numerical illustrations, see
Section 5.2. Therefore, we propose a conditional permutation
method to tackle this problem. Combining the other steps, our
conditional-INIS algorithm proceeds as follows.

0. For j = 1, . . . , p, compute

ûnj = ‖̂anj (W) + b̂nj (W)Xj‖2
n − ‖̂an0(W)‖2

n,

where the estimates are defined in (6) and (7) using
{(Y, W, Xj ), j = 1, . . . , p}. Select the top K variables by
ranking their marginal utilities ûnj , resulting in the index
subset M0 to condition upon.

1. Regress Y on {(W, Xj ), j ∈ M0}, and get inter-
cept β̂n0(W ) and their functional coefficients’ estima-
tors {β̂nj (W ), j ∈ M0}. Conditioning on M0, the n-
dimensional partial residual is

Y∗ = Y − β̂n0(W) −
∑

j∈M0

Xj β̂nj (W).

For all j ∈ Mc
0, compute û∗

nj using {(Y∗, W, Xj ), j ∈
Mc

0}, which measures the additional utility of each co-
variate conditioning on the selected set M0.
To determine the threshold for NIS, we apply ran-
dom permutation on the partial residual Y∗, which
yields Y∗

π . Compute û∗π
nj based on the decoupled data

{(Y∗
π , W, Xj ), j ∈ Mc

0}. Let τ ∗
jq be the qth-ranked mag-

nitude of {̂u∗π
nj , j ∈ Mc

0}. Then, the active variable set of
variables is chosen as

A1 = {
j : û∗

nj ≥ τ ∗
jq , j ∈ Mc

0

} ∪ M0.

In our numerical studies, q = 1.
2. Apply the group-SCAD penalty onA1 to select a subset of

variables M1. Details about the implementation of SCAD
is described in Section 4.3.

3. Repeat Steps 1–2, where we replace M0 in Step 1 by Ml ,
l = 1, 2, . . ., and get Al+1 and Ml+1 in Step 2. Iterate
until Ml+1 = Mk for some k ≤ l or |Ml+1| ≥ ζn, for
some prescribed positive integer ζn (such as [n/ log(n)]).

4.2 Greedy-INIS Method

Following Fan, Feng, and Song (2011), we also implement
a greedy version of the INIS procedure. We skip Step 0 and
start from Step 1 in the algorithm above (i.e., take M0 = ∅),
and select the top p0 variables that have the largest marginal
norms ûnj . This NIS step is followed by the same group-SCAD
penalized regression as in Step 2. We then iterate these two
steps (screening top p0 variables and group-SCAD) until there
are two identical subsets or the number of variables selected
exceeds a prespecified ζn. In our simulation studies, p0 is set
as 1.

4.3 Implementation of SCAD

As the varying coefficient functions are expanded in a spline
basis, an estimated coefficient function vanishes if and only if
all of its coefficients in the spline expansion are zero. Therefore,
group penalty is needed (Antoniadis and Fan 2001; Yuan and
Lin 2006).

In the group-SCAD step, variables are selected as Ml =
{j ∈ Al : γ̂

(l)
j �= 0} through minimizing the following objective
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function:

min
γ 0,γ j ∈RLn

1

n

n∑
i=1

⎛⎝Yi − B(Wi)γ 0 −
∑
j∈Al

B(Wi)Xjiγ j

⎞⎠2

+
∑
j∈Al

pλ(||γ j ||B), (14)

where ||γ j ||B =
√

1
n

∑n
i=1(

∑Ln

k=1 Bjk(Wi)γjk)2, and pλ(·) is the
SCAD penalty such that

p′
λ(|x|) = λI (|x| ≤ λ) + (aλ − |x|)+

a − 1
I (|x| > λ),

with pλ(0) = 0. We set a = 3.7 as suggested and solve the
optimization above via local quadratic approximations (Fan and
Li 2001). The penalization parameter λ is chosen by Bayesian
information criteria (BIC) n log(̂σ 2

ε ) + kLn log n, where σ̂ 2
ε is

the residual variance and k is the number of covariates chosen.
By Antoniadis and Fan (2001) and Yuan and Lin (2006), the
norm-penalty in (14) encourages the group selection.

5. NUMERICAL STUDIES

In this section, we carry out several simulation studies to
assess the performance of our proposed methods. If not other-
wise stated, the common setup for the following simulations is:
sample size n = 400, the number of covariates p = 1000, cubic
B-spline, Ln = 7, and the number of simulations N = 200 for
each example. Note that Ln should not be too large since the
larger the Ln is, the larger the estimation variance is, and the
more difficult it is to distinguish important variables from unim-
portant ones. On the other hand, Ln should not be too small to
create probing biases. Here we choose Ln = �2n1/5�, where �·�
denotes rounding to the nearest integer.

5.1 Comparison of Minimum Model Size

In this study, as in Fan and Song (2010), we illustrate the
performance of NIS method in terms of the minimum model
size (MMS) needed to include all the true variables, that is, to
possess sure screening property.

Example 1. Following Fan and Song (2010), we first consider
a linear model as a special case of the varying coefficient model.
Let {Xk}950

k=1 be iid standard normal random variables and

Xk =
s∑

j=1

(−1)j+1Xj/5 +
√

1 − s

25
ξk, k = 951, . . . , 1000,

where {ξk}1000
k=951 are standard normal random variables. We con-

struct the following model: Y = βT X + ε, where ε ∼ N (0, 3)
and β = (1,−1, 1,−1, . . .)T has s nonzero components. To
carry out NIS, we define an exposure W independently from
the standard uniform distribution.

We compare NIS, lasso, and SIS (independence screening for
linear models). The boxplots of MMS are presented in Figure 1.
Note that when s > 5, the irrepresentable condition fails, and
lasso performs badly even in terms of pure screening. On the
other hand, SIS performs better than NIS because the coeffi-

cients are indeed constant, and there are fewer parameters (p)
involved in SIS than in NIS (pLn).

Example 2. For the second example, we illustrate that when
the underlying model’s coefficients are indeed varying, we do
need NIS. Let {U1, U2, . . . , Up+2} be iid uniform random vari-
ables on [0, 1], based on which we construct X and W as follows:

Xj = Uj + t1Up+1

1 + t1
, j = 1, . . . , p, W = Up+2 + t2Up+1

1 + t2
,

where t1 and t2 controls the correlation among the covariates X
and the correlation between X and W, respectively. When t1 = 0,
Xj ’s are uncorrelated, and when t1 = 1 the correlation is 0.5.
If t1 = t2 = 1, Xj ’s and W are also correlated with correlation
coefficient 0.5. We define coefficient functions

β1(W ) = W, β2(W ) = (2W − 1)2, β3(W ) = sin(2πW ).

The true data-generation model is

Y = 5β1(W ) · X1 + 3β2(W ) · X2 + 4β3(W ) · X3 + ε,

where ε’s are iid standard Gaussian random variable.
Under different correlation settings, the comparison of MMS

between NIS and SIS methods is presented in Figure 2. When
the correlation gets stronger, independence screening becomes
harder.

5.2 Comparison of Permutation and Conditional
Permutation

In this section, we illustrate the performance of the condi-
tional random permutation method.

Example 3. Let {Z1, . . . , Zp} be iid standard normal,
{U1, U2} be iid standard uniformly distributed random variables,
and the noise ε follows the standard normal distribution. We
construct {W, X} and Y as follows:

Xj = Zj + t1U1

1 + t1
, j = 1, . . . , p, W = U2 + t2U1

1 + t2
,

Y = 2X1 + 3W · X2 + (W + 1)2 · X3 + 4 sin(2πW )

2 − sin(2πW )
· X4 + ε.

We study two settings: t1 = t2 = 0, resulting in uncorrelated
case and t1 = 3 and t2 = 1, corresponding to corr(Xj,Xk) =
0.43 for all j �= k and corr(Xj,W ) = 0.46. We report the av-
erage of the number of true positives (TPs), model size, the
minimum true signal, the maximum false signal, and the maxi-
mum null signal based on 200 simulations. Their robust standard
deviations are also reported therein.

Based on the first row of Table 1, we see that when the corre-
lation gets stronger, although sure screening properties can be
achieved most of the time via unconditional (K = 0) random
permutation, the model size becomes very large and therefore
the false selection rate is high. The reason is that there is no dif-
ferentiability between the marginal signals of the true variables
and the false ones. This drawback makes the original random
permutation not a feasible method to determine the screening
threshold in practice.

We now apply the conditional permutation method, whose
performance is also illustrated in Table 1 for a few choices of
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Figure 1. Boxplots of minimum model size (left to right: NIS, lasso, and SIS) for Example 1 under different true models.

tuning parameter K. Generally speaking, although the lower
bound of the TPs’ signals may be smaller than the upper bound
of false variables’ signals, the largest K norms still have a high
possibility to contain at least some true variables. When condi-
tioning on this small set of more relevant variables, the marginal
contributions of FPs are weakened. Note that in the absence
of correlation, when K ≥ s (here s = 4), the first K variables
have already included all the true variables (i.e., M∗\M0 = ∅),
hence the minimum of true signal is not available. In other cases,
we see that the gap between the marginal signals of true vari-
ables and false ones become large enough to differentiate them.

Therefore by using the thresholding via the conditional permu-
tation method, not only the sure screening properties are still
maintained, but also the model sizes are dramatically reduced.

5.3 Comparison of Model Selection and Estimation

In this section we explore the performance of conditional-
INIS and greedy-INIS. For each method, we report the aver-
age number of TP, FP, prediction error (PE), and their robust
standard deviations. Here, the PE is the mean squared error cal-
culated on the test dataset of size n/2 = 200 generated from

Table 1. Average values of the number of true positives (TPs), model size, the minimum true signal, the maximum false signal, and the
maximum null signal using conditional permutation with different K’s for simulated model in Example 3 under different correlation settings.

Robust standard deviations are given in parentheses

Model TP Size min
j∈M∗\M0

û∗
nj max

j∈M∗c\M0
û∗

nj max
j∈{1,...,p}\M0

û∗π
nj

K = 0 t1 = 0, t2 = 0 4.00(0.00) 6.68(2.99) 2.96(0.72) 1.22(0.18) 1.12(0.15)
t1 = 3, t2 = 1 4.00(0.00) 886.49(88.81) 0.61(0.10) 0.58(0.07) 0.22(0.03)

K = 1 t1 = 0, t2 = 0 4.00(0.00) 5.70(1.49) 2.83(0.57) 0.75(0.10) 0.72(0.11)
t1 = 3, t2 = 1 4.00(0.00) 202.50(154.85) 0.28(0.06) 0.20(0.03) 0.11(0.02)

K = 4 t1 = 0, t2 = 0 4.00(0.00) 5.14(1.49) NA 0.06(0.01) 0.06(0.01)
t1 = 3, t2 = 1 4.00(0.00) 4.98(0.75) 0.16(0.05) 0.05(0.01) 0.06(0.01)

K = 8 t1 = 0, t2 = 0 4.00(0.00) 8.92(0.75) NA 0.05(0.01) 0.05(0.01)
t1 = 3, t2 = 1 3.99(0.00) 8.43(0.75) 0.11(0.03) 0.04(0.01) 0.05(0.01)
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Figure 2. Boxplots of minimum model size (left: NIS, right: SIS) for Example 2 under different correlation settings.

the same model. As a measure of the complexity of the model,
signal-to-noise ratio (SNR), defined by var(βT (W )X)/var(ε), is
computed.

We first explore the performance of conditional-INIS proce-
dure using different K’s for the simulated model specified in
Example 3. Table 2 shows that under both uncorrelated and
highly correlated settings, the model selection and estimation
results are rather robust to the choice of K. This is not surprising
since the conditional permutation mainly serves as the initial-
ization step (Step 0) in our iterative framework. We recommend
using a small K as long as the conditional permutation can se-
lect a set of variables of a reasonable size to continue. We take
K = 5 in the rest of the article.

Table 2. Average values of the number of true positives (TPs), false
positives (FPs), and prediction error (PE) using conditional-INIS with

different K’s for simulated model in Example 3 under different
correlation settings. Robust standard deviations are given in

parentheses

Model TP FP PE

K = 3 t1 = 0, t2 = 0 4.00(0.00) 1.27(1.49) 1.16(0.13)
t1 = 3, t2 = 1 3.96(0.00) 0.13(0.00) 1.32(0.10)

K = 5 t1 = 0, t2 = 0 4.00(0.00) 1.57(1.49) 1.34(0.14)
t1 = 3, t2 = 1 3.97(0.00) 0.05(0.00) 1.31(0.15)

K = 10 t1 = 0, t2 = 0 4.00(0.00) 1.20(1.49) 1.20(0.14)
t1 = 3, t2 = 1 3.99(0.00) 0.20(0.00) 1.39(0.07)

Table 3 reports the results for conditional-INIS and greedy-
INIS using the simulated model specified in Example 3 under
different correlation settings. We now illustrate the performance
by using another example.

Example 4. Let {W, X} , Y , and ε be the same as in Example
3. We now introduce more complexities in the following model:

Y = 3W · X1 + (W + 1)2 · X2 + (W − 2)3 · X3

+ 3(sin(2πW )) · X4 + exp(W ) · X5 + 2 · X6 + 2 · X7

+ 3
√

W · X8 + ε.

The results are present in Table 4.
Through the examples above, conditional-INIS and greedy-

INIS show comparable performance in terms of TP, FP, and PE.
When the covariates are independent or weakly correlated, sure
screening is easier to achieve; as the correlation gets stronger,
we see a decrease in TP and an increase in FP. However, the
coefficient estimates for these FPs are fairly small, hence they do
not affect PE very much. Regarding computational efficiency,
conditional-INIS performs better in our simulated examples, as
it usually only requires two to three iterations, while greedy-
INIS needs at least and usually more than s/p0 iterations (here
p0 = 1 and s = 4 and 8, respectively, for Examples 3 and 4).

5.4 Real Data Analysis on Boston Housing Data

In this section, we illustrate the performance of our method
through a real data analysis on Boston Housing Data (Harrison
and Rubinfeld 1978). This dataset contains housing data for 506
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Table 3. Average values of the number of true positives (TPs), false positives (FPs), and prediction error (PE) for simulated model in
Example 3. Robust standard deviations are given in parentheses

Correlation Conditional-INIS Greedy-INIS

Model X’s X’s–W TP FP PE TP FP PE

t1 = 0, t2 = 0 0 0 4.00 1.57 1.34 4.00 0.06 1.17
(SNR ≈ 16.85) (0.00) (1.49) (0.14) (0.00) (0.00) (0.06)
t1 = 2, t2 = 0 0.25 0 4.00 0.15 0.89 4.00 0.00 0.99
(SNR ≈ 3.66) (0.00) (0.00) (0.05) (0.00) (0.00) (0.05)
t1 = 2, t2 = 1 0.25 0.36 4.00 0.12 1.24 3.99 0.02 1.32
(SNR ≈ 3.21) (0.00) (0.00) (0.10) (0.00) (0.00) (0.13)
t1 = 3, t2 = 0 0.43 0 4.00 0.01 1.13 3.98 0.00 1.19
(SNR ≈ 3.32) (0.00) (0.00) (0.06) (0.00) (0.00) (0.06)
t1 = 3, t2 = 1 0.43 0.46 3.97 0.05 1.31 3.96 0.03 1.17
(SNR ≈ 2.81) (0.00) (0.00) (0.15) (0.00) (0.00) (0.10)

census tracts of Boston from the 1970 census. Most empirical
results for the housing value equation are based on a common
specification (Harrison and Rubinfeld 1978),

log(MV) = β0 + β1 RM2 + β2AGE + β3 log(DIS)

+ β4 log(RAD) + β5TAX + β6PTRATIO

+ β7(B − 0.63)2 + β8 log(LSTAT) + β9CRIM

+ β10ZN + β11INDUS + β12CHAS

+ β13NOX2 + ε,

where the dependent variable MV is the median value of owner-
occupied homes, the independent variables are quantified mea-
surement of its neighborhood whose description can be found in
the manual of R packages mlbench. The common specification
uses RM2 and NOX2 to get a better fit, and for comparison we
take these transformed variables as our input variables.

To exploit the power of varying coefficient model, we take
the variable log(DIS), the weighted distances to five employ-
ment centers in the Boston region, as the exposure variable.
This allows us to examine how the distance to the business hubs
interact with other variables. It is reasonable to assume that the
impact of other variables on housing price varies with the dis-
tance, which is an important characteristic of the neighborhood,
that is, the geographical accessibility to employment. Interest-
ingly, conditional-INIS (with Ln = 7 and K = 5) selects the

following submodel:

log(MV) = β0(W ) + β1(W ) · RM2 + β2(W ) · AGE

+ β5(W ) · TAX + β7(W ) · (B − 0.63)2 + β9(W )

· CRIM + ε, (15)

where W = log(DIS). The estimated functions β̂j (W )’s are pre-
sented in Figure 3. This varying coefficient model shows very
interesting aspects of housing valuation. The nonlinear interac-
tions with the accessibility are clearly evidenced. For example,
RM is the average number of rooms in owner units, which rep-
resents the size of a house. Therefore, the marginal cost of a big
house is higher in employment centers where population is con-
centrated and supply of mansions is limited. The cost per room
decreases as one moved away from the business centers and
then gradually increases. CRIM is the crime rate in each town-
ship, which usually has a negative impact, and from its varying
coefficient we see that it is a bigger concern near (demograph-
ically more complex) business centers. AGE is the proportion
of owner units built prior to 1940, and its varying coefficient
has a parabola shape: positive impact on housing values near
employment centers and suburb areas, while negative effects
in between. NOX (air pollution level) is generally a negative
impact, and the impact is larger when the house is near employ-
ment centers where air is presumably more polluted than suburb
area.

Table 4. Average values of the number of true positives (TPs), false positives (FPs), and prediction error (PE) for simulated model in
Example 4. Robust standard deviations are given in parentheses

Correlation Conditional-INIS Greedy-INIS

Model X’s X’s-W TP FP PE TP FP PE

t1 = 0, t2 = 0 0 0 8.00 1.26 1.46 8.00 0.08 1.25
(SNR ≈ 47.68) (0.00) (1.49) (0.15) (0.00) (0.00) (0.12)
t1 = 2, t2 = 0 0.25 0 8.00 0.08 1.14 8.00 0.00 1.34
(SNR ≈ 9.40) (0.00) (0.00) (0.10) (0.00) (0.00) (0.12)
t1 = 2, t2 = 1 0.25 0.36 8.00 0.30 1.60 8.00 0.10 1.98
(SNR ≈ 8.62) (0.00) (0.00) (0.34) (0.00) (0.00) (0.47)
t1 = 3, t2 = 0 0.43 0 7.99 0.02 1.30 7.98 0.02 1.17
(SNR ≈ 8.18) (0.00) (0.00) (0.08) (0.00) (0.00) (0.10)
t1 = 3, t2 = 1 0.43 0.46 7.98 0.26 1.70 7.90 0.25 1.76
(SNR ≈ 7.61) (0.00) (0.00) (0.19) (0.00) (0.00) (0.48)
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Figure 3. Fitted functional estimates β̂j (W )’s selected by conditional-INIS.

We now evaluate the performance of our INIS method in a
high-dimensional setting. To accomplish this, let {Z1, . . . , Zp}
be iid the standard normal random variables and U follow the
standard uniform distribution. We then expand the dataset by
adding the artificial predictors:

Xj = Zj + tU

1 + t
, j = s + 1, . . . , p.

Note that {W,X1, . . . , Xs} are the independent variables in
original dataset (s = 13 here) and the variables {Xj }pj=s+1 are
known to be irrelevant to the housing price, though the max-
imum spurious correlation of these 987 artificial predictors to
the housing price is now small. We take p = 1000, t = 2, and
randomly select n = 406 samples as training set, and compute
prediction mean squared error (PE) on the rest 100 samples.

Table 5. Average values of prediction error (PE), model size, and the
number of selected noise variables (SNVs) over 100 repetitions for

conditional-INIS (p = 1000), greedy-INIS (p = 1000), and SCAD fit
(p = 12). Robust standard deviations are given in parentheses

Method PE Size SNV

Conditional-INIS (p = 1000) 0.046(0.020) 5.55(0.75) 0.00(0.00)
Greedy-INIS (p = 1000) 0.048(0.020) 4.80(1.49) 0.01(0.00)
SCAD fit (p = 12) 0.052(0.019) 6.05(1.87) NA

As a benchmark for comparison, we also do regression fit on
{W,X1, . . . , Xs} directly using SCAD penalty without screen-
ing procedure. We repeat N = 100 times and report the average
PE and model size, and their robust standard deviation. Since
{Xj }pj=s+1 are artificial variables, we also include the number of
artificial variables selected by each method as a proxy for FPs.
The results are presented in Table 5.

As seen from Table 5, our methods are very effective in fil-
tering noise variables in a high-dimensional setting, and can
achieve comparable PE as if the noise were absent. In conclu-
sion, the proposed INIS methodology is very useful in high-
dimensional scientific discoveries, which can select a parsimo-
nious close-to-truth model and reveal interesting relationship
between variables, as illustrated in this section.

APPENDIX A: PROOFS

A.1 Properties of B-Splines

Our estimation use the B-spline basis, which has the following
properties (de Boor 1978): for each j = 1, . . . , p and k = 1, . . . , Ln,
Bk(W ) ≥ 0 and

∑Ln

k=1 Bk(W ) = 1 for W ∈ W . In addition, there exist
positive constants T3 and T4 such that for any ηk ∈ R, k = 1, . . . , Ln,

L−1
n T3

Ln∑
k=1

η2
k ≤

∫ (
Ln∑
k=1

ηkBk(w)

)2

dw ≤ L−1
n T4

Ln∑
k=1

η2
k . (A.1)
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Then under condition (iii), for C1 = T1T3 and C2 = T2T4,

C1L
−1
n ≤ E

[
B2

k (W )
] ≤ C2L

−1
n , for all k = 1, . . . , Ln. (A.2)

Furthermore, under condition (iii), it follows from (A.1) that
for any η = (η1, . . . , ηLn

)T ∈ RLn such that ‖η‖2
2 = 1, C1L

−1
n ≤

ηT E[BT B]η ≤ C2L
−1
n . Or equivalently,

C1L
−1
n ≤ λmin(E[BT B]) ≤ λmax(E[BT B]) ≤ C2L

−1
n . (A.3)

A.2 Technical Lemmas

Some technical lemmas needed for our main results are shown as
follows. Lemmas A.1 and A.2 give some characterization of exponen-
tial tails, which becomes handy in our proof. Lemmas A.3 and A.4 are
Bernstein-type inequalities.

Lemma A.1. Let X, W be random variables. Suppose X has a condi-
tional exponential tail: P(|X| > t |W ) ≤ exp(1 − (t/K)r ) for all t ≥ 0
and uniformly on the compact support of W, where K > 0 and r ≥ 1.
Then for all m ≥ 2,

E(|X|m|W ) ≤ eKmm!.

Proof. Recall that for any nonnegative random variable Z,
E[Z|W ] = ∫∞

0 P{Z ≥ t |W }dt . Then we have

E(|X|m|W ) =
∫ ∞

0
P{|X|m ≥ t |W }dt ≤

∫ ∞

0
exp(1 − (t1/m/K)r )dt

= emKm

r
�
(m

r

)
≤ eKm�(m + 1).

The last inequality follows from the fact r ≥ 1, thus Lemma A.1
holds. �

Lemma A.2. Let Z1, Z2, and W be random variables. Suppose that
there exist K1, K2 > 0 and r1, r2 ≥ 1 such that r1r2/(r1 + r2) ≥ 1, and

P(|Zi | > t |W ) ≤ exp(1 − (t/Ki)
ri ), i = 1, 2

for all t ≥ 0 and uniformly on W . Then for some r∗ ≥ 1 and K∗ > 0,

P(|Z1Z2| > t |W ) ≤ exp(1 − (t/K∗)r
∗
)

for all t ≥ 0 and uniformly on W .

Proof. For any t > 0, let M = (tKr2/r1
2 /K1)

r1
r1+r2 and r = r1r2/(r1 +

r2). Then uniformly on W , we have

P(|Z1Z2| > t |W ) ≤ P(M|Z1| > t |W ) + P(|Z2| > M|W )

≤ exp{1 − (t/K1M)r1} + exp{1 − (M/K2)r2}
= 2 exp{1 − (t/K1K2)r}. �

Let r∗ ∈ [1, r] and K∗ = max{(r∗/r)1/rK1K2, (1 + log 2)1/rK1

K2}. It can be shown that G(t) = (t/K1K2)r − (t/K∗)r
∗

is increas-
ing when t > K∗. Hence G(t) > G(K∗) ≥ log 2 when t > K∗, which
implies when t > K∗,

P(|Z1Z2| > t |W ) ≤ 2 exp{1 − (t/K1K2)r1} ≤ exp{1 − (t/K∗)r
∗ }.

Also, when t ≤ K∗, P(|Z1Z2| > t |W ) ≤ 1 ≤ exp{1 − (t/K∗)r
∗ }.

Lemma A.2 holds.

Lemma A.3. (Bernstein inequality, Lemma 2.2.11, van der Vaart
and Wellner 1996). For independent random variables Y1, . . . , Yn with
mean zero such that E[|Yi |m] ≤ m!Mm−2νi/2 for every m ≥ 2 (and all
i) and some constants M and νi . Then

P (|Y1 + · · · + Yn| > x) ≤ 2 exp{−x2/(2(ν + Mx))},
for v ≥ ν1 + · · · + νn.

Lemma A.4. (Bernstein’s inequality, Lemma 2.2.9, van der Vaart
and Wellner 1996). For independent random variables Y1, . . . , Yn with
bounded range [−M,M] and mean zero, let ν ≥ var(Y1 + · · · + Yn),
then

P (|Y1 + · · · + Yn| > x) ≤ 2 exp{−x2/(2(ν + Mx/3))}.

The following lemmas are needed for the proof of Theorem 1.

Lemma A.5. Suppose conditions (i) and (iii)–(vi) hold. For any
δ > 0, there exist some positive constants b1 and b2 such that for
j = 1, . . . , p, k = 1, . . . , Ln,

P

(∣∣∣∣∣ 1

n

n∑
i=1

XjiBk(Wi)Yi − E[XjBkY ]

∣∣∣∣∣ ≥ δ

n

)

≤ 4 exp

{
− δ2

b1L−1
n n + b2δ)

}
,

and

P

(∣∣∣∣∣ 1

n

n∑
i=1

Bk(Wi)Yi − E[BkY ]

∣∣∣∣∣ ≥ δ

n

)
≤ 4 exp

{
− δ2

b1L−1
n n + b2δ

}
.

Proof. Recall m(X∗
i ) = E(Yi |Xi , Wi). Let Zjki = XjiBk(Wi)

m(X∗
i ) − E[XjBk(W )m(X∗)] and ξjki = XjiBk(Wi)εi . Then∣∣∣∣∣ 1

n

n∑
i=1

XjiBk(Wi)Yi − E[XjBk(W )Y ]

∣∣∣∣∣
=
∣∣∣∣∣ 1

n

n∑
i=1

(XjiBk(Wi)m(X∗
i ) − E[XjBk(W )m(X∗)] + XjiBk(Wi)εi)

∣∣∣∣∣
≤
∣∣∣∣∣ 1

n

n∑
i=1

Zjki

∣∣∣∣∣+
∣∣∣∣∣ 1

n

n∑
i=1

ξjki

∣∣∣∣∣ .
�

We first bound 1
n

∑n

i=1 Zjki . Note that for each j and k, {Zjki}n
i=1

are a sequence of independent random variables with mean zero. By
condition (v), (A.2), and Lemmas A.1 and A.2, we have for every
m ≥ 2, there exists a constant K4 > 0, such that

E|Zjki |m ≤ 2mE|XjiBk(Wi)m(X∗
i )|m

≤ 2mE
[
B2

jk(Wi)eK
m
4 m!

] ≤ m!(2K4)m−2
(
8eK2

4 C2L
−1
n

)
/2,

(A.4)

where the first inequality comes from the Minkowski inequality. Hence,
it follows from Lemma A.3 that for any δ > 0,

P

(∣∣∣∣∣ 1

n

n∑
i=1

Zjki

∣∣∣∣∣ ≥ δ

2n

)
≤ 2 exp

{
− δ2

64eK2
4 C2L−1

n n + 8K4δ

}
. (A.5)

Next we bound 1
n

∑n

i=1 ξi . Again ξi’s are centered independent ran-
dom variables. By conditions (v)–(vi), (A.2), and Lemmas A.1 and
A.2, we have for every m ≥ 2, there exists a constant K5 > 0, such that

E|ξi |m = E
[
Bm

k (Wi)E[|Xjiεi |m|Wi]
] ≤ m!Km−2

5

(
2eK2

5 C2L
−1
n

)
/2.

Thus, according to Lemma A.3,

P

(∣∣∣∣∣ 1

n

n∑
i=1

ξi

∣∣∣∣∣ ≥ δ

2n

)
≤ 2 exp

{
− δ2

16eK2
5 C2L−1

n n + 4K5δ

}
. (A.6)

Similarly, we can show that

P

(∣∣∣∣∣ 1

n

n∑
i=1

Bk(Wi)m(X∗
i ) − E[Bk(W )m(X∗)]

∣∣∣∣∣ ≥ δ

2n

)

≤ 2 exp

{
− δ2

64eK2
2 C2L−1

n n + 8K2δ

}
(A.7)
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and

P

(∣∣∣∣∣ 1

n

n∑
i=1

Bk(Wi)εi

∣∣∣∣∣ ≥ δ

2n

)
≤ 2 exp

{
− δ2

16eK2
3 C2L−1

n n + 4K3δ

}
.

(A.8)

Let b1 = 16eC2 max(4K2
4 , K2

5 , 4K2
2 , K2

3 ) and b2 = max(8K4, 4K5,

8K2, 4K3). Then, the combination of (A.5)–(A.8) by union bound of
probability yields the desired result.

Lemma A.6. Under conditions (i), (iii), and (v), there exist positive
constants C3 and C4, such that for j = 1, . . . , p and �j = E[QT

j Qj ],

C3L
−1
n ≤ λmin(�j ) ≤ λmax(�j ) ≤ C4L

−1
n . (A.9)

Proof. Recall that Qj = (B, Xj B). For any η = (ηT
1 , ηT

2 )T ∈ R2Ln

such that ‖η‖2
2 = 1,

ηT �jη = E

[
(Bη1, Bη2)

(
1 E[Xj |W ]

E[Xj |W ] E[X2
j |W ]

)(
Bη1

Bη2

)]
.

�

Consider eigenvalues λ1 and λ2 (λ1 > λ2) of the 2 × 2 middle matrix
on the right-hand side of the equation above, we have λ1 + λ2 = 1 +
E[X2

j |W ] (trace) and λ1 · λ2 = var[Xj |W ] (determinant). Therefore, by
Lemma A.1 λ1 ≤ 1 + E[X2

j |W ] ≤ 1 + 4eK2
1 and by assumption (i)

λ2 ≥ var[Xj |W ]

E[X2
j |W ] + 1

≥ h1

1 + 4eK2
1

.

Using the above two bounds on the minimum and maximum eigenval-
ues, we have

h1

1 + 4eK2
1

E[(Bη1)2 + (Bη2)2]

≤ ηT �jη ≤ (
1 + 4eK2

1

)
E[(Bη1)2 + (Bη2)2].

By (A.3), we have

h1C1

1 + 4eK2
1

L−1
n ≤ ηT �jη ≤ (

1 + 4eK2
1

)
C2L

−1
n .

Take C3 = h1C1L
−1
n /(1 + 4eK2

1 ) and C4 = (1 + 4eK2
1 )C2L

−1
n , result

follows.
Throughout the rest of the proof, for any matrix A, let ‖A‖ =√
λmax(AT A) be the operator norm and ‖A‖∞ = maxi,j |Aij | be the

infinity norm.

Lemma A.7. Suppose conditions (i), (iii), and (v) hold. For any
δ > 0 and j = 1, . . . , p, there exist some positive constants b3 and b4

such that

P (‖�nj − �j‖ ≥ Lnδ/n) ≤ 6L2
n exp

{
− δ2

b3L−1
n n + b4δ

}
,

P

(∥∥∥∥ 1

n
BT

n Bn − E[BT B]

∥∥∥∥ ≥ Lnδ/n

)
≤ 6L2

n exp

{
− δ2

b3L−1
n n + b4δ

}
,

where �nj = 1
n
QT

nj Qnj . In addition, for any given positive constant b5,
there exists some positive constant b6 such that

P (|‖(�nj )−1‖ − ‖(�j )−1‖| ≥ b5‖(�j )−1‖) ≤ 6L2
n exp

{− b6L
−3
n n

}
,

and for any positive constant b7, there exists some positive constant b8

such that

P

(∣∣∣∣∣
∥∥∥∥∥
(

1

n
BT

n Bn

)−1
∥∥∥∥∥− ‖(E[BT B])−1‖

∣∣∣∣∣ ≥ b7‖(E[BT B])−1‖
)

≤ 6L2
n exp

{− b8L
−3
n n

}
.

Proof. Observe that for j = 1, . . . , p,

�nj − �j =
(

D1 D2j

DT
2j D3j

)
,

where D1 = 1
n

∑n

i=1 BT (Wi)B(Wi) − E[BT B], D2j = 1
n

∑n

i=1 XjiBT

(Wi)B(Wi) − E[Xj BT B], and D3j = 1
n

∑n

i=1 X2
jiB

T (Wi)B(Wi) −
E[X2

j BT B]. Then

‖�nj − �j‖ ≤ 2Ln‖�nj − �j‖∞
= 2Ln max(‖D1‖∞, ‖D2j‖∞, ‖D3j‖∞). (A.10)

�
We first bound ‖D1‖∞. Recall that 0 ≤ Bk(·) ≤ 1 on W , so

|Bk(Wi)Bl(Wi) − E[Bk(W )Bl(W )]| ≤ 2,

for all k and l. By (A.2),

var (Bk(Wi)Bl(Wi) − E[Bk(W )Bl(W )]) ≤ E
[
B2

k (W )B2
l (W )

] ≤ C2L
−1
n .

By Lemma A.4, we have

P

(∣∣∣∣∣ 1

n

n∑
i=1

Bk(Wi)Bl(Wi) − E[Bk(W )Bl(W )]

∣∣∣∣∣ ≥ δ/6n

)
≤ 2 exp

{−δ2/
(
72C2L

−1
n n + 24δ

)}
.

It then follows from the union bound of probability that

P (‖D1‖∞ ≥ δ/6n) ≤ 2L2
n exp

{−δ2/
(
72C2L

−1
n n + 24δ

)}
. (A.11)

We next bound ‖D2j‖∞. Note that for k, l = 1, . . . , Ln,

E[|XjiBk(Wi)Bl(Wi) − E[XjBk(W )Bl(W )]|m]

≤ 2mE[|XjiBk(Wi)Bl(Wi)|m] ≤ m!(2K1)m−2
(
8eK2

1 C2L
−1
n

)
/2,

where Lemma A.1 was used in the last inequality. By Lemma A.3, we
have

P

(∣∣∣∣∣ 1

n

n∑
i=1

XjiBk(Wi)Bl(Wi) − E[XjBk(W )Bl(W )]

∣∣∣∣∣ ≥ δ/6n

)
≤ 2 exp

{−δ2/
(
576eK2

1 C2L
−1
n n + 24K1δ

)}
.

It then follows from the union bound of probability that

P (‖D2j‖∞ ≥ δ/6n) ≤ 2L2
n exp

{−δ2/
(
576eK2

1 C2L
−1
n n + 24K1δ

)}
.

(A.12)

Similarly, we can bound ‖D3j‖∞. For every m ≥ 2, for k, l =
1, . . . , Ln, there exists a constant K6 > 0 such that

E
[∣∣X2

jiBk(Wi)Bl(Wi) − E
[
X2

jBk(W )Bl(W )
]∣∣m]

≤ m!(2K6)m−2
(
8eK2

6 C2L
−1
n

)
/2.

By Lemma A.3, we have

P
(∣∣X2

jiBk(Wi)Bl(Wi) − E
[
X2

jBk(W )Bl(W )
]∣∣ ≥ δ/6n

)
≤ 2 exp

{−δ2/
(
576eK2

6 C2L
−1
n n + 24K6δ

)}
.

It then follows from the union bound of probability that

P (‖D3j‖∞ ≥ δ/6n) ≤ 2L2
n exp

{−δ2/
(
576eK2

6 C2L
−1
n n + 24K6δ

)}
.

(A.13)

Let b3 = 72C2 max{1, 8eK2
1 , 8eK2

6 } and b4 = 24 max{1, K1, K6}, then
combining (A.10)–(A.13) we have

P (‖�nj − �j‖ ≥ Lnδ/n) ≤ 6L2
n exp

{
− δ2

b3L−1
n n + b4δ

}
.
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Observe that ‖ 1
n
BT

n Bn − E[BT B]‖ ≤ 2Ln‖D1‖∞. Thus, we have also
proved that

P

(∥∥∥∥ 1

n
BT

n Bn − E[BT B]

∥∥∥∥ ≥ Lnδ/n

)
≤ 6L2

n exp

{
− δ2

b3L−1
n n + b4δ

}
.

We next prove the second part of the lemma. Note that for any
symmetric matrices A and B (Fan, Feng, and Song 2011),

|λmin(A) − λmin(B)| ≤ max{|λmin(A − B)|, |λmin(B − A)|}. (A.14)

It then follows from (A.14) that

|λmin(�nj ) − λmin(�j )| ≤ 2Ln‖�nj − �j‖∞,

which implies that

P (|λmin(�nj ) − λmin(�j )| ≥ Lnδ/n)

≤ 6L2
n exp

{−δ2/
(
b3L

−1
n n + b4δ

)}
. (A.15)

Let δ = b9C3L
−2
n n in (A.15) for b9 ∈ (0, 1). According to (A.9), we

have

P (|λmin(�nj ) − λmin(�j )| ≥ b9λmin(�j )) ≤ 6L2
n exp

(− b6L
−3
n n

)
,

(A.16)

for some positive constant b6. Next observe the fact that for x, y >

0, a ∈ (0, 1) and b = 1/(1 − a) − 1, |x−1 − y−1| ≥ by−1, which im-
plies |x − y| ≥ ay. This is because x−1 − y−1 ≥ by−1 is equivalent to
x−1 ≥ 1

1−a
y−1, or x − y ≤ −ay; on the other hand, x−1 − y−1 ≤ by−1

implies x−1 ≤ (1 − a

1−a
)y−1 ≤ (1 − a

1+a
)y−1 as a ∈ (0, 1), and there-

fore x − y ≥ ay. Then let b5 = 1/(1 − b9) − 1, it follows from (A.16)
that

P (|(λmin(�nj ))−1 − (λmin(�j )−1| ≥ b5(λmin(�j ))−1)

≤ 6L2
n exp

(− b6L
−3
n n

)
.

Following the same proof, by (A.3) we also have for any positive
constant b7, there exists some positive constant b8, such that

P

(∣∣∣∣∣
(

λmin

(
1

n
BT

n Bn

))−1

− (λmin(E[BT B)])−1

∣∣∣∣∣ ≥ b7(λmin(E[BT B]))−1

)
≤ 6L2

n exp
(− b8L

−3
n n

)
.

The second part of the lemma then follows from the fact that for any
symmetric matrix A, λmin(A)−1 = λmax(A−1).

A.3 Proof of Main Results

Proof of Proposition 1. Note that E[Y |W,Xj ] = aj (W ) +
bj (W )Xj . By Stone (1982), there exist {a∗

j }p

j=0 and {b∗
j }p

j=1 ∈ Sn such
that ‖aj − a∗

j ‖∞ ≤ M2L
−d
n and ‖bj − b∗

j‖∞ ≤ M2L
−d
n , where Sn is

the space of polynomial splines of degree l ≥ 1 with normalized B-
spline basis {Bk, k = 1, . . . , Ln}, and M2 is some positive constant.
Here ‖ · ‖∞ denotes the sup norm. Let η∗

j and θ∗
j be Ln-dimensional

vectors such that for a∗
j (W ) = B(W )η∗

j and b∗
j (W ) = Bj (W )θ∗

j . Recall
that ãj (W ) = B(W )η̃j and b̃j (W ) = B(W )θ̃ j . By definition of η̃j and
θ̃ j , we have

(ãj , b̃j ) = arg min
aj ,bj ∈Sn

E[(E[Y |W,Xj ] − aj (W ) − bj (W )Xj )2],

and therefore ‖E[Y |W,Xj ] − ãj − b̃jXj‖2 ≤ ‖E[Y |W, Xj ] − a∗
j −

b∗
jXj‖2. In other words,

‖ãj + b̃jXj − (aj + bjXj )‖2 ≤ 2‖aj − a∗
j ‖2 + 2‖(bj − b∗

j )Xj‖2

≤ 2M2
2 L−2d

n

(
1 + E

[
X2

j

])
.

�

On the other hand, by the least-square property and conditioning in
Wj and Xj ,

E[(Y − ãj − b̃jXj )(ãj + b̃jXj )] = 0,

E[(Y − aj − bjXj )(ãj + b̃jXj )] = 0.

The last two equalities imply that E[(aj + bjXj − ãj − b̃jXj )(ãj +
b̃jXj )] = 0. Thus, by the Pythagorean theorem, we have

‖aj + bjXj‖2 = ‖ãj + b̃jXj‖2 + ‖ãj + b̃jXj − aj − bjXj‖2,

‖aj + bjXj‖2 − ‖ãj + b̃jXj‖2 ≤ 2M2
2 L−2d

n

(
1 + E

[
X2

j

])
. (A.17)

Similarly, we have

‖a0‖2 − ‖ã0‖2 ≤ M2
2 L−2d

n . (A.18)

By taking M1 = M2
2 (8eK2 + 3) (see Lemma A.1), the first part of

Proposition 1 follows from (A.17) and (A.18):

uj − ũj = ‖aj + bjXj‖2 − ‖a0‖2 − (‖ãj + b̃jXj‖2 − ‖ã0‖2)

≤ M1L
−2d
n . (A.19)

By (11) and (A.19), we have minj∈M∗ ũj ≥ c1Lnn
−2κ/h2 − M1L

−2d
n .

The desired result follows from L−2d−1
n ≤ c1(1/h2 − ξ )n−2κ/M1 for

some ξ ∈ (0, 1/h2).

Proof of Theorem 1. We first prove part (1). Note that ûnj − ũj =
S1 + S2, where

S1 = 1

n2
YT Qnj�

−1
nj QT

nj Y − E[YQj ]�−1
j E

[
QT

j Y
]
, and

S2 = 1

n
YT Bn

(
BT

n Bn

)−1
BT

n Y − E[YB](E[BT B])−1E[BT Y ].

�
We first focus on S1. Let an = 1

n
QT

nj Y and a = E[QT
j Y ]. Then

S1 = (an − a)T �−1
nj (an − a) + 2(an − a)T �−1

nj a + aT (�−1
nj − �−1

j )a.

Denote the last three terms, respectively, by S11, S12, and S13.
We first deal with S11. Note that

|S11| ≤ ‖�−1
nj ‖ · ‖an − a‖2

2. (A.20)

By Lemma A.5 and the union bound of probability,

P
(‖an − a‖2

2 ≥ 2Lnδ
2/n2

) ≤ 8Ln exp
{−δ2/

(
b1L

−1
n n + b2δ

)}
.

(A.21)

According to the second part of Lemma A.7, for any given positive
constant b5, there exists a positive constant b6 such that

P
(∣∣∥∥�−1

nj

∥∥− ∥∥�−1
j

∥∥∣∣ ≥ b5

∥∥�−1
j

∥∥) ≤ 6L2
n exp

{− b6L
−3
n n

}
.

Then it follows from (A.9) that

P
(∥∥�−1

nj

∥∥ ≥ (b5 + 1)C−1
3 Ln

) ≤ 6L2
n exp

{− b6L
−3
n n

}
. (A.22)

Combining (A.20)–(A.22) and based on the union bound of probability,
we have

P
(|S11| ≥ 2(b5 + 1)C−1

3 L2
nδ

2/n2
)

≤ 8Ln exp
{−δ2/

(
b1L

−1
n n + b2δ

)}+ 6L2
n exp

{−b6L
−3
n n

}
. (A.23)

We next bound S12. Note that

|S12| ≤ 2‖an − a‖2 · ∥∥�−1
nj

∥∥ · ‖a‖2. (A.24)

By Lemma A.1,

‖a‖2
2 = ‖E[BT Y ]‖2

2 + ‖E[Xj BT Y ]‖2
2

≤
Ln∑
k=1

(
E
[
B2

k m
2(X∗)

]+ E
[
B2

k X
2
jm

2(X∗)
])

≤ 4eC2

(
K2

2 + K2
4

)
, (A.25)

where the calculation as in (A.4) was used.
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It follows from (A.21), (A.22), (A.24), (A.25), and the union bound
of probability that

P
(|S12| ≥ 4

√
2(b5 + 1)e1/2C

1/2
2

(
K2

2 + K2
4

)1/2
C−1

3 L3/2
n δ/n

)
≤ 8Ln exp

{−δ2/
(
b1L

−1
n n + b2δ

)}+ 6L2
n exp

{− b6L
−3
n n

}
.

(A.26)

To bound S13, note that

|S13| = aT �−1
nj (�j − �nj )�−1

j a ≤ ‖�−1
nj ‖2 · ‖�j − �nj‖ · ‖a‖2

2.

(A.27)

Then it follows from Lemmas A.6, A.7, (A.22), (A.25), (A.27), and the
union bound of probability that there exist b3, b4, and b6 such that

P
(|S13| ≥ 4eC2

(
K2

2 + K2
4

)
(b5 + 1)2C−2

3 L3
nδ/n

)
≤ 6L2

n exp
{−δ2/

(
b3L

−1
n n + b4δ

)}+ 6L2
n exp

{− b6L
−3
n n

}
.

(A.28)

Hence, combining (A.23), (A.26), and (A.28), there exist some positive
constants s1, s2, and s3 such that

P
(|S1| ≥ s1L

2
nδ

2/n2 + s2L
3/2
n δ/n + s3L

3
nδ/n

)
≤ 16Ln exp

{−δ2/
(
b1L

−1
n n + b2δ

)}
+ 6L2

n exp
{−δ2/

(
b3L

−1
n n + b4δ

)}+ 18L2
n exp

{− b6L
−3
n n

}
.

Similarly, we can prove that there exist positive constants s4, s5, and s6

such that

P
(|S2| ≥ s4L

2
nδ

2/n2 + s5L
3/2
n δ/n + s6L

3
nδ/n

)
≤ 8Ln exp

{−δ2/
(
b1L

−1
n n + b2δ

)}
+ 6L2

n exp
{−δ2/

(
b3L

−1
n n + b4δ

)}+ 18L2
n exp

{− b8L
−3
n n

}
.

Let (s1+s4)L2
nδ

2/n2+(s2 + s5)L3/2
n δ/n + (s3 + s6)L3

nδ/n=c2Lnn
−2κ

for any given c2 > 0 (e.g., take δ = c2L
−2
n n1−2κ/(s3 + s6)). There exist

some positive constants c3 and c4 such that

P
(|̂unj − ũj | ≥ c2Lnn

−2κ
)

≤ (
24Ln + 12L2

n

)
exp

{−c3n
1−4κL−3

n

}+ 36L2
n exp

{−c4L
−3
n n

}
.

Then Theorem 1(i) follows from the union bound of probability.
We now prove part (ii). Note that on the event

An ≡
{

max
j∈M∗

|̂unj − ũj | ≤ c1ξLnn
−2κ/2

}
by Proposition 1, we have ûnj ≥ c1ξLnn

−2κ/2, for all j ∈ M∗. Hence,
by choosing τn = c1ξLnn

−2κ/2, we have M∗ ⊂ M̂τn
. On the other

hand, by the union bound of probability, there exist positive constants
c6 and c7, such that

P
(Ac

n

) ≤ sn

{(
24Ln + 12L2

n

)
exp

(−c6n
1−4κL−3

n

)
+ 36L2

n exp
(−c7L

−3
n n

)}
,

and Theorem 1(2) follows.

Proof of Theorem 2. Let α̃ = arg minα E[(Y − Qα)2], where Q =
(Q1, . . . , Qp) is a 2pLn-dimensional vector of functions. Then we have

E[QT (Y − Qα̃)] = 02pLn
,

where 02pLn
is a 2pLn-dimension vector with all entries 0. This implies

‖E[QT Y ]‖2
2 = α̃T �2α̃ ≤ λmax(�)α̃T �α̃,

recalling � = E[QT Q]. It follows from orthogonal decomposition that
var(Qα̃) ≤ var(Y ) and E[Qα̃] = E[Y ] (recall the inclusion of the inter-

cept term). Therefore, α̃T �α̃ ≤ E[Y 2] = O(1), and

‖E[QT Y ]‖2
2 = O(λmax(�)). (A.29)

�

Note that by the definition of ũj ,

p∑
j=1

ũj ≤ max
1≤j≤p

λmax{(�j )−1}
p∑

j=1

∥∥E
[
QT

j Y
]∥∥2

2

= max
1≤j≤p

λmax{(�j )−1}‖E[QT Y ]‖2
2.

By Lemma A.6 and (A.29), the last term is of order O(Lnλmax(�)).
This implies that the number of {j : ũj > δLnn

−2κ} cannot exceed
O(n2κλmax(�)) for any δ > 0.

On the set Bn = {max1≤j≤p |̂unj − ũj | ≤ δLnn
−2κ}, the number

of {j : ûnj > 2δLnn
−2κ} cannot exceed the number of {j : ũj >

δLnn
−2κ}, which is bounded by O(n2κλmax(�)). By taking δ = c5/2,

we have

P {|M̂τn
| ≤ O(n2κλmax(�))} ≥ P (Bn).

Then the desired result follows from Theorem 1(i).

[Received March 2013. Revised October 2013.]
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